
• We generate global business networks (BNs) by 

applying LLMs (T5-XXL, GPT-3) to business 

descriptions of around 80,000 firms

• We leverage LLMs to generate historical

business descriptions

• We show how lookahead bias of LLMs may be

addressed  masking company-specific info

• International reports lack harmonized report

structure  Use AI to streamline business

information  business descriptions

• Word-based methods insufficient for relatively

short business descriptions  embedding models

• 67 Countries

 AI generated descriptions available for up to 2/3 

of dataset (87% market value)

 Including available historical descriptions from

Refinitiv and S&P Global  Coverage increases up

to 97% (99% market value)

Methods:           BOW, T5-XXL, ADA-002

Context-aware business networks outperform

word-based networks

 Outperformance remains after controlling for

look-ahead bias via masking

• Long-short portfolios based on past month peer

performance (lead-lag effect)

US market:

Context-aware networks outperform TNIC (same 

firm universe) and word-based approach

Masking leads to small decreases in alpha

Global market:

Context-aware networks outperform BOW

Masking does not significantly reduce alpha

• Target firm identification using masked networks:

• M&A deals from SDC Platinum (2000-2022)

 T5-XXL / ADA-003: 25% (yearly average) of  M&A 

targets among most related 100 stocks

BOW:  Only 10% of targets in BN
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• We fine-tune RoBERTa models to differentiate

between competitors, supplier and customers

We achieve f1 scores up to 87%


