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Motivation

» Conventional view in asset pricing and microstructure:

» Retail investors ~ Noise traders, uncorrelated,
inconsequential (Black, 1986, Kyle, 1985)

» Institutional investors ~ Marginal investor

P = f(Tradeinformed) T € (1)
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Retail Trading Volume Surge

Exhibit 1: Individual Investors’ Share of U.S. Equities Trading Volume
by Year
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Figure: Retail Share
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Figure: Ants Moving the Log

Image credit: https://www.istockphoto.com/photos/ants-carrying-log-teamwork.
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Social Transmission

Presidential Address:
Social Transmission Bias in Economics and Finance
“...a new intellectual paradigm, social economics and finance —
the study of the social processes that shape economic thinking
and behavior. This emerging field recognizes that people
observe and talk to each other. A key, underexploited building
block of social economics and finance is social transmission
bias: systematic directional shift in signals or ideas induced by
social transactions...For example, social transmission bias
compounds recursively, which can help explain booms,
bubbles, return anomalies, and swings in economic sentiment.”
— David Hirshleifer, Journal of Finance, 2020
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Research Questions

» Can social transmission contribute to stock price crash
risk (left-tail risk)?

» Can investor preference help explain the negative price of
crash risk in the cross-section?
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Why Study Crash Risk?

>

| 2

v

Extreme returns (jumps) account for almost all daily
returns (Kapadia and Zekhnini, 2019)

80% of equity risk premium represents compensation for
shocks that coincide with returns lower than -10%
(Beason and Schreindorfer, 2022)

Ex-ante, “Less” endogenous than studying simple returns

Crash risk is strongly linked to overvaluation (Bollen and
Whaley, 2004, Kim and Zhang, 2014, Kim et al., 2016,
Van Buskirk, 2011)

High crash risk stocks resemble “lottery” (positive
loading on MAX, Tskew, IVOL, etc.)
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Results

» Social transmission enables retail investors to “causally”
increase crash risk

» During the first 4 months when users started to chat
about a stock on “Wallstreetbets”, the monthly crash
risk increased by 10%

P At daily frequency, a one-standard-deviation increase in
chatters about a stock is associated with 2% increase in
crash risk

» Retail investors (Robinhood traders) tend to buy
high-crash-risk stocks, while institutions tend to sell

» Consistent with Brunnermeier et al. (2007), the price of
crash risk is more negative when lagged sentiment is high

» Propose a measure of ex-ante crash risk estimated via
machine learning
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Literature
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Crash risk/left-tail risk: negatively associated with
expected returns (Atilgan et al., 2020, Conrad et al.,
2014, Jang and Kang, 2019)

Retail investors and stock returns: attention or herding
forecast subsequent returns (Barber and Odean, 2008,
Barber et al., 2021); reduce market quality (Eaton et al.,
2022); increase volatility (Foucault et al., 2011)

Social transmission and returns (Bali et al., 2021, Han
et al,, 2022, Hu et al., 2021)

Preference and beliefs (Barberis and Huang, 2008,
Brunnermeier et al., 2007)

Machine learning in asset pricing (Bianchi et al., 2021,
Feng et al., 2020, Gu et al., 2020, Kozak et al., 2020)
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Measuring Crash Risk
0000

Risk
CrashRisk;; = E[P(ri; < —20%)|Xi—]  (2)
Following literature (Conrad et al., 2014, Jang and Kang,

2019), crashes = 5% of total obs
Binary response — probabilities

X include 204 stock characteristics (Chen and
Zimmermann, 2021), 1996 - 2020

Use both logit and machine learning side-by-side
Monthly frequency with rolling 6-month windows
Ex-ante, as compared to e.g. VaR (Atilgan et al., 2020)
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Pricing

Table: Decile High-Minus-Low Portfolio Alphas

EEC-Adaboost

Pricing model Alpha T-stat Alpha T-stat
VW  CAPM -1.852 -3.730 -1.967 -4.393
FF3 -1.842 -4.440 -1.963 -5.456
FF4 -1.533 -3.631 -1.775 -4.636
FF5 -0.874 -2.834 -1.120 -3.947
FF6 -0.696 -2.263 -1.023 -3.442
EW CAPM -2.470 -5.571 -2.458 -5.325
FF3 -2.461 -7.941 -2.452 -7.573
FF4 -2.106 -7.161 -2.173 -7.005
FF5 -1.656 -5.637 -1.783 -6.093
FF6 -1.438 -5.788 -1.614 -5.947
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Fama-MacBeth Regressions

00000000

Table: Fama-MacBeth Cross-Sectional Regressions

(1) ) (3) (4) (5)
Dependent Variable: Returns in %
Crash Risk (Logit)-0.491%**  .0.453%**
(0.080) (0.077)
Crash Risk (EEC) -0.507**%*  _0.450%**
(0.097) (0.086)

VaR1% -0.123 -0.097 -0.246***

(0.082) (0.074) (0.083)
Controls YES YES YES YES YES
Observations 545,367 545,290 545,367 545,290 564,466
R-squared 0.083 0.086 0.083 0.085 0.084
Note: *p<0.1; **p<0.05; ***p<0.01
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Aggregate Crash Risk

Aggregate Ex-Ante Crash Probabilities

—— Aggregate Crash Probability by EEC
-=- Aggregate Crash Probability by Logit
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Crash Probability %
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Figure: Aggregate Crash Risk
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Social Transmission on Crash Risk
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Intuition

» Investors are unable to distinguish “noise” from “signal
» A sender shares his/her trading strategies, and receivers
follow these strategies (Han et al., 2022)

» This induces herding and trading in the same direction,
and thus exacerbates overvaluation
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Empirical Designs

| 2
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With the caveat of unobservable trading data, we look at
the direct impact of social transmission on crash risk

Data: ALL Reddit comments 2012 — 2020
Design I

Explore the first time (month) that every stock was
mentioned on “Wallstreetbets”

Stacked “diff-in-diffs" (Cengiz et al., 2019)
Design Il:

Daily number of comments on “Wallstreetbets”
instrumented by non-economic/financial comments
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Tickers Mentioned on “Wallstreetbets”

Panel A: Number of posts mentioning tickers in WSB

—— # posts mentioning tickers
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Panel B: Number of unique tickers in WSB

1600
—— # unique tickers mentioned in WSB

1200

number of unique tickers

012 2013 2014 2015 2016 2017 2018 2019 2620 2021
month

Figure: Number of Comments about Tickers & Firms
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Design |: First Mentioning

» Endogenous?

» Assumption: people are less likely to buy high-crash risk
stocks if they “know”

» Counterfactual: control for “lottery” characteristics
(skewness, idiosyncratic risk, MAX, etc.)

» Check “parallel trends”

Crash RiSki,c,t =Y + ﬁDi,c,t + 5c,t + Q¢

+ ) BpControly 1 + €
p
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Diff-in-Diffs Results

Table: Debut of Stock Tickers on “Wallstreebets” and Crash Risk

0000000

00000000

VARIABLES
Treated

Month -3
Month -2
Month 0
Month +1
Month +2

Month +3

Observations
R-squared

Cohort X Units FE
Cohort X Month FE

) @ B) @ B) ©)
Crash Risk (Logit) Crash Risk (EEC)

1.032%** 0.560%** 0.674%** 0.303***

(0.103) (0.129) (0.054) (0.064)
0.009 0.001
(0.160) (0.082)
-0.041 0.041
(0.140) (0.074)
0.464*** 0.152%*
(0.136) (0.076)
0.326* 0.152
(0.185) (0.097)
0.689%** 0.478%**
(0.199) (0.095)
0.735%** 0.508%**
(0.218) (0.105)

208,502 125,734 125,734 208,502 125,734 125,734

0.874 0.909 0.909 0.921 0.946 0.946

YES YES YES YES YES YES

YES YES YES YES YES YES

Note:

*p<0.1; **p<0.05; ***p<0.01
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First Appearances of Stocks on “Wallstreetbets”

Dynamic Treatment Effects for Stocks First Appearance on WSB

0.8
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Figure: Dynamic stacked diff-in-diffs
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Cross-Sectional Results: Size & 10

Table: Debut of Stock Tickers on “Wallstreebets” and Crash Risk:

Size & 10

) @) 3) @)
VARIABLES Crash Risk (Logit)
Treated 1.501*** 1.038*** 1.539*** 0.988%**

(0.182) (0.326) (0.177) (0.310)
Treated X Dgize -0.930*** -0.743*%*

(0.205) (0.343)
Treated x Dj, -1.082*** -0.689**

(0.202) (0.330)

Controls NO YES NO YES
Observations 208,502 125,734 208,502 125,734
R-squared 0.874 0.909 0.874 0.909
Cohortx Units FE YES YES YES YES
CohortxMonth FE YES YES YES YES

Note:

*p<0.1; **p<0.05; ***p<0.01

References
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Cross-Sectional Results: Influencers

Table: Debut of Stock Tickers on “Wallstreebets” and Crash Risk:

Influencers

(1) (2) (3) 4
VARIABLES Crash Risk (Logit) Crash Risk (EEC)
Treated 1.116*** 0.529%** 0.800%** 0.313%**

(0.155) (0.195) (0.077) (0.095)
Treated X Dipfluencer  -0.138 0.045 -0.175% 0.028

(0.196) (0.236) (0.103) (0.125)
Controls NO YES NO YES
Observations 206,566 124,201 206,566 124,201
R-squared 0.875 0.909 0.921 0.946
Cohortx Units FE YES YES YES YES
CohortxMonth FE YES YES YES YES
Note: *p<0.1; **p<0.05; ***p<0.01
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Cross-Sectional Results: Sentiment

Table: Debut of Stock Tickers on “Wallstreebets” and Crash Risk:

Sentiment

(1) (2) (3) (4)
VARIABLES Crash Risk (Logit) Crash Risk (EEC)
Treated 1.116*** 0.487*** 0.723%** 0.301***

(0.115) (0.142) (0.061) (0.072)
Treatedx Sentiment  -0.364** 0.303 -0.213%* 0.009

(0.180) (0.211) (0.091) (0.103)
Controls NO YES NO YES
Observations 208,502 125,734 208,502 125,734
R-squared 0.874 0.909 0.921 0.946
Cohortx Units FE YES YES YES YES
CohortxMonth FE YES YES YES YES
Note: *p<0.1; **p<0.05; ***p<0.01
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Trade Volume and Volatility

Panel A: Dynamic Treatment Effects for Trading Volume

04+ . Trading Volume

Coefficients
|
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-—
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T T

Months to Event

Panel B: Dynamic Treatment Effects for Volatility
° Volatility

Coefficients
1

T T T

Months to Event

Figure: Trade Volume and Volatility
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Design [I: Daily Number of Comments

SKEW, . = Implied VoI — ImpliedVol,[M= <" (3)

» Use SKEW as crash risk (Xing et al., 2010)
» Conversation is endogenous, consider |V

WSB_Posts;+_1 = ag+[zNon_Finance_Posts;:_1+¢€; -1 (4)
SKEW,, = ay+BxWSB_Posts;._1+ Y _ B,Control; 1+ et u;e

’ (5)
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Intuition for IV

» Assumption: people that are active on other topics are
more likely to chat about stocks

» Example: today, pre-trade hours, two persons A and B
talk about $AAPL, sum all comments A and B posted on
non-economic/financial “Subreddits” on Reddit

Chatting about C Chatting about
" ” . ause
other” topics (e.g. stocks on
sports, hobbies) “Wallstreetbets”
NO‘ Cause
Crash Risk

29/57



Introduction Measuring Crash Risk Social Transmission on Crash Risk Distorted Beliefs (umdu sion Appendix  References
0000000000 00000 0000000000000 e0 0000000 00000000

|dentifying Non- Economlc/FlnanC|a| Subreddits

» Use natural language processing (textual analysis) on
titles of Subreddits

» Follow Li et al. (2021), choose a list of “seed words”
('finance’, 'stock-market’, 'stocks’, 'wall-street’, 'trading’,
'forex’, 'options’, 'investment’, 'bond-market’, 'bonds’)

» Find out the top 50 words/phrases similar to each of the
“seed words" (in total 371 words/phrases) via GloVe
(Pennington et al., 2014) and cosine similarity:

ViV,
CosineSimy = ——————— (6)
VAl - ][ Val]

» Drop all "Subreddits” that contain these

keywords/phrases
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IV Results

Table: IV Estimation: “WSB" Posts and Crash Risk (SKEW)

Beliefs Conclusion App

(1) (2) (3)
VARIABLES Panel Panel \Y

Number of “Wallstreetbets” Posts 0.070*** 0.067*** 0.193***
(0.019) (0.018) (0.035)

Number of Non-Finance Posts 0.005

(0.004)
Controls YES YES YES
Observations 2,655,209 2,655,209 2,655,209
R-squared 0.089 0.089 0.042
Day FE YES YES YES
Firm Cluster YES YES YES
Note: *p<0.1; **p<0.05; ***p<0.01
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Why are crash risk negatively priced?

» REH = positive return correlation

» If stock in bubble (high crash prob), institutions less likely
to arbitrage if costly (Jang and Kang, 2019)

» Investors underestimate left-tail risk (Atilgan et al., 2020)
» Underlying assumption:
» Retail traders over-buy crash-prone stocks
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Do Retail Investors Buy Crash Risk?

» Retail traders have preference for “lottery-like” stocks

» Use Robintrack user change as proxy for retail trading:

Change in Log(# User; ;) = log(# User; ;) — log(# User; ;1)
(7)

> Also use percentage change (Barber et al., 2021):
% Change# User; s = #User;;/#User;s—1 —1  (8)
» Finally institutional trading:

I0_Change;; = 10;+ — 10; -1 (9)
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Tradlng Results

Table: Investor Trading and Crash Risk

(1) (2) ®3)

Change in
VARIABLES Log(User) User%Change IO Change
Crash Risk 0.093*** 0.154*** -0.026%**

(0.010) (0.020) (0.002)
Controls YES YES YES
Observations 63,692 63,692 375,339
R-squared 0.241 0.191 0.500
Firm & Time FE YES YES YES
Note: *p<0.1; **p<0.05; ***p<0.01
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Cumulative Prospect Theory (CPT)

» Barberis and Huang (2008) — overweight tail
probabilities — under-buy left tail — positive price

‘The Probability Weighting Function

1

09

08

Figure: CPT
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Optimal Expectations Theory (OET)

» Brunnermeier et al. (2007) — underestimate left tail,
overestimate right tail — over-buy left tail — negative
price

Shift in Mean

pdf
03 0.4

02

0.1

0.0

Figure: OET
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Crash Risk and Sentiment

Table: Sentiment and Crash Risk Returns

(1) (2) (3) (4)
FMB Panel

VARIABLES Low Sent  High Sent Return Return
Crash Risk -0.405%**  _0.619***  _(0.335%** _(.135%*

(0.108) (0.141) (0.050) (0.062)
SentimentD x Crash Risk -0.374%**

(0.063)

Controls YES YES YES YES
Observations 240,805 269,577 545,227 510,260
R-squared 0.078 0.085 0.168 0.159
Note: *p<0.1; **p<0.05; ***p<0.01
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Discussion

» Supercharged by social media, retail investors are a force
to be reckoned with

» Heightened crash risk might feed back into corporate
decisions (higher risk but cheap funding)

» Firms can afford more risky projects (GameStop invested
in crypto/NFT; AMC bought a gold mine)

» Future research: the real impact of “meme frenzy”
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Intuition for Imbalanced Sample Problem

» Take two classes: crash and plain. Logit loss function:

loglLoss = —% ;[y,-log(p,-) + (1 —y;)log(1 — p;)] (10)

» |f we rewrite the loss function as follows:

N, lain
1 - ;
logloss = ——————— log(pP"
& Nplain + Ncrash [Zl g(pl )]
- (11)
1 Ncrash
. | og p;:rash
Nplain + Ncrash [12_1: ( )]

» Fix Neasp and let Npjain/ Nerash — 00, second term — zero
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Intuition for EEC-AdaBoost

» “Easy Ensemble” (EEC) (Liu et al., 2008):

> Randomly sample a subset of non-crash obs and pair
them with the crash obs

P Fit an estimator on this sample and save the parameters

P> Repeat 50 times — 50 bootstrapped and balanced
samples

> An Ensemble is built upon these results and arrives at a
final estimate

» Adaptive Boosting (Freund and Schapire, 1997)
(AdaBoost):

P> Each iteration dynamically adapts to the falsely
classified instances of the last iteration
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Forecasting Performance

Predicted Crashes By Threshold

10 — Logit
N\, ---- EEC-AdaBoost

08

Percentage Correctness

02

0.0

Threshold
Figure: Logit versus Machine Learning
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Variable Importance

Top 20 Variables by Measn Absolute Rank Correlation
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Figure: Top 20 Variables with Highest Absolute Rank Correlations
with Crash Risk.
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Table: Decile High-Minus-Low Alphas: Alternative Definitions

Logit EEC-AdaBoost

Threshold Weighting  Alpha T-stat Alpha T-stat
log(ret) < —10% value -0.405 -1.291  -1.164  -3.989
equal -1.637  -6.467  -1.783  -6.466

log(ret) < —15% value -0.855  -2.920 -1.249  -4.059
equal -1.601  -6.704 -1.758  -6.615

log(ret) < —25% value -0.825  -2.764  -1.157  -3.920
equal -1.475 -5.816 -1.716 -6.358

log(ret) < —30% value -0.751  -2.444  -1.047 -3.714
equal -1.444 5544  -1603 -6.120

Note:

*p<0.1; **p<0.05; ***p<0.01
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Table: Wallstreetbets Conversations on Realized Crashes

VARIABLES
Treated

Constant

Observations
R-squared

Cohort x Units FE
Cohort X Month FE

o 2 (3 (4 (5)
Crash10 Crash15 Crash20 Crash25 Crash30
0.015%** 0.010%** 0.008*** 0.008*** 0.011%**
(0.004) (0.003) (0.003) (0.002) (0.002)
0.170%** 0.110*** 0.075%** 0.052%** 0.035%**
(0.001) (0.001) (0.001) (0.001) (0.001)
215,770 215,770 215,770 215,770 215,770
0.550 0.552 0.548 0.547 0.541
YES YES YES YES YES
YES YES YES YES YES

Note:

*p<0.1; **p<0.05; ***p<0.01
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Alternative Settings for DiD

Table: Wallstreebets and Crash Risk: Alternative Settings

(1) (2) 3) (4)
Dependent Var: Crash Risk
Setting 1 Setting 2

VARIABLES logit EEC logit EEC
Treated 0.008*** 0.004*** 0.004*** 0.004***

(0.002) (0.001) (0.001) (0.001)
Controls YES YES YES YES
Observations 51,842 51,842 211,984 211,984
R-squared 0.677 0.787 0.691 0.814
Firm & Time FE YES YES YES YES
Note: *p<0.1; **p<0.05; ***p<0.01
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Option SKEW, Daily Returns, and Retail Trading

Table: Daily Returns, Retail Trading, and Crash Risk (SKEW)

(1) () (3) (4)
Panel A: Daily Stock Returns and Crash Risk (SKEW)
VARIABLES FMB Panel
Lag Option SKEW  -0.001*** -0.002%** -0.001%** -0.001***
(0.000) (0.000) (0.000) (0.000)
Controls NO YES NO YES
Observations 2,071,209 2,010,815 2,071,209 2,010,815
R-squared 0.003 0.072 0.199 0.201
Panel B: Robinhood User Trading and Crash Risk (SKEW)
VARIABLES Change in % Change in
Log(Robinhood Users) Robinhood Users
Option SKEW 0.001** 0.001**
(0.000) (0.001)
Controls YES YES
Observations 703,614 862,423
R-squared 0.011 0.003
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