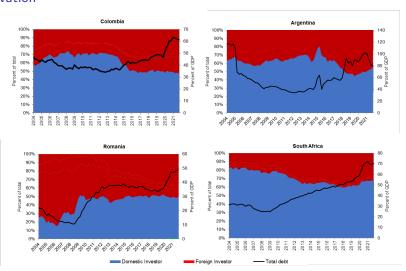
Sovereign Risk Premium, Bond Liquidity and Foreign Reserve Accumulation

Tom Chenyang Wang, UC Irvine

AFA Annual Meeting, Jan 2023

Motivation


Introduction

•000000

Facts:

- Emerging countries borrow a substantial portion debt from foreign investors
- Large amount of sovereign debt emerging countries issued are denominated by foreign currency, referred as "original sin"

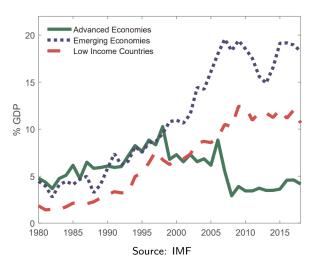
Introduction

Date source: Arslandlp and Tsuda(2014) extended

Motivation

Introduction

0000000


Facts:

- Emerging countries borrow a substantial portion debt from foreign investors
- Large amount of sovereign debt emerging countries issued are denomited by foreign currency, referred as "original sin"
- Emerging countries' amount of foreign reserve accumulation increase dramatically from 1980s
- Number of sovereign defaults decreases from 1980s to now

Motivation

Introduction

Figure: Reserve to GDP Ratio over years

Does foreign reserve effectively lower sovereign credit risk?

Does foreign reserve effectively lower sovereign credit risk?
 Yes.

Introduction 0000000

- Does foreign reserve effectively lower sovereign credit risk? Yes.
- Does foreign reserve really lower risk of the default? Or risk premium?

- Does foreign reserve effectively lower sovereign credit risk?
 Yes.
- Does foreign reserve really lower risk of the default? Or risk premium?
 Mainly through risk premium component, not risk of the default.

Introduction

0000000

- Does foreign reserve effectively lower sovereign credit risk? Yes.
- Does foreign reserve really lower risk of the default? Or risk premium? Mainly through risk premium component, not risk of the default.
- What is the key factor in risk premium component affected by foreign reserve

- Does foreign reserve effectively lower sovereign credit risk? Yes.
- Does foreign reserve really lower risk of the default? Or risk premium? Mainly through risk premium component, not risk of the default.
- What is the key factor in risk premium component affected by foreign reserve Sensitivity to global volatility.

Introduction

0000000

- Does foreign reserve effectively lower sovereign credit risk?
 Yes.
- Does foreign reserve really lower risk of the default? Or risk premium?
 Mainly through risk premium component, not risk of the default.
- What is the key factor in risk premium component affected by foreign reserve Sensitivity to global volatility.
 Bond liquidity condition.

Contribution

Introduction

0000000

- Use CDS spread instead of sovereign bond yield spread as measurement, and decompose CDS spread
- Find foreign reserve accumulation has insignificant effect on default probability, and strong effect on risk premium
- Use bond level data to explore factors affecting sovereign bond yield spread
- Find foreign reserve accumulation improve bond liquidity condition and reduce spillover from global financial volatility

Literature Review

- Sovereign Risk Premia
 Remolana et al(2008), Longstaff et al(2011 AEJ), Gilchristet et al(2021),
- Foreign Reserve Policy Levy-Yeyati and Gomez (2020), Sosa-Padilla & Sturzenegger (2021), Devereaux and Wu(2022), Bianchi, Hatchondo & Martinez(2018 AER) Bianchi & Sosa-Padilla (2020)
- Bond Yield Spread & Liquidity Chen, Lesmond and Wei(2007 JF), Hund & Lesmond(2008) Dick-Nielsen et al (2012 JFE), Chaumont(2020), Passadore & Xu(2022)

• Effect of Reserve on Sovereign Credit Risk?

Measurement

The most common measurement of Sovereign Credit Risk is Sovereign Credit Spread

Measurement

The most common measurement of Sovereign Credit Risk is Sovereign Credit Spread

- Sovereign credit spread = Interest Rate of EM government bond(in USD) Interest Rate of US government bond(in USD)
- The most commonly used dataset is EMBI global index by JP Morgan, composed from yield spread of various sovereign bonds

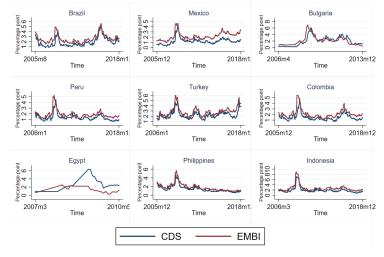
Wicasarcinein

The most common measurement of Sovereign Credit Risk is Sovereign Credit Spread

- Sovereign credit spread = Interest Rate of EM government bond(in USD) Interest Rate of US government bond(in USD)
- The most commonly used dataset is EMBI global index by JP Morgan, composed from yield spread of various sovereign bonds

The other measurement commonly used in the literature: 5-year Sovereign Credit Default Swap(CDS) spread

Measurement


The most common measurement of Sovereign Credit Risk is Sovereign Credit Spread

- Sovereign credit spread = Interest Rate of EM government bond(in USD) Interest Rate of US government bond(in USD)
- The most commonly used dataset is EMBI global index by JP Morgan, composed from yield spread of various sovereign bonds

The other measurement commonly used in the literature: 5-year Sovereign Credit Default Swap(CDS) spread

- CDS contract functions as an insurance contract against sovereign defaults
- Sovereign CDS spread is interpreted as Sovereign CDS premium

Data Comparison

Source: Bloomberg

Question:

- What is the effect of Reserve Ratio on Sovereign Credit Spread?
- Does CDS have identical results with credit spread?

Regression:

$$\mathsf{SovereignCDS}_{n,t} = \alpha_n + \beta_1 \frac{\mathit{Reserve}}{\mathit{GDP}}_{n,t} + \beta_2 \frac{\mathit{SovereignDebt}}{\mathit{GDP}}_{n,t} + \beta_3 \frac{\mathit{CorporateDebt}}{\mathit{GDP}}_{n,t} + \eta \mathit{LC}_{n,t} + \mu \mathit{GC}_t + \varepsilon_{n,t}$$

- Monthly Data, 2001-2018, 14 Emerging Countries
- GC are global controls including Risk Averse and World Rate
- LC are local controls including Rating
- Robustness check:
 - Lagged independent variables
 - Change CDS as EMBI (Sosa-Padilla and Sturzenegger (2022))

Data Source

Name	Description	Source
CDS	CDS contract yield, converted from daily to monthly	Bloomberg
Risk Aversion	Merrill Lynch ICE BofAML Option- Adjusted Spreads	FRED
World Rate	US Treasury notes, 10 year World Rate constant maturity yield, bps	FRED
Credit rating	S&P rating, long term debt, end of period, foreign currency Credit rating. Consructed by Sosa-Padilla.	Standard& Poor's
Sovereign Debt	Public and publicly guaranteed The World Bank's, debt from private credi- tors	World Bank International Debt Statistics (IDS)
Private Debt	External debt stock's, private nonguaranteed	World Bank International Debt Statistics (IDS)

	CI	DS	Sosa-Padi	lla Results	Sosa-Padilla Small Sample		
	(1)	(2)	(3)	(4)	(5)	(6)	
Reserve Ratio	-3.458	-8.106**	-2.584***	-2.760***	-1.987***	-1.488**	
	(2.017)	(3.491)	(0.644)	(0.559)	(0.649)	(0.526)	
Sovereign Debt	4.308**	9.864*	1.530***	1.560***	1.271**	3.267***	
	(1.766)	(4.751)	(0.319)	(0.536)	(0.526)	(0.521)	
Private Debt	3.371**	6.452**	0.742**	1.014***	1.172***	1.011**	
	(1.176)	(2.904)	(0.333)	(0.313)	(0.333)	(0.400)	
Rating	-8.573***	-7.387***	-0.360**	-0.348***	-1.951***	-1.446***	
	(1.906)	(1.812)	(0.174)	(0.113)	(0.376)	(0.271)	
Date Used	CDS	CDS	EMBI	EMBI	EMBI	EMBI	
Fixed Effects	No	Yes	No	Yes	No	Yes	
Global Control	Yes	Yes	Yes	Yes	Yes	Yes	
Observations	1859	1859	4497	4497	1859	1859	
R sq. adj	0.393	0.437	0.520	0.569	0.573	0.696	

Time clustered robust standard errors in parentheses.

Lagged Independent Variables

	Dependent variable: CDS spread						
	(1)	(2)	(3)	(4)	(5)	(6)	
Reserve ratio	-8.106**			-7.605**			
	(3.491)			(3.158)			
Reserve ratio (L.1)		-7.239**			-7.298**		
		(3.215)			(3.197)		
Reserve ratio (L.2)			-6.972*			-6.486**	
			(3.325)			(2.881)	
Sovereign Debt	9.864*	7.948*	8.308*	8.950	8.217	7.206	
	(4.751)	(3.724)	(3.906)	(10.64)	(10.34)	(10.46)	
Private Debt	6.452**	6.582**	6.595**	-1.447	-1.693	-1.069	
	(2.904)	(2.585)	(2.713)	(3.208)	(3.299)	(3.126)	
Sovereign debt (L.1)				-0.987	-0.282	0.360	
				(10.01)	(9.770)	(10.26)	
Private debt (L.1)				8.170**	8.351**	7.269**	
				(3.558)	(3.775)	(3.361)	
Fixed Effects	Yes	Yes	Yes	Yes	Yes	Yes	
Global Control	Yes	Yes	Yes	Yes	Yes	Yes	
Observations	1859	1729	1693	1729	1729	1612	
Lagged Periods	0	1	2	0	1	2	

Time clustered robust standard errors in parentheses.

Step Map

- Effect of Reserve on Sovereign Credit Risk?
 - Significant negative effect
 - CDS replace EMBI as measurement

- Effect of Reserve on Sovereign Credit Risk?
 - Significant negative effect
 - CDS replace EMBI as measurement
- Through Default Probability? Or risk premium?

CDS decomposition: sovereign CDS spread can be decomposed into two components:

Sovereign CDS Spread (Premium)

- = Credit Default Premium + Credit Risk Premium
 hypothetical risk neutral investor additional premium if investor is risk averse
- Credit Default Premium: Risk Component.
 Captures the expected sovereign default prob. Related to the probability to default.
- Credit Risk Premium: Risk Premium Component.
 Capture cov(sovereign default, investor good/bad states). Related to risk aversion, global financial volatility

CDS Decomposition

CDS spread is decomposed by method of Remolona et al(2008), credit rating method:

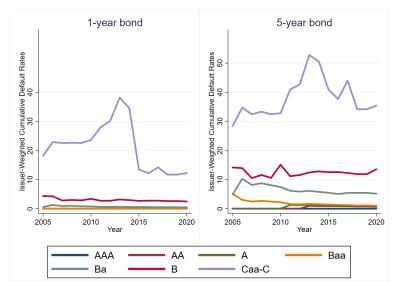
Moody rated sovereign bond safety for every sovereign country, by a letter grade.

Moody's Default Rate

Figure: Moody's Credit Rating for Brazil

CDS Decomposition

CDS spread is decomposed by method of Remolona et al(2008), credit rating method:


- Moody rated sovereign bond safety for every sovereign country, by a letter grade.
- Moody also publishes Issuer-Weighted Cumulative Default Rates in the annual Sovereign Default and Recovery Rates Report.

Moody's Default Rate

Issuer-weighted cumulative default rates 1983-2020

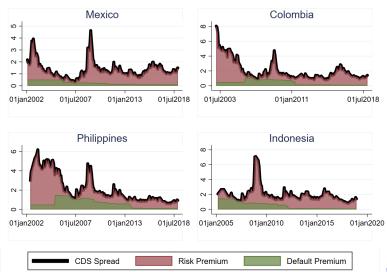
	Average Count	Year 1	Year 2	Year 3	Year 4	Year 5	Year 6	Year 7	Year 8	Year 9	Year 10
Sovereign Issuers											
Aaa	14	0.000%	0.000%	0.000%	0.000%	0.000%	0.000%	0.000%	0.000%	0.000%	0.000%
Aa	11	0.000%	0.000%	0.149%	0.413%	0.690%	0.834%	0.834%	0.834%	0.834%	0.834%
A	11	0.000%	0.061%	0.418%	0.684%	0.963%	1.403%	2.012%	2.642%	3.293%	3.976%
Baa	13	0.000%	0.345%	0.560%	0.785%	1.020%	1.376%	1.644%	1.935%	2.252%	2.593%
Ва	13	0.462%	1.337%	2.621%	3.747%	5.157%	6.218%	7.407%	8.854%	10.101%	11.282%
В	14	2.473%	5.455%	8.323%	11.079%	13.560%	15.955%	18.288%	20.576%	22.350%	23.938%
Caa-C	3	12.229%	20.502%	26.451%	31.924%	35.430%	38.207%	41.034%	44.357%	46.782%	48.680%
Investment-Grade	50	0.000%	0.105%	0.275%	0.452%	0.637%	0.857%	1.060%	1.272%	1.497%	1.733%
Speculative-Grade	30	2.692%	5.355%	7.873%	10.196%	12.293%	14.103%	15.930%	17.880%	19.431%	20.826%
All Rated	81	1.012%	2.069%	3.097%	4.043%	4.898%	5.667%	6.421%	7.215%	7.877%	8.491%

Moody's Default Rate

CDS spread is decomposed by method of Remolona et al(2008), credit rating method:

- Moody rated sovereign bond safety for every sovereign country, by a letter grade.
- Moody also publishes Issuer-Weighted Cumulative Default Rates in the annual Sovereign Default and Recovery Rates Report.
- Given letter grade of a sovereign country, with the implied default rate, we can calculate the Ratings-Implied Expected Loss for every country.

Following Remolona et al(2008), I calculate **Ratings-Implied Expected Loss (RIEL)** by the cumulative default rates for each country.


$$1 - PD_t(T) \times (1 - RR) = exp(-T \times RIEL_t(T))$$

- T: Sovereign Bond Maturity(set as 5 year)
- $PD_t(T)$: probability of default at time t for investment horizen T
- RR: recovery rate(set as 0.5)

Calculate default premium and risk premium:

- Default Premium $_t = RIEL_t$
- Risk Premium $_t = CDS_t RIEL_t$

CDS Decomposition

$$\mathsf{SovereignCDS}^{\mathsf{Observed}}_{n,t} = \mathsf{SovereignCDS}^{\mathsf{Default\ Premium}}_{n,t} + \mathsf{SovereignCDS}^{\mathsf{Risk\ Premium}}_{n,t}$$

Regression:

$$\begin{aligned} & \text{SovereignCDS}_{n,t}^{\text{Observed}} = \alpha_n + \beta_1 \frac{\textit{Reserve}}{\textit{GDP}}_{n,t} + \beta_2 \frac{\textit{SovereignDebt}}{\textit{GDP}}_{n,t} + \beta_3 \frac{\textit{CorporateDebt}}{\textit{GDP}}_{n,t} + \beta_4 \textit{Rating}_{n,t} + \mu \textit{GC}_t + \varepsilon_{n,t} \\ & \text{SovereignCDS}_{n,t}^{\text{Risk Premium}} = \alpha_n + \beta_1 \frac{\textit{Reserve}}{\textit{GDP}}_{n,t} + \beta_2 \frac{\textit{SovereignDebt}}{\textit{GDP}}_{n,t} + \beta_3 \frac{\textit{CorporateDebt}}{\textit{GDP}}_{n,t} + \beta_4 \textit{Rating}_{n,t} + \eta \textit{GC}_t + \varepsilon_{n,t} \\ & \text{SovereignCDS}_{n,t}^{\text{Default Premium}} = \alpha_n + \beta_1 \frac{\textit{Reserve}}{\textit{GDP}}_{n,t} + \beta_2 \frac{\textit{SovereignDebt}}{\textit{GDP}}_{n,t} + \beta_3 \frac{\textit{CorporateDebt}}{\textit{GDP}}_{n,t} + \beta_4 \textit{Rating}_{n,t} + \gamma \textit{GC}_t + \varepsilon_{n,t} \end{aligned}$$

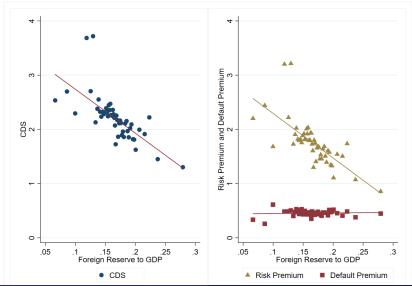
• GC are global controls including Risk Averse and World Rate

Default Premium v.s. Risk Premium

_	CI	DS	Risk P	remium	Default	Premium
	(1)	(2)	(3)	(4)	(5)	(6)
Reserve Ratio	-3.458	-8.106**	-3.428	-8.211**	-0.0297	0.106
	(2.017)	(3.491)	(2.022)	(3.303)	(0.245)	(0.542)
Sovereign Debt	4.308**	9.864*	4.288**	9.564**	0.0195	0.300
	(1.766)	(4.751)	(1.878)	(4.390)	(0.374)	(0.761)
Private Debt	3.371**	6.452**	3.458**	6.803**	-0.0865	-0.351
	(1.176)	(2.904)	(1.197)	(2.790)	(0.0955)	(0.459)
Rating	-8.573***	-7.387***	-6.292***	-5.501***	-2.281***	-1.886***
	(1.906)	(1.812)	(1.817)	(1.486)	(0.408)	(0.551)
Fixed Effects	No	Yes	No	Yes	No	Yes
Global Control	Yes	Yes	Yes	Yes	Yes	Yes
Observations	1859	1859	1859	1859	1859	1859
R sq. adj	0.395	0.438	0.317	0.384	0.657	0.590

Cluster robust standard errors in parentheses.

Default Premium v.s. Risk Premium


	CI	DS	Risk Pı	remium	Default	Premium
	(1)	(2)	(3)	(4)	(5)	(6)
Reserve Ratio	-3.458	-8.106**	-3.428	-8.211**	-0.0297	0.106
	(2.017)	(3.491)	(2.022)	(3.303)	(0.245)	(0.542)
Sovereign Debt	4.308**	9.864*	4.288**	9.564**	0.0195	0.300
	(1.766)	(4.751)	(1.878)	(4.390)	(0.374)	(0.761)
Private Debt	3.371**	6.452**	3.458**	6.803**	-0.0865	-0.351
	(1.176)	(2.904)	(1.197)	(2.790)	(0.0955)	(0.459)
Rating	-8.573***	-7.387***	-6.292***	-5.501***	-2.281***	-1.886***
	(1.906)	(1.812)	(1.817)	(1.486)	(0.408)	(0.551)
Fixed Effects	No	Yes	No	Yes	No	Yes
Global Control	Yes	Yes	Yes	Yes	Yes	Yes
Observations	1859	1859	1859	1859	1859	1859
R sq. adj	0.395	0.438	0.317	0.384	0.657	0.590

Cluster robust standard errors in parentheses.

 Reserve Ratio lower Sovereign CDS Spread mainly through Risk Premium component rather than Default Premium component

Visualizing the Empirical Finding

Step Map

- Effect of Reserve on Sovereign Credit Risk?
 - Significant negative effect
 - CDS replace EMBI as measurement
- Through Default Probability? Or risk premium?
 - CDS decomposition
 - Through Risk Premium rather than Default Premium

- Effect of Reserve on Sovereign Credit Risk?
 - Significant negative effect
 - CDS replace EMBI as measurement
- Through Default Probability? Or risk premium?
 - CDS decomposition
 - Through Risk Premium rather than Default Premium
- Through which specific component in risk premium?

Risk Premium component decomposed from CDS is residual, it can be many factors, for example:

Risk Premium component decomposed from CDS is residual, it can be many factors, for example:

• Liquidity Premium

Risk Premium component decomposed from CDS is residual, it can be many factors, for example:

- Liquidity Premium
- Uncertainty Premium

Risk Premium component decomposed from CDS is residual, it can be many factors, for example:

- Liquidity Premium
- Uncertainty Premium
- Global Risk Premium

Risk Premium component decomposed from CDS is residual, it can be many factors, for example:

- Liquidity Premium
- Uncertainty Premium
- Global Risk Premium

What is the key component of sovereign credit risk affected by Reserve policy?

To better address this question, construct a new dataset containing bond-level data.

Bond Level Analysis

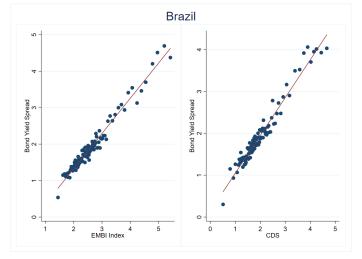
0000000000000000

Bond-Level Data

From Bloomberg, monthly frequency, secondary market:

- Bond Yield Spread (difference between bond yield and benchmark bond yield)
- Bid Price & Ask Price (Bid-Ask spread to measure bond liquidity)

	Bond Number	Observation	Start	End
Brazil	47	2866	8/2005	12/2021
Bulgaria	2	192	6/2006	1/2015
Colombia	34	2476	12/2005	12/2021
Egypt	24	773	2/2006	12/2020
Indonesia	76	5797	2/2006	12/2020
Kazakhstan	9	565	1/2006	12/2020
Mexico	43	3273	12/2005	12/2020
Peru	37	1978	1/2006	12/2020
Philippines	40	3123	12/2005	12/2020
Russia	39	2365	12/2005	12/2020
South Africa	22	1552	2/2006	12/2020
Thailand	6	256	1/2006	12/2020
Tunisia	3	325	12/2005	12/2020
Turkey	90	5985	1/2006	12/2021
Total	471	30984	8/2005	12/2021


Bond Level Analysis

Why sovereign bond liquidity is important?

Credit spread puzzle: simultaneous high credit spreads and low default frequency

- sovereign bonds are traded in OTC market where trading is infrequent
- takes time for a sovereign bond holder to find a counterparty to trade bonds
- investors turns to hold bonds which is easier to trade
- investors should be compensated for bond illiquidity

Related literature: Passadore & Xu(2022), Chaumont (2022)

Source: Bloomberg

Empirical Specification

- Question: How sovereign bond yield spread is determined?
- Regression:

$$\begin{aligned} & \mathsf{YieldSpread}_{i,t} = \\ & \alpha_i + \beta_1 \mathsf{Bid-AskSpread}_{i,t} + \beta_2 \mathsf{Coupon}_{i,t} + \beta_3 \mathsf{Rating}_{i,t} + \beta_4 \mathsf{TimetoMaturity}_{i,t} + \beta_5 \mathsf{Age}_{i,t} + \eta \mathsf{GC}_t + \varepsilon_{i,t} \end{aligned}$$

- GC are global controls including VIX and World Rate
- Empirical methodology is similar to Chen, Lesmond and Wei(2007) (on corporate bond)

Bond Yield Spread Determination

	_ '		
	Sove	reign Yield S	pread
	(1)	(2)	(3)
Bid-Ask Spread	0.334***	0.262***	0.229**
	(0.044)	(0.079)	(0.098)
Coupon	-0.430		
	(0.402)		
Rating	-1.427***	-1.432***	-1.395***
	(0.045)	(0.073)	(0.066)
Time to Maturity	0.032***	0.002	0.063**
	(0.001)	(0.014)	(0.027)
Age	-0.034***		
	(0.002)		
WRate	-0.893***	-0.383***	0.475**
	(0.025)	(0.141)	(0.188)
VIX	0.056***	0.069***	0.074***
	(0.001)	(0.006)	(0.006)
Cons	5.583***	5.022***	3.336***
	(0.144)	(0.238)	(0.383)
Bond FE	No	Yes	Yes
Year Dummy	No	No	Yes
Observations	20534	20528	20528
R sq. adj	0.211	0.321	0.337

Bond Yield Spread Determination

			
	Sove	reign Yield S	pread
	(1)	(2)	(3)
Bid-Ask Spread	0.334***	0.262***	0.229**
	(0.044)	(0.079)	(0.098)
Coupon	-0.430		
	(0.402)		
Rating	-1.427***	-1.432***	-1.395***
	(0.045)	(0.073)	(0.066)
Time to Maturity	0.032***	0.002	0.063**
	(0.001)	(0.014)	(0.027)
Age	-0.034***		
	(0.002)		
WRate	-0.893***	-0.383***	0.475**
	(0.025)	(0.141)	(0.188)
VIX	0.056***	0.069***	0.074***
	(0.001)	(0.006)	(0.006)
Cons	5.583***	5.022***	3.336***
	(0.144)	(0.238)	(0.383)
Bond FE	No	Yes	Yes
Year Dummy	No	No	Yes
Observations	20534	20528	20528
R sq. adj	0.211	0.321	0.337

Results:

- When the bond is more illiquid, it has higher yield spread, empirically support Passadore and Xu(2022)
- Improvement in liquidity causes a reduction in yield spread
- Justify the concern that yield spread can be fully explained by default risk determinants

- Effect of Reserve on Sovereign Credit Risk?
 - Significant negative effect
 - CDS replace EMBI as measurement
- Through Default Probability? Or risk premium?
 - CDS decomposition
 - Through Risk Premium rather than Default Premium
- Through which specific component in risk premium?
 - Construct bond level Dataset
 - Bond yield determination: liquidity, global factor ...

- Effect of Reserve on Sovereign Credit Risk?
 - Significant negative effect
 - CDS replace EMBI as measurement
- 2 Through Default Probability? Or risk premium?
 - CDS decomposition
 - Through Risk Premium rather than Default Premium
- Through which specific component in risk premium?
 - Construct bond level Dataset
 - Bond yield determination: liquidity, global factor ...
- 4 How Reserve affect Liquidity & Global Factor?

Empirical Specification

Question:

- Does Reserve still significant lower Sovereign Yield Spread for bond-level data?
- How does interaction with VIX will affect on the results?

Regression:

YieldSpread_{i,t} = $\alpha_i + \beta_1$ ReserveRatio_{i,t} + β_2 VIX + β_3 VIX × ReserveRatio + η GC_t + μ LC_{i,t}

- GC are global controls including World Rate
- LC; are local controls including Coupon, Rating, Time to Maturity and Age of every bonds i.

	Sover	Sovereign Yield Spread				
	(1)	(2)	(3)			
Reserve Ratio	-1.668***	-1.145**	-0.969*			
	(0.073)	(0.467)	(0.501)			
World Rate	-1.017***	-0.402***	0.503**			
	(0.022)	(0.146)	(0.196)			
VIX	0.059***	0.071***	0.078***			
	(0.001)	(0.006)	(0.006)			

Reserve ratio x VIX

Bond FE	No	Yes	Yes
Year Dummy	No	No	Yes
Bond Control	Yes	Yes	Yes
Observations	23687	23687	23687
R sq. adj	0.392	0.608	0.648

Time clustered robust standard errors in parentheses.

	Sover	Sovereign Yield Spread				
	(1)	(2)	(3)			
Reserve Ratio	-1.668***	-1.145**	-0.969*			
	(0.073)	(0.467)	(0.501)			
World Rate	-1.017***	-0.402***	0.503**			
	(0.022)	(0.146)	(0.196)			
VIX	0.059***	0.071***	0.078***			
	(0.001)	(0.006)	(0.006)			

Reserve ratio x VIX

Bond FE	No	Yes	Yes
Year Dummy	No	No	Yes
Bond Control	Yes	Yes	Yes
Observations	23687	23687	23687
R sq. adj	0.392	0.608	0.648

Time clustered robust standard errors in parentheses.

Results::

- Negative effect of Reserve Ratio on Sovereign Yield Spread is still significant on bond level data
- Market Panic can significantly push up the Sovereign Yield Spread

	Sovereign Yield Spread					
	(1)	(2)	(3)	(4)	(5)	(6)
Reserve ratio	-1.668***	-1.145**	-0.969*	-0.026	0.631	0.213
	(0.147)	(0.738)	(0.759)	(0.354)	(0.797)	(0.891)
World Rate	-1.017***	-0.472***	0.503**	-1.010***	-0.477***	0.496**
	(0.022)	(0.146)	(0.196)	(0.022)	(0.144)	(0.195)
VIX	0.059***	0.071***	0.078***	0.073***	0.087***	0.088***
	(0.001)	(0.006)	(0.006)	(0.003)	(0.008)	(0.007)
Reserve ratio x VIX				-0.091***	-0.104***	-0.069***
				(0.015)	(0.024)	(0.024)
Bond FE	No	Yes	Yes	No	Yes	Yes
Year Dummy	No	No	Yes	No	No	Yes
Bond Control	Yes	Yes	Yes	Yes	Yes	Yes
Observations	23687	23676	23676	23687	23676	23676
R sq. adj	0.392	0.608	0.648	0.394	0.610	0.649

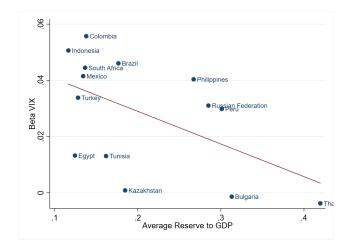
Time clustered robust standard errors in parentheses.

			Sovereign	Yield Spread		
	(1)	(2)	(3)	(4)	(5)	(6)
Reserve ratio	-1.668***	-1.145**	-0.969*	-0.026	0.631	0.213
	(0.147)	(0.738)	(0.759)	(0.354)	(0.797)	(0.891)
World Rate	-1.017***	-0.472***	0.503**	-1.010***	-0.477***	0.496**
	(0.022)	(0.146)	(0.196)	(0.022)	(0.144)	(0.195)
VIX	0.059***	0.071***	0.078***	0.073***	0.087***	0.088***
	(0.001)	(0.006)	(0.006)	(0.003)	(800.0)	(0.007)
Reserve ratio x VIX				-0.091***	-0.104***	-0.069***
				(0.015)	(0.024)	(0.024)
Bond FE	No	Yes	Yes	No	Yes	Yes
Year Dummy	No	No	Yes	No	No	Yes
Bond Control	Yes	Yes	Yes	Yes	Yes	Yes
Observations	23687	23676	23676	23687	23676	23676
R sq. adj	0.392	0.608	0.648	0.394	0.610	0.649

Time clustered robust standard errors in parentheses.

Empirical Specification

• Question:


 Holding more reserve really lower the sensitivity of sovereign yield spread to global factor?

• Regression:

$$\Delta \text{YieldSpread}_{n,t} = \alpha_n + \beta_{VIX}^n \Delta \text{VIX}_t + GC_t + \varepsilon_{n,t}$$

- GC are global controls including World Rate and VIX
- \bullet β^n_{VIX} can be interpreted as sensitivity of country n's Yield Spread to the global financial cycle

Visualizing the Empirical Finding

Empirical Specification

• Question:

- Does Reserve still significant lower Bid-Ask Spread?
- How does interaction with VIX will affect on the results?

• Regression:

 $\mathsf{Bid-AskSpread}_{i,t} = \alpha_i + \beta_1 \mathsf{ReserveRatio}_{i,t} + \beta_2 \mathit{VIX} + \beta_3 \mathit{VIX} \times \mathit{ReserveRatio} + \eta \mathit{GC}_t + \mu \mathit{LC}_{i,t}$

- GC are global controls including World Rate
- LC_i are local controls including Coupon, Rating, Time to Maturity and Age of every bonds i

Reserve Ratio on Bid-Ask Spread

	В	Bid-Ask Sprea	nd
	(1)	(2)	(3)
Reserve Ratio	0.022***	0.324*	-0.549***
	(0.045)	(0.189)	(0.198)
World Rate	-0.211***	-0.171***	0.172**
	(0.012)	(0.033)	(0.063)
VIX	0.011***	0.011***	0.015***
	(0.001)	(0.002)	(0.002)

Reserve ratio x VIX

Bond FE	No	Yes	Yes
Year Dummy	No	No	Yes
Bond Control	Yes	Yes	Yes
Observations	23687	23680	23680
R sq. adj	0.098	0.341	0.373

Time clustered robust standard errors in parentheses.

Reserve Ratio on Bid-Ask Spread

	Bid-Ask Spread						
	(1)	(2)	(3)	(4)	(5)	(6)	
Reserve ratio	0.022	0.324*	-0.549***	-0.931***	-0.613	-1.691***	
	(0.045)	(0.189)	(0.198)	(0.229)	(0.419)	(0.415)	
World Rate	-0.211***	-0.171***	0.172***	-0.215***	-0.169***	0.179***	
	(0.012)	(0.033)	(0.063)	(0.012)	(0.034)	(0.065)	
VIX	0.011***	0.011***	0.015***	0.003*	0.003	0.005**	
	(0.001)	(0.002)	(0.002)	(0.002)	(0.002)	(0.002)	
Reserve ratio x VIX				0.053***	0.055***	0.066***	
				(0.014)	(0.019)	(0.018)	
Bond FE	No	Yes	Yes	No	Yes	Yes	
Year Dummy	No	No	Yes	No	No	Yes	
Bond Control	Yes	Yes	Yes	Yes	Yes	Yes	
Observations	23687	23680	23680	23687	23680	23680	
R sq. adj	0.098	0.341	0.373	0.101	0.344	0.378	

Time clustered robust standard errors in parentheses.

 Reserve ratio significantly decrease bid-ask spread of sovereign bond even interaction of Reserve ratio and VIX added.

- Effect of Reserve on Sovereign Credit Risk?
 - Significant negative effect
 - CDS replace EMBI as measurement
- Through Default Probability? Or risk premium?
 - CDS decomposition
 - Through Risk Premium rather than Default Premium
- Through which specific component in risk premium?
 - Construct bond level Dataset
 - Bond yield determination: liquidity, global factor ...
- How Reserve affect Liquidity & Global Factor?
 - Lower sensitivity of sovereign risk to global shock
 - More Reserve lower Bid-Ask Spread

Conclusion

- Holding more foreign reserves significantly lower sovereign credit risk, mainly through risk premium component rather than default premium component.
- Reserve accumulation does not significantly lower possibility to default.
- Reserve accumulation can effectively lower sensitivity of sovereign risk to the global financial factor.
- Holding more reserve improve liquidity condition of the sovereign bond the country issued

The End

Thank you!

Welcome for questions and comments!