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Abstract

Lenders can exploit households’payment data to infer their creditworthiness. When
households value privacy, they then face a tradeoff between protecting such privacy
and attaining better credit conditions. We study how introducing an informationally
more intrusive digital payment vehicle affects households’cash use, credit access, and
welfare. A tech monopolist controls the intrusiveness of the new payment method
and manipulates information asymmetries among households and oligopolistic banks
to extract data contracts that are more lucrative than lending on its own. The laissez-
faire equilibrium entails a digital payment vehicle that is more intrusive than socially
optimal, providing a rationale for regulation.
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1 Introduction

New payment technologies are making it increasingly easy to collect and store information

about consumer behavior, while network externalities limit the number of viable payment

providers and endow them with significant market power in the collection of personal data.1

This data can be parsed to infer a variety of personal characteristics that corporations

can profitably exploit, including by deriving credit ratings based on an individual’s spending

behavior. In credit markets, such use of payment data can reduce informational asymmetries

and unlock market segments where adverse selection may otherwise hinder the provision of

credit.2 But this may come at the expense of personal privacy, an acute concern for many

households.3 Further, market power in data collection may give payment providers an edge

that alters the competitive landscape in banking markets.

How will markets navigate tradeoffs between credit provision and privacy? Who will be

the winners and losers of the introduction of new forms of data collection? Does the rise of

these new technologies call for government intervention? In this paper, we shed light on these

questions by building a model in which a digital payment issuer competes against an anony-

mous form of payment, cash. This presents households with a choice between one payment

method that precludes information collection and another with an adjustable informational

1Payment data is increasingly migrating to BigTechs. E.g., when using a bank card at a store, the location
and type of store are visible to the bank, whereas for Amazon purchases with such a card "Amazon.com"
appears on the charge and only Amazon observes the purchase details. Moreover, several BigTechs encourage
payment data migration beyond their platforms. E.g., Amazon rewards consumers that share receipts of
purchases outside Amazon; Alibaba and WeChat provide widely used means of payment in China; and Meta
has explored digital currency issuance (Libra and Diem).

2Indeed, there is growing evidence that new means of payment, including those created by BigTechs,
expand credit access. See, e.g, Agarwal and Assenova (2022), Allen et al. (2021), Babina et al. (2022), Beck
et al. (2022), Berg et al. (2020), Bian et al. (2023b), Dalton et al. (2023), D’Andrea and Limodio (2023),
Doerr et al. (2023a), Frost et al. (2020), Ghosh et al. (2022), Hau et al. (2019), Huang et al. (2020), Ouyang
(2022), and Sarkisyan (2023).

3Although the value of digital privacy in general is empirically debated (Acquisti et al., 2016; Athey et al.,
2017; Bian et al., 2023a; Chen et al., 2021; Goldfarb and Que, 2023; Tang, 2023), for payments and lending
specifically, most studies find an important role for privacy. See, e.g., Bijlsma et al. (2022, 2023), Borgonovo
et al. (2021), Brits and Jonker (2023), Choi et al. (2023), Cunliffe (2023), ECB (2021), Engels et al. (2022),
Hu et al. (2023), and Li (2023) on privacy and payment choice; and Tang (2023) and Doerr et al. (2023b)
on borrowers’willingness to pay to limit the intrusiveness of data disclosure in loan applications. See also
Berg et al. (2022) (pp.197-198) for a discussion of the empirical literature on privacy preferences and lending
outcomes.
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intrusiveness: the issuer of the digital payment vehicle can decide what consumer-spending

data to collect and retain.4 For instance, for each transaction the only data collected and

retained could be the vendor and the amount spent, similar to what happens with credit

cards, or instead reach the level of the specific items bought. Further, the data collector

could choose what segments of payment data to connect to other sources of information

about a specific individual: e.g., payment data could be linked to users’activity on social

media accounts or ecommerce platforms.5 Alternatively, the digital payment provider could

introduce a digital currency with customizable privacy features.6 In the model, intrusiveness

is a choice variable for the digital payment provider that determines the probability with

which the digital payment vehicle reveals the creditworthiness of its users.

Households are consumer-entrepreneurs that differ in their creditworthiness and their care

for privacy, both of which are private information.7 They are endowed with a project but need

external financing in order to realize it. The digital payment provider sells the information

it collects about consumer behavior to banks, which can exploit this data to reduce adverse

selection when competing for loans to borrowers in an imperfectly competitive market. A

stylized spatial model provides individual banks with market power (we assume that each

bank has a cost advantage in lending to its “home”market).

When optimizing households choose between using cash and the digital payment vehicle,

they take into account how being observed by the digital payment issuer affects their per-

sonal cost in terms of loss of privacy and the potential revelation of their creditworthiness

(and thereby their borrowing conditions). Similarly, the digital payment provider takes this

optimizing behavior into account when determining the intrusiveness of the payment vehicle.

4Our analysis does not hinge on cash being the alternative or payments being the only source of credit
quality data. As shown in Appendix B.1, the key assumption is that the issuer’s means of payment reveals
more credit quality information, not that it is the unique source of such information.

5As has been the case for, respectively, WeChat Pay and Alipay in China
6Depending on their design, digital currencies can combine attributes of deposits and cash, including the

extent of privacy (Agur et al., 2022).
7Studies reporting extensive heterogeneity in digital privacy preferences include Bian et al. (2023a),

Budak et al. (2023), Collis et al. (2022), Goldfarb and Tucker (2012), Jiang et al. (2023), Lin (2022), Lin
and Strulov-Shlain (2023) and Prince and Wallsten (2022).
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How much data the provider manages to collect depends on the intrusiveness of the vehicle

and on the portion of consumers that chooses to use it.

The model’s equilibrium delivers four main results. First, the digital payment provider

makes the payment vehicle as intrusive as possible (leading to certain revelation of credit-

worthiness type for all users). The payment provider’s optimal strategy stems from adverse

selection, which it exploits to instigate a partially unravelling Lemons’Market. This plays

on the way that households sort into means of payment. Households with low privacy costs

and high creditworthiness want to use the digital payment vehicle, while households with

high privacy costs and low creditworthiness opt for cash. In between, there are households

that would choose cash if everyone chose cash, but are swept along in a disclosure cascade,

because high quality households’departure from cash worsens the average creditworthiness

of the pool of borrowers using cash and hence raises their equilibrium loan rate.8 As a

result of households’disclosure externality, the market share of the digital payment vehicle

increases with intrusiveness, despite the higher privacy cost experienced by individual users.9

A second result is that the digital payment provider maximizes fee revenue by offering

free data access to banks outside their home market. Banks compete à la Bertrand in the

credit market and (under symmetric information) a price-limit equilibrium emerges wherein

each bank serves and extracts surplus from borrowers in its home market and unsuccessfully

contests other markets. Hence, the home bank stands to lose the most (and thus is willing to

pay the most) from being cut out of private information about borrowers’creditworthiness,

and its willingness to pay for data is maximized by the threat of an asymmetric equilibrium

when out-of-home-market information is free to all banks.

The third result is that the digital payment provider prefers to sell information to

the banks rather than becoming a lender and walling off the information for its own use.

This stems from the fact that the presence of cash makes its monopoly power partly con-

testable. Should the provider become a lender itself, it would use the payment information

8Despite these strategic complementarities, there is a unique equilibrium.
9Appendixes B.2 and B.3 investigate the robustness of these model dynamics to functional form choices.
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to gain monopoly power over loan markets and thus extract all the surplus from borrow-

ers/consumers. Foreseeing this, consumers would all use cash, denying the digital provider

any informational advantage versus competing lenders.10 Competition among banks here

acts as a commitment device for the payment provider to share some of the surplus with

borrowers. The ability to credibly commit to lower loan rates would assuage this outcome,

but in the absence of perfect commitment devices, this provides a counterbalance to the

integration of data collection and credit provision in a data monopoly.11

These results come about in an economy where enough borrowers have positive NPV

projects that in equilibrium every project is financed. Borrowers with negative NPV projects

that choose to transact with cash get financed because, even after disclosure cascades, there

remain enough borrowers with high creditworthiness and high care for privacy that also

choose cash. This in turn implies that, while there will be winners (households with a low

care for privacy and high creditworthiness) and losers (other households), the aggregate

effects of introducing the digital payment vehicle are negative: relative to a cash-only world,

aggregate output is unchanged and there are positive privacy costs. It follows that under

these circumstances a social planner would always prefer a non-informative form of payment.

To speak to the potential benefits of an information producing payment vehicle, we con-

sider an economy where under certain circumstances information disclosure leads to greater

aggregate credit access. Put simply, we consider states of the world under which the absence

of information about individual borrowers leads to a market shutdown. When the loan mar-

ket for undifferentiated households freezes, type differentiation becomes of social value.12 A

more intrusive data collection now gives households with relatively good credit quality a way

to stand out and obtain credit. This raises total credit provision and aggregate welfare.

We use this framework to draw insights about the optimal regulation of a data monopoly,

which constitutes our fourth key result. Regulation is envisaged as a slow-moving policy,

10A similar reasoning applies if the payment provider sells its data exclusively to one bank.
11As opposed to, e.g., economies of scope favoring integration (Huang, 2022; Rishabh and Schäublin, 2021).
12We also investigate intermediate states in which payment data collection determines whether lending to

undifferentiated households is sustained: a suffi ciently intrusive design collapses that market.
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determined before the economic state materializes, and implemented as a constraint on the

intrusiveness of the monopolist’s data collection. Optimal regulation here trades off the costs

of intrusiveness when credit provision is assured against its benefits during a credit crunch.

A key insight is that regulation is most needed when the competing means of payment

both have sizable market shares. This is because balanced market shares arise from interme-

diate privacy preferences, under which disclosure cascades are both large and painful enough

to matter. We also analyze how optimal regulation responds to market power in lending and

to the distribution of returns across states.

Furthermore, we find that there can be a role for a second policy instrument. Optimal

policy targets the amount of revealed household data, which consists of an extensive (the

share of households opting for disclosure) and an intensive margin (the extent of revelation

about such households). Regulation affects both of these margins. But because there are

two margins, the policy maker can attain higher welfare if a second instrument is available.

We explore the example of a tax or subsidy on households that opt for the monopolist’s

payment method, which impacts only the extensive margin of disclosure. The reason that

a subsidy can potentially be socially optimal is that there is underprovision of household

data in the bad state, even with a maximally intrusive digital payment system design: bank

market power implies markups that repel some positive NPV households from disclosure,

leaving their projects unfinanced in this state and reducing aggregate welfare. Depending

on parameter values, either a tax or a subsidy can be optimally combined with regulation.13

We highlight the extent to which the payment data monopoly amplifies externalities in an

extension wherein the digital payment system is owned by a consortium of banks rather than

a monopolist.14 The welfare outcome is in between the monopolist and the social planner:

the bank consortium neither actively exploits nor leans against the disclosure externalities.

A similar outcome is seen in another extension wherein households own their data, which

13Relatedly, the two instruments can optimally either be used as substitutes (e.g., a tax and looser regu-
lation than if regulation acts alone) or complements (e.g., a subsidy and looser regulation).
14The consortium setting is inspired by Allen and Gale (1999).
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relates to the data porting and open banking policies observed in an increasing number of

countries (OECD, 2023).

The remainder of the paper is organized as follows. The next section reviews the related

literature. Section 3 presents the setup of the model. Section 4 derives the equilibria wherein

the data monopolist sells the data to lenders and Section 5 shows why it chooses to do so

instead of engaging in credit provision itself. Section 6 analyzes welfare and socially optimal

policy design. Section 7 extends to lender ownership of the data monopolist, to help distill the

monopolist’s role in the baseline model. Proofs can be found in Appendix A and additional

model extensions in Appendix B.15

2 Related Literature

Our paper relates to a growing literature on emerging financial technologies in payments and

credit provision.16 Like us, Parlour et al. (2022b) and He et al. (2023) consider borrowers

that are heterogeneous in both credit quality and a second dimension (respectively, bank

affi nity and privacy), and data externalities among such borrowers take center stage.17 In

Parlour et al. (2022b), FinTech payment providers compete against a bank and externalities

stem from coupling data garnered from payment services with credit provision.18 He et al.

(2023) also consider lending market competition between banks and FinTech entrants, and

show that household data ownership is suboptimal as individual data sharing decisions lead

15These extensions are: alternative sources of credit quality data (B.1); correlated dimensions of household
heterogeneity (B.2); an alternative functional form for privacy costs (B.3); fees / subsidies by the monopolist
on the use of its payment vehicle (B.4); the interaction between data collection incentives and monetary
policy (B.5); and household data ownership (B.6). Lastly, Appendices B.7 and B.8, respectively, contain
additional derivations for Sections 4 and 6.
16Much of this literature builds on the classical literature on optimal disclosure (Akerlof, 1970; Grossman

and Hart, 1980; Jovanovic, 1982; Milgrom, 1981).
17These setups aligns with empirical findings that additional dimensions of agent heterogeneity (in addition

to hidden quality) avoid a full "unraveling" equilibrium where all agents opt to disclose private information
(Bond and Zeng, 2022; Jin et al., 2021; Jin and Vasserman, 2021; Soleymanian et al., 2021).
18On asymmetric information and data externalities, see also Acemoglu et al. (2022), Bergemann and

Bonatti (2023), Bergemann et al. (2022), Choi et al. (2019), Cicala et al. (2022), Garratt et al. (2021), Jones
and Tonetti (2020) and Parlour et al. (2022a).
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to aggregate credit quality inferences by lenders.19

Different from these studies, we consider a data monopolist that stands “upstream”and

controls the flow of information, actively exploiting information asymmetries and data ex-

ternalities. In essence, we model a BigTech, whereas Parlour et al. (2022b) and He et al.

(2023) model FinTechs.20 Unlike the FinTechs, our BigTech determines the extent of intru-

siveness of its data collection, while it competes with cash, which allows households to opt

out of its data web. This lays bare the incentives of a data monopolist to play off households

and banks against each other, including by staying above the fray of the credit market and

selectively offering free data access to some banks.

Several papers consider the role of a Central Bank Digital Currency (CBDC) in the

preservation of privacy. In Garratt and Van Oordt (2021), the social value of CBDC derives

from the fact that privacy is a public good: taking actions to protect digital privacy is costly

to a consumer, while firms use data collected through payments to price discriminate future

consumers.21 In Garratt and Lee (2021), the CBDC raises welfare compared to household

ownership of their data: either policy can fend off the endogenous formation of data mo-

nopolies, but household data ownership leads to data underprovision, which hampers firms’

ability to match products to consumer preferences. In Ahnert et al. (2022) and Brunnermeier

and Payne (2022), a CBDC can be more than an electronic equivalent of cash: it can include

data sharing features that help achieve the effi cient allocation by counteracting payment

19In Huang (2021) banks also compete with FinTech lenders, which rely on data from linked ecommerce
platforms while banks rely on physical collateral, leading to different borrower type specializations for Fin-
Techs and banks. In Fishman et al. (2020) banks choose whether to pay to screen out unprofitable borrowers
and this decision imposes dynamic externalities: tighter screening worsens the pool of potential borrowers,
increasing banks’incentives to screen in the future.
20Information flow on ecommerce platforms provides a different angle on BigTechs. In Markovich and

Yehezkel (2023) privacy cost heterogeneity underlies the suboptimality of giving households ownership of
their data because too many users then underprovide data, which comes at a public cost as it worsens the
functioning of the platform for all users. Bouvard et al. (2022) focus on monitoring effi ciency differences
between an ecommerce platform and banks in the competition for loans towards merchants that are active
on the platform. In Gambacorta et al. (2022) platforms have an enforcement advantage over banks, because
defaulting firms can face exclusion from the platform. On ecommerce data collection incentives, see also
Charlson (2021), Choe et al. (2023), Cong and Mayer (2023), Fainmesser et al. (2023), Gambato and Peitz
(2023), Ichihashi (2023), Liu et al. (2023b), Kim (2021) and Petropoulos et al. (2023).
21Privacy in payments can also be a public good when there are no data externalities, such as when there

is the risk of identity theft (Kahn et al., 2005; Kahn and Roberds, 2008).
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data monopolies.22 Different from us, these papers do not focus on information asymmetries

in credit markets.23

3 Model

We consider an economy populated by three sets of agents. Consumer-entrepreneurs, to

which for simplicity we refer as “households”, form the first set. Second, there is a monopolist

digital currency issuer.24 Lenders comprise the third set of agents.25 All agents are risk

neutral. The economy is distributed across N ≥ 3 connected islands. Each island hosts

one lender and a continuum of households with mass 1. A lender on the same island as

a borrower is called the borrower’s “home lender”, and borrowers on the same island as

a lender are referred to as the lender’s “on island”borrowers. All islands share the same

physical currency (cash) and digital currency issuer.

3.1 Households

Each household is characterized by three variables: the household’s creditworthiness and

preference for privacy, which are private information, and the island where the household

lives, which is publicly observable. The last is self-explanatory. Let us turn to the first two.

Each household is born with an investment project that can only be brought to fruition

with financing from a lender. All projects yield the same payoff, y, when successful and 0

otherwise. However, the probability that a project succeeds, q, differs across households. We

22On new forms of "smart money", see also Kahn and van Oordt (2023), Schneider and Taudien (2023)
and Tan (2023).
23Brunnermeier and Payne (2022, 2023) do incorporate credit markets, but focus on enforcement and

search costs rather than disclosure of hidden qualities.
24The model’s setup and results apply to digital payment monopolists broadly but, to fix ideas, we call

the monopolist that stands at the core of our model a "digital currency issuer". Its business model, based
on the collection and sale of data, is akin to Meta Platforms, while the notion of a digital currency resembles
the Libra and Diem initiatives. We do not model what gives rise to a monopoly here, such as network effects
in means of payment (Agur et al., 2022). On the endogenous choice of a data monopolist to launch a digital
currency, see also Chiu and Wong (2022) and Guennewig (2022).
25We here use the term "lenders" instead of banks, because the way they are modeled (Section 3.3) is

general enough to encompass nonbank lenders, including FinTechs.
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refer to q as a household’s credit quality or creditworthiness. Households also differ in their

preference for privacy or, put differently, their perceived cost in having their consumption

patterns scrutinized. Formally, each household attaches disutility ϕ to its loss of privacy. A

household’s creditworthiness and privacy preferences are independent of each other.26 On

each island, the mass 1 of households is uniformly distributed on a two-dimensional plane

with q ∈
[

1
2
, 1
]
and ϕ ∈ [0, 2].27

3.1.1 Household consumption

Households are born with an endowment that they use towards consumption. To avoid

complicating the model excessively, we assume that this consumption is needed to meet

subsistence needs (i.e., none of the endowment can be saved or used as collateral when

requesting credit). However, an individual household’s consumption pattern, if observed,

may carry information about her creditworthiness.

Each household chooses between cash and the digital currency (DC) to pay for con-

sumption.28 Cash fully protects the household’s privacy. If instead the household uses the

DC then with some probability, θ, the DC issuer is able to infer the household’s creditwor-

thiness.29 The household experiences privacy disutility ϕ from being observed by the DC

issuer.30 Households understand the extent to which their behavior is observed by the DC

issuer. That extent, which is captured by θ, determines both the household’s privacy disu-

26Appendix B.2 considers an extension where q and ϕ are (either positively or negatively) correlated.
27We choose q ∈

[
1
2 , 1
]
instead of q ∈ [0, 1], as the latter creates additional complexities (individual

breakeven loan rates go to infinity as q → 0, which complicates the identification of simple parameter
conditions to characterize equilibria; see, e.g., Table 1 and footnote 90). Using q ∈

[
1
2 , 1
]
is without loss

of generality, because all possibilities on the functioning of the loan market are covered by our framework
(Section 4). Given q ∈

[
1
2 , 1
]
, we let ϕ ∈ [0, 2] instead of ϕ ∈ [0, 1] to obtain a unit mass of households on

each island.
28In our setting, it would not make a difference to allow households to use multiple means of payment

for consumption: in equilibrium, each household will choose only one, as will be seen from (7). Meyer and
Teppa (2023) report that 60 percent of Euro Area consumers do actually conduct all their purchases with
only one preferred means of payment.
29The model generalizes to partial revelation from other sources than DC use, as discussed in Appendix

B.1, as long as DC use entails additional potential revelation.
30For the development of a continuous privacy metric and its empirical application, see Dekel et al. (2023).
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tility and the probability of type revelation.31 But, to avoid having to deal with strategic

consumption behavior, we assume that households are unable to predict how their consump-

tion choices affect their credit score (put differently, households have no visibility into the

algorithm used to extract creditworthiness information from consumption patterns). For a

practical example, consider the case of a social media company that issues a DC and that

can choose whether to link households’payment and social media data.32 The decision to

link these data is observed by households, and disliked (to varying degrees) from a privacy

angle by those who choose to use DC. But the way in which social media chats interact with

payment data is likely poorly understood by households.33

Note that because of this setup the only meaningful decision households make at the

consumption stage is about the form of payment they use.

3.1.2 Household borrowing and payoff

Households are protected by limited liability. They may borrow from any lender. However,

borrowing from a lender not located on their home island reduces the payoff of a successful

project by τ > 0.34 This allows us to introduce a degree of lender market power in a simple

and tractable form. The benefit in borrowing from the home lender can be interpreted as

spatial differentiation (Degryse and Ongena, 2005) or sectoral specialization of lenders that

are matched to household projects in the same industry (Allen et al., 2011).

31To give a near-future example that helps visualize the tradeoff, consider AI-enabled cameras that watch
consumers at in-person BigTech venues (some Amazon-owned supermarkets are already equipped with arrays
of cameras, although aimed at facilitating facial recognition shopping). These may, e.g., capture pupil dilation
when looking at healthy or unhealthy products. More cameras, set up closer to people’s faces, improve the
ability of the system to gauge involuntary reactions, which can relate to credit risk. But the more cameras
are placed and the closer they are to faces, the more intrusive the system will feel to consumers.
32E.g., WeChat has derived credit ratings from linked payment and social media data. DC design is further

discussed in Section 3.2.
33E.g., social media chats can reveal the motivation for purchases (e.g., whether a liquor purchase is for

a party rather than own consumption). However, the household does not consider this when engaging on
social media (i.e., the household is assumed not to create a fake chat, like on planning a party, to affect its
credit ratings).
34To guarantee that limit pricing can be sustained as a Nash equilibrium in Section 4, we additionally

assume a breakeven preference in favor of the home lender. An alternative is the approach of Blume (2003),
which allows for limit pricing to be supported as a mixed-strategy Nash equilibrium. But we focus on pure
strategy solutions here and therefore work with the breakeven preference.

10



The expected payoff for of a household of type (q, ϕ), considering both the potential gains

from borrowing and the costs of privacy, can then be written as

u (q, ϕ) = qmax {(y − τI −R) , 0} − αϕΘ (1)

where the term qmax {(y − τI −R) , 0} represents the expected benefit from the household’s

project under limited liability, and −αϕΘ is privacy costs. In qmax {(y − τI −R) , 0}, I is

an indicator variable that equals 0 when a household borrows from its home lender and

1 otherwise; R is the gross loan interest rate charged; and the max operator reflects the

assumed limited liability protection.35 In −αϕΘ, α > 0 is the relative weight on privacy

preferences and Θ represents the probability that the household’s credit quality will become

revealed: Θ = θ if the household chooses DC and 0 if it chooses cash.36

For simplicity, the baseline model does not incorporate an additional term to represent

an ease-of-transactions benefit of DC relative to cash. Appendix B.8 recalculates the main

expressions when including such a term.37 We reiterate, however, that cash is merely one

example of an alternative payment instrument. For example, our modeled alternative to the

DC could equally well be a privacy-preserving crypto asset, which may not have a transaction

disadvantage relative to the DC.38

3.2 Digital currency issuer

The DC issuer is in control of the design of the digital currency. Formally, it chooses the

probability, θ, with which it will be able to learn the creditworthiness of individual households

35The expression is of the form qmax {., 0} because even a successful project could, in principle, violate
the limited liability constraint when R is large enough. This will not occur in equilibrium, however, and the
max operator therefore becomes moot by optimal play in Section 4.
36In the baseline model, privacy costs are therefore linear in the probability of revelation. Appendix B.3

considers quadratic privacy costs.
37Appendix B.8 centers on a government tax or subsidy on DC use. A simple (linear) transaction benefit

for DC is equivalent to an unfunded subsidy in that setting (i.e., T < 0 and transfers = 0 in equation 50).
On transaction benefits with network effects, see Agur et al. (2022).
38On alternative means of payment, see also Appendix B.1.
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using the DC.39 The DC issuer is a monopolist in the provision of digital payments and hence

also sets the price at which its collected digital payment data are made available to lenders.

Note that in this section we focus on the case of a DC issuer that puts these data up for sale

to lenders and does itself not engage in lending. Section 5 considers the possibility that the

DC issuer would instead provide credit, either directly or through a subsidiary lender, and

shows that this will never emerge as an equilibrium.

The DC issuer may charge lenders differentiated fees for information on borrowers on

and off their islands. Here, Ωij denotes the data access fee that the digital currency provider

charges lender i for access to data on households on island j.40 We define Dij (θ,Ωij) as

lender i’s demand function for data on households on island j. This demand function will

take value 0 (do not purchase) or 1 (purchase) depending on the pricing of the data access,

Ωij, and the value that a lender derives from the data. How much a lender is willing to spend

on data gathered from DC users, will depend on how much borrower data the DC issuer

obtained, which in turn relates to the intrusiveness of the DC.41 Therefore, Dij is written as

a function of (θ,Ωij). The DC issuer’s objective is to maximize data fee revenue by optimally

choosing θ and Ωij.42 This can be written as

max
θ∈[0,1],Ωij

∑
i∈[1,N ]

∑
j∈[1,N ]

ΩijDij (θ,Ωij) (2)

39The DC issuer can market the credit quality data of revealed households, but not a list of which house-
holds open a DC account. Allowing for that option would lead to two separate pools of unrevealed households:
cash users and DC users that remain unrevealed with probability 1 − θ, opening the model to mimicking
strategies, and considerably complicating the analysis (i.e., some low q, high ϕ households may gamble on
DC use in the hope that they end up among the unrevealed DC users). However, a minor addition to the
model would restore our baseline setup: allowing households to open unused DC accounts. Opening a DC
account and not using it would directly sort a household into the pool of unrevealed DC users. All cash users
would do so, as it would come without privacy costs but with the advantage to be pooled with unrevealed
DC users that have a higher average credit quality (see Section 4). This implies the same single pool of
unrevealed households as in our baseline model and all results would be identical.
40The numbering of lenders by i and household island locations by j is symmetric. E.g., Ω11 is the data

access fee for lender 1 with respect to households that have lender 1 as their home lender; Ω1j for j > 1 are
the fees for lender 1 to access the credit quality data of households that do not have it as their home lender.
41This becomes clear from the timing of the game laid out in Section 3.5.
42We abstract from costs associated with setting up or managing a DC here. The baseline model also

abstracts from monetary incentives that the DC issuer could offer the households. The possibility that the
DC issuer could, in addition, charge a fee or offer a subsidy on DC use is considered in Appendix B.4.
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3.3 Lenders

Lenders in our model face an infinitely elastic supply of funding at cost c ≥ 1 and engage

in Bertrand competition for loans to households. They have two sources of differentiation.

First, τ > 0 parameterizes the market power derived from home lender advantage. A second

potential source of differentiation among lenders is their access to information about house-

holds’credit quality.43 If one lender purchases detailed data on a set of households, while

other lenders do not, the purchasing lender can charge differentiated loan rates to attract

the subset of households with high credit quality, leaving other lenders a pool of lower credit

quality borrowers.

We can express lender i’s expected profits in general form (with closed forms following

as part of the derivations in Section 4):

mi (qkiRki (qki)− c) + υi (E [q|u]Rui − c)−
∑

j∈[1,N ]

ΩijDij (θ,Ωij) (3)

Lender i’s profit is given by three terms. The first concerns the expected profits that the

lender makes on revealed borrowers whose credit type it has obtained. A household, k, whose

credit quality data the lender has obtained, and who has chosen to borrow from lender i,

is denoted by ki. A lender’s expected profit on a loan with customized loan rate Rki (qki),

is qkiRki (qki) − c.44 Moreover, mi represents the mass of revealed households who choose

to borrow from lender i. The second term concerns the expected profit that the lender

makes from unrevealed borrowers. For every loan that the lender provides to an unrevealed

borrower, the expected profit is E [q|u]Rui − c where Rui is the pooled loan rate that

lender i charges unrevealed borrowers, and E [q|u] represents the expected credit quality

of households conditional on being unrevealed. Here, ui denotes the unrevealed households

43In the baseline, the DC is the only source of credit quality data. Appendix B.1 considers alternative
sources.
44Implicit in this expression is that ki can be represented as a set with continuous support on qki. The

Proof of Proposition 1 shows that this is an accurate representation when solving the game in Section 3.5
by backward induction.
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that choose to borrow from lender i. The mass of such borrowers is denoted by υi. The third

term is the lender’s acquisition costs if it chooses to purchase data on revealed borrowers

from the DC issuer, as per (2).

3.4 Parameter conditions

We include three conditions, which relate the size of parameters to c, the lenders’cost of

funding. First, we let

y > c (4)

which ensures that the highest quality borrower (q = 1) always has a positive NPV project.

This is a necessary condition for credit provision to take place. Second, we let

τ <
1

3
c (5)

which means that, when not funded by the home lender (that is, when the household borrows

from a bank not located on the same island), a project’s value decreases by at most 1
3
of

lenders’funding cost. The reason for this condition is that key mechanisms of our model

rely on the competition between lenders and when home lender market power becomes too

strong, such mechanisms break down.45 Third, we assume that

α <
1

6
c (6)

which is necessary and suffi cient to ensure that households with the highest credit quality

(q = 1) will always want to disclose their type. This helps preserve tractability.46
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Figure 1: Timing and actions.

3.5 Timing

The timing of agents’actions and the realization of events is shown in Figure 1. In Stage

1, households are born with an endowment and project opportunity, and the DC provider

chooses the DC design, θ, and data access fees, Ωij. In Stage 2, households observe θ and

decide whether to use DC or cash for their consumption and consume, after which DC users’

creditworthiness becomes revealed with probability θ at Stage 3. In Stage 4, lenders decide

on data access purchases and, subsequently, each lender announces its loan rates in Stage

5.47 Based on these loan rates, in turn, households decide from which lender to borrow

to finance their projects (Stage 6), after which project returns materialize and households

with successful projects repay lenders (Stage 7). The next section works backward through

the stages of the game to derive the equilibria and elaborates on the optimal strategies of

households, lenders and the DC issuer in those equilibria.

45See the Proof of Proposition 1.
46See the discussion on p.51 for details. Relaxing (6) has been investigated, but leads to highly complex

expressions that do not readily lend themselves to analysis.
47Namely, individualized loan rates for revealed households on which data has been purchased and a single

loan rate for other households.
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4 Equilibria

Below we derive the subgame-perfect equilibrium of the game laid out in Section 3.5 in three

separate propositions that relate to different credit market outcomes. These propositions

are defined for three cases that are delineated by the parameter y and summarized in Table

1. When y is well above c, households will have positive NPV projects (qy > c) unless their

probability of success q is very low. Referring to borrowers with positive (negative) NPV

projects as good (bad) borrowers, the share of bad borrowers is small when y is high. The

equilibrium that ensues from Table 1’s “High y”case is discussed in Section 4.1. Conversely,

when the payoff on a successful project is only barely above the lender’s cost of funding,

then households will have negative NPV projects (qy < c) unless their credit quality is high,

leading to a large share of bad borrowers on the loan market. Section 4.2 analyzes the

outcomes of Table 1’s “Low y”case. The “Intermediate y”case is a direct extension of the

other two cases and offers little additional insight: its equilibrium is derived and discussed

in Appendix B.7.

Table 1: Parameterizing the share of bad borrowers

Case Share of bad (NPV < 0) borrowers Value of y

High y Small y > 2c+ τ

Medium y Intermediate y ∈
(

4
3
c, 2c+ τ

)
Low y Large y ∈

(
c, 4

3
c
)

4.1 Equilibrium with few bad borrowers

When the share of bad borrowers is small, the following equilibrium ensues:

Proposition 1 When y > 2c+ τ , the DC issuer sets θ = 1, charges each lender data access

fees Ωii > 0 for information about its on-island households, with the closed form solution

given in (28), and offers each lender free information about off-island households (Ωij = 0
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when j 6= i). Households sort into DC use if

ϕ ≤ c

α

(
q

E [q|u]
− 1

)
(7)

and choose cash otherwise, where the closed-form for E [q|u] is displayed in (26). Home

lenders buy data access and offer differentiated loan rates

Rk (q) =
c

q
+ τ (8)

to revealed borrowers and a single loan rate

Ru =
c

E [q|u]
+ τ (9)

to unrevealed borrowers.48 All households borrow from their respective home lenders.

Proof. See Appendix A (p.45).

4.1.1 Households’optimal strategies

The sorting condition in (7) implies that a household’s payment choice is affected by other

households’payment choices. A comparison to a cash-only (or, equivalently, θ = 0) setting

is useful to highlight these interactions. Without DC, all households would use cash so that

E [q|u] = E [q] = 3
4
and Ru = 4

3
c+τ . At this loan rate, some households will find it attractive

to use a θ > 0 DC, when given that option. This set of households is represented by the

households to right of and below the dashed line in Figure 2. Since these households are

located in the corner with the highest credit quality, their choice to use DC lowers E [q|u] and

raises Ru, as some of them become revealed. A lower E [q|u] implies that more households

find that the condition in (7) holds, and choose DC over cash. These households are near

48We drop the subscripts i in (8) and (9), given home lender symmetry (each lender is a home lender to
a given set of households), as discussed in the Proof of Proposition 1. We also note that the closed-form for
Ru is displayed in (29) and and its comparative statics to the underlying parameters are shown in (30)

17



(to the left of) the threshold given by the dashed line, meaning that their credit quality is

high among cash users. Their choice to use the DC in turn further lowers E [q|u], and so on.

The equilibrium in Proposition 1 documents the ultimate settle point of such a process,

as represented by the unbroken line in Figure 2. But behind this equilibrium lies a cascade

of disclosure: households that only choose to use the DC because other, higher credit quality

households choose to do so. Households in between the dashed and unbroken lines Figure 2

can be worse offthan if the DC did not exist (i.e., in the cash-only economy), which highlights

the public good nature of privacy here. The implications for individual and aggregate welfare

are further explored in Section 6.49

Figure 2: Payment choice and disclosure cascades.

Households at the left end of Figure 2 are bad borrowers. Bad borrowers self-select into

cash use, because they know that credit quality revelation will preclude them from receiving

loans. However, when y > 2c + τ , there are always enough good borrowers on the market,

including good borrowers with high privacy preferences that choose to use cash, so that the

loan market for unrevealed borrowers remains open.

49For welfare analysis with information cascades, see also Cong and Xiao (2024).
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4.1.2 Lenders’optimal strategies

Lenders engage in Bertrand competition on loan rates, but because of home lender advantage,

households are willing to pay a premium up to τ on loans from home lenders and therefore

equations (8) and (9) emerge from limit pricing. However, these equilibrium equations are

the outcome of not only the pricing game between the lenders, but also the information

acquisition game among them.

4.1.3 The DC issuer’s optimal strategy

The DC issuer knows that loan rates and therefore lender profits per loan are at their highest

when households are matched to their home lenders. Moreover, the fees that the DC issuer

can maximally charge depend on the value of data on revealed households to the lenders. The

DC issuer therefore designs its fee structure in such a way that, in equilibrium, each household

does end up borrowing from its home lender and that lenders have the maximum incentive

to buy information from the DC issuer. This is attained by maximizing the difference in

expected profits between an informed and an uninformed home lender (that is, between a

home lender that buys the data and one that does not).

First, we note that lenders that engage in symmetric Bertrand competition always break

even. As discussed in the Proof of Proposition 1, this implies that absent some ability for the

DC issuer to commit not to sell data about the same borrowers to multiple lenders (further

discussed in Section 5), data about off-island borrowers has zero value to each lender. That

is, in a symmetric information game, limit pricing prevails and lenders make zero profits on

off-island households. Second, the difference between the expected profits that a lender can

obtain on its own market (from on-island borrowers) when informed and when not, increases

in the degree of adverse selection the lender would suffer when not informed. Therefore, by

providing data on off-island borrowers for free, the DC issuer maximizes the potential adverse

selection for an uninformed home lender and hence the price it can charge for information

about on-island borrowers. Should a lender choose not to buy the data on its on-island
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revealed households, it would have to offer a single loan rate below (9) to attract some

revealed borrowers.50 In doing so, the uninformed lender would earn less on unrevealed

borrowers, while also facing adverse selection on the revealed-household market. A single

loan rate that attracts the best borrowers would be below the breakeven rate for the loan

portfolio. Overall, cutting rates below (9) reduces the home lender’s profits. Therefore, the

home lender instead chooses to purchase the data from the DC issuer as long as it makes

any positive profit on revealed households and, foreseeing this, the DC issuer charges it a fee

marginally below its total earnings on revealed households.51

To maximize this fee, the DC issuer sets θ = 1, which makes the set of revealed households

as large as possible. A higher θ not only increases the odds of revelation per DC user but

also increases the mass of DC users through cascade effects. The pool of the unrevealed

consists of two types of households - cash users and unrevealed DC users - and the worst

quality unrevealed DC user is always of better credit quality than the average cash user (as

shown in the Proof of Proposition 1). When θ increases, the mass of unrevealed DC users

shrinks, E [q|u] declines and this induces more households to opt for DC use.52

4.2 Equilibrium with many bad borrowers

Proposition 2 When y ∈
(
c, 4

3
c
)
, then if τ > y − c, no credit provision takes place and all

households use cash. Instead, when τ < y − c, households with q ≥ αϕ+c
y−τ choose to use the

DC and, if revealed, borrow from their home lender with loan rates given by (8). The DC

issuer optimally sets θ = 1 and charges lenders a positive data access fee for their on-island

borrowers, shown in (36), while offering each lender free data on its off-island borrowers.

Proof. See Appendix A (p.54).
50If the home lender offered the loan rate in (9), no revealed household would borrow from it, because all

DC users have a q that is higher than E [q|u] and are therefore better off borrowing at loan rate c
q from

other lenders than at loan rate c
E[ q|u] + τ from the home lender, as shown in the Proof of Proposition 1.

51This is τ times the mass of revealed households times their expected quality (τmE [q| dc], solved in
closed form in (28)).
52Appendix B.3 shows that when privacy costs are quadratic instead of linear, the mass of DC users may

decline as θ increases (depending on paramaters) but θ = 1 nonetheless remains optimal for the DC issuer.
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4.2.1 Households’optimal strategies

When y ∈
(
c, 4

3
c
)
, unrevealed households can never obtain loans. Bad borrowers outweigh

good borrowers among the unrevealed (E [q|u] is low) and there is no viable breakeven

loan rate to the unrevealed: households can at most pay y on a successful project, but

E [q|u] y − c < 0 when y ∈
(
c, 4

3
c
)
.53 Therefore, no lender (including the home lender)

could break even on lending to such households. When the loan market for the unrevealed

is closed, the interaction between the payment choice of one household and other households

ceases. The choice of a set of households to use the DC still affects E [q|u], but E [q|u] does

not affect the return on choosing cash, because cash users do not obtain loans. Thus, there

are no negative disclosure externalities.

4.2.2 Lenders’optimal strategies

When τ < y − c, competition among lenders establishes limit pricing in line with equation

(8). Hence, high credit quality households can obtain loan offers that are attractive enough

to induce a choice for DC over cash.

Instead, if τ > y − c, lenders effectively become monopolists: households may have

positive NPV projects when borrowing from the home lender, but always have negative NPV

projects when borrowing from other lenders. However, due a time inconsistency problem,

the monopoly of the home lender actually leads to a credit market freeze in this setting.

At Stage 5 of the game, the home lender will charge revealed households Rk (q) = y, which

transfers the full profit of a successful project to the lender. Anticipating this at Stage 2, no

household will choose to use the DC.54

As the key insights of this paper center on the interaction between DC use and credit

provision, we center attention on the case where the home-lender advantage is small enough

53This follows from supE [q|u] = E [q] = 3
4 .

54This is because there is a privacy cost to using the DC, but no benefit: the DC enables credit access
that however yields a zero return.
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to sustain competition among lenders and assume for the remainder of the paper that

τ < y − c (10)

where we note that (10) is tighter than (5) if and only if y < 4
3
c.55

4.2.3 The DC issuer’s optimal strategy

Given (10), credit provision takes place, and the DC issuer offers household data for free

to other lenders. It does so to maximize the pressure on home lenders to pay the data

access fee that appropriates all profits on revealed households. Moreover, the DC issuer

optimally sets θ = 1, which brings about the largest number of revealed borrowers and

thereby maximizes its access fees. If the home lender refuses to buy the data on revealed

households and attempts to charge a single loan rate that attracts some revealed households,

all the unrevealed households that are otherwise credit excluded, will rush to borrow from

the home lender too. The home lender cannot distinguish between the household types and

there are too many bad borrowers among the unrevealed, so that the home lender is certain

to make a loss if it does not purchase data access.

5 Data usage strategies

So far, we have focused on a DC issuer that markets its data to lenders, using non-exclusive

contracts whereby one lender taking up the contract does not preclude other lenders from

obtaining access to the same data. Section 5.1 looks at the case where instead the DC issuer

is the provider of credit to households. The insights of this case extend to a setup wherein

the DC issuer instead offers contracts with exclusive data access to lenders, so that one

lender becomes the sole proprietor of part of the data, discussed in Section 5.2. The latter

55I.e., the inclusion of (10) only matters in the low y case considered in Proposition 2. Put differently,
taken together, (5) and (10) can be written as τ < min

{
1
3c, y − c

}
or equivalently τ < min

{
y, 4

3c
}
− c where

min
{
y, 4

3c
}
highlights the relation to the y cases in Table 1.

22



setup can equivalently be interpreted as the DC issuer creating its own lending subsidiary

and providing only that subsidiary access to its trove of data.56

5.1 DC issuer - lender

Figure 3 lays out the timing of a game between households and a monopoly that both issues

the DC and provides credit.57 DC design and household sorting into means of payment

comprise the first two stages, after which the monopoly sets loan rates in the third stage and

households borrow, invest and (if their projects are successful) repay loans in the final stage.

This setup leads to a stark outcome: all households choose cash and the monopoly makes

no profit. At the third stage, the monopoly sets loan rates that seize the expected value

added of a revealed borrower’s project, Rk (q) = y. Foreseeing this at the second stage,

households see no benefit to choosing DC, which comes with a privacy cost but no potential

benefit from lower loan rates when revealed, and therefore opt for cash.

Proposition 3 A single monopoly of both payment data and credit provision fails to make

profit, as households’outside option of cash leads to zero credit provision when there is too

much market power in lending.

Proof. See Stage 2 in the proof of Proposition 2 in Appendix A.58

The fundamental problem for the DC issuer here is the ability of households to opt out

before being charged monopolistic loan rates. Unmodeled factors, like economies of scope,

may plead for the integration of data collection and credit provision. Nevertheless, the notion

that there is a benefit for the data monopolist to be a "puppet master", who manipulates

information asymmetries from above but does not directly get involved in credit markets, is

56This equivalence emanates from profit transfers within the corporate sector having no impact on house-
hold sorting and credit provision.
57We assume that this monopoly is also the home lender towards all households here: the return on a

successful project is y when borrowing from the monopoly.
58I.e., formally, Proposition 3 is a direct extension of the part of the proof of Proposition 2, which shows

that no credit provision takes place when τ > y − c, as home lenders become de facto lending monopolies
for τ large enough and all households use cash.
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Figure 3: Integrated payment data and lending monopoly.

powerful. So is the absence of a fully credible way to precommit not to exploit the market

power inherent in a data monopoly, after households have given up their data.59 Market

power in lending is a double edged sword in a setting like this: it could facilitate higher loan

revenues, but only if enough households stay put and the market power does not compel too

many of them to opt out of disclosure altogether.

5.2 Exclusive data access

This section considers exclusive access whereby only one lender (e.g., the highest bidder) is

allowed to buy access. Unlike the DC issuer-lender in Section 5.1, lenders with exclusive

data access are not monopolists towards revealed households, because such households can

still choose to borrow from uninformed lenders too. But that choice is not an attractive one

and DC use now unwinds entirely. After obtaining exclusive data access, a lender (regardless

of whether it is a home lender or not) optimally charges all revealed households (ε below)

the equilibrium loan rate for the unrevealed, Ru, given by (9). This is optimal because the

59See Liu et al. (2023a) for empirical evidence on this from Datarade, one of the largest marketplaces for
the purchase and sale of data.
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revealed households are cornered at this loan rate: they have nowhere to go to obtain the

lower loan rates that would be commensurate with their credit qualities, all of which are

above the average of the unrevealed pool.60 Foreseeing that using DC comes with a privacy

cost but the same loan rate as using cash, no household sees a benefit to using DC. All

households therefore opt for cash, implying zero profit for the DC issuer.61

6 Policy analysis

We now draw insights from our model for the analysis and design of socially optimal policy.

Section 6.1 considers the role of regulation to constrain the DC’s intrusiveness and Section

6.2 analyzes whether access to a second policy instrument, implemented as a tax or subsidy

on DC use, helps attain higher welfare.62

6.1 Welfare analysis: regulation

To enable the welfare analysis, we extend our model by adding two more stages to the game

described in Section 3.5. First, we assume that the policy maker determines regulation at

the beginning of the game.63 We denote socially optimal DC design by θ∗ and implement

regulation as a constraint on the intrusiveness of data collection.64 That is, the DC issuer

now faces a constrained design choice such that θ ∈ [0, θ∗] and optimally selects as intrusive

a DC design as regulation permits: θ = θ∗.65 Second, we let y represent an uncertain state

60This is shown in Stage 4 of the Proof of Proposition 1.
61The above applies to Table 1’s high y case. In the low y case, adverse selection precludes uninformed

lenders from participating in the credit market. The informed lender charges all revealed households Rk (q) =
y at Stage 3 and the outcome is identical to Proposition 3.
62In addition, Appendix B.5 discusses the potential use of monetary policy, which can affect lenders’

funding cost and Appendix B.6 considers a setting where policy has made household data portable.
63The implicit assumption is that regulatory policies on DC would be infrequently revised due to, e.g.,

practical diffi culties in changing data access and commercialization rights ex-post or the significant upfront
costs associated with widespread DC adoption, which would necessitate a degree of regulatory certainty.
64An example of constraining intrusiveness could be not allowing a BigTech to pair (all of) its social media

or ecommerce data with the collected payment data. For example, China has imposed regulatory bounds on
the use of payment and platform data in BigTech credit provision.
65Alternatively, the policy maker could forbid private DC and instead introduce a CBDC with design θ∗.

For further discussion, see the closing paragraph of Section 8.
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variable, which realizes in a third stage, after the policy maker’s and DC issuer’s decision

stages: both DC policy and DC design are set long-term, before the aggregate state is

known.66 With probability γ ∈ [0, 1], y takes the value yh and the good economic state of

Proposition 1 materializes. With probability (1− γ), a bad state, yl, occurs, in which credit

risks are profound and there are relatively many bad borrowers, as in Proposition 2. That

is, we let yh represent "High y" in Table 1, with yh > 2c+ τ , while yl represents "Low y" in

Table 1 with yl ∈
(
c, 4

3
c
)
.67

6.1.1 Welfare expression

We define aggregate social welfare as the sum of the expected payoffs of all households and

the total profits of lenders and the DC issuer. Welfare is then determined by two factors

only: the value added, qy − c, of the projects that receive funding;68 and the privacy costs

experienced by DC users. In general form, welfare can be expressed as:

W =

∫
borrowers

(qy − c) f (q| "borrowing") dq −
∫
DC users

(αϕθ) g (ϕ| "DC use") dϕ (11)

At the policy maker’s decision stage, the state of the economy is uncertain, and therefore

the policy maker’s objective is to maximize expected welfare, E [W ], with respect to θ:

Proposition 4 The policy maker’s objective is given by

max
θ
E [W ] = max

θ
{γWh + (1− γ)Wl} (12)

Wh =
3

4
yh − c− 2αθ

[
1−

(
1 +

4α

3c

)
E [q|u]

]
(13)

Wl = θλ (14)

66The remaining stages (Stages 2-7 in Section 3.5) become Stages 4-9.
67Focusing on the "High y" and "Low y" cases in Table 1 permits analytical solutions. Over the interme-

diate range y ∈
(

4
3c, 2c+ τ

)
, welfare can be found numerically, as discussed in Appendix B.7.

68From Propositions 1 and 2, in equilibrium households borrow from home lenders and therefore return
conditional on project success is y, so that a project’s expected NPV is qy − c. Some of this value added
accrues to households, through positive net returns on projects, and some of the value added is captured as
corporate profits.
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where Wh and Wl represent welfare in the good and bad states, respectively, the closed-form

for E [q|u] is in (26), and λ is a collection of constants, with λ > 0, shown in (40).

Proof. See Appendix A (p.56).

6.1.2 Socially optimal regulation

Figure 4 (on p.30) shows how θ impacts Wh and Wl. In the bad state, welfare increases

linearly as θ increases. A higher θ helps households who want to reveal their types to do so,

while means of payment choice is purely individual and there are no disclosure externalities

when the loan market for unrevealed households is inoperative. Instead, in the good state,

all households receive loans and therefore the total value added of projects is independent

of θ. The DC’s impact on aggregate welfare then runs through privacy costs. A higher

θ has a direct effect on privacy costs in (1) and in addition has an indirect effect from

disclosure cascades. These effects are seen from, respectively, the terms θ and E [q|u] in

(13). Put together, direct and indirect effects imply that Wh decreases more than linearly

as θ increases.69 This lays the foundation for an interior solution for socially optimal policy,

derived in Proposition 5.

Proposition 5 When the good state is certain (γ = 1), privacy costs dominate and the

policy maker bans the DC, θ∗ = 0. When the bad state is certain (γ = 0), credit inclusion

from type differentiation dominates and laissez-faire, θ∗ = 1, is socially optimal. When

γ ∈ (0, 1), the policy maker for some parameterizations chooses to regulate the DC with

θ∗ ∈ (0, 1), solved in (41).

Proof. See Appendix A (p.58).

69There are two reasons for this nonlinearity. The first is that the two effects are multiplicative. The direct
effect applies to all DC users linearly, but the mass of DC users simultaneously expands when θ increases due
to the indirect effect. The second is that, per (26) and footnote 103, E [q|u] decreases convexly as θ rises.
The intuition is that, when a given fraction of relatively high credit quality borrowers leaves the pool of the
unrevealed, this shrinks the pool, so that when the next equal size fraction leaves the pool, it constitutes a
larger percentage of the pool and has a larger revelatory impact on those remaining in the pool.
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6.1.3 Distributional effects

The distributional effects from DC design differ between the two states of y. In the bad

state, DC users’disclosure is a Pareto improvement, creating value to them, no externalities

to others, and profits to the corporate sector. In the good state, some (high q, low ϕ)

households gain from lower customized loan rates. But their gains are exactly offset by the

losses of unrevealed households, who face a higher loan rate.70 Moreover, total corporate

profits do not depend on θ in the good state: a higher θ transfers profits within the corporate

sector, as the DC issuer gains data access fee revenues at lenders’expense. The impact of θ

on Wh therefore derives from the one effect that has no offset: the privacy loss of some DC

users that were swept along in disclosure cascades.

6.1.4 Comparative statics

The solution for θ∗ in (41) enables an analysis of the comparative statics of optimal regulation

to underlying parameters. We highlight three comparative statics of particular interest.

Society’s care for privacy In (1), α represents the weight that society places on privacy

preferences. The main insight from varying α is summarized in Figure 5: laissez-faire is

optimal in the extremes where society cares not at all or a great deal about privacy. It

is when society cares somewhat but not too much about privacy that there is a role for

regulation to optimally constrain DC intrusiveness:

Corollary 1 (to Proposition 5) Regulation has a role to play (θ∗ < 1) when the two

means of payment each have enough users.

For α → 0, DC use and thereby disclosure is maximized, but privacy ceases to matter.

Expected welfare in (12) becomes E [W ] = γ
(

3
4
yh − c

)
+ (1− γ) θλ, which monotonically

70In practice, such distributional effects could materialize along socially undesirable dimensions, such as
race or gender (Chen et al., 2023; Fuster et al., 2022). For estimates of the effect of the increased availability
of borrower data on welfare and the distribution of gains and losses, see Blattner et al. (2022) and Jansen
et al. (2022).
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increases as θ rises, implying θ∗ = 1. Instead, when α is very high, cash use dominates. In

this case too, θ∗ = 1 can be observed for some parameterizations.71 When society cares a

great deal about privacy, it is, in effect, "doing the regulator’s job" in terms of internalizing

privacy costs. Disclosure cascades are limited, because the base of DC users from which

such effects emanate is small. However, when society has an intermediate care for privacy,

cascades can both affect many households and be painful, and θ∗ can become interior or even

0, as per Proposition 5.

Market power in lending The relation between market power and optimal regulation

centers on the bad state, where ∂θ∗

∂τ
< 0. Welfare in the good state is not affected by market

power: τ does not enter Wh in (13).72 Instead, in the bad state, a higher τ increases the

loan rate of DC users, but does not affect cash users, who do not obtain credit. A higher

τ then pushes more households into cash use. With fewer DC users in the bad state, the

social benefits of a larger θ in the bad state decline, because these stem from DC users who

can become revealed and thereby obtain credit.73 Thus, θ∗ decreases.

The type of economy A potentially interesting question to ask is what parameters in our

model might characterize a developing relative to an advanced economy. In many developing

economies, a sizable part of the population is financially excluded and cannot access credit.

The closest our model can come to matching this, is in expected terms: when γ is smaller,

the expected mass of households without credit access is larger. From (12), ∂θ∗

∂(1−γ)
> 0:

when the bad state becomes more likely, the policy maker focuses more on the gains from

type differentiation for credit provision. From this angle, optimal DC regulation for a devel-

71As α enters the term for θ∗ in (41) many times, an analytical derivation of this comparative static is
challenging to obtain. Instead, numerical investigations (available on request) highlight that θ∗ = 1 can for
some parameterizations be observed for α large enough (but still satisfying (6)).
72The reason is that all households get credit in the good state and both unrevealed and revealed households

pay τ as part of the equilibrium loan rates, (8) and (9). That is, in the good state τ does not drive a wedge
between cash and DC using households and therefore does not affect the policy maker’s considerations. A
higher τ leads to lower payoffs to households in (1), but from an aggregate welfare perspective these are
exactly offset by higher lender profits and therefore ∂Wh

∂τ = 0.
73Formally, ∂Wl

∂θ = λ and ∂λ
∂τ < 0 from (40).
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Figure 4: Welfare in the good and bad states.

Figure 5: Optimal regulation and society’s care for privacy.
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oping economy might be looser than for an advanced economy. However, another facet of

developing economies is that they tend to face greater economic volatility. A stylized way to

represent that in our framework is a "mean preserving spread": equally increasing yh and

decreasing yl. Widening such a spread implies a lower θ
∗ and tighter DC regulation.74

6.2 A second instrument

Regulation affects how much household data is disclosed, which is what a social planner cares

about in our framework. Household disclosure consists of two margins: who sorts into DC

use, which we will refer to as the extensive margin of disclosure; and how much information is

disclosed about DC-using households, which we term the intensive margin. By constraining

the intensive margin, regulation also affects sorting into means of payment and thereby the

extensive margin. But the fact that there are two margins and one instrument implies that

there could be room for a second instrument to improve welfare outcomes.

We here explore such a second instrument in the form of a government tax or subsidy

on DC use.75 We denote this instrument by T , where T > 0 represents a tax and T < 0 is

a subsidy.76 Unlike the regulatory constraint, the tax (subsidy) cannot target the intensive

margin, but it can affect the extensive margin by disincentivizing (incentivizing) household

sorting into DC use. We rederive the model with the inclusion of T and the resulting

expressions for the welfare analysis are recorded in Appendix B.8.

Proposition 6 By combining regulation with either a tax or a subsidy on DC use, optimal

policy can attain higher expected welfare than regulation alone.

Proof. In text (below).

74Although yh enters Wh in (13), it does not interact with θ in that term: a higher return in good times is
an equivalent boon for all, since everyone receives credit. Instead, in bad times, a lower return means fewer
gains from credit quality differentiation and therefore the policy maker’s tradeoff shifts to a lower θ∗.
75This could be in the form of a tax/subsidy on, e.g., DC transactions or opening a user wallet.
76An implicit assumption is that reduced (increased) DC-based consumption from taxation (subsidization)

is assumed not to affect the DC issuer’s abilty to infer credit quality data on a given household.
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The optimal use of two instruments always weakly improves welfare, because T = 0

can replicate the regulation-only outcome. For some parameterizations, the availability of a

second instrument does not raise welfare.77 For other parameterizations, it does: Figures 6

and 7 provide numerical examples.78 Figures 6 and 7 draw expected welfare against θ for

given values of T . In particular, they show the T = 0 case (unbroken line) that represents

regulation acting alone, as well as the case of socially optimal policy with two tools: the

peak of the dashed line attains the highest expected welfare when using both tools.79

In Figure 6, the good state is very likely (γ = 0.95) and therefore the costs of intrusiveness

in that state are a relatively dominant consideration. Regulation on its own would set θ∗ = 0,

banning DC use. The downside of doing so, is that when the bad state occurs, no credit

provision takes place. A tax now allows the policy maker to exit this corner.80

Figure 7 uses the same parameterization as Figure 6, except that both states are equally

likely (γ = 0.5). The policy maker now optimally introduces a subsidy. In the bad state,

households disclose less data than socially optimal, even when θ = 1. This derives from

lender market power, τ , which prevents some positive NPV households from disclosing in

the bad state (Section 6.1.4). A subsidy leans against this underdisclosure. With more DC

users in the bad state, the tradeoff for optimal regulation now shifts to give more weight to

that state and the subsidy is paired with looser regulation. Figures 6 and 7 highlight that

the policy maker sometimes optimally applies the two instruments as substitutes (Figure 6)

and sometimes as complements (Figure 7).

77E.g., in a corner where zero DC uptake is socially optimal, θ∗ = 0 is as effective as an infinite tax or a
combination of both.
78The parameterization behind these figures is yh = 2.2, yh = 1.3, c = 1, α = 0.05 and τ = 0.1 (which

satisfies the relevant parameter constraints) while γ is varied. We also note that the expressions in Appendix
B.8 do not readily lend themselves to an analytical derivation of combined optimal policy.
79This social optimum is found through a grid search.
80Setting T = 0.1 and θ∗ = 0.14, the policy maker permits a limited degree of DC use and therefore

differentiation and credit provision in the bad state (among the highest quality borrowers that are willing to
pay the tax, given their high disclosure benefits).
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Figure 6: Optimal combination of regulation and a tax.

Figure 7: Optimal combination of regulation and a subsidy.
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7 Lender consortium

The baseline model centers on a DC issuer that exploits information asymmetries on the

credit market. We here develop a comparison to a case wherein the lenders own the DC: the

DC is set up by a consortium of lenders, which decides on θ. We assume that the collected

DC data is now freely available to all lenders.81 While lenders cooperate in DC design, their

mode of competition on the credit market is unchanged compared to the baseline.82

Without data access fees, a lender’s total profit is always 3
4
τ in the good state and

therefore its profits do not depend on θ.83 Hence, the lender consortium is indifferent about

θ in this case and privately optimal θ is indeterminate. Instead, in the bad state, only

revealed households receive credit and the mass of such households rises as θ increases, as

can be seen from (32) and (34). In equilibrium, lenders expect to earn q
(
c
q

+ τ
)
− c = qτ

per revealed on-island borrower and, since there are more such borrowers when θ is higher,

lender profits depend positively on θ and the consortium sets θ = 1.84

In sum, the difference between the independent DC issuer and the DC owned by a

lender consortium centers on the good state only. In that state, the DC issuer maximizes

intrusiveness to induce more households to use the DC, which gives it a better hand to play

towards the lenders. This is a private gain for the DC issuer and is therefore not replicated

by the consortium. Conversely, θ = 1 in the bad state creates value for households and

lenders, and is optimal for DC issuer, lender consortium and social planner alike.

Proposition 7 Unlike the DC issuer, the lender consortium does not actively exploit dis-

81Data access fees would not make a difference here if consortium profits are remitted back to the lenders.
because such fees act as a net transfer within the corporate sector.
82For empirical evidence on lender cooperation through a private credit bureau, see Liberti et al. (2022).
83In equilibrium, every lender expects to earns E [q|u]

(
c

E[ q|u] + τ
)
− c = E [q|u] τ on an unrevealed on-

island borrower and q
(
c
q + τ

)
−c = qτ on a revealed on-island borrower. This lender’s total earnings are then

(1−m)E [q|u] τ +mE [q| dc] τ where m is the mass of revealed househods. Since E [q] = (1−m)E [q|u] +
mE [q| dc], total earnings simplify to E [q] τ . Moreover, E [q] = 3

4 and therefore a lender earns
3
4τ in the

good state.
84Considering the setup with an uncertain state realization of Section 6, the lender consortium chooses

θ = 1, because with probability γ the good state occurs and the consortium is indifferent about θ and with
probability 1− γ the bad state comes about and the consortium prefers θ = 1.
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closure externalities in the good state; unlike a social planner, the consortium does not lean

against such externalities either: optimal θ is indeterminate in the good state.

Proof. In text (above).

8 Conclusion

New technologies are fundamentally changing the way in which payments and credit provi-

sion take place, and create an unprecedented scope for data monopolization. BigTechs, in

particular, appear poised to expand upon their already vast trove of knowledge about their

customers and to develop payment ecosystems that enhance the network effects of their

platforms. Such developments can bring both unique opportunities and risks to consumers

and borrowers, and policy institutions are actively grappling with the extent to which they

should step in and regulate (Haksar et al., 2021).

This paper builds a framework to analyze how private and social optima diverge when

a monopolist offers privacy-valuing households a digital payment system that collects data

on their habits but can help them signal their creditworthiness to lenders. We find that the

monopoly uses its pole position to play offboth households and lenders against each other. It

squeezes households into a partially unraveling Lemons’Market, whereby the willingness of

some high quality households to disclose prods more tranches of households to differentiate

themselves to the detriment of their privacy. To maximize the value of household data in

its hands, the monopolist makes its data collection as intrusive as possible, which optimally

amplifies the Lemons’Market dynamics. The monopolist optimizes by pricing information to

lenders in a way that augments adverse selection for those that choose not to buy data access

and thus maximizes the difference in profits between an informed and an uninformed lender.

Because households have an outside payment option, the monopolist earns the most as a

puppet master who harnesses competition on the loan market by manipulating information

asymmetries, rather than getting into the lending fray itself. Giving households ownership
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of their own data or giving lenders’ownership of the data-collecting technology does not

eliminate the externalities that households impose on each other in equilibrium. However, a

data monopolist actively amplifies these externalities.

Socially optimal data regulation aims at shielding households from being played off

against each other. The challenge in doing so, is that regulation is a long-term policy, while

the benefits from counteracting intrusive data collection are state dependent. In a bad state,

where projects become less profitable, credit provision to unrevealed borrowers can freeze.

The monopoly’s data gathering can then be a net positive, not just to a subset of households,

but to aggregate welfare, because the data unfreeze part of the credit market by differentiat-

ing better quality households. Socially optimal regulation trades off the partial preservation

of credit provision during downturns against the privacy losses of households that are in-

duced into disclosure cascades in upturns. Optimal regulation is most interventionist when

market power in lending is strong and when the monopolist’s payment system and cash both

have solid take-up.

Taxing or subsidizing households who use the monopolist’s payment system can be a

second policy tool. Taxation and subsidization work differently from regulation, because

these only move the extensive margin of data collection (who opts in), while regulation also

affects the intensive margin (the extent of data collection per participating household). The

two policies together can attain higher welfare than regulation alone and depending on,

e.g., the likelihood of the good state with data overprovision and the bad state with data

underprovision, can be either optimally used as substitutes or as complements.

This paper focuses on a single payment provider and one outside payment option. Future

work can build on the framework provided here to consider competition between multiple

payment providers, which could include a public provider, such as a CBDC.85 Indeed, policy

discussions on the role of data sharing through CBDC are gaining increased prominence

(ECB, 2023). While our model would need extending to speak to competition between CBDC

85In particular, the extension in Appendix B.3 may permit the co-existence of multiple, differentiated
means of payment that each draw a market share.
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and multiple means of payment, it can already be interpreted from the angle of a benchmark

case wherein CBDC is introduced with data-sharing features as the sole alternative to cash.

What has been discussed as optimal regulation (θ∗) of a private digital payment system, can

equivalently be considered the optimal degree of data collection with a welfare-maximizing

CBDC.
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Appendix

A Proofs

This appendix contains the proofs of the Propositions in the main text. All calculations are

performed in a Mathematica file that is available on request from the authors.

Proof of Proposition 1. The proof applies backward induction to solve for the Subgame

Perfect Nash Equilibrium (with symmetric pure strategies among the other lenders). We

first note that equations (8) and (9) are considered the limit cases of, respectively, Rk (q) =

c
q

+ τ − ε and Ru = c
E[ q|u]

+ τ − ε with ε→ 0.86 Moreover, we save notation by focusing on

a single subset of households (as results extend symmetrically to all subsets) with a given

home lender, h, and other (non-home) lenders denoted by i. Thus, Rkh (q) and Rki (q) are

the differentiated loan rates that, respectively, the home lender and other lenders charge

revealed households; and Ruh and Rui are such loan rates charged to unrevealed households.

– – – – – – – – – – – – – – – – – – – – – – – – – – – – – –

Stage 6. This is the last decision stage of the game outlined in Section 3.5. At Stage

6, some households’credit qualities are unrevealed (namely, those that chose cash in Stage

2 and those that chose DC in Stage 2 but remained unrevealed at Stage 3), while others are

revealed (namely, those that chose DC in Stage 2 and, with probability θ, became revealed

at Stage 3). Given limited liability, as incorporated in (1), households are always willing

to borrow. If a household borrows from the home lender, then the profit on a project, if

successful at Stage 7, is y−Ruh and y−Rkh (q) if the household is, respectively, unrevealed

and revealed, and 0 if the project is unsuccessful.87 If borrowing from another lender, these

expressions are y − τ −Rui and y − τ −Rki (q). The Stage 6 optimal choice is therefore for

the unrevealed to borrow from their home lender if y−Ruh > y− τ −Rui and from another

86As discussed in footnote 34, we apply a breakeven preference in favor of the home lender to ensure that
ε can be taken to 0 in equilibrium.
87To save on notations, we drop the limited liability max operators from max {y −Ruh, 0} and

max {y −Rkh (q) , 0} and going foward throughout this Stage of the proof: at Stage 5, lenders optimally
set rates ≤ y as rates above y are certain not to be repaid.
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lender otherwise, and for the revealed this condition is y −Rkh (q) > y − τ −Rki (q).

– – – – – – – – – – – – – – – – – – – – – – – – – – – – – –

Stage 5. Lenders’ breakeven loan rates are c
q
for revealed households and c

E[ q|u]
for

the unrevealed.88 Due to Bertrand competition, loan rates among other lenders are given

by the breakeven rates. Implicit in Rki (q) = c
q
is that, if any other lenders have access to

households’credit quality data, then there is always more than one such other lender with

access to household data.89 For unrevealed households, it now follows directly that the home

lender sets the loan rate as per (9) and that they all choose to borrow from the home lender.

By setting Ru1 = c
E[ q|u]

+τ−ε with ε→ 0, the home lender ensures that unrevealed borrowers

prefer its loan over other lenders at Stage 6, since (y −Ruh)− (y − τ −Rui) = −ε.90

For revealed households, we identify separate cases that depend on lender data purchase

decisions at Stage 4: 1) if both the home lender and other lenders obtained the data at Stage

4, then following the previous paragraph’s limit-pricing argument, the home lender sets Rkh

according to (8) and all revealed households choose to borrow from it rather than borrowing

from other lenders; 2) if neither the home lender nor other lenders obtained the data at Stage

4, then, household revelation at Stage 3 is moot and all households are effectively unrevealed;

3) if the home lender purchases the data at Stage 4 while the other lenders do not, then

the home lender optimally charges Ruh according to (9) to all borrowers, because they are

"captive" at that rate (cannot do better at other lenders, because they are unrevealed to

other lenders) and there is therefore no incentive for the home lender to offer higher quality

borrowers customized (lower) loan rates; 4) the case where the home lender did not purchase

the data in Stage 4 while other lenders did, is more intricate. We analyze this case as part

of Stage 4 and refer to it as the "deviation" case. That is, the conjectured equilibrium is as

88That these are breakeven rates follows from y > 2c+τ and q ∈
[

1
2 , 1
]
, which imply that inf

(
y − τ − c

q

)
=

0 and inf
(
y − τ − c

E[ q|u]

)
= 0. Strictly, these are expected breakeven rates, given the uncertain realizations

of project success. However, with a continuum of borrowers, this distinction is immaterial.
89I.e., other lenders are never data access monopolists at Stage 5. See Stage 4 of the proof.
90As inf

(
y − τ − c

E[ q|u]

)
= 2c− c

E[ q|u] from y > 2c+ τ , and E [q|u] ≥ 1
2 ⇒ inf

(
2c− c

E[ q|u]

)
= 0.
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given by Proposition 1 and this is sustainable as an equilibrium if the deviation case can be

excluded.

– – – – – – – – – – – – – – – – – – – – – – – – – – – – – –

Stage 4. Other lenders only obtain household data if the DC issuer offers them free

access. This follows from the loan rate setting at Stage 5: other lenders cannot make a profit

on their loan portfolio and therefore will not purchase the data at a positive price.91 If the

DC issuer charges the other lenders a positive fee for data access, then given that the other

lenders will not buy the data, the home lender is not willing to pay a fee for data access

either. Per point 3) in the previous paragraph, data access has no value added to the home

lender if no other lenders have data access.

Therefore, the Stage 4 choice centers on whether the home lender buys the data when

the other lenders have received that data for free. Providing that data for free to other

lenders, is necessarily optimal for the DC issuer, as this will allow it to charge a positive

fee to the home lender. In our conjectured equilibrium, the optimal data fee that the DC

issuer charges the home lender equals the full profits made on revealed households.92 For

a given revealed household, the expected profit that the home lender makes in equilibrium

(per 8) is q
(
c
q

+ τ
)
− c = qτ . This means that the profit (excluding data access fees) that

the home lender makes on all revealed households in equilibrium is mE [q| dc] τ , where m is

the mass of revealed borrowers and E [q| dc] is the expected quality of DC users (and since

all revealed households are randomly drawn DC users, this equals the expected quality of

revealed households). Both m and E [q| dc] are solved in closed form at Stage 1.

The validity of the conjectured equilibrium therefore centers on the deviation case: will

the home lender deviate from the equilibrium by not purchasing the data? If it does, it can

no longer differentiate among households. This means that it must charge all borrowers,

both revealed and unrevealed, the same rate, which we will refer to as Rdev. At Rdev =

91With N ≥ 3 and symmetric pure strategies there are always at least two equally informed other lenders
engaging in Bertrand competition.
92To be precise, it is the full profit minus ε with ε→ 0.
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Ruh = c
E[ q|u]

+ τ the home lender would fail to attract any revealed borrowers, because

all revealed households have a better credit quality than the average unrevealed household,

as we next show. From (7), we can obtain an expression for the q of the lowest quality

revealed household. Only DC users can become revealed and, thus, the lowest quality a

revealed household can have is that of the lowest quality DC user. The credit quality of this

household is obtained by setting ϕ = 0 in (7) because, as can be seen from Figure 2, the

DC user with the lowest privacy costs is also the DC user with the lowest credit quality.

This yields q
((

c
E[ q|u]

+ τ
)
− τ
)
− c = 0 ⇔ q = E [q|u]. Hence, the lowest quality revealed

household has q = E [q|u] and all other revealed households have q > E [q|u].93

Thus, if the home lender deviates, it must do so with Rdev <
c

E[ q|u]
+ τ , since it cannot

increase its profits by not purchasing the data while charging Rdev = c
E[ q|u]

+τ , as no revealed

household would then borrow from it. The deviation, if any, must be in the direction where

the home lender accepts lower returns on unrevealed households (by lowering Rdev), while

gaining new borrowers from the pool of revealed households. However, given τ < 1
3
c from

(5), Rdev <
c

E[ q|u]
+ τ is shown below to be suboptimal for the home lender, as compared

to following the outlined equilibrium strategy.94 ,95 Using the expression for the profit of the

93When borrowing from other lenders, a revealed household earns y − τ − c
q on a successful project.

Instead, if a revealed household were to borrow from the home lender at Rdev = c
E[ q|u] + τ then it would

earn y −
(

c
E[ q|u] + τ

)
on a successful project. Here, y − τ − c

q > y −
(

c
E[ q|u] + τ

)
⇔ q > E [q|u], which

is true for the full mass of revealed households, m (since the revealed household with q = E [q|u] has zero
weight).
94In particular, τ < 1

3c is found as a suffi cient condition to ensure this. A necessary and suffi cient condition
could be found by solving the first order condition of (15) to Rdev and finding the highest profit that the
deviating lender could make. The difference between this profit and the equilibrium profit of the home lender
would then be the optimal DC issuer data access fee (which would be identical to the current expression in
(28) for τ small enough, but beyond a point would decline as τ increases). However, the first order condition
of (15) to Rdev is fourth order in Rdev and does not readily lend itself to analysis.
95An economic intuition for why an upper bound on τ makes deviation suboptimal is that τ compensates

for the adverse selection problem that the uninformed home lender faces when all other lenders buy the data.
For example, when the q = 1 household borrows from informed other lenders, this household earns y− τ − c
on its successful project. When borrowing from the deviating home lender, it earns y − Rdev. It therefore
only chooses the home lender if Rdev < c+ τ . When τ is small, the home lender cannot afford to make Rdev
low enough to attract the q = 1 household, as it would make a loss on its loan portfolio overall. Instead, the
lowest quality revealed household, with q = E [q|u], switches to the home lender as soon as Rdev declines
marginally below c

E[ q|u] + τ . When τ is suffi ciently small, this adverse selection problem is severe enough
that the home lender does not choose to deviate.
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deviating home lender, Πdev, in (15), we find that lost revenues on unrevealed households

from cutting Rdev always outweigh the revenues on the additional revealed borrowers that

choose the home lender when it cuts Rdev. Here,

Πdev =

∫ c
Rdev−τ

E(q|u)

(qRdev − c)f(q)dq + (1−m) (E(q|u)Rdev − c) (15)

where
∫ c
Rdev−τ
E(q|u) (qRdev − c)f(q)dq and (1−m) (E(q|u)Rdev − c), respectively, represent the

profit on revealed and unrevealed borrowers. The expected profit per revealed borrower is

qRdev−c and the set of revealed households that chooses to borrow from the home lender runs

from q = E(q|u) to q = c
Rdev−τ .

96 Moreover, f (q) = c
α

(
q

E[ q|u]
− 1
)
.97 Lastly, the expected

profit of the home lender per unrevealed household is E(q|u)Rdev − c and therefore total

profit on the mass, 1−m, of unrevealed households is given by (1−m) (E(q|u)Rdev − c). A

suffi cient condition for non-deviation is ∂Πdev
∂Rdev

> 0 for Rdev ≤ c
E[ q|u]

+ τ , because this implies

that R∗dev = c
E[ q|u]

+ τ , which equals the equilibrium loan rate. Footnote 98 shows that

τ < 1
3
c⇒ ∂Πdev

∂Rdev
> 0.98

96This comes from setting to equality and solving to q the household’s condition to prefer borrowing from
the uninformed home lender relative to informed other lenders: y −Rdev ≥ y − τ − c

q .
97This comes from the indifference condition that determines which households opt for DC use, as derived

in (19). Even though Stage 2 occurs before Stage 4, the same sorting condition applies here, because we are
investigating a deviation from the conjectured equilibrium. I.e., backward induction proceeds as if the home
lender chooses not to deviate (as below) and then we check (here) that this non-deviation is indeed optimal.
98A suffi cient condition for ∂Πdev

∂Rdev
> 0 is ∂

∂Rdev

[∫ c
Rdev−τ
E(q|u) 2(qRdev − c)dq + (1−m)

(
1
2Rdev − c

)]
> 0, be-

cause, firstly, in (15),
∫ c
Rdev−τ
E(q|u) (qRdev−c)f(q)dq is where the potential negative part of ∂

∂Rdev
comes from and

this term is necessarily larger (in absolute terms) if integrated over f(q) = 2 (this is where the indifference
frontier as displayed in Figure 2 has "hit" the upper bound of ϕ = 1 and the household distribution is
uniform). I.e., the potential for cutting Rdev to raise profits comes from the fact that the home lender can
entice more revealed households to borrow from it. The mass of revealed borrowers switching for a given
rate cut is largest when f(q) = 2. Hence, for this proof, it is suffi cient to consider f(q) = 2. Secondly,
from (15), ∂

∂Rdev
(1−m) (E(q|u)Rdev − c) is always positive and for this term it is therefore suffi cient to

consider E(q|u) = inf E(q|u) = 1
2 . Simplifying the suffi cient condition in the first sentence of this footnote

yields Rh−3τ
(Rh−τ)3

> 2[E(q|u)]2+m−1
2c2 . This condition is at its tightest when E(q|u) = supE(q|u) = E (q) = 3

4 and

m = supm = 1, so that Rdev−3τ
(Rdev−τ)3

> 9
32c2 is suffi cient. The infimum of Rdev−3τ

(Rdev−τ)3
lies in its corners, because

it is a concave function. Investigating these corners, Rdev = 4
3c and Rdev = 2c + τ , the suffi cient condition

becomes 9(4c−9τ)

(4c−3τ)3
> 9

32c2 which (given τ > 0) can be solved to τ <
c(8−4

√
3)

3 and since 8−4
√

3 > 1, it suffi ces
to set τ < c

3 .
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– – – – – – – – – – – – – – – – – – – – – – – – – – – – – –

Stage 2. Stage 3 is not a decision stage and therefore we next turn to Stage 2. At Stage

2, a household prefers DC over cash if and only if

q (y − τI −Rdc (q))− αϕθ > qmax (y − τI −Rcash) (16)

where Rdc (q) and Rcash are, respectively, the loan rates that the household would expect if

it chooses DC or cash. The loan rate on cash is not type dependent because cash users do

not become revealed and therefore borrow at equilibrium loan rate Ru from (9). Instead,

Rdc (q) = θRk (q)+(1− θ)Ru, because a DC user’s credit quality is revealed with probability

θ in which case that household borrows at the equilibrium loan rate Rk (q) from (8), while

with probability 1 − θ the household remains unrevealed and pays Ru on its loan. We can

now simplify (16) to:

αϕ < q (Ru −Rk (q)) (17)

and replacing from equations (8) and (9), this becomes the sorting condition in (7).

– – – – – – – – – – – – – – – – – – – – – – – – – – – – – –

Stage 1. At Stage 1, the DC issuer optimally sets mE [q| dc] τ as access fee to the

home lender and provides the data for free to the other lenders, as follows from the Stage 4

derivations.99 The DC issuer also determines θ at Stage 1 by maximizing mE [q| dc] τ to θ.

We here derive closed form solutions for m and for E [q| dc] and show that ∂mE[ q|dc]τ
∂θ

> 0

and therefore θ = 1 is optimal. We first write m as a function of θ and note that m (θ) =

θµ (θ) where µ (θ) is the mass of DC users, which we can find by integrating over the indif-

ference frontier displayed as the unbroken line in Figure 2. Defining the area of integration

requires finding two values of q: 1) the lowest q household that is a DC user (which is the

starting point of the integral); 2) the lowest value of q above which all users (regardless

99Namely, the DC issuer can only sell the data at a positive price to any lender if it provides the data
for free to the other lenders and charges a fee to the home lender. The highest fee it can charge the home
lender, such that the home lender is still willing to purchase the data, is mE [q| dc] τ − ε with ε→ 0.
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of ϕ) are DC users. From the first to the second point, we integrate over the indifference

frontier and from the second point to q = 1 we integrate over a uniformly distributed mass

of households. The first point has been established at Stage 4 and is given by q = E [q|u].

The second point is derived from entering ϕ = 2 in (7) and setting (7) to equality, which

yields 2α = c
(

q
E[ q|u]

− 1
)
and can be written to q = 2α+c

c
E [q|u]. Here, we note that

1
2
≤ E [q|u] < 2α+c

c
E [q|u] < 1, where 2α+c

c
E [q|u] < 1 follows from the condition in (6).100

This, in turn, ensures that the two pieces of integration shown in the equation below are

properly defined, given q ∈
[

1
2
, 1
]
. We can now write

µ (θ) =

2α+c
c

E[ q|u]∫
E[ q|u]

f (q) dq +

1∫
2α+c
c

E[ q|u]

2dq (18)

f (q) =
c

α

(
q

E [q|u]
− 1

)
(19)

where f (q) is derived from setting (7) to equality and writing to ϕ. Moreover, the 2 in the

second integral in (18) comes from the uniform distribution over q ∈
[

1
2
, 1
]
. We note that

E [q|u] is a function of θ (derived further below). Solving (18) gives:

µ (θ) = 2

(
1− c+ α

c
E [q|u]

)
(20)

and thus

m (θ) = 2θ

(
1− c+ α

c
E [q|u]

)
(21)

where the term in parentheses is always positive given E [q|u] ∈
[

1
2
, 3

4

]
and α < 1

6
c from

(6). To come to a closed-form expression for E [q|u], we first note that (1−m (θ))E [q|u] +

m (θ)E [q| dc] = E [q] = 3
4
, which can be written to

E [q|u] =
3/4−m (θ)E [q| dc]

1−m (θ)
(22)

100I.e., supE [q|u] = E [q] = 3
4 which implies sup 2α+c

c E [q|u] = 2α+c
c

3
4 and this is smaller than 1 given

α < 1
6c from (6).
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where E [q| dc] is the expected credit quality of DC users, which can be found as a weighted

average of expected values with respect to the integral areas identified in (18):

E [q| dc] =

2α+c
c

E[ q|u]∫
E[ q|u]

q
(
c
α

(
q

E[ q|u]
− 1
))

dq +

1∫
2α+c
c

E[ q|u]

2qdq

2α+c
c

E[ q|u]∫
E[ q|u]

c
α

(
q

E[ q|u]
− 1
)
dq +

1∫
2α+c
c

E[ q|u]

2dq

(23)

and solving this gives

E [q| dc] =
4α2 (E [q|u])2 + 3c2

(
(E [q|u])2 − 1

)
+ 6αc (E [q|u])2

6c (αE [q|u] + c (E [q|u]− 1))
(24)

Replacing from (21) and (24) into (22) and solving leads to:

E [q|u] =
16α2θ (E [q|u])2 + 3c2

(
3 + 4θ

(
(E [q|u])2 − 1

))
+ 24αcθ (E [q|u])2

12c (2αθE [q|u] + 2cθ (E [q|u]− 1) + c)
(25)

and we can solve this in closed form for E [q|u]:

E [q|u] =
c

θ

3c (2θ − 1) +
√

3
√

3c2 (1− θ) + 4α2θ (4θ − 3)

6c2 + 8α2
(26)

where an additional negative root solution can be discarded as it always gives E [q|u] < 1
2
,

which violates q ∈
[

1
2
, 1
]
.101 It can also be verified that for the solution in (26), it holds that

E [q|u] ∈
[

1
2
, 3

4

]
.102 We also note that the apparent singularity at θ = 0 is not a genuine

singularity. Its appearance comes from the fact that (26) is the solution of (25) when (25) is

written as a quadratic equation. However, at θ = 0, (25) simplifies toE [q|u] = 3c2(3)
12c(c)

= 3
4
and

there is no quadratic equation to solve: when θ = 0, all households are necessarily unrevealed

101This can be seen from the fact that the negative root solution (replacing the first plus in the numerator
of (26) with a minus) is smaller than 2θ−1

θ
3c2

6c2+8α2 and
2θ−1
θ

3c2

6c2+8α2 <
2θ−1
θ

3c2

6c2 = 1− 1
2

1
θ <

1
2 .

102Using the MaxV alue and MinV alue functions in Mathematica on (26) over the allowed parameter
space, θ ∈ [0, 1] , c ≥ 1, α ∈

[
0, c6
]
, we obtain 3

4 as the supremum of E [q|u] and 1
2 as the infimum.
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and E [q|u] = E [q] = 3
4
. Furthermore, we note that ∂E[ q|u]

∂θ
< 0 and ∂2E[ q|u]

∂θ2
< 0.103 Next,

we replace from (26) into (21) to obtain

m (θ) =
3c (c+ 3α (1− 2θ))− 8α2θ − (α + c)

√
3
√

3c2 (1− θ) + 4α2θ (4θ − 3)

3c2 − 4α2
(27)

where we verify that m (θ) ∈ [0, 1] over our parameter space.104

This provides us with the elements needed to show that ∂m(θ)E[ q|dc]τ
∂θ

> 0 and therefore

θ = 1 is optimal. In particular, replacing for m (θ) from (27) and for E [q| dc] from (24) and

(26), and simplifying, we obtain the closed form for the optimal data selling fee of the DC

issuer to the home lender, denoted by Ω̂:

Ω̂ =
τ

4θ (3c2 − 4α2)2


9c4 (5θ − 2)− 18αc3 (2 + θ (4θ − 5)) + 48α4θ

+24α3cθ (3− 4θ) + 24α2c2
(
1− 4θ + 8θ2

)
+

c (8α2 + 6c2 + 12αc) (1− 2θ)
√

9c2 (1− θ) + 12α2θ (4θ − 3)


(28)

and using (28) we can confirm that ∂Ω̂
∂θ
> 0.105

It is useful to also record Ru (θ) (from replacing (26) into (9)) and its derivatives.106 ,107

Ru (θ) = θ
6c2 + 8α2

3c (2θ − 1) +
√

3
√

3c2 (1− θ) + 4α2θ (4θ − 3)
+ τ (29)

∂Ru (θ)

∂θ
> 0;

∂2Ru (θ)

∂θ2 > 0;
∂Ru (θ)

∂α
< 0;

∂Ru (θ)

∂c
> 1;

∂Ru (θ)

∂τ
= 1 (30)

103Using the MaxV alue function in Mathematica, we verify that supθ∈(0,1],c≥1,α∈[0, c6 ]
∂E[ q|u]
∂θ < 0 and

supθ∈(0,1],c≥1,α∈[0, c6 ]
∂2E[ q|u]
∂θ2

< 0.
104Using the MinV alue and MaxV alue functions in Mathematica, we find the infimum and supremum of
(27) as infθ∈[0,1],c≥1,α∈[0, c6 ]m (θ) = 0 and supθ∈[0,1],c≥1,α∈[0, c6 ]m (θ) = 1.
105Using theMinV alue function inMathematica, we find the infimum of ∂Ω∗

∂θ as infθ∈[0,1],c≥1,α∈[0, c6 ]
∂Ω∗

∂θ = 0

and this infimum is strictly positive when θ > 0.
106In particular, it is immediate that ∂Ru(θ)

∂τ = 1, while for the other derivatives we use the MinV alue
function and MaxV alue functions in Mathematica to calculate infima and suprema over the allowable
paramater range θ ∈ [0, 1] , c ≥ 1, α ∈

[
0, c6
]
.

107For empirical estimates on the relation between loan rates and the extent of information asymmetry
(inversely related to θ in our framework), see DeFusco et al. (2022).
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and footnote 108 discusses the intuitions behind these comparative statics.108

Proof of Proposition 2. When y < 4
3
c, there exists no breakeven Ru and lenders are

unwilling to lend to unrevealed households.109 This simplifies the problem as compared to

Proposition 1.

– – – – – – – – – – – – – – – – – – – – – – – – – – – – – –

Stage 6. If a revealed household borrows from its home lender or from another lender

then the profit on a project, if successful at Stage 7, is y − Rkh (q) and y − τ − Rki (q),

respectively. The Stage 6 optimal choice is therefore to borrow from the home lender if

y −Rkh (q) > y − τ −Rki (q) and from another lender otherwise.

– – – – – – – – – – – – – – – – – – – – – – – – – – – – – –

Stage 5. We can distinguish three cases according to the creditworthiness of a household.

First, if q < c
y
, then a household’s project has negative NPV (qy < c) and no lender will

lend to it. Second, if q ∈
[
c
y
, c
y−τ

]
, then the household’s project only has positive NPV

when borrowing on-island and therefore only the home lender will make it a loan rate offer.

Third, if q > c
y−τ then all lenders can make loan offers: with breakeven rate

c
q
the project’s

expected net return, q
(
y − τ − c

q

)
, is positive. For households with q > c

y−τ , then, the same

arguments as in the Proof of Proposition 1 apply to this stage and therefore the equilibrium

loan rate is given by (8), which is the offer that the household will accept (from the home

lender) at Stage 6. Instead, for households with q ∈
[
c
y
, c
y−τ

]
, the home lender is a monopolist

and therefore sets Rkh (q) = y − ε with ε→ 0 to fully appropriate the return on the project

(if successful). We note that q > c
y−τ households exist if and only if τ < y− c (given q ≤ 1).

– – – – – – – – – – – – – – – – – – – – – – – – – – – – – –

Stage 4. The deviation case where the home lender refuses to purchase the data can be
108A higher θ worsens the expected quality of the pool of the unrevealed, implying a higher Ru (θ), and
cascade effects become stronger as θ rises further, leading to convexity; a higher α means that households
care more about privacy, which improves the quality of the unrevealed pool as there are more relatively good
quality households who choose to use cash and this reduces Ru (θ); higher funding costs, c, translate into
higher loan rates; and, lastly, greater home lender market power, τ , translates into higher loan rates as well.
109The breakeven rate on lending to unrevealed households is c

E[ q|u] and supE [q|u] = E [q] = 3
4 so that

inf c
E[ q|u] = 4

3c > y.
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directly excluded. If an uninformed home lender sets Rdev < y to attract revealed households,

this immediately induces the full set of unrevealed households to borrow from the home lender

too, including many bad borrowers. This implies that the home lender makes a loss, because

even if all revealed households joined the unrevealed in borrowing from the home lender, the

loan portfolio would earn E [q]Rdev − c = 3
4
Rdev − c which is negative since Rdev < y < 4

3
c.

The same arguments as in the Proof of Proposition 1 then imply that the DC issuer will

offer data access for free to the other lenders and will charge the home lender a fee that

appropriates all its profits on revealed households. As before, the general expression for this

fee is m (θ)E [q| dc] τ , but its closed form is different than in Proposition 1 and is solved in

(36).

– – – – – – – – – – – – – – – – – – – – – – – – – – – – – –

Stage 2. Households with q < c
y
choose cash as they cannot obtain loans at Stage 5 and

thus see only a privacy cost to using DC. The same applies to households with q ∈
[
c
y
, c
y−τ

]
,

because if they use DC and become revealed their loan rate will be Rkh (q) = y, which leaves

no profit for them from a successful project. If τ > y − c and all households therefore have

q < c
y−τ , then all households choose cash and no credit provision takes place in the model.

Instead, if τ < y − c, then at Stage 2 households with q > c
y−τ prefer DC over cash if and

only if q (y − τI −Rdc (q))−αϕθ > 0, which can be written to θq
(
y −

(
c
q

+ τ
))
−αϕθ > 0

and from there to

αϕ < q (y − τ)− c (31)

where we note that (31) can alternatively be written as q > αϕ+c
y−τ .

110

– – – – – – – – – – – – – – – – – – – – – – – – – – – – – –

Stage 1. As in the Proof of Proposition 1, we here find the closed form expression for the

DC issuer’s optimal data access fee to the home lender, Ω̂ = m (θ)E [q| dc] τ , and use it to
110Since αϕ ≥ 0, we have that αϕ+c

y−τ ≥
c

y−τ and therefore the condition in (31) is tighter than the condition
q > c

y−τ . I.e., among the households with q ≥
c

y−τ that might choose to become DC users to obtain credit,

only households with q ≥ αϕ+c
y−τ do so, while households with q ∈

[
c

y−τ ,
αϕ+c
y−τ

)
choose cash.
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show that ∂Ω̂
∂θ
> 0, from which θ = 1 is privately optimal for the DC issuer. The definitions

of the integrals in the expression for the mass of revealed borrowers depend on whether the

q = 1 and ϕ = 2 household chooses to use the DC or not. From (31), we have that this

household chooses DC if y > 2α + c+ τ and chooses cash if y < 2α + c+ τ .111

If y < 2α+ c+ τ , then even for q = 1 there are still households who prefer cash over DC.

In this case, m (θ) and E [q| dc] are given by, respectively, (32) and (33).112

m (θ) = θ

∫ 1

c
y−τ

(
q (y − τ)− c

α

)
dq = 2θ

(
1− α + c

y − τ

)
(32)

E [q| dc] =

∫ 1

c
y−τ

q

(
q (y − τ)− c

α

)
dq =

(y − c− τ)2 (2 (y − τ) + c)

6α (y − τ)2 (33)

Instead, when y > 2α + c+ τ , we have:

m (θ) = θ

(∫ 2α+c
y−τ

c
y−τ

(
q (y − τ)− c

α

)
dq +

∫ 1

2α+c
y−τ

2dq

)
= θ

(
(y − c− τ)2

2α (y − τ)

)
(34)

E [q| dc] =

∫ 2α+c
y−τ
c

y−τ
q
(
q(y−τ)−c

α

)
dq +

∫ 1
2α+c
y−τ

2qdq∫ 2α+c
y−τ
c

y−τ

q(y−τ)−c
α

dq +
∫ 1
2α+c
y−τ

2dq
=

3 (y − τ)2 − 4α2 − 6αc− 3c2

6 (y − τ) (y − α− c− τ)
(35)

Taking together (32) and (33) simplifying, and idem for (34) and (35), this means that:

Ω̂ = m (θ)E [q| dc] τ =

 θτ
(3(y−τ)2−4α2−6αc−3c2)

3(y−τ)2
if y < 2α + c+ τ

θτ (y−c−τ)4(2(y−τ)+c)

12α2(y−τ)3
if y > 2α + c+ τ

(36)

In either case, Ω̂ increases linearly as θ rises, and θ = 1 is optimal for the DC issuer.

Proof of Proposition 4. First, we consider Wh. Since yh > 2c+ τ , the first term in (11)

becomes
∫ 1
1
2

2 (qyh − c) dq = 3
4
yh−c, because all households are borrowers in Proposition 1.113

111We note from (5) and (6) that τ ∈
[
0, 1

3c
]
and α ∈

[
0, 1

6c
]
, which implies that 2α+ c+τ ∈

[
c, 5

3c
]
. Given

c < y < 4
3c in the case of Proposition 2, this means that both y > 2α+ c+ τ and y < 2α+ c+ τ are possible

and should be investigated.
112Here,

(
q(y−τ)−c

α

)
comes from setting (31) to equality and solving to ϕ.

113I.e., f (q| "borrowing") = 2 in (11). Also note that 3
4yh − c is strictly positive given yh > 2c+ τ .

56



The second term in (11) follows from rewriting the indifference frontier (wherein (7) holds

with equality) to integrate over ϕ ∈ [0, 2], which is 1 − αϕ+c
c
E [q|u].114 Hence, the second

term in (11) becomes
∫ 2

0
(αϕθ)

(
1− αϕ+c

c
E [q|u]

)
dϕ = 2αθ

[
1−

(
1 + 4α

3c

)
E [q|u]

]
, which we

note is always a positive term given E [q|u] ≤ 3
4
and α < 1

6
c.115 Putting terms together:

Wh =
3

4
yh − c− 2αθ

[
1−

(
1 +

4α

3c

)
E [q|u]

]
(37)

For Wl, given yl ∈
(
c, 4

3
c
)
the first term in (11) becomes an integral of qy − c over re-

vealed households (because these are the only ones to borrow in Proposition 2). The in-

tegrals for revealed households (i.e., θ times DC users) are shown in (32) and (34), and

therefore the first term in (11) is θ
∫ 1

c
yl−τ

(qyl − c)
(
q(yl−τ)−c

α

)
dq if yl < 2α + c + τ ; and

θ

(∫ 2α+c
yl−τ
c

yl−τ
(qyl − c)

(
q(yl−τ)−c

α

)
dq +

∫ 1
2α+c
yl−τ

2 (qyl − c) dq
)
if yl > 2α + c+ τ , which become:

Wl (first term) =

 θ (yl−c−τ)2(2yl(yl−c−τ)+3τc)

6α(yl−τ)2

θ
(
yl

(
1 + 4α2

3(yl−τ)2

)
+ c2(yl−2τ)

(yl−τ)2
− 2c

) if yl < 2α + c+ τ

if yl > 2α + c+ τ
(38)

ForWl, for the second term in (11), we have that (32) and (34) represent the integrals for DC

users as defined for integration over q, which we rewrite for integration over ϕ, with the den-

sity function taken from setting (31) to equality.116 This gives
∫ yl−τ−c

α

0
(αϕθ)

(
1− αϕ+c

yl−τ

)
dϕ

if yl < 2α + c+ τ ; and
∫ 2

0
(αϕθ)

(
1− αϕ+c

yl−τ

)
dϕ if yl > 2α + c+ τ , which become:

Wl (second term) =

 θ 1
6α

(
(yl−τ−c)3
yl−τ

)
θ 2α

3

(
3yl−3τ−4α−3c

yl−τ

) if yl < 2α + c+ τ

if yl > 2α + c+ τ
(39)

114When visualizing the indifference frontier on a plane where ϕ is on the horizontal and q is on the vertical
axis (inverting Figure 2), at every point along ϕ there is a mass αϕ+c

c E [q|u] − 1
2 below the indifference

frontier and since q ∈
[

1
2 , 1
]
there is a mass of 1

2 −
(
αϕ+c
c E [q|u]− 1

2

)
above it, which are DC users. The

latter simplifies to 1− αϕ+c
c E [q|u].

115As these imply sup
(
1 + 4α

3c

)
E [q|u] = 11

12 < 1.
116Note that for the yl < 2α + c + τ case, integration now only goes up to ϕ = yl−τ−c

α , because beyond
that point there are only cash users.
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Putting the terms together and simplifying, we can write Wl = θλ with

λ =


1

6α

(
(yl−τ−c)2(yl(yl−c)+τ(2c−τ))

yl−τ

)
yl + yl−2τ

(yl−τ)2

(
c2 + 2αc+ 4

3
α2
)
− 2 (α + c)

if yl < 2α + c+ τ

if yl > 2α + c+ τ
(40)

where we note that λ is always positive here.117

Proof of Proposition 5. First, Wh in (13) is necessarily maximized at θ = 0, as this sets

the negative second term (privacy costs) to 0.118 Hence, γ = 1⇒ θ∗ = 0. Second, it follows

directly from (14) thatWl is maximized at θ = 1 and therefore γ = 0⇒ θ∗ = 1. The interior

solution, θ∗ ∈ (0, 1), is found from ∂E[W ]
∂θ

= 0 in (12).119

θ∗ =
3

32α2

[
4α2 + c2 −

√
(c2 − 12α2) (8α2γ (α + c) + (3c2 − 4α2) (1− γ)λ)2

16α4γ2 + 48α2 (α + c) (1− γ) γλ+ 3 (3c2 − 4α2) (1− γ)2 λ2

]
(41)

117In particular, (yl−τ−c)2(y(y−c)+τ(2c−τ))
yl−τ is immediately positive, while

inf
{
yl + yl−2τ

(yl−τ)2

(
c2 + 2αc+ 4

3α
2
)
− 2 (α+ c)

}
given yl > 2α + c + τ occurs at yl → 2α + c + τ

where λ = 2α(4α(α+τ)+c(2α+3τ))

(2α+c)2
> 0.

118This can also be seen by replacing Ru (θ) from (9) and rewriting the last term in (37) to
−αθ

(
1− E [q|u]− 3

4
α
cE [q|u]

)
where it is suffi cient to consider this term at the suprema of α and E [q|u]

to show that it is always negative. These are α = 1
6c and E [q|u] = 3

4 so that the supremum of the term
becomes −αθ

(
1− 3

4 −
3
4

1
6

3
4

)
where 1− 3

4 −
3
4

1
6

3
4 > 0.

119Here we continue using the term λ as a collection of constants given by (40). Also note that a second,
positive root solution can be excluded because it implies θ∗ > 1.
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B Extensions

B.1 Alternative sources of credit quality data

In the baseline model, the DC is the unique source of credit quality information. We here

consider two alternative sources: pre-existing public information and public information that

is gathered through an alternative payment system technology.120

The first possibility is that there is pre-existing public information about credit quality,

such as through credit registries or FICO scores. We assume that this information is freely

available to lenders and we can incorporate this into our framework through a revelation

draw that occurs before the rest of the game outlined in Section 3.5. I.e., before the game

begins, some households become revealed and their credit quality is public information. Per

our derivations in Appendix A, it follows directly that such households (provided these have

positive NPV projects) always receive loan offers Rk (q) as in (8). Nothing else changes in

the game. Because this additional revelation occurs before household decisions, it has no

impact on household payment choice: for the set of households that is not "pre-revealed", the

model is identical to the baseline. Lender and DC issuer total profits are affected, but only

because the pool of households that is not pre-revealed is smaller. With a renormalization,

total profits remain the same as in the baseline too: if the probability of pre-revelation is

ξ ∈ (0, 1), then the renormalization sets the total mass of households per home lender at 1
ξ
.

The second possibility is that, instead of cash, households have access to another alter-

native payment technology that creates public information about credit quality. Household

payment choice then centers on DC in comparison to this alternative means of payment. This

could, for example, be a data-sharing CBDC (as discussed in Sections 2 and 8) or deposits

under open banking policies (as further considered in Appendix B.6). Let the probability of

household credit quality revelation be θalt when using this alternative, as compared to θdc

when using the DC. We focus on the case where θalt < 1 and θdc > θalt: the DC is more

120We restrict attention to public information. Lender-specific data on a subset of households (such as
depositors) would significantly complicate the model and lies outside the scope of the current analysis.
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informationally intrusive than the alternative.

Here, a household chooses DC over the alternative if q (y − τI − (θdcRk (q) + (1− θdc)Ru))−

αϕθdc > q (y − τI − (θaltRk (q) + (1− θalt)Ru))−αϕθalt, which simplifies to αϕ < q (Ru −Rk (q))

and this is identical to (17). That is, the condition that previously identified household pay-

ment choice between DC and cash, now identifies household payment choice between DC

and the alternative technology. Similarly, following through on other steps in Appendix A,

nothing changes about the DC issuer optimization. For instance, (28) sees θ replaced with

θdc − θalt and therefore θdc = 1 remains privately optimal.121

B.2 Correlation of credit quality and privacy preferences

In the baseline model, the two dimensions of household heterogeneity, q and ϕ, are assumed

to be independent of each other. This extension investigates correlation between household

credit quality and privacy preferences.122 In the interest of tractability, we center attention

on the cases of a perfectly positive and perfectly negative correlation of these features. In

either case, the two dimensions of household heterogeneity collapse to a single dimension.

In particular, ϕ = 4q − 2 represents a perfectly positive correlation, where q = 1
2
implies

ϕ = 0, while q = 1 implies ϕ = 2. Conversely, ϕ = 4 (1− q) represents a perfectly negative

correlation, where q = 1
2
implies ϕ = 2, while q = 1 implies ϕ = 0.123

With a perfectly negative correlation the model collapses to a fully unraveling Lemons’

Market.124 With a single dimension of households it is more challenging to generate a

mechanism that "halts" cascades. This can only happen if high credit quality households,

which have incentives to type differentiate, also care more about privacy, so that some of

them sort into cash use, thereby cross-subsidizing lower quality households that choose to

121I.e., θalt is an added constant in the optimization to θdc that does not affect the optimality of θdc = 1.
122For empirical studies that explore correlation between measures of household privacy and quality, see
Chen et al. (2021) and Lin (2022).
123We report here on the main outcomes of the derivations, which are performed in a Mathematica file that
is available on request.
124The indifference condition for choosing DC over cash becomes q ≥ E[ q|u](4α+c)

c+4αE[ q|u] and solving for E [q|u]

now leads to outcomes where E [q|u] > 1: there is no E [q|u] ∈
[

1
2 ,

3
4

]
that solves the fixed point problem,

because the Lemons’Market fully unravels.
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use cash. That is, when quality and care for privacy are positively correlated. In the case of a

perfectly positive correlation, the indifference condition for choosing DC over cash becomes

q ≥ E[ q|u](c−2α)
c−4αE[ q|u]

and solving for E [q|u] using the same steps as before gives E [q|u] =
√
c
√
c+16α−c
8α

.125 Here, θ = 1 remains privately optimal for the DC issuer.126 Recalculating

welfare,Wh andWl, respectively, decline and rise as θ increases, like in the baseline. However,

unlike the baseline model Wh is now linear in θ (as is Wl). This implies that θ
∗ is either 0

or 1.

B.3 Quadratic privacy costs

This extension considers how our model changes when we use a quadratic instead of a linear

functional form for privacy costs. We here replace equation (1) with

u (q, ϕ) = qmax {(y − τI −R) , 0} − αϕΘ2 (42)

As the DC becomes more intrusive, households experience a more than proportional increase

in their privacy costs. For Proposition 1, nothing changes in Stages 3 - 7 of the game depicted

in Section 3.5. In Stage 2, the derived indifference frontier in (7) now becomes

θϕ ≤ c

α

(
q

E [q|u]
− 1

)
(43)

where for θ = 1 we have that (7) and (43) are equivalent. This means that if θ = 1 remains

optimal for the DC issuer, then nothing else changes in Proposition 1. Using the same steps

as in the proof of Proposition 1, we find that θ = 1 indeed remains optimal for the DC

125Depending on parameter values, this can imply either full or partial cascades towards DC use. In
particular, when α is small, full unraveling towards DC use occurs. Instead, when α is large enough, the
privacy preferences of higher quality households are strong enough to counteract the cascades and sustain a
degree of cash use. For example, when c = 1 and α = 1

6 (the upper bound of α), households with q < 0.84
choose cash and E [q|u] = 0.69.
126The DC issuer’s optimal data access fees, Ω̂ = m (θ)E [q| dc] τ , unambiguously increase as θ rises: while
E [q| dc] and the mass of DC users, µ, are now constant terms that are unaffected by θ, the mass of revealed
borrowers is given by m (θ) = θµ and therefore increases as θ rises.
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issuer.127

For Proposition 2, equation (31) now becomes

αϕθ < q (y − τ)− c (44)

and following the same intermediate steps as in the Proof of Proposition 2, we now arrive at

µ (θ) =

 2
(

1− c+αθ
y−τ

)
if θ < y−τ−c

2α

1
2αθ

(
(y−c−τ)2

y−τ

)
if θ > y−τ−c

2α

, m (θ) =

 2θ
(

1− c+αθ
y−τ

)
if θ < y−τ−c

2α

1
2α

(
(y−c−τ)2

y−τ

)
if θ > y−τ−c

2α

(45)

where we note that for both µ (θ) and m (θ) the terms in the two expressions are equivalent

when θ = y−τ−c
2α

. This means that the masses of DC users and revealed borrowers do not

portray discrete jumps over θ. However, those masses do have a kink in their response to θ.

This implies that this functional form is less well suited to analyze DC design.

But although this functional form lends itself less well to the extended analysis of the

baseline, the fact that with quadratic privacy costs µ (θ) and m (θ) respond differently to θ

than in the baseline provides additional insight on some of the mechanisms underlying the

model. In particular, in the low y case (Proposition 2), we now have that ∂µ(θ)
∂θ

< 0.128 In this

case, the quadratic form makes marginal privacy costs large enough that more households

are repelled from DC use in response to a higher θ than are attracted into the DC due to the

higher loan rates on the unrevealed. This does not imply that the mass of revealed borrowers

also decreases as θ increases, however. When θ > y−τ−c
2α

, we here have that ∂m(θ)
∂θ

= 0, as the

decline in the mass of DC users is exactly offset by the higher revelation probability per DC

user, so that the mass of revealed borrowers remains the same. When θ < y−τ−c
2α

, we have

∂m(θ)
∂θ

> 0 like in the baseline.129 Overall, θ = 1 remains optimal for the DC issuer in the low

y case. Even when ∂m(θ)
∂θ

= 0, optimal data access fees (m (θ)E [q| dc] τ) continue to rise as
127Calculations are available in a Mathematica file that is available on request.
128This is true for both expressions of µ (θ), i.e., regardless of θ ≶ y−τ−c

2α .
129I.e., the decline in the mass of DC users is more than offset by the higher probability of revelation per
DC user.
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θ increases, because higher q households then remain among the DC users ∂E[ q|dc]
∂θ

> 0.

B.4 Fees or subsidies on DC use

The baseline model centers on a data monopoly that extracts information rents. An alter-

native possibility is that the DC issuer could make profits by charging fees to households

for using the DC.130 Conversely, the DC issuer may also find value in considering subsidies

on DC use to increase the mass of revealed households whose data it can market to lenders.

Let F represent the fee that the DC issuer charges households, where F > 0 represents a

positive fee, F < 0 represents a subsidy, and F = 0 represents the baseline model. Within

the timing of the game shown in Section 3.5, the DC issuer sets F at Stage 1 (together with

its other decision variables) and F is paid out at Stage 2 when households decide on their

means of payment.131

The main insight from this addition is that the incentive of the DC issuer to charge a

positive fee increases as τ decreases. The lower is τ , the less market power home lenders have

and the closer the loan market moves to a perfectly competitive outcome where there are no

information rents for the DC issuer to extract. In the limit case of τ → 0, only fees can make

the DC issuer a profit and its optimal fee can be found from maximizing the product of F and

m (θ, F ), which is the mass of DC users as a function of θ and F .132 Instead, when market

power in lending is larger (but still small enough to prevent credit market monopolization),

the DC issuer’s information rents rise, as do its incentives to cross-subsidize information

130See also Verdier (2020), who considers DC fee optimization in a setting without information rents.
131We abstract here from considerations of the sources of funds (i.e., the funds that the DC issuer can make
available towards paying a subsidy or the funds that households have available to pay a fee for DC use).
132Following the same steps as before, we get that households choose DC over cash if αϕ+F

θ ≤ c
(

q
E[ q|u] − 1

)
in Proposition 1 and q ≥ αϕ+c+F

y−τ in Proposition 2, while θ = 1 remains optimal for the DC issuer. From
here, closed form solutions for m (θ, F ) can be found following the same steps as in (27), (32) and (34).
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acquisition with F .133

B.5 Monetary policy

Monetary policy influences bank funding costs and we can therefore consider a policy maker

who determines c after the realization of the state. We assume that this policy maker has no

other objectives for monetary policy than to maximize aggregate welfare in our model and

we allow for arbitrarily negative policy rates, implying c ∈ (0, 1) is possible.

The outcome is that monetary policy can help prevent the bad state from taking hold

but cannot, on its own, overcome the data externalities that dominate welfare in the good

state. When the low y materializes, the monetary authority can always set c low enough to

prevent Proposition 2’s constrained-credit equilibrium from emerging. In particular, given

y > τ (in fact, y > 3τ by (4) and (5)), a suffi ciently small c can be found to bring about

y > 2c + τ , and thereby the equilibrium of Proposition 1.134 With monetary policy leaning

against the bad state, disclosure loses it social value, because credit provision is assured

and the social benefits of type differentiation vanish. Monetary policy can only influence

aggregate credit access, however, and has no ability to prevent disclosure cascades. Instead,

a combination of θ∗ = 0 (banning the DC) and a state-dependent monetary policy that

prevents the equilibrium with limited credit access, attains the first-best.

133The first order condition for the optimal fee is ∂Fm(θ,F )
∂F + ∂m(θ,F )E[ q|dc]τ

∂F = 0 where the first term is
the derivative of DC fee revenue and the second term is the derivative of data access fees. We can write
this further to

(
F ∂m(θ,F )

∂F +m (θ, F )
)

+ τ
(
∂m(θ,F )
∂F E [q| dc] + ∂E[ q|dc]

∂F m (θ, F )
)

= 0. This derivative can be

evaluated at F = 0 to answer the question of whether a fee or subsidy will be offered. Moreover, we note

that ∂m(θ,F )
∂F < 0. Overall, this becomes 1

τ + ∂E[ q|dc]
∂F =

(
−∂m(θ,F )

∂F

)
E[ q|dc]
m(θ,F ) .

134Of course, this is a partial reasoning, because it does not account for any costs to cutting policy rates,
such as inflationary pressure.
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B.6 Portable data

This extension considers an alternative setup where households are given ownership of their

data.135 The purpose of this extension is to highlight the differences between a free data

porting market and a data monopoly in our framework. This extension lets each household,

k, choose its own probability, θk, that its type q becomes revealed to all lenders. Here,

there is no choice between payment instruments with various degrees of disclosure. Instead,

households themselves decide on their preferred degree of revelation. Consider a payment

service provider that always learns q and a household that can tell it with what probability

to reveal its data to lenders. In essence, the payment service provider acts as a verification

mechanism for households to potentially reveal their private information on their type.136

We embed this setting in the quadratic privacy cost case of Appendix B.3, because this

enables the derivation of an interior solution for a household’s optimal degree of disclosure.

This extension has a 4-stage game where in Stage 1 households choose θk, while Stages 2-4

on lender loan rates, household borrowing and loan repayment are identical to Stages 5-7 in

Section 3.5. A household’s optimization problem is:

max
θk∈[0,1]

{
θkqmax {(y − τI −Rk (q)) , 0}+ (1− θk) qmax {(y − τI −Ru) , 0} − αϕθ2

k

}
(46)

We here focus on the high y case in Table 1, because it is household externalities that

are of interest in this extension. In the high y case, the loan market equilibrium continues

to be represented by equations (8) and (9). The optimization problem in (46) then becomes

max
θk∈[0,1]

{
θkq

(
y − c

q
− τ
)

+ (1− θk) q
(
y − c

E [q|u]
− τ
)
− αϕθ2

k

}
(47)

135Data portability policies (allowing households to take their data to other lenders) have been implemented
in various countries (OECD, 2023) and have been investigated theoretically and empirically in several recent
papers (Babina et al., 2022; Brunnermeier and Payne, 2022; Garratt and Lee, 2021; He et al., 2023; Nam,
2022). Relatedly, see Bank et al. (2023) and Qi et al. (2023) on the impact of introducing credit registries
(which, in essence, "port" part of household data) on loan market competition.
136This bears resemblance to a role foreseen for the digital euro: "digital euro users would retain control
over the use of their data by PSPs, with the possibility of opting for PSP data usage for the provision of
additional services" (ECB, 2023).
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and is solved as

θk =

 min
{

1
2

(
c
αϕ

(
q

E[ q|u]
− 1
))

, 1
}

0

if q > E [q|u]

if q < E [q|u]
(48)

Additionally, equation (49) shows the probability of household revelation that emerges

from the equilibrium found in Proposition 1 and which applies to the equilibrium of the

quadratic extension (Appendix B.3) that is our point of comparison here. In the discussion

below, we refer to the quadratic extension of the baseline model as the "comparator model".

Comparator model

equilibrium revelation probability
=

 1

0

if c
αϕ

(
q

E[ q|u]
− 1
)
≥ 1

otherwise
(49)

Figure 8 compares (48) and (49) and provides a rough inference on the differences between

the free data porting and data monopoly models. This inference is imprecise because it does

not account for the fact that E [q|u] in (48) is not equal to E [q|u] in (49). A full comparison

would require a rederivation of E [q|u] for the data porting model, in the manner of the proof

of Proposition 1, and a subsequent numerical comparison of the differences between (48) and

(49). This is beyond the scope of the current extension but the intuitions based on the rough

inference are simple and, we conjecture, likely to carry over to a more complete analysis.

Figure 8 starts from the indifference frontier between cash and DC, which characterizes

sorting in the comparator model. For households with q < E [q|u], zero disclosure is privately

optimal, because revelation comes with a privacy cost but cannot lead to lower customized

loan rates. Such households choose θk = 0 in the data porting model, matching the zero

revelation that comes with cash in the comparator model. Instead, all households with

q > E [q|u] would like to choose an extent of disclosure, as can be seen from (48). When

forced to choose between unrevealing cash and a fully revealing DC, the households that

have q > E [q|u] and are to the left of the indifference frontier opt for cash. Such households

engage in partial revelation, θk ∈ (0, 1), in the data porting model, but are brought to
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Figure 8: Disclosure in the baseline versus the data porting model.

zero disclosure in the comparator model. Instead, among the households to the right of the

indifference frontier, there are many who, while they choose the DC when forced to choose

between it and cash, would rather engage in less than full disclosure. Figure 8 purposely

shows the "overdisclosure" zone as being larger than the "underdisclosure" zone. This is

what the DC issuer plays on in the comparator model. Through cascades, the mass of

DC users and, consequently, of revealed households increases when the DC becomes more

intrusive, leading more households into overdisclosure, which the DC issuer commercializes.

As we are focusing on the good state, we know that θ∗ = 0: it would be socially optimal

to ban the DC and any data porting. This means that the free data porting market is, from

an aggregate welfare perspective, overdisclosing. But the private data monopoly, by actively

playing on cascades and forcing households to a choice between full and no revelation, induces

even more overdisclosure.

B.7 Intermediate y in the baseline model

This appendix analyzes the "Intermediate y" case of Table 1. From Sections 4.1 and 4.2,

the interaction between y and model outcomes centers on whether the loan market for

unrevealed borrowers functions. For y > 2c + τ , there are always enough good borrowers
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with high privacy preferences among the cash users to ensure that the unrevealed obtain

loans. For y < 4
3
c, the opposite is true. Instead, for y ∈

(
4
3
c, 2c+ τ

)
, either can be true,

depending on parameters, per Proposition 8. Moreover, there can be a threshold θ̃, where

θ > θ̃ leads to an equilibrium as in Section 4.2 and θ < θ̃ leads to an equilibrium as in

Section 4.1.137 In particular, at θ = 0, the loan market for the unrevealed functions for any

y > 4
3
c. Hence, θ̃ ∈ (0, 1) exists if at θ = 1 the unrevealed do not obtain credit: this can

happen because ∂E[ q|u]
∂θ

< 0 from (26).

Proposition 8 When y ∈
(

4
3
c, 2c+ τ

)
, then the equilibrium can be either as in Proposition

1 or as in Proposition 2, depending on parameters. For some parameterizations, there is a

threshold value, θ̃, such that for θ < θ̃ Proposition 1 prevails and for θ > θ̃ Proposition 2. In

such cases, Proposition 2 comes about, since the DC issuer continues to optimally set θ = 1.

Proof. First, from Proposition 2, for y = 4
3
c the loan market is shut to the unrevealed

even for θ = 0. Then, for y = 4
3
c + ε the same must be true for some θ > 0, because

∂E[ q|u]
∂θ

< 0.138 This implies that there can be a threshold value of θ, θ̃, above which the

137Here, θ̃ can be found by solving E
[
q|u

(
θ̃
)]
y = c: this identifies the point where the home lender

can expect zero profit from lending to the unrevealed market at the highest rate that borrowers are willing

to accept, y. Moreover, the expression for E
[
q|u

(
θ̃
)]
comes from replacing θ with θ̃ in (26). Numerical

examples for θ̃, as well as associated welfare, have been calculated and are available on request.
138The Proof of Proposition 1, Stage 4, showed that the credit quality of the worst revealed borrower is
always better than the average quality of unrevealed borrowers. The same can be shown in the context of
Proposition 2; following the same steps at Proof of Proposition 1, Stage 4, but using the expressions in the
Proof of Proposition 2, the comparison becomes: the credit quality of the lowest quality revealed household
necessarily satisfies q ≥ c

y−τ , while supE [q|u] = E [q] = 3
4 . Thus, it is suffi cient to show that

c
y−τ >

3
4 and

this follows directly from y ≤ 4
3c and τ > 0.
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outcome of Proposition 2 prevails and below which we get the outcome of Proposition 1.139

In cases where there is a θ̃ ∈ (0, 1), the outcome will be as in Proposition 2, since the DC

issuer continues to optimally set θ = 1.140

B.8 Expressions for the social planner with two instruments

This appendix records the main expressions for the two instrument case discussed in Section

6.2. We here show only the expressions themselves and not the underlying derivations

(available on request). Households’payoff function can be written as

u (q, ϕ) = qmax {(y − τI −R) , 0} − αϕΘ + JT + transfers (50)

where J is an indicator variable that takes value 1 if the household chooses to use the DC

and 0 if it chooses cash. T > 0 is the tax (T < 0 is the subsidy), the total revenues from

which are remitted back (total costs of which are charged) to households lump-sum through

the "transfers" term. E.g., a cash using household benefits from the presence of a tax,

because DC users pay it, while the revenues are transferred back to all households. However,

as transfers are independent of individual actions (given atomistic households), they do

not affect household optimization, whereas the term JT does. The equilibrium sorting

conditions for choosing DC over cash in Propositions 1 and 2, now become, respectively,

ϕ ≤ 1
α

(
c
(

q
E[ q|u]

− 1
)
− T

θ

)
and q ≥ 1

y−τ
(
αϕ+ c+ T

θ

)
. Furthermore, the expressions for

139We note that when θ marginally increases at θ̃ (crossing the threshold), the mass of DC users may
either increase or decrease. Formally: at θ = θ̃ − ε with ε → 0, a household chooses DC over cash if

αϕ < q
(

c
E[ q|u] −

c
q − τ

)
(from (17) with Ru given by c

E[ q|u] at the threshold while Rk (q) = c
q + τ). Instead,

at θ = θ̃ + ε with ε → 0, a household chooses DC over cash if αϕ < q (y − τ) − c (from (31)). Putting
these together, the mass of DC users will be greater for θ = θ̃ + ε than for θ = θ̃ − ε if and only if

q
(

c
E[ q|u] −

c
q − τ

)
< q (y − τ) − c which becomes c

E[ q|u] < y. With E [q|u] ∈
[

1
2 ,

3
4

]
and y ∈

(
4
3c, 2c+ τ

)
in the intermediate range, this condition can go either way. Intuitively, the threshold pits two forces against
each other. On the one hand, when the unrevealed market shuts down, DC use and type differentiation
becomes the only path to obtain credit, enticing more households to use DC. On the other hand, cascades
unwind, as privacy ceases to be a public good when the threshold is crossed. Since cascades induce more
DC use (e.g., Figure 2), their unwinding reduces DC use.
140This follows directly from the optimality of θ = 1 in both Proposition 1 and Proposition 2.
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E [q|u] and E [W ] = γWh + (1− γ)Wl are

E [q|u] =
3c (2θ − 1) +

√
3
√
θ
(
(4θ − 3)

(
3T 2 + 6αTθ + 4α2θ2

)
+ 3c2θ (1− θ)

)
(6c2 − 8α2) θ2 − 6T (T + 2αθ)

c

Wh =
3

4
yh − c− 2α

(
θ − θ (4α + 3c) + 3T

3c
E [q|u]

)

Wl =


(T−θ(yl−τ−c))2(T (2yl−τ)+θ(yl(yl−c)+τ(2c−τ)))

6αθ2(yl−τ)2

θ2((yl−2τ)(4α2+3(yl−c)2−6α(yl−c))+3τ2(yl−2α−2c))−3T 2yl−6Tθ(α+c)τ

3θ(yl−τ)2

if yl < 2α + c+ τ + T

if yl > 2α + c+ τ + T
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