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rate parties’ preferences, in total contrast to referee assignments in sports. We suggest that

there can be gains (i) in dispute resolution from centralizing the allocation by bundling the

newly arriving cases, and (ii) in sports from incorporating teams’ preferences. To that end,

we introduce a class of Arbiter Assignment Problems where a set of matches (e.g., disputes

or games), each made up of two agents, are to be assigned arbiters (e.g., arbitrators or ref-

erees). On this domain, the question of how agents in a match should compromise becomes

critical. To evaluate the value of an arbiter for a match, we introduce the (Rawlsian) notion

of depth, defined as the arbiter’s worst position in the two agents’ rankings. Depth optimal

assignments minimize depth over matches, and they are Pareto optimal. We introduce and

analyze depth optimal (and fair) mechanisms.
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1 Introduction

“Every [referee] decision goes against us. In five games there have been none in our

favour.”1

The Merriam-Webster English Dictionary traces the term arbiter to the Latin root

with the same spelling, meaning “eyewitness, onlooker, person appointed to settle a

dispute.” It defines an arbiter as “a person with power to decide a dispute” and lists

its synonyms as “adjudicator, arbitrator, judge, referee, umpire”.

Indeed, it is not hard to see many similarities between the setups where an ar-

bitrator in dispute resolution and a referee in a sports event operate. Yet, dispute

resolution and sports exhibit two key differences in the selection of arbiters. As will

be detailed in the next section, in dispute resolution arbitrators are assigned to cases

in a decentralized way that takes into account the parties’ preferences. In sports, on

the contrary, referees are assigned to matches in a centralized way that does not take

into account the teams’ preferences.

In this paper, we will suggest that the arbiter selection processes of these two se-

tups can benefit from utilizing each other’s key features. In dispute resolution, where

cases are considered individually on a first-come first-served basis, there are gains

from bundling the newly arriving cases and using a centralized arbitrator assignment

system instead. In sports, on the other hand, there are gains from incorporating

teams’ preferences in the referee assignment process. As exemplified in our opening

quote, current practices more than rarely lead to frustration and disconcern, and

mechanisms like the ones considered here will improve over them in terms of less

controversy, leveling the playing field, transparency, fairness, and efficiency.

We will provide a general framework where there is a set of matches (e.g. disputes

or games), each made up of two agents (e.g. parties to the dispute or contending

teams) and each in need of an arbiter. Our objective is to utilize agents’ preferences

1The former Barcelona coach Ronald Koeman’s complaints about the then-recent (February 2021)
referee decisions against Barcelona after they lost two consecutive games (dailymail.co.uk).
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in a transparent and systematic way to assign arbiters to matches. Following a market

design approach, we will solve this Arbiter Assignment Problem via mechanisms that

produce desirable assignments.

As will be discussed in the next section, the two agents of a match may have dis-

tinct preferences on arbiters. Hence, while every match needs to be assigned a single

arbiter, the choice of arbiter is a potential conflict that needs to be resolved among

the agents of each match. Since the question of “how the agents should compromise”

becomes critical on one side of the market, our work introduces a brand new set of

problems to the matching theory literature. As discussed in Section 2, our model is

very different from even the seemingly closest “matching with couples” model since

in the latter, each couple is assumed to have a single joint-preference over hospital

pairs, hence how to evaluate assignments is not an issue.

A Brief Overview of Our Results:

“Compromise between agents” is a central notion for our study. To measure

goodness of compromise, we define the depth of an arbiter for a match as the arbiter’s

worst ranking in the preferences of the agents in the match. For example, an arbiter

that is second and third ranked by the two agents has a depth of three. Arbiters with

smaller depth are more desirable compromises in a Rawlsian sense, that is, they make

the worst-off agent better-off. Indeed, a well-known method to choose an arbiter for

an isolated dispute is to minimize this depth. In the literature, this rule is known

as Unanimity Compromise (UC) (Hurwicz and Sertel, 1999), as well as Rawlsian

arbitration (Sprumont, 1993) and Fallback Bargaining (Brams and Kilgour, 2001).

UC has several desirable properties. It is Pareto optimal and it picks an arbiter that

each agent ranks as high as the median. A match can have at most two UC arbiters.

Furthermore, these are “adjacent” in terms of ranking among efficient alternatives

(Anbarci, 1993). UC has recently been adapted as a criterion for fairness by Barberà

and Coelho (2022), who also note that UC is invariant with respect to undesirable
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candidacies (i.e., adding arbiters considered to be worse by both agents than existing

ones does not change the UC set). UC has also been analyzed in the context of

individual decision making by De Clippel and Eliaz (2012).

For a centralized mechanism that needs to assign arbiters to multiple matches,

minimizing depth in every match might not be feasible. To achieve this as much as

possible though, we define an arbiter assignment to be depth optimal if there is no

other assignment that decreases the depth of some matches without hurting others.

Depth optimality is one of the key concepts in this paper. We show that it implies

Pareto optimality (but the converse is not true). Equally important, depth optimality

also has a fairness aspect which, in every match, enables more desirable compromises

in a Rawlsian sense.

One of the main contributions of our paper is a class of Depth Optimal Mechanisms

(DOM). Informally speaking, a DOM follows an ordering of matches to identify an

assignment that sequentially minimizes the depth for each match. Any multiplicity

is solved through an additional ordering over arbiters. Each pair of orderings (one

for matches, the other for arbiters) yields a different DOM . We first obtain that

each DOM is depth optimal, hence Pareto optimal. Conversely, each depth optimal

assignment can be obtained as a DOM outcome under some match-arbiter ordering.

Real life applications where there might be a hierarchy of importance between

some matches necessitates a further property.2 To this end, we say that an assignment

is fair over matches if there is no match where both agents prefer the arbiter assigned

to a lower priority match over the arbiter assigned to theirs. The counterpart of this

property in canonical matching problems, known as fairness, is quite central (e.g. see

Balinski and Sönmez (1999) and Abdulkadiroğlu and Sönmez (2003)). While DOM

fails to pass this test, a proper subclass called Depth Optimal Priority Mechanisms

(DOP) are both fair over matches and depth optimal. In a DOP , match orderings

2For example in sports, championship matches or matches among highly popular teams might
have priority over others. In dispute resolution cases with big total claims or high visibility may
have priority over other cases.
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are restricted to follow the matches’ priorities.

Strategy-proofness requires a mechanism to provide incentives so that truthful

reporting of preferences is in each agent’s best interest. We find that there is a gen-

eral tension between depth optimality and strategy-proofness. More specifically, no

depth optimal mechanism - including DOM and DOP - is strategy-proof. Given this

observation, one may wonder whether a weaker notion of compromise would be com-

patible with strategy-proofness. To that end, we say that an assignment is minimally

compromising if no agent receives her least preferred arbiter. We, however, find that

no minimally compromising mechanism is strategy-proof. Hence, no compromise is

possible under a strategy-proof mechanism.

Given the unavoidable tension between strategy-proofness and compromise among

agents, we inquire whether any DOM is better than another in terms of manipula-

bility. For this purpose, we compare the degree of manipulability of the DOM mech-

anisms à la Pathak and Sönmez (2013) and find that no DOM , hence DOP , is more

manipulable than another. Thus, there is no reason to prefer a DOM to another

based on degree of manipulability.

2 Background

Dispute resolution is a major and growing sector, both at the international and the

national levels. There are around 7, 000 arbitrators in the US alone and just the

World Bank’s International Center for the Settlement of Investment Disputes (ICSID)

is composed of almost 500 arbitrators. The top three arbitral institutions in the US

- the American Arbitration Agency (AAA), The Federal Mediation and Conciliation

Service (FMCS), and the National Arbitration Board (NAB) - together handle a very

large number of cases every year, with significant total claims. In 2020, just the AAA

handled close to 10, 000 cases that in total involved over $18 billion.

Professional sports is also a multi-billion dollar business, involving teams, broad-
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casters and advertisers. The global sports market reached a value of nearly $458.8

billion in 2019. It is expected to reach $600 billion by 2025, and $826 billion by 2030

(yahoo.com/news). Every weekend, fans flock to stadiums or tune in to watch their

favorite team play. The 2018 FIFA World Cup was watched by more than 3.5 billion

viewers (fifa.com/tournaments).

Both dispute resolution and sports are sectors where arbiters play a significant role.

However, the two setups do have some structural differences. In dispute resolution,

arbitral institutions typically receive cases sequentially and, assign them to arbitrators

in a first-come first-served basis. Additionally, cases are heterogenous in the amount of

time needed to resolve them. In comparison, matches in a sports league are typically

bunched together around, say, a weekend, and all matches have the same regulation

duration. As a result, arbiter assignment has long been seen as a centralized allocation

problem in sports, though not in arbitration. Another difference is that sometimes

arbitrators can simultaneously handle multiple cases. However, a referee assigned

to a match in a professional league is typically not assigned to another match that

weekend.

Assigning Arbitrators in Dispute Resolution:

Arbitration is a central dispute resolution tool, both in the international and the

national level. The ICSID mentioned above, the United Nations Commission on In-

ternational Trade Law (UNCITRAL), and the International Chamber of Commerce

(ICC) are some of the major arbitral institutions in the international arena and they

mostly focus on international trade issues. At the national level, dispute resolution

involves a range of issues such as contract arbitration, labor arbitration, securities

arbitration, and judicial arbitration. For instance, the American Arbitration As-

sociation (AAA), the Federal Mediation and Conciliation Service (FMCS), and the

National Arbitration Board (NAB) are some of the major arbitral institutions in the

US.

At the international level, the longstanding principle is that it is up to the disput-
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ing parties to select the arbitrators. However, this practice has fueled a legitimacy

debate, especially in international investment disputes where there can be prominent

public interest (Penusliski, 2008; Paulsson, 2010) and states have been seeking to

reassert control through limitations on the traditional party autonomy in selecting

arbitrators, calling for more centralized mechanisms. Nevertheless, in the current

practice the disputing parties can directly agree on an arbitrator.3 If this fails, a

backup method is used. For instance, ICSID uses a sequential method where the

parties make alternating offers. UNCITRAL, on the other hand, uses a Veto Rank

method where each party vetoes a number of alternatives from a list provided by

UNCITRAL, and ranks the rest, and UNCITRAL picks among unvetoed alternatives

the one with the best total-rank (Waibel, 2016). Arbitral institutions also recommend

“informal mechanisms” to help the disputing parties select their arbitrators, the Veto

Rank method mentioned above being the most common.4

At the national level, both AAA and FMCS in the US use versions of the Veto

Rank method mentioned above. NAB, on the other hand, uses an Alternate Strike

method where it provides the disputing parties with an initial list and asks them to

alternately cross-off one name at each round. The last remaining name is chosen.

There are other arbitral institutions that also use this method. Barberà and Coelho

(2022) discusses the shortcomings of these alternatives and proposes to improve over

them by mechanisms that implement the Unanimity Compromise rule of Hurwicz

and Sertel (1999).

The literature has established that the parties in dispute can have systematically

different preferences over arbitrators. For example, Bloom and Cavanagh (1986)

shows that in labor disputes (i) both the employers and the unions tend to prefer

individuals with law degrees to labor relations practitioners, but (ii) employers prefer

3If a three-person tribunal is to be assigned to a case, each disputing party nominates one party-
appointed-arbitrator, and the presiding arbitrator is assigned by the arbitral institution respecting
the involved parties’ preferences.

4De Clippel, Eliaz and Knight (2014) provides a formal and experimental critique of the Veto
Rank method, and proposes an improvement called Shortlisting.
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economists to both of these groups whereas unions prefer both of these groups to

economists.

The current assignment practices of arbitral institutions are far from satisfying

desirable properties such as depth optimality and Pareto optimality. First, even

in isolated cases rules like Veto Rank or Alternate Strike can be improved upon

(De Clippel et al., 2014; Barberà and Coelho, 2022).5

Second, instead of treating each case individually, the arbitral institute can bundle

cases that arrive in a predetermined time-window and use a centralized mechanism to

assign arbitrators. This approach brings significant gains in kidney exchanges (Roth,

Sönmez and Ünver, 2004). Example 4 in Section 4 elaborates on this point. As men-

tioned above, in 2021 the AAA received on average 30 cases per day. We argue that

a centralized treatment of even weekly bundles of 200 cases can lead to remarkable

welfare improvement. Given the significant length of the dispute resolution process,

receiving a better arbitrator is worth the wait.6

Assigning Referees in Sports:

Following football terminology, we will use the term “referee” to describe the

head official in charge of officiating a sports event. In other sports, a referee can be

called, for example, a first official (volleyball) or a chair umpire (tennis). Referees

play an important role in all sports. With the help of a team of deputies, they are

in charge of enforcing the rules of the game.7 Referee decisions may prove crucial

for championship or relegation outcomes. They are a potential source of controversy

and frequently become headline news. Hence, for all established sports federations

5In some stylized domains, it is even possible to construct Pareto optimal and strategy proof
rules (e.g. see Kesten and Ozyurt (2021)).

6Even for the comparatively faster consumer arbitration cases, the average duration in AAA is 8
months (Horton and Chandrasekher, 2015). The duration is much longer in international arbitration.
For example, in 2020 the average ICC case lasted 26 months and on average 3 new cases arrived
every day (ICC Statistics:2020).

7In this paper, we assume that either a referee is assigned together with her deputies (as in
football) or that the assignment of the referee is independent of the assignment of deputies (as in
tennis). We, however, do not consider the problem of assigning multiple referees of equal hierarchy
(as in basketball). This question is left for future research.
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around the world, assigning referees to matches constitutes an important problem.

Many federations try to be very meticulous about referee assignments. In the UK

Premier Football league for instance, referee assignments are made by the Professional

Game Match Officials Board. The board takes into account several factors, including

the referee’s overall experience, current form, how often they have refereed the clubs

involved, which team the referee supports, where they live, and any forthcoming

international appointments (premierleague.com). They also consider the referee’s

past performance by evaluating decisions in previous matches via an elaborate point

system. The Professional Game Match Officials Board however does not take into

account the preferences of the involved teams.

The situation is no different in professional tennis. In every tournament, there is

a “chief umpire” who assigns referees to matches. And as in football, tennis referees’

overall experience and past performance affect assignment decisions. However, the

players’ preferences are not considered. These examples are no outliers. To the best

of our knowledge, no sports federation takes into account teams’ preferences when

assigning referees to matches.

As suggested by the opening quote of our paper, teams on the other hand can have

very strong preferences on referees. These preferences may be based on the team’s

beliefs about the referee’s competence level as well as the referee’s past decisions. Af-

ter all, referees are human beings and at varying degrees, may be prone to the social

pressure of the audience (Di Corrado, Pellarin and Agostini, 2011), may unintention-

ally favor the home team (Dohmen and Sauermann, 2016), or favor more successful

teams (Erikstad and Johansen, 2020). A team might also have other reasons to think

that a referee will be more or less lenient towards them.8 Such preferences can also be

context-dependent. And hence, not all information relevant to a team’s preferences at

a given time can be known by the federation. For example, a team with an upcoming

8For instance, in 2014 a former football referee, Eduardo Iturralde Gonzalez, made the following
statement: “We don’t come from Mars. You become a referee because you like football and there’s
no one that likes football that doesn’t have a team” (espn.com).
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international match might, in the domestic league, prefer a referee who is intolerant

towards agression and hence, minimizes probability of injury for players.

Due to all these reasons, referee assignment practices that disregard teams’ prefer-

ences are far from satisfying desirable properties such as depth optimality. As will be

discussed later, our mechanisms allow teams to express their concerns/considerations

through preference rankings and hence, help them avoid unwanted referees. Fed-

erations that respect these preferences achieve a normatively desirable compromise

between teams, and reduce potential controversy. This might in turn improve the

teams’ morale and positively affect the quality of the game. In sports like basketball,

teams’ ratings of a referee’s regular season performance affect the referee’s promotion

to playoffs. Hence, even though team preferences do not currently matter for referee

assignments, performance evaluation based on team feedback is not uncommon. Such

good practices can be further developed to incorporate team preferences in referee

assignments.

Literature Review:

The Arbiter Assignment Problem has not been previously analyzed. However,

there are operations research and computer science papers that analyze scheduling

problems in sports. These papers do not take into account the preferences of the

teams. Instead, by taking into account a variety of constraints such as travel times or

eligibility of referees, they formulate an optimization problem and analyze methods

of solving it. Hence, central concepts in market design, such as strategy proofness

or fairness do not play a role in this literature. For comprehensive reviews of such

studies, please see Wright (2009) and Kendall, Knust, Ribeiro and Urrutia (2010).

Matching theory has found applications in several real-life markets, including

worker-firm, student-school, donor-patient, and country-refugee matching (see Roth

(1984), Abdulkadiroğlu and Sönmez (2003), Roth et al. (2004), and Ahani, Ander-

sson, Martinello, Teytelboym and Trapp (2021)). This study adds to this growing

literature by bringing a new problem to the table.
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Theoretically, the novel aspect of our problem is that the arbiter assignment of a

match affects both of its agents. More specifically, the arbiter is a public good that

should be evaluated according to the preferences of both agents, and its choice requires

compromise between the two. The “matching with couples” (Roth (1984)) model in

the matching literature is the closest one to arbiter assignment. Particularly, there is

a resemblance between the couples in that model and the matches in ours. However,

there are important distinctions. First, the hospital seats in matching with couples

are private goods. That is, the two doctors in a couple can be assigned to different

hospitals. In arbiter assignment, however, both agents in a match should receive the

same arbiter as a public good. Overall, matching with couples can be interpreted as a

standard matching problem with externalities (because each agent’s welfare is affected

by her partner’s assignment), but that is not the case for arbiter assignment. Another

important difference is that, in matching with couples, each couple is already endowed

with a joint preference relation over hospital pairs. How individual preferences in a

couple should be aggregated to obtain that joint preference relation is outside the

scope of that literature. On the other hand, in arbiter assignment, each agent is

endowed with an individual preference relation. And, how the distinct individual

preferences in each match should be aggregated to obtain a compromise is a central

question. Another difference is that the matching with couples model is two-sided,

that is, hospitals also have preferences over doctors. Arbiters in our model, however,

do not have preferences over agents. In Section 6, we further discuss this assumption

and analyze the implications of a two-sided version of our model. But even this two-

sided version of our model is different from matching with couples since arbiters have

preferences over matches, not over agents. Finally, due to the above disparities, the

analyzed issues are also quite different. More specifically, a large bulk of the matching

with couples literature deals with the existence of a stable matching.9

9Roth (1984) shows that there does not always exist a stable matching. Klaus and Klijn (2005)
find conditions over preferences to guarantee the existence; and Kojima, Pathak and Roth (2013)
show that in large markets, existence is always obtained.
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Our depth-optimal mechanisms – DOM and DOP – are reminiscent of the “pri-

ority mechanism”, which is first used by Roth et al. (2004) to maximize the number

of kidney exchanges. We utilize their idea to find an assignment that sequentially

minimizes the depth for each match, and thus, obtain depth optimality.

As DOM is vulnerable to strategizing, we compare the degree of manipulability of

DOM ’s à la Pathak and Sönmez (2013), which is the first to conduct a manipulability

comparison analysis over matching mechanisms.

One of our central notions, depth optimality, is closely related to a choice rule

called the Unanimity Compromise (UC), proposed by Sprumont (1993) and Hurwicz

and Sertel (1999), and later analyzed by Brams and Kilgour (2001) and Kıbrıs and

Sertel (2007) in the context of bargaining. Additionally, De Clippel and Eliaz (2012)

analyze UC in the context of individual decision making. Recently, Barberà and

Coelho (2022) adapted UC as a criterion for fairness and studied game forms that

implement it.10 The Voting by Alternating Offers and Vetoes (VAOV) game form of

Anbarci (1993) also implements UC.

3 Model

An Arbiter Assignment Problem consists of six parameters (M, I,A, q, P,≻),

described below.

• M = {m1, ...,mn} is the set of matches. We assume that n ≥ 2.

• I = {i11, i12, ..., in1, in2} is the set of agents. Each match mk consists of two

agents, the first agent ik1 and the second agent ik2. ForM
′ ⊆M , I(M ′) denotes

the set of agents involved in the matches in M ′. With an abuse of notation, we

10The three game forms in Barberà and Coelho (2022) are based on a simple but important game
form called “Rules of k Names” where one party offers a set of k alternatives and the other chooses
one. Also see De Clippel et al. (2014), which theoretically and experimentally analyzes a member
of this family.
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write I(m) instead of I({m}). Whenever it simplifies the exposition, we denote

the first and the second agents in match mk by k1 and k2, respectively.

• A = {a1, ..., ar} is the set of available arbiters. Each arbiter a can be assigned

a number of matches up to her capacity, denoted by qa. Let q = (qa)a∈A be the

capacity profile of the arbiters. We assume that
∑

a∈A qa ≥ max{n, 3}.

• Each agent i has strict preferences, Pi, over arbiters.
11 Ri is the at-least-as-

good-as relation associated with Pi.
12 P = (Pi)i∈I and R = (Ri)i∈I represent

these preference profiles.

• Matches might be prioritized based on how critical they are. This priority

ordering over matches is a transitive and asymmetric binary relation ≻ which

need not be complete. Whenever m ≻ m′, it means that m is more critical than

m′, hence has a higher priority than m′. We say that m and m′ are in the same

priority class and write m ∼ m′ whenever neither m ≻ m′ nor m′ ≻ m. An

ordering of the matches – m′
1 ,..., m

′
n – respects ≻ if m′

k ≻ m′
k′ implies k < k′.

An arbiter-assignment (henceforth, assignment) µ is an allocation of arbiters

over matches such that each match is assigned an arbiter, and no arbiter is assigned

more matches than her capacity. We write µ(mk) and µ(a) for the assignment of

match mk and arbiter a under assignment µ. Whenever an arbiter a is unassigned

under µ, we write µ(a) = ∅. Let M be the set of all assignments.

We define agents’ preferences over assignments in a natural way: An agent ranks

two assignments according to her preferences over the arbiters that she receives in

each. Formally, given any pair of assignments µ, µ′, any match m ∈M and a ∈ I(m),

agent a prefers µ to µ′ if and only if µ(m) Pa µ
′(m). In our analysis M and q are

allowed to vary. However, unless there is danger of confusion, we suppress all the

primitives except the preferences from the notation and write P to denote a problem.

11Formally, a strict preference is a complete, asymmetric, and transitive binary relation over A.
12That is, for any a, a′ ∈ A, a Ri a

′ if and only if a = a′ or a Pi a
′.
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Amechanism ψ is a systematic way of producing an assignment at each problem.

We write ψ(P ), ψm(P ), and ψa(P ) for its outcome at problem P and the assignments

of match m and arbiter a, respectively.

The depth of arbiter a for match mk is the worst ranking a receives from the

two agents in mk, according to their preferences Pk = (Pk1, Pk2). To formally define

depth, let γ(Pki, a, A
′) represent the ranking of arbiter a in A′ according to Pki.

13

When A′ = A, we suppress the last term and simply write γ(Pki, a). The depth of

arbiter a for match mk can now be formally written as

dmk
(a|Pk) = max{γ(Pk1, a), γ(Pk2, a)}.

The depth of an arbiter represents her ranking by the worst-off agent. Hence, min-

imizing depth amounts to maximizing social welfare by increasing the well-being of

the worst-off agent in a match, in line with the seminal “egalitarianism principle” of

Rawls (1971). The egalitarianism principle has strong fairness and efficiency prop-

erties. Therefore, it is not surprising that a well-known rule in the literature, called

the Unanimity Compromise rule (UC) (Hurwicz and Sertel, 1999), maximizes

egalitarian social welfare (Rawls, 1971) in every problem.14 In our context, UC can

be formally defined as follows. For a match mk and a non-empty set of available

arbiters A′ ⊆ A, UC picks the arbiter(s) in A′ with the lowest depth (equivalently,

13For instance, let Pki : a1, a2, a3, ..., A
′ = {a1, a2, a3}, and A′′ = {a2, a3}. Then, γ(Pki, a2, A

′) =
2 while γ(Pki, a2, A

′′) = 1.
14The egalitarianism principle of Rawls (1971) and the utilitarianism principle of Jeremy Bentham

constitute the two central ideas in social choice theory. Our depth notion is closely related to egali-
tarianism due to its emphasis on compromise, unlike utilitarianism. For example, if the two agents
have diametrically opposed preferences, utilitarianism does not distinguish among the alternatives
while egalitarianism picks the median alternative as a compromise. Alternatively, let the preferences
be “almost” diametrically opposed as P1 : a1, a2, a3, a4, a5 and P2 : a5, a4, a3, a1, a2. Here, egali-
tarianism continues to favor compromise and recommends the median a3. Instead, utilitarianism
recommends a1, where agent 1 makes no compromise at all.
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highest egalitarian social welfare) according to the agents’ preferences Pk:
15

UC(mk, Pk, A
′) = argmina∈A′dmk

(a|Pk).

UC can alternatively be defined via an intuitive Bargaining Algorithm that highlights

how it picks a compromise. Given the preferences (Pk1, Pk2) of the agents in match

mk,

Step 1 Each agent requests the top arbiter according to her ranking. If there is such

an arbiter (that is, if the requests coincide and the arbiter is available), the algorithm

chooses her and stops. Otherwise, the algorithm moves on to the next stage.

In general ...

Step k Each agent requests one of the top-k arbiters according to her ranking. If

there are such arbiters, the algorithm chooses them all and stops. Otherwise, the

algorithm moves on to the next stage.

UC satisfies a range of desirable properties (Kıbrıs and Sertel, 2007). First, it

is both anonymous and neutral, that is, permuting the agents’ preferences or the

arbiters’ names does not change the outcome. Hence, UC does not discriminate

between agents or between arbiters, treating them all equally. Second, UC is Pareto

optimal, that is, no alternative arbiter can be preferred by both agents to one assigned

by UC. Third, UC is monotonic, that is, adding a new arbiter who is better for

both agents than their worst-ranked UC arbiter cannot make an agent worse-off in

comparison to his worst-ranked UC arbiter. Fourth, UC arbiters are connected, that

is, there can not be a third arbiter ranked by both agents in between two UC arbiters.

This is because, in this case this third arbiter would be a better compromise and

would have been picked by UC instead. Finally, UC satisfies a weaker version of

Maskin monotonicity (Maskin, 1985) restricted to preference changes that preserve

“symmetry” (Kıbrıs and Sertel (2007)).

15For ease of notation, we suppress the preferences notation from UC whenever there is no danger
of confusion.
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The example below demonstrates how the two definitions of UC can be used to

pick an arbiter.

Example 1. An application of UC Let A = {a1, ..., a5} be the set of all arbiters

and let A′ = {a1, a2} be the set of available arbiters for match mk. Let the agents’

preferences be:

Pk1 a3 a1 a2 a5 a4

Pk2 a2 a3 a5 a1 a4

In this case,

UC(mk, Pk, A
′) = argmina∈A′dmk

(a|Pk) = {a2}

since the depths of the arbiters a1, a2, a3, a4, a5 are 4, 3, 2, 5, 4, respectively. Note that

while a3 has the lowest depth, this arbiter is not available. Hence, UC picks a2. This

arbiter can alternatively be chosen by applying the Bargaining Algorithm as follows.

1. Agents 1 and 2 request a3 and a2, respectively. Their requests are not compatible

since they do not contain a common arbiter.

2. Agents 1 and 2 request {a3, a1} and {a2, a3}, respectively. While their requests

contain a common arbiter, a3, this arbiter is not available.

3. Agents 1 and 2 request {a3, a1, a2} and {a2, a3, a5}, respectively. The arbiter a2

is common to both requests and is also available. Hence, the algorithm stops

and picks a2.

When there are multiple matches to be considered, simultaneously minimizing

depth by applying UC to every match might not be feasible. For example, consider

two matches and two arbiters, each with capacity 1. Assume that all agents prefer

arbiter a to a′. In this case, minimizing depth in both matches is not feasible since

a can be assigned to only one match. Therefore, to pursue the objective of minimiz-

ing depth as much as possible, we introduce the following definition. An assignment

µ is depth optimal if there is no assignment µ′ such that for each k ∈ {1, ..., n},
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dmk
(µ′(mk)|P ) ≤ dmk

(µ(mk)|P ), with strict inequality for some k. That is, an as-

signment is depth optimal if it is impossible to find a reassignment that decreases the

depth in one match without increasing that of another’s. Depth optimality can be

interpreted as a “Pareto optimality” property in an environment where the matches

are treated as “agents” and “preferences of a match” are obtained by aggregating

preferences over its agents using the notion of depth. Therefore, the set of depth op-

timal assignments contains all alternative ways of simultaneously minimizing depth

in all matches to the extent possible. Furthermore, as will be discussed in the next

section, sequential applications of UC over matches can achieve all depth optimal

assignments. Hence, all desirable properties of UC discussed above apply to depth

optimal assignments. Particularly, the set of depth optimal assignments is anonymous

and neutral. That is, it does not discriminate among agents, matches, or arbiters.

Depth optimal assignments are also monotonic, that is, starting from a depth opti-

mal assignment, addition of an arbiter that decreases depth in one match does not

increase depth in other matches. Depth optimal assignments are also Pareto optimal,

as will be discussed next.

Assignment µ is Pareto optimal if there is no other assignment µ′ such that for

each agent i ∈ I, µ′ Ri µ, where this strictly holds for some agent. The following

proposition shows that depth optimality has a clear efficiency implication. All the

proofs are relegated to the Appendix.

Proposition 1. If an assignment µ is depth optimal for a problem P , then it is also

Pareto optimal for P . Yet, the converse is not true.

We next analyze an adaptation to our domain of the central fairness property in

market design. This property, commonly referred to as “fairness” in that literature,

requires that higher priority agents do not envy those with lower priority.16 Since, in

our domain, there are no priority differences between agents, fairness has no direct

16Note that “fairness” is a weakening of one of the central fairness properties in economic design
called “no-envy” (Foley, 1966). Similar formulations that treat agents asymmetrically exist on other
domains as well (e.g. see the “hierarchical no-envy” property in Kıbrıs (2003)).
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implication. However, there are arbiter assignment problems where some matches

have higher priority over others. For example, the policymaker might want dispute

cases with high public visibility to be of higher priority than others. Similarly, games

that are critical for championship in a tournament are considered to have higher pri-

ority. Our formulation requires respect for such priority differences between matches.

Formally, we say that an assignment µ is fair over matches if there is no pair of

matches m,m′ such that m ≻ m′, and for each agent i ∈ I(m), µ(m′) Pi µ(m). In

words, fairness over matches requires that the agents of a higher priority match do

not unanimously prefer the arbiter of a lower priority match to theirs. Recall that ≻

does not have to be complete, allowing for incomparable matches based on ≻.

A mechanism ψ is <Pareto optimal, depth optimal, fair over matches> if, at each

problem P , ψ(P ) is <Pareto optimal, depth optimal, fair over matches>.

4 Depth Optimal Mechanisms

In this section, we propose a class of mechanisms. Each mechanism utilizes two

separate orderings, one for the matches and one for the arbiters. By following the

match ordering, the algorithm iteratively calculates each match’s UC arbiters among

those that are available to it. Whenever a match has only one UC arbiter, that arbiter

is assigned to the match. If it has two, then both of these arbiters are tentatively

assigned to the match until another match admits either of them as its unique UC

arbiter, in which case the remaining arbiter is assigned to this match. If this does

not happen, then the match receives among the two tentatively assigned arbiters the

one with the lowest index.17 At each step, the assigned matches and arbiters are

removed from the pool, and the algorithm continues working in the same manner in

17Note that, at any stage of the algorithm there might be multiple such matches. For ex-
ample if matches m1,m2,m3 are tentatively assigned to arbiters {a1, a2}, {a2, a3}, {a1, a3}, re-
spectively, then each mi receives ai. Alternatively, if these matches are tentatively assigned to
{a1, a2}, {a2, a3}, {a3, a4}, respectively, then once one of the arbiters, say a1 is assigned to a later
match each match mi receives ai+1.
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the reduced problem.

Members of this class of mechanisms always produce depth-optimal assignments.

And, as mentioned in the previous paragraph, they only differ from each other in

the match and the arbiter orderings that they employ as a function of the priority

ordering ≻. To this end, let ∆ be a function that maps each ≻ to a pair of orderings

M = {m1, ..,mn} and A = {a1, .., ar}.18 Given a problem P , this mechanism uses the

following algorithm: for t ≥ 1,

Step t.1 Let M t = {mℓ, ...,mℓ′} and At = {aj, ..., aj′} be the sets of matches and

arbiters, each written in order of the original enumeration (that is, those with lower

indexes come earlier). Let Mt be the set of feasible assignments at Step t. For t = 1,

let M1 =M , A1 = A, and M1 = M.

Step t.2 We run the following steps one by one following the ordering of matches.

Substep t.2.1 Let ϵ1 = {µ ∈ Mt : µ(mℓ) ∈ UC(mℓ, A
t)}.

In general, for k ≤ ℓ′,

Substep t.2.k

ϵk =

 {µ ∈ ϵk−1 : µ(mk) ∈ UC(mk, A
t)} if µ(mk) ∈ UC(mk, A

t) for some µ ∈ ϵk−1,

ϵk−1 otherwise.

Step t.2 terminates by the end of Substep t.2.ℓ′, producing ϵℓ
′
. By construction, ϵℓ

′

cannot be empty. Let M ′ ⊆ M t be the set of matches that receive their UC arbiters

at this step, that is, such that for each m ∈ M ′ and µ ∈ ϵℓ
′
, µ(m) ∈ UC(m,At).19

Following the ordering of matches one by one, let each match m ∈ M ′ receive the

lowest indexed unassigned arbiter among those it is temporarily assigned in ϵℓ
′
. These

assignments become final, and we remove the matches which received an arbiter and

write M t+1 for the set of remaining matches. We also decrease the capacity of each

18Note that the ordering of matches M = {m1, ..,mn} need not respect ≻.
19Note that if for a match m, µ(m) ∈ UC(m,At) for some µ ∈ ϵℓ

′
, then for any assignment

µ′ ∈ ϵℓ
′
, we have µ′(m) ∈ UC(m,At).
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arbiter by the number of matches she is assigned. Let At+1 be the set of arbiters

that still have a positive capacity. Let Mt+1 be the set of assignments in the reduced

problem.

If at the end of Step t no match is left unassigned, then the algorithm ends.

Otherwise, we run the same steps above for t + 1. In each iteration, at least one

match is assigned an arbiter and is removed from the problem. This, as well as the

fact that there are finitely many matches, shows that the algorithm terminates in

finitely many steps. The arbiter assignment, obtained in the course of the above

process, constitutes the algorithm’s final outcome.

The above algorithm defines what we call the Depth Optimal Mechanism

(DOM).20 The following examples demonstrate how the DOM algorithm proceeds

to obtain an assignment.

Example 2. An application of DOM Let M = {m1, ..,m4} and A = {a1, ..., a4},

with qa = 1 for each a ∈ A. Let us consider the DOM whose match and arbiter

orderings follow the matches’ and arbiters’ indexes. Let the preferences be as follows:

P11 P12 P21 P22 P31 P32 P41 P42

a1 a2 a1 a2 a1 a2 a1 a2

a2 a1 a2 a1 a2 a1 a2 a1

a3 a3 a3 a3 a3 a3 a3 a3

a4 a4 a4 a4 a4 a4 a4 a4

The DOM algorithm works as follows.

1. ϵ1 is the set of all µ such that µ(m1) ∈ {a1, a2}. That is, UC(m1, A) = {a1, a2}.

2. ϵ2 is the subset of ϵ1 where µ(m2) ∈ {a1, a2}. That is, UC(m2, A) = {a1, a2}.
20This mechanism is motivated by the priority mechanism, which, to the best of our knowledge,

was first introduced for kidney exchange problems by Roth, Sönmez and Ünver (2005).
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3. Since UC(m3, A) = UC(m4, A) = {a1, a2}, and these arbiters are already as-

signed under ϵ2, we have ϵ4=ϵ3=ϵ2 (recall that qa = 1 for each a ∈ A).

Due to the tie-breaking rule, m1 and m2 respectively receive a1 and a2. We

remove these matches and decrease the capacity of the assigned arbiters by one,

making their reduced capacities zero. Hence, M2 = {m3,m4} and A2 = {a3, a4}.

We then continue applying the same steps for these sets of matches and arbiters.

4. If we apply Step 2 of DOM for match m3 and write ϵ′1 for the associated

set, then it consists of assignments where match m3 receives a3. That is,

UC(m3, {a3, a4}) = {a3}.

5. Since UC(m4, {a3, a4}) = {a3}, match m4 can not receive its lowest depth ar-

biter (in the reduced problem) at any assignment in ϵ′1. Hence, We have ϵ′2=ϵ′1.

Therefore, this step terminates here. We remove match m3 along with its as-

signment a3. We decrease the capacity of a3 by one making its reduced capacity

zero. Hence, we have M3 = {m4} and A3 = {a4}.

6. The only arbiter left to matchm4 is a4. Hence, it is assigned to a4, and the mech-

anism terminates. If we write µ for the outcome, then µ(m1) = a1, µ(m2) = a2,

µ(m3) = a3, and µ(m4) = a4.

In some problems, the tentative assignments in the DOM algorithm might not

clear as fast as in the previous example. The following example demonstrates this

point.

Example 3. Another application of DOM Let M = {m1, ..,m4} and A =

{a1, ..., a4}, with qa = 1 for each a ∈ A. Again let us consider the DOM whose

match and arbiter orderings follow the matches’ and arbiters’ indexes. Let us con-
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sider the following preferences below:

P11 P12 P21 P22 P31 P32 P41 P42

a1 a2 a1 a3 a3 a4 a3 a3

a2 a1 a3 a1 a4 a3 a4 a4

a3 a3 a2 a2 a5 a5 a1 a1

a4 a4 a5 a5 a1 a1 a5 a2

a5 a5 a4 a4 a2 a2 a2 a5

1. ϵ1 is the set of all µ such that µ(m1) ∈ {a1, a2}. That is, UC(m1, A) = {a1, a2}.

2. ϵ2 is the subset of ϵ1 where µ(m2) ∈ {a1, a3}. That is, UC(m2, A) = {a1, a3}.

3. ϵ3 is the subset of ϵ2 where µ(m3) ∈ {a3, a4}. That is, UC(m3, A) = {a3, a4}.

4. ϵ4 is the subset of ϵ3 where µ(m4) = a3. That is, UC(m4, A) = {a3}.

The assignment µ(m4) = a3 creates a chain reaction where µ(m3) = a4, µ(m2) =

a1, and finally µ(m1) = a2. Since all assignments are finalized, the mechanism

terminates.

The reader might wonder whether the way DOM mechanisms handle multiple

UC arbiters (as demonstrated in the above examples) is unnecessarily complicated

and whether simpler methods exist. A particularly salient suggestion would be to

exogenously designate an agent in each match and to let her choose one of the two

UC arbiters (such as letting the visiting team make the choice in sports). However,

such a mechanism would violate depth optimality. To see this, note that letting the

second agent in every match to choose from UC arbiters would yield µ′(m1) = a2,

µ′(m2) = a3, µ
′(m3) = a4, and µ′(m4) = a1, and this assignment violates depth

optimality.

Since changing ∆ (that is, the ordering of arbiters and matches as a function of ≻)

also changes the way the above algorithm works, each ∆ defines a DOM . Spanned
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over all possible ∆, the above definition specifies our mechanism class. The results

stated below holds for any DOM , that is, for any ∆.

Theorem 1. Every depth optimal assignment can be obtained as the outcome of a

DOM under some ∆. Conversely, every DOM produces depth optimal and Pareto

optimal assignments.

Remark 1. It is useful to mention that in applications to sports the numbers of

matches and arbitors are not forbiddingly large for a practical application of DOM.

For example, in a typical professional football league, each week there are around 10

matches and 20 referees.21 In dispute resolution, the arbitral institutions have control

over the numbers of matches and arbitors. By choosing these numbers appropriately,

they can ensure that DOM is practically feasible and still improve over decentralized

assignments (see Example 4 below).

It is easy to verify that not everyDOM is fair over matches. For instance, consider

the DOM in Example 3 when m4 has the highest priority: m4 ≻ mk (k < 4).

Fact 1. Not every DOM is fair over matches.

Fortunately, we can easily define a subclass of DOM whose members are fair over

matches. Consider each DOM whose match orderings always respect ≻. We call

such DOM a Depth Optimal Priority Mechanism (DOP).

Proposition 2. Every DOP is depth optimal, Pareto optimal, and fair over matches.

Remark 2. Since a DOP must respect match priorities, not every depth optimal

assignment that is fair over matches can be obtained as the outcome of a DOP . For

instance, let M = {m1,m2} with m1 ≻ m2, and A = {a1, a2, a3} with q1 = q2 =

q3 = 1. Let P11 : a1, a2, a3; P12 : a3, a2, a1; and P21 = P22 : a2, a3, a1. Let µ

be an assignment where µ(m1) = a1 and µ(m2) = a2. Note that µ is both depth

21For the English Premier League and the Spanish La Liga, see (premierleague.com) and
(sportsmole.co.uk).
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optimal and fair over matches. However, it cannot be obtained through a DOP . This

is because the only match ordering that respects ≻ is m1,m2. Under this ordering,

the DOP outcome, independent of the arbiter ordering, is µ′ where µ′(m1) = a2 and

µ′(m2) = a3.

It is obvious that DOM (hence, DOP ) improves over the current assignments

in markets where the agents’ preferences are ignored, such as in referee assignments

in sports. It might be less obvious to see that these mechanisms also improve over

arbiter assignments where the agents’ preferences are respected but the cases are indi-

vidually treated on a first-come first-served basis rather than being handled together

(even though in each individual case, depth optimality might have been respected).

The following example demonstrates this point. It shows that DOP leads to an im-

provement in terms of both depth optimality and Pareto optimality over the current

practices of arbitral institutions.

Example 4. Let M = {m1,m2} and A = {a1, a2}, each with unit capacity. Let

P be such that P11 = P12 : a2, a1; and P21 = P22 : a1, a2. Suppose m1 and a1

arrive first (that is, only a1 is available by the arrival of m1). Arbiter a1 is assigned

to m1 without waiting for the arrival of m2 and a2. After match m2 and arbiter

a2 arrive, m2 receives a2. The outcome is µ(m1) = a1 and µ(m2) = a2. On the

other hand, if we pool the matches and the arbiters and run the DOP , we obtain the

assignment µ′(m1) = a2 and µ′(m2) = a1. Note that µ′ improves upon µ in terms of

both Pareto optimality and depth optimality. It is also fair over matches independent

of the matches’ priorities.

We next turn to strategic considerations. A mechanism ψ is manipulable at

a problem P if there is an agent i with P ′
i such that ψ(P ′

i , P−i) Pi ψ(P ).
22 A

mechanism ψ is strategy-proof if it is not manipulable at any problem.

Unfortunately, noDOM , hence noDOP , is strategy-proof. However, this problem

22P−i is the preference profile of all agents but agent i.

24



is not specific to DOM . As the following result shows, there is a general tension

between depth optimality and strategy-proofness.

Proposition 3. No mechanism is both depth optimal and strategy-proof.

Corollary 1. No DOM , hence no DOP , is strategy-proof.

Depth optimality implies Pareto optimality as well as a compromise between the

two agents in the same match. The latter clashes with strategy-proofness. Thus,

one may wonder whether a weaker notion of “compromise between agents” would

be compatible with strategy proofness. To this end, consider the minimally com-

promising set of assignments, that is, assignments where no agent receives its least

preferred arbiter (recall that |A| = r):

MC(P ) = {µ ∈ M : for each match m and i ∈ I(m), γ(Pi, µ(m)) < r}.

Note that MC(P ) can be empty. A mechanism ψ is minimally compromising

if, at each problem P , ψ(P ) ∈ MC(P ) whenever MC(P ) ̸= ∅. Unfortunately, our

next result establishes that even this minimal compromise is not possible under a

strategy-proof mechanism.

Proposition 4. No mechanism is both strategy-proof and minimally compromising.

Given the severe tension between compromising and strategy-proofness, we next

compare the degree of manipulability of the DOM mechanisms. The following notion

of manipulability comparison is taken from Pathak and Sönmez (2013). A mechanism

ψ is more manipulable than ϕ if (i) whenever ϕ is manipulable at a problem, then

so is ψ, and (ii) at some problem, ϕ is not manipulable, yet ψ is.23

Theorem 2. No DOM or DOP is more manipulable than another DOM .

23For many-to-many matching problems, Chen, Egesdal, Pycia and Yenmez (2016) introduce an
“agent level” manipulability comparison: for an agent i, ψ is more manipulable than ϕ if the set of
preferred assignments agent i receives by misreporting her preferences under ψ is never a subset of
that under ϕ, and the opposite holds at some problem. We do not pursue this notion in this paper.
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These results tell us that each DOM , hence DOP , is equally manipulable. Hence,

in terms of the degree of manipulability, there is no reason to choose one over another.

Remark 3. If one decides to forego depth optimality, it is possible to design strategy

proof mechanisms that are Pareto optimal and fair over matches. Unfortunately, such

mechanisms will involve a “dictator” in each match (since they do not allow any kind

of compromise as discussed above). The following adaptation of serial dictatorship,

for example, satisfies the three requirements: take an exogenous order of matches

(respecting priorities) and exogenously determine a “dictator” in each match; then

use this order to sequentially assign each match the top-ranked arbiter of the match’s

dictator among those available.

5 Implications of a Two-Sided Model

As discussed in Section 2, in current real-life applications of arbiter assignment it is

standard practice to disregard arbiters’ preferences over matches. In case of sports,

an extensive literature establishes several potential biases a referee might suffer from.

This leads federations to not only disregard referees’ preferences over matches but

to take great measures (such as using information on where the referee is born and

where they live and so on) to eliminate any factor that might affect referee judge-

ments and create suspicions of impartiality. Similarly, in case of dispute resolution

Section 2 lists a range of alternative rules that are either used in real life or proposed

by the recent theoretical literature. A common feature of all of these rules is that

they all disregard arbitrators’ potential preferences over cases, treating arbitrators as

objects.24 Overall, in both applications the arbiters have a significantly different role

24This is, of course, not to say that impartial arbiters have no preferences over matches. Both
in case of sports and dispute resolution, arbiters might prefer some matches over others due to
reasons unrelated to partiality. For example, a referee might prefer to handle more critical matches
or an arbitrator, more publicly visible cases. The problem is, it is impossible to disentangle such
motivation from others. Hence, both current real-life practices and the existing theoretical literature
treats arbiters as objects rather than agents.
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than the agents. While following her incentives (e.g. to win a dispute or a game)

is an agent’s prerogative, the arbiter is a service provider whose main duty is to be

impartial. Hence, the common practice is to treat arbiters as objects.

Due to the above reasons, in this paper we analyze a one-sided assignment problem

where arbiters do not declare preferences over matches. However, it is still of theoret-

ical interest to see what happens if arbiter preferences are also included in the model.

Moreover, there might be other applications where taking arbiter preferences into

account would be acceptable. Hence, in this section we discuss a two-sided version of

our model where the arbiters are also endowed with preferences over matches.

Throughout this section, assume on top of our standard model that each arbiter

a has preferences Pa over matches M ∪ {∅}, where ∅ represents being unassigned.

Let P = (Pi)i∈I∪A be the preference profile of all agents and arbiters. First of all, as

each match must receive an arbiter, it is impossible to guarantee that no arbiter is

ever assigned to a match that she ranks under being unassigned. Formally speaking,

individual rationality cannot be guaranteed for arbiters. Hence, it is outside the

scope of our analysis. On the other hand, as both sides have preferences, blocking

is a relevant issue. Formally, an assignment µ is blocked if there is a match-arbiter

pair (mk, a) such that mk Pa µ(a), a Pk1 µ(mk), and a Pk2 µ(mk). Assignment µ is

stable if it not blocked.

We first observe that depth optimality is incompatible with stability. To see this,

consider three matchesm1,m2,m3 and three arbiters a1, a2, a3, each with a unit quota.

Let the agents’ preferences be such that P11 = P12 : a1, a2, a3; P21 = P22 : a2, a1, a3;

P31 = P32 : a2, a3, a1. Let the arbiters’ preferences be such that Pa1 ; m2, ..; Pa2 :

m1,m3, ... The unique stable assignment, say µ, is such that µ(m1) = a2, µ(m2) = a1,

and µ(m3) = a3. This assignment is not depth optimal, however, as one can improve

its depth profile by swapping the assignments of m1 and m2. This finding also implies

that no DOM , hence DOP , is stable.

A second observation is that stability is incompatible with fairness over matches.
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Furthermore, the two requirements can clash even in problems where a stable and

depth optimal assignment does exist. To see this, let us consider two matches m1,m2,

and two arbiters a1, a2, each with a unit quota. Suppose that m1 ≻ m2. Let all the

agents have the same preferences where the top arbiter is a1. On the arbiter-side,

suppose a1 prefers m2 to m1. The unique stable assignment µ is such that µ(m1) = a2

and µ(m2) = a1. While this assignment is both depth optimal and stable, it is not

fair over matches.

Overall, we observe that stability is incompatible with both depth optimality and

fairness over matches.25 An analysis of the trade-offs between their requirements as

well as domain restrictions under which they become compatible are left for future

research.

6 Concluding Remarks

We conclude with a discussion of possible extensions and issues relevant to practical

applications. First, some disputes such as those in inheritance or bankruptcy may

involve more than two agents. Our model has a straightforward extension to this case

where matches can involve more than two agents, and the depth of an arbiter in a

match is its worst ranking in the preferences of the agents involved in the match. All

the other notions, including the mechanisms, remain the same. We already know that

UC loses some of its properties once we go beyond the two-agent case. For instance,

it can contain more than two arbiters, and UC arbiters are not necessarily ranked

above the median (Brams and Kilgour, 2001). But fortunately, all of our results

except Theorem 2 are easily generalizable. Their proofs go through almost without

any modification.26 The proof of Theorem 2, however, does not hold (see Footnote

25On the other hand, there are mechanisms that are both stable and strategy proof. For example,
exogenously picking from every match one agent and using the deferred-acceptance mechanism where
the selected agents make offers to the arbiters in decreasing order of their preferences satisfies both
properties. Note that in the deferred-acceptance, an arbiter rejects an agent for the sake of another
offering agent from more preferred matches.

26One needs to strengthen the third condition of the PIP axiom accordingly.
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28 for a detailed discussion). Whether the statement itself continues to hold is an

open question. Second, in some sports, instead of a single head referee there might be

multiple referees of equal standing. Similarly, some disputes might require more than

one arbitrator. The extension of our model to these cases is left for future research.

We assume that agents have strict preferences. It is not trivial to extend our

analysis to allow for indifference. For instance, an immediate approach could be to

use a tie-breaking rule to obtain strict preferences and apply the current mechanisms.

This method, however, cannot work as no mechanism, including DOM , can produce

a depth optimal assignment purely based on these artificially obtained strict prefer-

ences.27 While one could still modify DOM to make it depth optimal, we suspect

that the modified mechanism would have to entail complicated reassignment cycles

and chains to improve depth (e.g. as in Erdil and Ergin (2017)). It is also not clear

whether the other results would carry over.

Some real life applications might incorporate constraints on which matches an

arbiter can be assigned to. For instance, arbitral institutions might want to consider

for a case only arbiters in “close proximity to it”. Or in a bitter dispute or rivalry, some

inexperienced arbiters can be excluded. Similarly, referees who did not perform well

in the previous match-week (or in the previous match between the two teams) can be

excluded. Such considerations can be easily included in our model by restricting the

set of feasible assignments correspondingly. All the notions can be defined in terms

of this smaller feasible set of assignments. And all of our analysis goes through.

We model arbiters as objects rather than agents. That is, we disregard any pos-

sible preferences they might have. This is consistent with the previous literature on

27For instance, consider M = {m1,m2} and A = {a1, a2}, each with unit capacity and m1 ≻ m2.
Let ψ be a mechanism, which is only defined over strict preferences. Suppose that both agents in
m1 are indifferent between the arbiters, while a1 is unanimously preferred by both agents in m2.
Let the tie-breaking rule be such that it favors the lower indexed arbiters. Thus, under the artificial
preferences, a1 is preferred to a2 by each agent. If ψ assigns a1 to m1, the assignment cannot be
depth optimal. On the other hand, if ψ assigns a2 to m1, then we can consider an alternative
problem where agents in m2 now prefer a2. Since the tie-breaking is still the same, ψ continues to
assign a2 to m1, violating depth optimality.
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dispute resolution and sports, which depicts arbiters as ideally impartial professionals

providing a service, supporting our modeling choice. Nevertheless, we can incorporate

in our model arbiters’ preferences over matches (if any). Note that depth optimality

solely depends on the agents’ preferences. Hence, the arbiters’ preferences can only

be used to break ties among multiple depth optimal assignments. Recall that DOM

already uses an exogenous tie-breaker. Making it depend on the arbiters’ preferences

would not affect any of our results. Finally, if needed, the arbiters’ right to decline

service (a form of binary preference relation) can be modeled as a constraint, as

discussed in the previous paragraph.

In practical applications, two additional issues can arise. First, some agents may

prefer not to participate in the mechanism or not publicly declare their preferences.

As a potential solution, such matches can be left outside of the mechanism and later

receive their arbiters through a public lottery.

Finally, in dispute resolution the arbitral institute must decide on a time-window

in which the arrived cases are collected. The decision depends on several factors such

as the frequency with which cases arrive, their duration, as well as their urgency.

Analyzing such a dynamic (and stochastic) extension of our model would be a natural

next direction.

Appendices

A The Proofs of Propositions 1, 2, 3, 4, and The-

orems 1 and 2

Unless there is danger of confusion, we suppress the preferences P in the depth

notation and write dm(a) for the depth of arbiter a for match m at P .

Proof of Proposition 1. [Depth optimality implies Pareto optimality] Let µ be an
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assignment that is not Pareto optimal for P . Then, there is an alternative assignment

µ′ such that for each agent i, µ′ Ri µ, where it strictly holds for some agent. Note that

as both agents in the same match are affected by their match’s arbiter change, for some

match m and agents i, j ∈ I(m), µ′ Pi µ and µ′ Pj µ. Thus, dm(µ
′(m)) < dm(µ(m)).

Moreover, for each other match m′, dm′(µ(m′)) ≥ dm′(µ′(m′)). Hence, µ is not depth

optimal for P .

[Pareto optimality does not imply depth optimality] Consider a problem P where for

each k ≥ 3 and i ∈ I(mk), γ(Pi, ak) = 1, that is, ak is the top arbiter of each agent

i ∈ I(mk). Let each arbiter have unit capacity. Let the first two matches’ agents

have the following preferences:

P11 P12 P21 P22

a1 a2 a1 a1

a2 a1 a2 a2
...

...
...

...

Assignment µ where µ(m1) = a1, µ(m2) = a2, and µ(mk) = ak for each k ≥ 3 is

Pareto optimal at P . But it is not depth optimal. To see this, note that dm1(µ(m1)) =

dm2(µ(m2)) = 2. Consider an alternative assignment µ′ where µ′(m1) = a2, µ
′(m2) =

a1, and µ
′(mk) = ak for each k ≥ 3. We have dm1(µ

′(m1)) = 2, dm2(µ
′(m2)) = 1, and

dmk
(µ′(mk)) = dmk

(µ(mk)) = 1, yielding an improvement in terms of depth profile,

showing the desired conclusion.

Proof of Theorem 1. [Every depth optimal assignment can be obtained as the out-

come of a DOM under some ordering of matches and arbiters.]

Let us first observe an easy fact. For any A′ ⊆ A, match m, and problem P , if

a ∈ UC(m,A) and a′ ∈ UC(m,A′) \ UC(m,A), then dm(a) < dm(a
′).

Let µ be a depth optimal assignment at problem P . Let B1 = {m ∈M : µ(m) ∈

UC(m,A)}. We now claim that B1 ̸= ∅. Suppose B1 = ∅ and pick a match m. From
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our supposition, µ(m) /∈ UC(m,A). If, for some a ∈ UC(m,A), µ(a) = ∅, then µ

cannot be depth optimal. This is because we can define an alternative assignment,

say µ′, by letting match m receive a while keeping all the other assignments same

as those under µ. From above, dm(µ
′(m)) < dm(µ(m)), and for every m′ ̸= m,

dm′(µ′(m′)) = dm′(µ(m′)).

Let a ∈ UC(m,A). By the previous paragraph, a = µ(m′) for some m′ ̸=

m. By our supposition, m′ /∈ B1. Let a′ ∈ UC(m′, A). Then by the previous

paragraph, there is some match m′′ ̸= m′ such that a′ = µ(m′′). If m′′ = m,

then we can define an alternative assignment µ′ from µ where matches m and m′

swap their assignments while all other matches receive their arbiters under µ. But

then, dm(µ
′(m)) < dm(µ(m)), dm′(µ′(m′)) < dm′(µ(m′)), and for all m′′ /∈ {m,m′},

dm′′(µ′(m′′)) = dm′′(µ(m′′)), contradicting depth optimality of µ. Alternatively, if

m′′ ̸= m, we apply the same steps to m′′. As there are finitely many matches, we

eventually end up with a match that we have already considered before. In other

words, we obtain a cycle of matches. We let each of these matches receive the next

match’s arbiter in order. By construction, each match m in the cycle start receiving

an arbiter from their UC(m,A). Since we keep the others’ assignments the same as

those under µ, we obtain an assignment with a lower depth profiles than µ, contra-

dicting the assumption that µ is depth optimal. Thus, we conclude that B1 ̸= ∅.

Let us consider ∆, where at the problem’s priority ordering ≻, it orders the

matches such that the matches in B1 come earlier than M \ B1. Let us write –

m1, ..,mk – for this ordering among the matches in B1. Additionally, let the ar-

biter ordering be such that the assignments of the matches in B1 come first, while

the ordering among them follows their assigned matches’ enumeration. That is, the

ordering over these arbiters follows µ(m1), ..., µ(mk).

Let us exclude the matches in B1 along with their assignments under µ. Let us

write A′ and M ′ for the set of remaining arbiters and matches, respectively. Let

B2 = {m ∈ M ′ : µ(m) ∈ UC(m,A′)}. Following the above steps, it is straightfor-
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ward to conclude that B2 ̸= ∅. We then repeat the same procedure for the matches

in B2. Once we continue in the same manner until no match is left, we eventually

derive a match and an arbiter orderings. By construction, DOM under ∆ gives µ.

[Every DOM produces depth optimal and Pareto optimal assignments.] Let us con-

sider a problem P and ∆ such that at the problem, it produces the orderings of

m1, ...,mn and a1, ..., ar. Consider the induced DOM . Let µ be its outcome at prob-

lem P . We claim that µ is depth optimal.

Let B1 = {m ∈M : µ(m) ∈ UC(m,A)}. By the definition of DOM , B1 ̸= ∅. Let

mk′ be the last match (with respect to the ordering) such that µ(mk′) ∈ UC(mk′ , A).

If k′ = n, then depth optimality follows from the definition of UC. If k′ < n, let

A′ = A \ ∪k′

k=1µ(mk). Let B
2 = {m ∈ M : µ(m) ∈ UC(m,A′)}. By the definition of

DOM , B2 ̸= ∅, and no match in B2 can obtain an arbiter with a lower depth than

that under µ while keeping all the matches in B1 receiving their lowest depth arbiters.

In other words, there is no way of decreasing the depth of some match in B2 without

increasing the depth of some match in B1. If we exclude the arbiter assignments of

the matches in B2 from the problem and keep applying the same analysis, we easily

conclude that for any m ∈ B3, there is no way of assigning a lower depth arbiter to

match m without increasing the depth of some match in B1 ∪ B2. Once we invoke

the same line of arguments to cover all matches, we eventually conclude that, under

µ, there is no way of decreasing the depth of some match without increasing some

other’s. This shows that µ is depth optimal. From Proposition 1, µ is Pareto optimal

as well.

Proof of Proposition 2. Let ψ be a DOP . Let P be a problem and ψ(P ) = µ.

From Theorem 1, µ is depth optimal and hence from Proposition 1, µ is Pareto

optimal. Suppose µ is not fair over matches. Then, there is a pair of matches

m,m′ such that m ≻ m′ and µ(m′) Pi µ(m) for each agent i ∈ I(m). Hence,

dm(µ(m
′)) < dm(µ(m)). But m ≻ m′ implies that match m comes before match m′
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in ψ. This in turn implies dm(µ(m)) ≤ dm(µ(m
′)), a contradiction.

Proof of Proposition 3. Consider a problem P where for each k ≥ 3 and i ∈

I(mk), γ(Pi, ak) = 1. Let each arbiter have unit capacity. The first two matches’

agents have the following preferences:

P11 P12 P21 P22

a1 a2 a2 a1

a2 a1 a1 a2

a3 a3 a3 a3
...

...
...

...

Let ψ be a depth optimal mechanism. Let ψ(P ) = µ. Note that for each k ≥ 3,

µ(mk) = ak. We have the following two cases to consider.

Case 1. Suppose µ(m1) = a1 and µ(m2) = a2. Consider P ′
12 : a2, a3, a1 and write

P ′ = (P ′
12, P−12). At P ′, there is only one depth optimal assignment: µ′(m1) = a2,

µ′(m2) = a1, and µ
′(mk) = ak for each k ≥ 3. Hence, ψ(P ′) = µ′, showing that agent

12 benefits from misreporting.

Case 2. Suppose µ(m1) = a2 and µ(m2) = a1. Consider P ′′
11 : a1, a3, a2 and write

P ′′ = (P ′
11, P−11). At P ′′, there is only one depth optimal assignment: µ′′(m1) = a1,

µ′′(m2) = a2, and µ′′(mk) = ak for each k ≥ 3. Hence, ψ(P ′′) = µ′′, showing that

agent 11 benefits from misreporting.

Proof of Proposition 4. Let M = {m1, ...,mn} and A = {a1, ..., an+1}, each hav-

ing a unit capacity. Let P be such that for each match mk with k > 1, the set of the
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least preferred arbiters of the agents in mk is {a1, a2}. Let P11 and P12 be as follows:

P11 P12

a1 a2

a2 a1
...

...

Let ψ be a minimally compromising mechanism. MC(P ) = {µ ∈ M : µ(mk) ∈

A \ {a1, a2} for each k > 1}. Hence MC(P ) ̸= ∅. Let us write ψ(P ) = µ. As

µ ∈MC(P ), we have µ(m1) ∈ {a1, a2}.

Case 1. Suppose µ(m1) = a1. Let us consider P ′
12 : a2, ....., a1, and write

P ′ = (P ′
12, P−12). MC(P ′) is singleton, including µ′ where µ′(m1) = a2. Thus,

agent 12 benefits from misreporting.

Case 2. Suppose µ(m1) = a2. Let us consider P ′′
11 : a1, ...., a2, and write P ′′ =

(P ′′
11, P−11). MC(P ′′) is singleton, including µ′′ where µ′′(m1) = a1. Thus, agent

11 benefits from misreporting. Hence, ψ cannot be strategy-proof concluding the

proof.

Proof of Theorem 2. Let ψ and ϕ be two different DOM . Whenever their used

match-arbiter orderings are the same at ≻, then both of them produce the same as-

signments for each P . Therefore, these orderings differ for at least some ≻. In what

follows, we consider any ≻ where they differ.

Case 1: [Suppose that the match orderings are different] Suppose that the match

orderings of ψ and ϕ are the same for the first j − 1 matches. Let m and m′ be the

matches coming in the jth place in the orderings under ψ and ϕ, respectively.

Consider a problem where qa = 1 for each a ∈ A. Construct a preference profile

P where (i) for each match mk ∈ M \ {m,m′} and agent i ∈ I(mk), γ(Pi, ak) = 1,
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where ak ̸= ak′ for any k ̸= k′, (ii) for each agent i ∈ I(m), γ(Pi, a) = 1, and (iii)

for i, j ∈ I(m′), Pi : a, a′, ...; and Pj : a′, a, ...; where a, a′ are different from each

top arbiter of the agents in I(M \ {m,m′}). For ease of notation, let ψ(P ) = µ and

ϕ(P ) = µ′.

At µ, each match mk ∈ M \ {m,m′} receives the common top arbiter ak of its

agents. This, as well as the order of agents above implies that µ(m) = a and hence,

µ(m′) = a′. Note that every agent except those in m′ receive their top arbiters. Agent

j in match m′ also receives her top arbiter, r′. Agent i ∈ I(m′) receives her second

choice, however, as arbiter a is the top common arbiter of the match m, which is

coming before m′ in the match ordering under ψ, there is no way for agent i to obtain

arbiter a through misreporting. All these imply that ψ is not manipulable at P .

At µ′, each match mk ∈ M \ {m,m′} receives the common top arbiter of its

agents as well. However, as m′ comes earlier than m in the ordering under ϕ, we have

µ′(m′) ∈ {a, a′}. Without loss of generality, let µ′(m′) = a′. Recall that i ∈ I(m′)

and a Pi a
′. Consider P ′

i which is identical to Pi except a′ is now ranked at the

bottom, while its original (second) rank under Pi is taken by the worst arbiter of the

other agent j ∈ I(m′) under Pj. Note that because of our supposition that |A| ≥ 3,

P ′
i ̸= Pi. Let P ′ = (P ′

i , P−i). By construction, we have UC(m,P ′) = {a}. Thus, at

ϕ(P ′), matchm is assigned arbiter a, showing that agent i benefits from misreporting.

Hence, ψ cannot be more manipulable than ϕ.

On the other hand, we can straightforwardly define a similar problem, say P ′′,

having the same features as above, but now UC(m,P ′′) = {a, a′}, UC(m′, P ′′) = {a}.

A similar analysis will then show that ϕ is not manipulable at P ′′. Yet, ψ is manip-

ulable by an agent in match m. Hence, ϕ is not more manipulable than ψ.

Case 2: [ψ and ϕ differ in the ordering of arbiters but not in the order of matches.]

Let us suppose that the match orderings are the same under both ψ and ϕ, but

their arbiter orderings are different. Let P be a problem where ψ(P ) ̸= ϕ(P ). Let
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us continue writing µ and µ′ for their outcomes, respectively. It means that for

some match m, µ(m) ̸= µ′(m). Let µ(m) = a and µ′(m) = a′. As the match or-

derings are the same, under both mechanisms, match m receives an arbiter from

UC(m,P,A′) from some A′ ⊆ A. Therefore, we have {a, a′} ⊆ UC(m,P,A′). More-

over, as UC(m,P,A′) can contains at most two arbiters (Brams and Kilgour (2001)),

we have UC(m,P,A′) = {a, a′}.

Let i, j ∈ I(m). Without loss of generality, let a Pi a
′ and a′ Pj a (note that

if both were to prefer a (a′) to a′ (a), then a′ (a) could not have been included in

UC(m,P,A′)). Consider P ′
j that preserves the ordering under Pj except it puts a

at the end of the list while replacing its original position with the worst arbiter of

agent i under Pi. Let P
′ = (P ′

j , P−j). At problem P ′, all the agents but agent j have

the same preferences. This implies that under both mechanisms, match m continue

receiving an arbiter from UC(m,P ′, A′) at problem P ′. However, in this case, we

have UC(m,P ′, A′) = {a′}.28 This means that match m receives a′ at P ′ under both

mechanism’ outcomes, showing that agent j beneficially manipulates ψ at P .

On the other hand, from above, we have a Pi a
′. Hence, from a symmetric

argument, agent i can manipulate ϕ at P . Thus, at any problem P where ψ(P ) ̸=

ϕ(P ), both are manipulable.

Next, consider a problem P where ψ(P ) = ϕ(P ). Suppose ψ is not manipulable

at P . If ϕ is not manipulable at P , then the proof is done. Otherwise, let us suppose

that ϕ is manipulable at problem P . That is, for some agent i ∈ I(m) and P ′
i ,

ϕm(P
′
i , P−i) Pi ϕm(P ). Let ϕm(P ) = a and ϕm(P

′
i , P−i) = a′.

Letmk ∈M . At problem P , let ϵn be the set of assignments from which an arbiter

is assigned to mk in ψ. We now claim that ϵn cannot contain a pair of assignments

assigning different arbiters to match mk. Assume for a contradiction that mk is

28This argument does not work whenever matches contain more than two agents. To see this, let
us consider a match m, consisting of three agents i, j, k. Let A = {a1, a2, a3}, with Pi : a1, a2, a3;
Pj : a2, a3, a1; Pk : a3, a1, a2. We have UC(m,A) = {a1, a2, a3}, and agent i does not have a false
reporting making the UC singleton, including either a1 or a2. The symmetric arguments are true
for the other agents as well.
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assigned to a and a′ at some assignments in ϵn. If we write A′ for the set of arbiters

having a positive reduced capacity after excluding the those previously assigned, then

a, a′ ∈ UC(mk, P, A
′). This implies that a is preferred to a′ by one of the agents in

mk, while the converse is true for the other agent in mk. Because, otherwise, that

is, whenever either of them, say a, is preferred to a′ by both agents in mk, arbiter a
′

cannot belong to UC(mk, P, A
′).

Without loss of generality, let ψmk
(P ) = a and a′ Pi a for i ∈ mk. Let P ′

i be a

false preference list where it preserves the ordering under Pi except it puts a at the

end of the list while replacing its original position with the worst arbiter of the other

agent j ∈ I(mk). Let us write P ′ = (P ′
i , P−i). Note that at P ′, ψ remains working

the same as at P until the step where match mk receives an assignment. Thus, A′,

from which an arbiter is assigned to mk, is the same at P and P ′. However, we now

have UC(mk, P
′, A′) = {a′}, hence ψmk

(P ′) = a′, showing that agent i can benefit by

misreporting. This, however, contradicts our supposition that ψ is not manipulable

at P .

Therefore, there is no multiplicity in the arbiter assignments in ψ at P , in other

words, the arbiter ordering does not have any role in determining the outcome of ψ.

As the only difference between ψ and ϕ is the arbiter ordering, the same is true for ϕ.

That is, in ϕ, no match m’s arbiter assignment is found by using the arbiter ordering

(that is, tie-breaking). Therefore, agent i cannot manipulate ϕ at problem P through

reverting the arbiter selection.

Let A′ be the set of arbiters having a positive reduced capacity after removing

the assignments of the matches coming before m in ϕ. Note that it is the same under

ψ as well (because ψ(P ) = ϕ(P ), and the match ordering is the same under both

mechanisms). The fact that agent i benefits from reporting P ′
i under ϕ yields two

possible cases: at (P ′
i , P−i), (i) either a

′ and a′′ (a′′ may the same as a) are available to

be assigned to match m, and the arbiter ordering under ϕ causes a′ to be assigned, or

(ii) a′ comes to be the only alternative that can be assigned to match m. If the latter
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is the case, then ψ would be manipulable at P as well, contradicting our supposition.

Hence, the former is the case. Because of the non-manipulability of ψ at P , a′′ is

assigned to match m (because of the arbiter ordering under ψ), and a Ri a
′′.

Let us next consider a problem P ′′ where, for each agent j, P ′′
j is the same as

Pj except the positions of the arbiters a′ and a′′ are swapped. Let us also swap

the capacities of a and a′. We obtain a symmetric problem to P . This, as well as

the fact that the arbiter ordering does not matter at problem P (from above), we

have ψ(P ′′) = ϕ(P ′′), hence ψm(P
′′) = a. Because of the tie-breaking rule, at P ′′, ϕ

cannot be manipulated by agent i through reporting P ′
i above. However, ψ becomes

manipulable as a′′ = ψm(P
′
i , P−i) P

′′
i r.

Hence, we have a problem P ′′ where ψ is manipulable by agent i through reporting

P ′
i , while it is not true under ϕ. If we repeat the above exercise for each other agent

along with its beneficial misreporting under ϕ at problem P , we eventually obtain a

problem at which ψ is manipulable, whereas ϕ is not. Hence, neither of ψ or ϕ is

more manipulable than the other.
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