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Abstract

We analyze the causal effect of air pollution (acute fine particulate matter) exposure on
the commercial real estate (CRE) market. We instrument for air pollution using changes
in local wind direction to find that an increase in fine particulate matter exposure leads
to a contemporaneous decrease in CRE market values and (net) income as well as an
increase in capital expenditures. Heterogeneous treatment analysis uncovers that the
negative effect on market values is concentrated in the office sector, consistent with the
notion that air pollution-induced decreases in CRE values are driven by a reduction in
CRE assets’ productive capacity. Additionally, we document that the negative impact
on (net) income is concentrated in the apartment sector, which is consistent with a
broad set of local dis-amenity mechanisms identified in previous residential real estate
literature.
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1 Introduction

Recent empirical work finds that air pollution can reduce the productivity of workers in both

physically and cognitively demanding occupations. Such reductions can result in declining

output and impact labor markets at regional or even national scales in aggregate. At the

neighborhood level, air pollution exposure represents a well documented negative externality

(a local dis-amenity) affecting location choices of households that value access to clean air

(Freeman et al., 2019). With productivity and local amenities intrinsically linked to real

estate value and firm operation decision making, one might expect exposure to air pollution

to be internalized into observable economic indicators associated with the valuation and

operation of commercial real estate. A good deal of literature explores the effect of local air

pollution dis-amenities on residential real estate and household sorting but we know little

about how air pollution exposure impacts commercial real estate (CRE).1 The goal of our

paper is to explore this relationship.

The unit of interest in the present research is an individual commercial property. For

office and industrial properties, each property represents a collection of workers who—when

exposed to air pollution—may generate aggregate building-level declines in productivity and

labour supply (via lower output and increases in absenteeism). We hypothesize that these

declines can in turn influence building-level financial valuation and operations indicators that

are connected to the internal economic activity of the building. As a result, property/firm

owners may have an incentive to engage in mediating behaviour like improvements in air

filtering and ventilation. For multifamily apartment and retail properties, residents and

consumers may sort away from areas exposed to local pollution-related dis-amenities. These

changes in demand may be capitalized into property rents and/or value.
1See Smith and Ju-Chin Huang (1995) for a meta-analysis of cross-sectional studies and Chay and Green-

stone (2005), Bayer et al. (2009), Grainger (2012), Bento et al. (2015), Lang (2015), Zou et al. (2022), Amini
et al. (2022), Christensen and Timmins (2022) and Sager and Singer (2022) for newer analysis.
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Empirically estimating the potential causal effect of air pollution on commercial real

estate market indicators can be challenging. This is due to well-known concerns in the

residential literature regarding omitted variable bias and measurement. Namely, increasing

levels of air pollution can be linked to increases in economic activity where such economic

activity may be reflected in improvements in housing prices and rents. In the CRE con-

text, the analog is building level economic indicators. This reverse causality can potentially

upward bias a näive estimation of the effect of air pollution on various CRE indicators. Fur-

ther, commonly used measures of air pollution in the United States rely on coarsely located

monitors or distance to acute sources of air pollution like toxic waste plants (Currie et al.,

2015).

We make progress on these two issues through the use of a wind direction instrument

and granular PM2.5 data that spans the whole of the United States for the 2000 to 2016 time

period. Using instrument-derived exogenous variation in PM2.5 across a broad geographic

scale and over a long time period enables us to provide one of the first studies of the effects of

air pollution on one of the largest asset classes – commercial real estate, and to explore treat-

ment effect heterogeneity by property type. The identifying assumption in our instrumental

variables (IV) approach is that, after comprehensively controlling for a vector of fixed effects

and additional time-varying variables, changes in wind direction are unrelated to changes

in the economic indicators of commercial real estate assets except through how changes in

wind direction impact changes in local air pollution levels. A key innovation of our study is

that our approach does not require knowing the location of topographic and infrastructure

characteristics relative to a building that may influence local air pollution levels (e.g., loca-

tions of roads, rivers, and population centers, large pollution sources like airports, etc.). We

augment the main IV approach with two additional instrument-based specifications—one

method exploits a policy change in the mid-2000s, the other uses exogenous variation in air

pollution exposure generated by wildfire smoke.
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The results of our contemporaneous IV regressions indicate that a one standard deviation

increase in PM2.5 levels results in a 1.3% drop in CRE market values, and 2.7% decline

in property (net) income on average. For every one standard deviation increase in PM2.5

levels, capital expenditures increase by more than 11%. These results indicate that there is

an air-pollution induced pricing discount due to the expected loss of income in the future

which is partially mitigated by an increase in capital expenditures. After accounting for the

potential increase in value generated from an increase in capital expenditures, we find that

the estimated impact of instrumented fine particulate matter exposure on net asset value

is somewhat larger than the effect on market value, suggesting that the negative effects

of air pollution on real estate values are partially masked by rising capital expenditures.

We additionally find suggestive evidence that increasing air pollution exposure continues to

negatively impact market values and net asset values two years on.

Stratified results provide suggestive evidence of the heterogeneous effect air pollution

exposure has on the different property types considered and highlights the property types

driving the full sample results. We find that the negative effect of exposure to higher levels

of air pollution on value is mostly concentrated in the office sector. Additionally, the results

of the lagged analysis indicate a significant long-run effect on office real estate values that

persists up to four years. This suggests that air pollution-induced declines in market value

are driven by a reduction in a building’s productive capacity. A large significant lagged effect

on income for office and industrial versus a contemporaneous effect for apartment income

hints towards the role of lease contract length in mediating changes in demand and sorting.

However, caution is warranted regarding over-interpretation of stratified results given low

sample sizes for some property types.

We conduct two additional robustness tests of our baseline results that aim to address

potential endogeneity between air pollution exposure and CRE values. First, we use an

alternative IV specification that exploits changes in the U.S Clean Air Act standards in 2005
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and follows work done by Currie et al. (2020) and Sager and Singer (2022). Our results

remain qualitatively similar. Second, following recent work by (Borgschulte et al., 2022) we

sidestep the joint determination of air quality and economic activity by leveraging variation

in air pollution induced by wildfire smoke. Our results remain qualitatively unchanged.

Taken together, these sensitivity tests corroborate our main findings of a significant causal

relation between air pollution and CRE market outcomes.

Additionally, our results predict considerable wealth loses in commercial property invest-

ments if PM2.5 levels increase in the future. This is concerning on a societal level as pension,

endowment, and foundation funds own a large share of commercial properties in the US.2 To

get a sense of the possible total loss in asset values in the future, we can combine statistics

from the National Association of Real Estate Investment Trusts (Nareit) and the EPA with

our findings. First, Nareit estimates that the 2021 total dollar value of commercial real es-

tate in the U.S. was approximately $21 trillion.3 Second, the EPA predicts that the average

PM2.5-levels will increase by 0.3µg/m3 by 2050, and by 0.7µg/m3 by 2100.4 Multiplying the

EPA predictions with our main estimate (-0.0061) and the total asset value from Nareit, a

back-of-the-envelope calculation indicates an expected value loss of $40B and $70B by 2050

and 2100 respectively. However, these numbers are likely an underestimate of the true costs

as investors also increase their capital expenditures after an increase in PM-levels in part to

offset the asset value decreases. If we take the capital expenditures into account, the loss

increases to $50B and $120B by 2050 and 2100 respectively.

The paper proceeds as follows: in Section 2 we discuss additional background information

and relevant literature. Section 3 describes our empirical strategy, while Section 4 presents

our data sources. In Section 5 we provide detailed information about our merged sample,

and in Section 6 we discuss our main findings. In Section 7 we describe additional robustness
2Source: www.reit.com.
3Source: www.reit.com.
4Source: https://www.epa.gov/sites/default/files/2015-06/documents/cirahealth.pdf
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checks. Finally, in Section 8 we conclude.

2 Background and Related Literature

2.1 Air Pollution in the Asset and Space Market

To understand how exposure to air pollution (PM2.5) might impact CRE via channels of

disamenity and productivity, both an asset market (owner/investor) and space market (user)

perspective must be taken. We first consider the space market prospective. The users of

CRE—residents, workers, and consumers—may be impacted by exposure through disamenity

and/or productivity channels. It is probable that how this exposure subsequently influences

changes in building-level economic indicators is related to lease structures which tend to vary

across different property types.

For residents of multifamily housing, we would expect the same local disamenity effect

and subsequent sorting of households over space observed in previous residential housing

literature. The typical one-year lease term for multifamily units allows for declining demand

to be readily observed in contemporaneous rent contracts as higher income households sort

towards cleaner air neighborhoods. A local disamenity effect can similarly impact retail

CRE. Foot traffic from the local residential population intrinsically links consumer demand

for retail to the local housing market. This implies pollution induced household sorting

may influence demand for space in the multifamily CRE sector and subsequently consumer

demand for local retail. Declines in sales resulting from declining consumer demand may in

turn induce retail tenant sorting and declines in rent. There is potential for both a long term

and short term rent impact in the retail setting. While lease terms tend to be multiyear,

many retail leases include revenue sharing whereby a portion of the monthly lease varies with

monthly sales—fewer sales generates lower rent in the short term. Eventual tenant sorting

may result in longer term rent impacts if sales continue to decline beyond the short term.
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Productivity effects of air pollution exposure on retail workers has not been studied to our

knowledge. However, retail work often requires both physical and cognitive labor thus we

might expect productivity to decline with similar retail tenant sorting and subsequent rent

declines.

For office and industrial workers, a productivity effect would likely dominate any amenity

effect with exposure to air pollution negatively impacting both cognitive and physical work.

Resulting declines in productivity could induce firm sorting and declines in rent for new rent

contracts, but lease terms may prevent significant short term sorting and declines in rent.

Office and industrial leases often span 3 to 10 years and are thus likely to be less sensitive

to contemporaneous fluctuations in air pollution via productivity channels.

Within an asset market perspective, our interest lies in how owners/investors might

respond to building-level air pollution exposure. Expectations of declines in future rents

(as a result of the exposure effect in the space market) will likely decrease market values

regardless of property type (and lease term length). This effect may be mediated by capital

expenditures aimed at decreasing the effect of exposure on users. Such expenditures could

include improvements in air filtration technology and building materials that minimize the

flow of unfiltered outdoor air inside. A more clear picture of how air pollution exposure

impacts market value can be seen when the potential positive effect of capital expenditures

on values is accounted for. Thus, for all property types, when mediating activity takes

place through increases in capital expenditures, we would expect a larger negative effect of

exposure on market value net of the positive influence of the capital expenditures (i.e. net

asset value). A priori it is not clear how air pollution exposure might affect net operating

income via operating expenditures. Our expectation is that NOI will move with income

(rents) for all property types. We summarize the above hypothesized short run effects in

Table 1.
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Table 1: Hypothesized effect of increasing PM2.5 on building level economic indicators in the short
run

Property Market Rent NOI CapEx Net
Type Value Asset

Value

Multifamily −
but potentially
mediated by
CapEx

− − +
with CapEx
pollution
mediation

−

Retail −
but potentially
mediated by
CapEx

−
for revenue
sharing lease
contracts,
otherwise no
effect in short run

−
for revenue
sharing lease
contracts,
otherwise no
effect in short run

+
with CapEx
pollution
mediation

−

Industrial
Office

−
but potentially
mediated by
CapEx

no effect in
short run

no effect in
short run

+
with CapEx
pollution
mediation

−

2.2 Related Literature

There is a great deal of literature concerned with health-related outcomes associated with air

pollution exposure; however, recent research additionally documents important non-health

outcomes affecting both people and places.5 Non-health outcomes include productivity and

labor supply, cognitive performance, decision making, human capital effects of early exposure,

and residential rents and prices. Below we briefly summarize relevant work but encourage

readers to see Aguilar-Gomez et al. (2022) for a thorough summary of the non-health outcome

literature.

For worker-focused outcomes, both physically or cognitively demanding occupations are

impacted by exposure symptoms such as lethargy/fatigue, irritability/changes in mood, and

lack of focus. Empirical findings confirm exposure does indeed impact productivity and labor

supply. Physically demanding jobs such as outdoor agricultural work, indoor garment pro-
5We do not summarize health-related outcomes here but see Aguilar-Gomez et al. (2022) for a summary

of the effect of air pollution exposure on the heart, lungs, and brain.
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duction, and professional sports show decreases in productivity with exposure to pollutants

such as ozone and PM2.5 (Zivin and Neidell, 2012; Chang et al., 2016; He et al., 2019; Lichter

et al., 2017; Guo and Fu, 2019; Mullins, 2018). Cognitively demanding occupations with

monitored productivity show similar results. Major League Baseball umpire calls decline in

accuracy with exposure to carbon monoxide and PM2.5 (Archsmith et al., 2018). The num-

ber of daily calls for call center workers in China declines as the air pollution index increases

(Chang et al., 2019) and case duration for trial judges in China increases with exposure

to increased levels of PM2.5. Huang and Du (2022) find evidence that greater exposure to

air pollution can affect investor cognition and in turn reduce the price of land transactions.

Additionally, more acute side effects related to air pollution exposure can decrease produc-

tivity to zero when a worker calls in sick, thus affecting labour supply. Aragón et al. (2017);

Hanna and Oliva (2015); Holub et al. (2021) find evidence that an increase in PM2.5 and

SO2 reduces hours of labour supplied per week and increases the number of workers taking

at least one sick day.

Perhaps more related to the research question at hand—given our focus on building-

level outcomes—is whether observations of pollution-induced individual level declines in

productivity and labor supply aggregate up to produce larger scale declines. And further,

whether short-run health effects might impact productivity in the medium- to long-run time

frame. Particulate matter may remain in one’s system for weeks or months and short-

run exposure may in turn induce future acute health shocks—heart attack, stroke, asthma

attacks. There is some evidence to support geographically and temporally aggregate impacts

of exposure at both a regional and firm-level scale. Dechezleprêtre et al. (2019) show that

regional economic activity in the European Union, as measured by real GDP, declines with

increases in PM2.5 within the same year. Nearly all of the effect is driven by reduced output

per worker. Fu et al. (2021) find decreases in PM2.5 increase the average firm’s productivity

based on a national sample of all firms in China’s manufacturing sector. In the US context,
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there is somewhat contradictory evidence of the effect of air pollution exposure on GDP.

Using variation in wildfire smoke exposure, Borgschulte et al. (2022) find that an additional

day of county-level smoke exposure within a quarter, reduces quarterly per capita earnings

by 0.10% which is equivalent to a 2% yearly average drop in US annual labor income.

Avila Uribe (2023) finds a negative effect only for rural counties 0.37% per µg/m3 of average

exposure to PM2.5 using similar wildfire smoke data. However, on an industry sector basis,

both trade and educational services experience significant drops in GDP.

Given that an individual’s exposure to outdoor PM typically occurs indoors (Lioy et al.,

1988; Jenkins et al., 1992; Wallace, 1993; Klepeis et al., 2001), the green building literature

offers additional insight into a related set of questions: do improvements in indoor air quality

(IAQ) via building-level ventilation investments lead to improvements in worker health and

productivity? And further, do these improvements impact firm income statements and/or

property-level economic measures? There is a fair amount of evidence showing that improve-

ments in IAQ are indeed linked to improvements in productivity and declines in absenteeism

(Miller et al., 2009; Singh et al., 2010; MacNaughton et al., 2015; Allen et al., 2016; Palacios

et al., 2020). In turn, related literature estimates positive net economic benefits—in vari-

ous units including NPV per square foot, value per employee, overall net savings across the

US office sector—based on observations of improvements in productivity and health (Kats,

2003; Fisk et al., 2012; MacNaughton et al., 2017). It should be noted that office workers

and office buildings are the main focus of this literature and the findings of economic benefits

tend to be based on back-of-the-envelope calculations extrapolating increases in productivity

and declines in absenteeism to changes in line items on a firm’s income statement.6 While

the literature does not document a direct relationship between productivity and health im-

provements with firm or building level economic indicators, it does observe rent and price

premiums for green buildings implying a willingness to pay for amenities provided by these
6See Allen and Macomber (2022) Chapter 4 for an example of such an exercise.
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buildings. The seminal paper by Eichholtz et al. (2010) estimates a 7% rent premium and

a 16% price premium for green buildings. But whether this premium is actually associated

with improvements in productivity via improved IAQ remains unclear. In a survey of 112

stakeholders (building owners, property and facilities managers, tenants, and mechanical

system designers and consultants), a minority of respondents felt improvements in ventila-

tion filtration would improve productivity (Hamilton et al., 2016). Further, the stakeholders’

estimates of the cost of such improvements were more than double actual costs. Such results

signal a lack of salience regarding the impact of IAQ on productivity and health.

Lastly, our work contributes to the large literature linking local pollution (local disameni-

ties) to variation in residential house prices and rents. On the whole, extant research finds

access to clean air is capitalized into house prices and rents (Chay and Greenstone, 2005;

Bayer et al., 2009; Grainger, 2012; Bento et al., 2015; Lang, 2015; Zou et al., 2022; Amini

et al., 2022; Sager and Singer, 2022; Lopez and Tzur-Ilan, 2023). There exists variation in

the degree of capitalization, however, with rents often lagging prices (Lang, 2015) and the

degree of pass-through to the renter estimated to be half of the effect on prices (Grainger,

2012). Further, heterogeneity exists with respect to income with declines in pollution driving

house price appreciation for lower income households to levels nearly double the appreciation

for higher income households (Bento et al., 2015).

3 Empirical Strategy

3.1 Ordinary Least Squares

The main objective of this study is to estimate the effect of air pollution exposure on com-

mercial real estate productivity and values, net of any potentially confounding factors. In

particular, we focus on exposure to fine particulate matter (PM2.5). We model this relation-

ship using the following log-linear OLS regression equation:
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lnYipct = βPMit +X ′
itγ + αpt + δct + ηi + ϵipct, (1)

where Y denotes a vector of dependent variables {Market values, Income, Net Operating

Income, Capital Expenditures} for real estate asset i, belonging to property type p, located

in Metropolitan Statistical Area (MSA) c, in year t. PM is our pollution measure—PM

in grams per cubic meter—with coefficient estimate (of interest) β. Covariate matrix X

contains time varying (climate) variables, such as wind speed, precipitation, and average

temperature with corresponding vector of coefficients γ. To control for possible confounding

effects influencing demand for certain property types that vary over time or MSA-level trends,

we include property type × year fixed effects αpt, as well as MSA × year fixed effects δct.

Inclusion of property fixed effects ηi, allows for the absorption of individual property-level

time-invariant unobservable characteristics that might influence results. We hypothesize

that PM2.5 levels may have a differential impact on different property types via the amenity

or productivity channels as well as lease contract length; hence, we consider specifications

where we stratify Equation 1 by property type—apartment, retail, industrial, office. Given

that our Eq. is in levels, the interpretation of the PM coefficient is as follows: A 1 microgram

per meter air (µg/m3) increase in PM2.5 levels, will result in a log change of β in outcome

variable Y .

Finally, we also allow for lagged effects. Given that real estate contracts can be long-

term, the effect of a change in PM2.5 levels might not be immediately observed in rents and

values. We consider a one- and two-year lagged specification for the full sample as well as

samples stratified by property type. The lagged specification is as follows:

lnYipct = βPMi,t−l +X ′
i,t−lγ + αpt + δct + ηi + ϵipct (2)

where the lag length is given by l. All models are estimated by Ordinary Least Squares
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(OLS) with standard errors clustered at the 4-digit ZIP code level.

3.2 Instrumental Variables Approach

As discussed in Section 1, OLS estimates of Equations (1) and (2) are prone to bias since

exposure to PM2.5 is not fully randomly assigned. A priori we expect the OLS estimates of β

will be attenuated as higher levels of regional productivity are associated with higher levels

of pollution. A key challenge for measuring the causal effect of air pollution on CRE values

is finding geographically widespread fluctuations in air pollution that are not themselves

driven by factors that directly impact economic activity. To address this issue, we follow

Deryugina et al. (2019) and employ an IV strategy using annualized average daily wind

direction (WINDDIR) at the MSA-level as an instrument for PM2.5 and allow the effect

of the wind instruments on PM2.5 to vary over space. In this way, we are able to address a

potential concern that transient changes in air pollution may induce short-run effects that

reflect inter-temporal substitution, or reversion around a long-run mean, rather than true

value-destroying CRE market effects.

A valid instrumental variables approach requires that the instruments (i) be sufficiently

correlated with the endogenous variable of interest and (ii) not be correlated with any unob-

served determinants of the outcome of interest. We instrument for changes in a grid-location’s

PM2.5 concentration using changes in MSA-level wind direction interacted with a given ZIP

code. This generates a ZIP code-specific wind direction coefficient. These coefficients capture

the variation in the effect of MSA-level wind direction on local PM2.5 by taking into account

the building’s ZIP code location relative to sources of pollution (heavy industry, airports,

highway exits) and geographical features (mountain ranges, oceans and other bodies of wa-

ter) that may impact the influence of MSA-level wind direction on local air pollution. The

identifying assumption in our instrumental variables approach is that, after comprehensively

controlling for a vector of fixed effects and additional time-varying variables, changes in wind
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direction are unrelated to changes in the economic indicators of commercial real estate assets

except through how changes in wind direction impact changes in local air pollution levels.

The first stage specification is thus as follows:

PMipct = (ZIP ′
i ×WINDDIRct)λd +X ′

itω + νpt + ρct + ϕi + εipct, (3)

ZIP is an m by 1 dummy variable vector indicating the 4-digit ZIP code a given building i

is located within.7 WINDDIR is an m by d matrix assigning d MSA-level wind directions

to each ZIP code within a given MSA c where d = 3 (North, South, West, with East as

the reference category). The use of more wind directions is of course possible, but we follow

Deryugina et al. (2019) and limit to the four standard directions since increasing the number

of instruments significantly increases computational complexity. The data on wind direction

is measured 8 times a day on a 100km × 100km grid. We take the average wind direction

(as a percentage) per year—to align it with the PM2.5 frequency—per MSA. λd is a vector of

d wind direction coefficients for a given ZIP code m. These coefficients are constant across

buildings within the same ZIP code. νpt are property type × year fixed effects, ρct are MSA

× year fixed effects, and ϕi are property fixed effects.

While the Deryugina et al. (2019)-style instrument has been used to study the impact

of acute exposure, several features of the wind-direction instrument combine to create a

useful natural experiment for studying the cumulative effects of air pollution on CRE mar-

ket outcomes. Theoretically, short-run health effects of air pollution may result in long-run

productivity losses through either health channels or interactions with the labor market.

Biomedical mechanisms exist through which short-run exposure may affect medium- and

long-run health. The bulk of evidence to date indicates that acute exposure to a range of
7We use 4-digit ZIP codes, instead of the more common 5-digit ZIP codes due to the loss of observations

and degrees of freedom otherwise. The loss of observations (because we need at least 2 observations to
identify the effect) would mean we bias our data to larger ZIP codes. We found no such issues at the 4-digit
ZIP code level. Also, the within 5-digit ZIP code variation became too small to infer any meaningful effects.
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air-pollutants has been associated with quantifiable impairment of brain development and

cognitive decline in the long run (Delgado-Saborit et al., 2021) suggesting that long-term

implications on worker productivity can be substantial. There is mounting evidence in the

epidemiology literature that long-term exposure to fine particulate matter PM2.5 increases

the risk of all cause mortality, and cardiovascular and respiratory morbidity (Clifford et al.,

2016) and that it adversely impacts cognitive performance. Both long-term and short-term

exposures have been shown to be associated with adverse cardiac and cerebro-vascular risks

with the long-term effects being greater (Cleland et al., 2022). Temporary labor market

disruptions can also have lasting impacts on earnings, productivity and welfare as shown

in numerous studies of displaced workers and labor market entrants (see Borgschulte and

Martorell (2018), among many others). This suggests that using a cumulative annual mea-

sure of acute exposure is suitable in our setting, in particular, since outcomes of interest

(commercial real estate values) cannot be measured at higher frequencies.

4 Data

Our analysis combines several different data sources. We rely on the PM2.5 data set con-

structed by Di et al. (2019) which provides detailed PM2.5 data with national US coverage

on an annual basis from 2000 to 2016. The authors construct annual PM2.5 estimates on a

1km×1km grid basis using satellite-derived aerosol optical depth, chemical transport model

predictions, land-use data, meteorological data combined with machine learning algorithms.

Property data is provided by the National Council of Real Estate Fiduciaries (NCREIF).

These data consist of quarterly financial and accounting information reported by member

funds between 1980Q1 and 2020Q4. In addition to transaction prices and appraised market

values, for each property we observe total income (rental plus other income), net operating

income (NOI), quarterly capital expenditures (CapEx), and hedonic characteristics of the
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property.8 We omit data before 2000 and after 2016 to align with the PM2.5 data. While

the NCREIF data is provided at quarterly level, the PM2.5 data is observed on annual basis.

To match the frequency, we either take a yearly averages (market values) or sum (income,

net operating income, and CapEx) the variables. The locations of the sample properties are

mapped in Figure 1. NCREIF members own properties all across the United States in both

dense urban areas as well as in more suburban areas.

Climate data (mean temperature and precipitation) is retrieved from the PRISM climate

group.9 PRISM data is available daily for 481,631 16-sq-km (or 4×4 km) grid-locations

covering the continental United States. We take yearly averages and match the PRISM grid

cells to the properties in the NCREIF data.

Finally, the wind direction and wind speed data comes from the North American Regional

Reanalysis (NARR) daily reanalysis data. NARR incorporates raw data from land-based

weather stations, aircraft, satellites, radiosondes (weather balloons), dropsondes (weather

instruments dropped from aircraft), and other meteorological datasets. Wind conditions are

reported on a 100x100 kilometer grid and consist of vector pairs, one for the east-west wind

direction (u-component) and one for the north-south wind direction (v -component). We

convert the average u- and v - components into wind direction and wind speed and average.

Subsequently, we take the yearly average, as the raw data is measured 8 times a day. We

define wind direction (north, south, east, west) as the direction the wind is blowing towards

which is in line with how it is reported by the NARR.

[Place Figure 1 about here]

8Characteristics include property location, age, property type, leverage, ownership structure, owning
fund, and type of fund.

9https://prism.oregonstate.edu/
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5 Descriptives

Table 2 provides the descriptive statistics for our main variables of interest after merging all

four datasets. The average property-level PM2.5 exposure is 10.5 micrograms (one-millionth

of a gram) per cubic meter air (µg/m3). The average market value in the sample properties

is approximately $54M. The total income produced by these properties is—on average—just

over $5M a year, of which $4M is generated by rents and $1M by other means like parking and

billboards. Subtracting operational costs (utility bills, standard maintenance, insurance, and

property tax) for running the properties results in an average net operating income of $3M.

Capital expenditures (CapEx) include the costs for renovating and expanding the properties

as well as costs for hiring brokers to lease out the property. We find an average annual CapEx

of close to $1M. For completeness we also combine market values and CapEx to create net

asset value (NAV). Following Cvijanovic and Van de Minne (2021), we define NAV as:

NAVit=1 = MVit=1 for t = 1,

∆NAVit = ∆MVit − CapExit, for t > 1, (4)

where MV is Market Value of property i in year t. Thus, for every year, we subtract the price

increase caused by capital expenditures (CapEx), leaving only a “pure” price change caused

by market forces. The average NAV is about $4M less compared to the average market value.

Note that investors can experience substantial intermediate negative net asset value during

large scale investments/renovations/building expansions (i.e. CapEx) with the assumption

of future payoffs.10

10An extreme case would be a development (which are not part of our data to be clear). The market value
will be the price of the land, whereas the cost of development is counted towards CapEx. The average land
value fraction in the US is 20% implying CapEx spending will be 4 times (80% of the value of the stabilized
asset) the MV of land.
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For the climate variables, the mean11 yearly temperature is 16◦C, average daily rainfall

is 2.6mm, and wind speed is 4.6 miles an hour. The dominant wind direction in the United

States is towards the South, with southerly winds occurring 33% of the time. Wind blowing

towards the North is observed the least in the data—19% of the time.

Just under 30% of the assets in the merged sample are industrial properties with 90%

of these properties being warehouses used for goods transportation purposes. Apartments

and office have similar shares at 29% and 26% respectively. Retail has the lowest share at

16%. In total, the sample consists of approximately 47K observations tracking 10K unique

properties, covering 1,228 4-digit ZIP codes within 215 MSAs (Table 3).

[Place Table 2 about here]

For identification purposes, variation (i.e. standard deviation) in PM2.5 levels and wind

direction is important for the first stage specification in Equation 3. In Table 3 we provide

detailed statistics on within group variation of both PM2.5 levels and wind direction. There

may be concern that the variation in PM2.5 declines substantially when making comparisons

within year or within ZIP code. However, we retain 64% of the variation exhibited in the

full dataset both on a within MSA and within 4-digit ZIP code basis. More specifically, the

standard deviation of the full sample is 2.9 µg/m3 (Table 3), the standard deviation within

MSA is 1.613 µg/m3, and within ZIP code it is 1.623 µg/m3 (Table 3).

We do not have variation within MSA and year of wind direction, as the wind direction

data is on a yearly-MSA level. However, we do observe some variation in wind direction over

years within an MSA. For example, the standard deviation of wind blowing North is 0.098

(Table 2), whereas it is 0.024 within MSA (Table 3). We exploit precisely these differences

in overall wind direction to identify the effect of PM2.5 on our outcome variables.

[Place Table 3 about here]

11The daily mean temperature is given by the daily max+min
2 .
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6 Results

Table 4 presents the results of estimating Equation 1 using both the OLS (Panels A–C)

and the IV approach (Panel D) on the full set of data. Separate regressions for dependent

variables log(Market Value), log(Income), log(Net Operating Income), log(Capital Expendi-

tures), and log(Net Asset Value) are provided in columns 1–6 respectively. A summary of

the first stage estimates of Equation 3, as well as a detailed discussion of the associated tests

we conduct to address the potential weak instruments bias, are provided in Appendix A1.

Estimates of the climate variables can also be found in Appendix Table A2. In all cases, the

interpretation of the PM2.5 coefficient is a (log) change in the dependent variable (market

value in Table 4, Panel A), given an increase of 1 µg/m3 in PM2.5 levels.

In Table 5 we provide IV results for various stratifications based on property type. We

make comparisons between apartments versus all other CRE grouped (retail, industrial office)

as well as separated. Caution is warranted when interpreting the stratified results as the

sample sizes decline, most especially for the retail subsample. In the following subsections,

we discuss the impact of air pollution on each dependent variable in turn.

6.1 Impact of PM2.5 on Market Value

Beginning with the full sample in Table 4, the effect of PM2.5 levels on property values is

large when year fixed effects are omitted (Column 1, Panel A). This is likely due to the

fact that overall PM2.5 levels trended downwards in the United States since 2000, whereas

property values trended upwards during that same time period. After including the year

fixed effects in Panels B and C, the impact of PM2.5 levels decreases dramatically with

estimates remaining significant at the 1% level— -0.0215 (Panel A) to -0.0054 (Panel B) and

-0.0058 (Panel C). It is likely these estimates are (upward) biased due to local endogeneity

between economic activity and pollution levels. After instrumenting for local PM2.5 levels
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(Panel D), we indeed find that the impact of pollution on market values decreases compared

the previous two OLS results. Obtaining a similar coefficient magnitudes when using the IV

approach gives us confidence in our empirical approach. Based on the estimated coefficient

in Panel D, we find that an increase of 1µg/m3 in PM2.5 levels, deceases property values

by approximately -0.61%. In other words, a one standard deviation increase in within-MSA

PM2.5 levels (2.2µg/m3) generates a modest 1.3% (exp(−0.0061× 2.2)− 1) drop in property

values. These results suggest that properties exposed to increases in fine particulate matter

tend to transact at a discount relative to those exposed to lower air pollution increases over

time. Importantly, our results are not driven by time-invariant property-specific factors,

such as size, or physical configuration, given the inclusion of property fixed effects.

The stratified results presented in Table 5 indicate that office properties may be driving

the full sample result. The effect for apartments only is negative but insignificant and small

in magnitude. The non-residential combined sample hints towards the relatively large and

significant negative effect for office properties on their own. Here, a one standard deviation

increase in within-MSA PM2.5 levels generates a 3.4% (exp(−0.0156 × 2.2) − 1) decline in

property values. The retail effect is also negative but insignificant whereas the industrial

effect is positive and insignificant.

6.2 Impact of PM2.5 on Total Income

In the OLS moels without year fixed effects, we find a large negative impact of PM2.5 on

total income (Table 4, Panel A, Columns 2). This is not surprising, as rents (the main driver

of all our income variables, including NOI) have generally been on an upward trajectory

between 2000–2016, whereas PM2.5 has decreased over the same time period, resulting in a

negative relationship. Again, it is therefore not surprising that the estimated coefficients are

attenuated after including the year fixed effects in panels B and C. The statistical significance

also decreases with the inclusion of the fixed effects structure.
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After instrumenting for PM2.5 levels (Panel D), the estimated coefficients increase in

magnitude (i.e. in this case more negative) We find an coefficient of -0.0122, significant at

the 1% level. In terms of the economic magnitude, a one standard deviation increase in

PM2.5 levels results in a 2.7% (exp(−0.0122× 2.2)− 1) drop in total income. Compared to

the IV estimate reported for Market Value in Column 1, this indicates that in response to

an increase in PM2.5 levels, the observed decrease in total income is twice as large as the

decline in property values (-1.3%) (Section 6.1).

Given that we measure property-level income using total gross income, this difference

could arise due to two factors (or due to their combination). First, investors may believe the

drop in income is only temporary, and that income will revert in the next period; thus, it is

not fully capitalized in the price today. Second, investors may reduce their costs of operating

the property which would partially offset the loss in income. In the following sections we

extend our analysis to examine the effect on rental income, net operating income, and on

capital expenditures in order to shed more light on these mechanisms.

The results by property type highlight a similar relationship with some caveats. For

apartments and grouped non-residential commercial, the negative total income effect is sig-

nificant at the 5% level. A one standard deviation increase in PM2.5 levels results in a 1.31%

and 3.14% decline in total income for apartments and non-residential commercial respec-

tively. Coefficient magnitudes for both property types are larger in magnitude than the

negative market value effect. This is especially true for the non-residential commercial sam-

ple as the total income effect is nearly double the magnitude of the market value effect. The

total income effect remains negative when stratifying further into separate retail, industrial

and office specifications but significance is lost. Across all property types, the effect size is

largest for retail. The rate of rent adjustment is theoretically more frequent (monthly) for

retail tenants with revenue sharing contracts. The larger magnitude of the retail effect as

compared to the apartment effect is suggestive of this greater elasticity of adjustment where
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apartment rents typically adjust on a yearly basis. However, we cannot make a clear conclu-

sion along these lines given lack of significance for the retail effect. This loss in significance

for retail in particular is likely related to the small retail sample size providing us minimal

power in the fixed effect IV setting.

6.3 Impact of PM2.5 on Rental Income

Similar to the results in Section 6.2, the impact attenuates after fixed effects are added

(Panels A through C, Column 3) but the coefficent increases in magnitude and significance

in the IV setting. In general, we do not find large differences between the impact of PM2.5

on total income and rental income.

In parallel, we additionally estimate the impact of air pollution on occupancy in the

Appendix Table A4. Examining occupancy alongside rental income provides insight into

which component of total income is being impacted by exposure to air pollution. If there

is no impact on occupancy but rental income declines, we can conclude the decline in total

income is driven by declining rent revenues and not a drop in occupancy.12

The effect of air pollution exposure on rental income for the full sample (Column 3, Table

4) is highly significant and slightly larger than the total income effect. Specifically, a one

standard deviation increase in PM2.5 leads to a 2.9% decline in rental income. We find no

impact on vacancy levels for the full sample (see Appendix Table A4) and thus conclude

that an increase in vacancies is not driving the decline in rental income and subsequently the

decline in total income. Stratified results for rental income are qualitatively similar to the

total income results. Occupancy remains insignificant for the stratified specifications (see

Appendix Table A5 for the IV results).
12Note that there are 46 fewer observations for the occupancy model. This is a result of logging the

left-hand side variable where 46 rental income observations are 0. The difference between total income and
rental income is 20% on average in our data sample.
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6.4 Impact of PM2.5 on Net Operating Income

Following Geltner et al. (2014), we define net operating income as: net operating income

= gross operating income - OpEx. For the full sample (Column 4, Table 4), OLS results

appear to indicate that investors do not significantly cut operating expenses considerably

after being exposed to higher levels of PM2.5 given the relatively similar size in coefficients

between NOI and the other income variables. We expect this estimate to be downward

biased given that net operating income proxies for building-level productivity net of any ex-

penses associated with running it (such as management fees, property taxes and insurance,

utilities, etc.). After instrumenting for PM2.5 levels, the coefficient increases in magnitude

and significance (-0.0127 at the 5% level). This value is similar to the IV results for both

total and rental income in Columns 2 and 3 respectively. The similarity suggests that (like

with the OLS estimates before) operating expenses are not (considerably) impacted by air

pollution. However, the full sample results obscure possible differences between apartments

and non-residential property in Table 5. The magnitude increase in apartment NOI over

both total income and rental income implies that operating expenditures are increasing with

exposure to air pollution. This contrasts with the lower magnitude of NOI relative to total

and rental income in Panel C. A further investigation into the changes in various compo-

nents of OpEx shows (non-residential) commercial building owners spend less on utilities,

maintenance, insurance, management fees, and tax after being exposed to increases in air

pollution. This is likely a structural response as commercial leases are more likely to be gross

leases (landlord pays) as compared to net leases (tenant pays) which are more common in

apartment contracts.13

The combined results for apartment value and all three income variables—small insignif-

icant impact on value, larger suggestive negative impact on income—contrast with the find-

ings from the residential literature where rent effects are smaller and tend to lag price effects.
13Detailed OpEx analysis is available upon request.
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This is not a surprising outcome given the difference in the users and investors in each market.

In the residential market, both renters and owners are users of space with owners additionally

taking the role of investors. Thus, owners are impacted two ways. First, through personal

negative health outcomes associated with air pollution exposure—similar to renters. Sec-

ond, through declining future rents via their investment position. Thus the value of a home

declines as a result of declines in both consumption and investment utility. For apartments,

renters are the sole users of space and are impacted by local air pollution disamenities. This

local disamenity only impacts investors via expectations of future income (i.e. value). Thus,

the null effect on value implies investors view the income drop as temporary with the pos-

itive capital expenditure coefficient suggesting a potential role for building investments to

mediate contemporaneous drops in income.

6.5 Impact of PM2.5 on Capital Expenditures

The baseline specification without fixed effects for the full sample identifies a negative rela-

tionship (-0.0537, Panel A, Column 5, Table 4) between PM2.5 levels and capital expendi-

tures. This hints at decreasing levels of investments in the properties after pollution increases

and would imply investors are allowing properties to physically and functionally depreciate

in the face of rising pollution levels. This is an unlikely scenario, however. Indeed, after

including year fixed effects, the coefficient sign flips. Estimates in Panels B–D indicate that

in response to increases in air pollution, owners invest in their properties to combat the

negative impact. This could be done by—for example—introducing a new HVAC system

to improve indoor air quality. However, we do not observe the type of capital investments

being made. It is plausible that salience regarding the source of the decline in rents and

value is limited and generic capital expenditures not necessarily targeting improvements in

air quality are being made to combat these declines.

The estimated coefficient for the effect of PM2.5 on capital expenditures is largest for the
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IV approach (Panel D), although it is only significant at the 10% level. Here, a one standard

deviation increase in PM2.5 levels, results in (exp(0.0467×2.2)−1 ≈) 11% increase in capital

expenditures in the same year. The effect size remains large and positive when stratifying

by property type, although minimal significance is found.

Taken together, these results suggest that property values decline less compared to the

property’s income in response to increases in PM2.5 levels, and that is in part due to increased

capital expenditure activities aimed at increasing the rental cash flow in the future. Hence,

we observe a contemporaneous decline in rents (gross income), which is anticipated to revert

back to its pre-impact trajectory following investment in air-pollution remedying activities—

as proxied by increases in capital expenditures. We caution here that we do not directly

observe investment in air-pollution remedying activities but hypothesize likely scenarios that

reflect the above estimates.

6.6 Impact of PM2.5 on Net Asset Values

The impact of PM2.5 on net asset values according to the IV estimate (Panel D, Column

6, Table 4) is -0.0083 with significance at the 5% level. This estimate is larger (and more

significant) compared to the impact on market values of -0.0061 at a significance level of

10% (Panel D, Column 1) suggesting that in fact part of the market value decline associated

with increased air pollution exposure is masked by contemporaneous increases in capital

expenditures. Coupled with evidence presented above that net operating income declines

significantly more, this indicates that increases in air pollution results in contemporaneous

cap rate compression.

These results seem to be mostly driven by office properties. This is similar to our findings

on market values (compare Column 6 to Column 1, in Panel E, Table 5).

[Place Table 4 about here]
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[Place Table 5 about here]

6.7 Lagged Impact of PM2.5 on Commercial Real Estate

Our analysis so far has focused on estimating contemporaneous effects of air pollution. Given

that real estate contracts can be long-term, the effect of changes in PM2.5 levels might not be

immediately observed in rents and values. In this Section we address this potential concern

by estimating Equation 2 using a 1 and 2-year lag. Table 6 summarizes the results of this

estimation using the IV approach.

[Place Table 6 about here]

Beginning with all properties in Panel A of Table 6, we find only a marginally significant

relationship between value (both market value and net asset value) and lagged PM2.5. Similar

to the previous results, these effects are negative and relatively small in magnitude. When

stratifying by property type, we see that the lagged value effect for the full sample may be

predominately driven by non-residential properties—office in particular. Here we observe a

fairly large effect of two-period lagged PM2.5 on both market value and net asset value of

office properties. A one standard deviation increase in PM2.5 two periods previous generates

a 3.0% decrease in market value and 3.2% decrease in net asset value for office properties.

While not presented here for brevity purposes, these delayed effects persist for three- and

four-period PM2.5 lags as well.

Apartments display no significant lagged effects (Panels B); this contrasts with the more

immediate effect on apartment income as seen in the total income, rental income, and NOI

results in Table 5. No significant lagged effects are found for retail as well (Panel D).

The insignificant coefficients for the income specifications (Columns 2-4) for the grouped

commercial specification (Panel C) mask the relatively large and significant negative effects
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for both office and industrial properties (Panels E and F). Previous results for industrial

properties indicated no significant contemporaneous impact of increases in PM2.5 on any form

of income. However, we find a negative one-period lagged effect for industrial properties for

all three forms of income. Here a one standard deviation increase in PM2.5 decreases total

income, rental income, and NOI by 3.6%, 4.7%, and 5.9% respectively. We additionally

find large lagged PM2.5 effects on CapEx for industrial properties: 26% and 25% for the

one-period and two-period lag respectively. Three observations can be made based on these

lagged income and CapEx results for industrial properties. First, the relatively large effect

sizes for the income specifications contrast with the small and insignificant effects for the

value specifications indicating pollution exposure—past and present—is not capitalized into

values and only operates through income. The second observation provides some insight into

this dynamic: the large positive increase in CapEx combined with insignificant value effects

and insignificant but positive income effects with respect to the two-period lag of PM2.5

suggests investments in CapEx after a period of high pollution exposure may be mitigating

subsequent loses in income and value. Lastly, the difference in magnitudes for total income

versus NOI hints at a small positive correlation between operating expenses and lagged PM2.5

for industrial properties.

Similar to industrial properties, office properties display a marginally significant one-

period lagged PM2.5 effect on rental income that is not present in the contemporaneous

specification. Here a one standard deviation increase in PM2.5 one year ago generates a 5.2%

decrease in current year rental income.

Taking these lagged results together, there is evidence of a delayed effect of air pollution

exposure on building-level economic indicators. This is particularly true for industrial and

office properties whose long lease terms may prevent more immediate impacts from being

observed. Again, we cautiously interpret the stratified results given smaller sample sizes.
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7 Robustness

We consider two additional empirical strategies that aim to address potential endogeneity

between air pollution exposure and CRE values. First, we use an alternative IV specification

that exploits changes in the U.S Clean Air Act standards in 2005 and follows work done

by Currie et al. (2020) and Sager and Singer (2022). Second, following recent work by

(Borgschulte et al., 2022) we sidestep the joint determination of air quality and economic

activity by leveraging variation in air pollution induced by wildfire smoke.

7.1 Changes in U.S. Clean Air Act Standards

Our first strategy is policy driven and exploits changes to the U.S Clean Air Act standards

in 2005. The U.S Clean Air Act identified locations of high PM2.5 concentrations—deemed

“nonattainment areas”. This designation allowed the EPA to enforce air quality improvement

plans, withhold federal funding, and deny permits for infrastructure projects.14 We opera-

tionalize this IV strategy through a combined propensity score matching and Difference in

Difference specification. One limitation for comparison purposes to our main IV approach

is the timeframe. This strategy requires 2001-2003 and 2006-2008 windows of observation.

This is due to the fact that the nonattainment categorization was based on a measurement

period of 2001-2003 with the act coming into effect in 2006. After 2008, areas were reassessed

and thus could move from nonattainment to attainment. Direct comparison to our main IV

specification is not possible given the differing timeframes and samples; however, the use of

a multiyear average exposure in the DiD framework does provide a window into longer run

effects. Additional details on the policy and the propensity score matching-DiD specification
14Bishop et al. (2018) use the individual-level variation from the EPA’s nonattainment designations as an

instrument to identify how cumulative PM2.5 exposure from 2004-2013 affects the probability of receiving
a new diagnosis of dementia during this period among Medicare beneficiaries age 65 and above who did
not have dementia in 2004, and find that a 1 µg/m3 increase in average PM2.5 concentrations increases the
probability of receiving a new dementia diagnosis by the end of the decade by an average of 2.15 percentage
points.
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are provided in the Appendix.

We match properties in attainment areas with properties in nonattainment areas based

on their annual average PM2.5 levels in 2001 – 2003 only. Thus, average pre-PM2.5 levels

are comparable between control and treated group. After matching, we run a first stage

specification that predicts PM2.5 based on nonattainment status. Fitted values are then

used in the second stage which is similar to our main IV specification. Results are provided

in Table 7.

[Place Table 7 about here]

Beginning with the first stage, we find that the nonattainment designation reduced PM2.5

concentration levels by 0.757 µg/m3. This is nearly double the magnitude of what was found

in Sager and Singer (2022) where they find that the legislation reduced PM2.5 concentration

levels by 0.4 µg/m3. The difference could simply be a locational one. Sager and Singer

(2022) consider the entire US, whereas our sample of CRE tends to be concentrated in large

cities and predominately in more urban areas.

The second stage findings remain qualitatively similar to the main IV specification. More

specifically, signs for the effect of pollution exposure on income and value dependent variables

remain negative with the effect on CapEx remaining positive although insignificant. Effects

size is larger in this setting. It is difficult to directly compare these results with the main

IV results given the very different empirical frameworks, time dimension, and sample size.

The DiD framework averages PM2.5 over multiple years for both the pre and post measures.

Thus, we cannot similarly identify a contemporaneous or lagged effect as we do in the main

specification and the small sample size renders the estimation sensitive to the control group.
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7.2 Wildfire Smoke

Next we consider an alternative IV strategy that also allows for the examination of cumu-

lative effects of transitory air pollution shocks on CRE markets. This strategy is motivated

by Borgschulte et al. (2022) who use transient wildfire smoke as an instrument for poten-

tially endogenous local pollution exposure. Wildfires account for around 20 percent of the

fine particulate matter emitted in the United States (EPA, 2020). Wind can carry wild-

fire smoke for thousands of miles, generating plausibly exogenous air pollution events that

are geographically dispersed, widespread, and unrelated to economic factors such as regula-

tions (Langmann et al., 2009). Recent years have seen an increase in frequency, intensity,

and geographic scope of wildfires making wildfire smoke a significant source of pollution

nationwide.

Our analysis exploits variation in wildfire smoke exposure at the county level to estimate

the impact of transient air pollution events on CRE market outcomes. Several features

of wildfire smoke make it suitable for studying the effects of air pollution on CRE market

outcomes in our setting. Wildfire smoke events occur regularly throughout the United States.

During our study period, U.S. counties included in our sample were fully covered by wildfire

smoke for an average of 24 days per year, and nearly every county experienced some exposure.

Transient wildfire smoke plumes create sharp air pollution shocks that drastically reduce air

quality well below the typical daily variation in U.S. air quality. At the daily level, an

additional day of wildfire smoke increases concentrations of ground-level fine particulate

matter (PM2.5) by an average of 0.0081µg/m3. The relationship between smoke exposure

and PM2.5 can also be detected at the annual level, which is the time frequency of our CRE

NCREIF data. The above smoke days and PM average figures imply that if a county was

covered by smoke for an entire year, the increase in PM2.5 levels would amount to 365*0.0081

= 3.0µg/m3. Based on the average PM2.5 level of 10.5µg/m3 in our sample (Table 2), this

smoke induced increase corresponds to an increase in PM2.5 by 30%.

30

Electronic copy available at: https://ssrn.com/abstract=4339586



We use three main sources of data in this analysis. High-resolution daily remote sensing

data from satellites show the locations of wildfire smoke plumes in the United States. These

data are available from NOAA.15 16 Air quality data are collected from ground-level pollution

monitors.

The first stage specification is as follows:

PMipct = SmokeDaysictλd +X ′
itω + νpt + ρct + ϕi + εipct, (5)

We instrument for PM2.5 using the number of smoke days in any given year t for the

county c the property i is located in. Note that in the satellite generated wildfire smoke

plume data there are three “levels” of smoke: light / medium / heavy. Whenever any level

of smoke covers a county at any point in time, we consider the entire county as treated

for that day. Covariate matrix X contains time varying (climate) variables such as wind

direction, average temperature and precipitation with corresponding vector of coefficients ω.

As before, νpt are property type × year fixed effects, ρct are MSA × year fixed effects, and

ϕi are property fixed effects.17

The identifying assumption in this IV approach is that conditional on the fixed effects,

the presence of wildfire smoke only influences CRE market outcomes through its impact on

air pollution. Thus, our identification relies on the assumption that an area’s year-over-year

variation in smoke exposure is driven largely by quasi-random factors (including the location

and magnitude of fire events and shifting wind patterns) which are unlikely to be correlated

with unobservable determinants of CRE market outcomes.

Results of this estimation are shown in Table 8. Beginning with the first stage, we
15We use wildfire smoke exposure data developed by Miller et al. and adapt it to fit the unit of analysis

for the CRE market data.
16https://satepsanone.nesdis.noaa.gov/pub/FIRE/web/HMS/Smoke Polygons/Shapefile/
17In unreported regressions, we re-estimate this specification by using state × year fixed instead of MSA

× year fixed effects, as in Borgschulte et al. (2022). Our results remain unchanged.
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find that at the daily level, an additional day of wildfire smoke increases concentrations of

ground-level fine particulate matter (PM2.5) by an average of 0.0081µg/m3. The second stage

findings remain qualitatively similar to the main IV specification and the DiD alternative

IV specification. Similar to the DiD strategy, signs for the effect of pollution exposure on

income and value dependent variables remain negative with the effect on CapEx remaining

positive. We do, however, lose significance on total income, NOI and CapEx. Of note is

the size of the coefficients for the various specifications. These coefficients are larger than

the coefficients from the main IV strategy. We again caution direct comparison to the main

IV results given the nature of discete-(like) instruments. Existing literature (Newey and

Stouli, 2021; Reiss, 2016) suggests that the qualitative pattern of estimates of treatment

effects in case of instruments with discrete-(like) functional forms mimics that of continuous

instruments; however, estimates may not be numerically comparable.18

Taken together, the results of these two alternative IV approaches confirm our main IV

findings of a significant causal effect of air pollution (acute fine particulate matter) exposure

on the commercial real estate (CRE) market outcomes. The consistency in the qualitative

nature of our findings across all IV approaches gives us confidence that our estimates do not

suffer from reverse causality or omitted variable bias.

8 Conclusion

Understanding how air pollution affects commercial real estate (CRE) values is important

given the sizeable exposure of institutional investors (pension funds, mutual funds, private

equity funds, among many others) to this large asset class. However, endogeneity and

measurement error make it challenging to identify the causal effects of air pollution. This

problem is further exacerbated by the fact that CRE assets are heterogeneous.
18Recent literature (Brinch et al., 2017) offers further insights on the potential gap between ATE and ATT

on one side, and LATEs on the other, in case of discrete-style instruments.
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We make progress on these two issues through the use of a wind direction instrument

and granular PM2.5 data that spans the whole of the United States for the 2000 to 2016 time

period. Using instrument-derived exogenous variation in PM2.5 across a broad geographic

scale and over a long time period enables us to conduct one of the first studies of the effects

of air pollution on one of the largest asset classes – commercial real estate, and to explore

treatment effect heterogeneity by property type.

The results of our contemporaneous IV regressions indicate that a one standard deviation

increase in PM2.5 levels results in a 1.3% drop in CRE market values and a 2.7% decline in

property (net) income on average. For every one standard deviation increase in PM2.5 levels,

capital expenditures increase by more than 11%.

These results imply that there is an air-pollution induced pricing discount due to the

expected loss of income in the future, which is partially mitigated in the longer run due

to an increase in capital expenditures. To further explore this channel, we run our model

on net asset value (NAV). This allows for the capture of pure price change net of capital

expenditures. Estimates on the impact of instrumented fine particulate matter exposure on

net asset values are slightly larger than the market value impact— 1.35% drop in market

value versus a 1.84% drop in net asset value given a one standard deviation increase in

PM2.5. This suggests that the negative effects of air pollution on real estate values are

partially masked by rising capital expenditures.

The results of the heterogeneous treatment effects analysis indicate that the negative

effect of air pollution on market values is most pronounced in the office sector in terms of

both contemporaneous and lagged increases in air pollution exposure. This is suggestive of

the role of reduced worker productivity in future income expectations and thus the value of

the property to investors. Heterogeneity in the effect of air pollution on income by property

type and timing implies lease contract length may be playing a mediating role. In particular,

in the fully stratified specifications, it is only the apartment sector and that experiences
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a contemporaneous decline in income as a response to increasing air pollution exposure.

Whereas a large significant lagged effect on income is found for both industrial and office

where lease contract lengths range from 3 to 10 years compared to the common one year lease

for apartments. We again reiterate that these stratified results warrant further investigation

via additional CRE data given our somewhat small sample sizes. We especially highlight

the need for more investigation into retail properties in particular given that our results hint

towards a short term negative income effect potentially related to the presence of revenue

sharing lease contracts for these property types.

All together, we find evidence of a significant negative effect of air pollution exposure

on CRE values, which can partially be mitigated through capital investments. This first

exploration into these relationships has a number of limitations we hope future work will

address. First, we cannot separately identify if or how the hypothesized channels of produc-

tivity and local amenities influence our results. The literature on air pollution exposure and

productivity as well as the effect of exposure on residential prices is fairly clear. We logi-

cally extend these findings to our work here but cannot, for example, observe causal declines

in productivity subsequently causing declines in income and value (building productivity)

within our data. Second, our framework is not ideal for capturing very long run effects. Our

instrument is not useful when looking over multiple years as wind direction “averages” out

over longer periods of time. However, the alternative IV strategy that makes use of changes

to the Clean Air Act does allow for the identification of a longer run average effect and finds

slightly larger but qualitatively similar results. With the limitations in mind, we hope this

study will spur future research that will endeavour to further disentangle the short-run and

long-run implications of air pollution exposure on building-level productivity and its effect

on local economic growth prospects of the affected communities.
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Tables and Figures

Table 2: Descriptive Statistics

Statistic Mean St. Dev. Min Max
(1) (2) (3) (4)

PM2.5 (µg/m3) 10.467 2.853 0.008 28.712
Market value ($) 54,173,509 105,557,701 292,459 2,797,666,667
Total income ($) 5,065,462 8,746,733 21,591 194,674,617
Rental income ($) 4,057,338 6,362,960 0 139,813,076
Net operating income ($) 3,064,798 5,364,132 55 105,299,093
Capital expenditures ($) 972,487 3,807,176 1 280,466,557
Net asset value ($) 50,894,403 99,650,380 -149,455,272 2,697,248,504
Age (years) 20.818 16.189 1 175
Temperature (mean C◦) 15.675 4.573 4.230 26.029
Precipitation (mm) 2.596 1.252 0.062 6.468
Wind speed (m/h) 4.612 0.803 2.802 8.377
Wind direction north (%) 0.187 0.098 0.046 0.896
Wind direction south (%) 0.333 0.177 0.005 0.696
Wind direction west (%) 0.265 0.138 0.008 0.649
Wind direction east (%) 0.215 0.048 0.025 0.419

Property type (dummies)

Apartment 0.287
Retail 0.160
Industrial 0.290
Office 0.263

Observations 46,696
Unique properties 9,957

42

Electronic copy available at: https://ssrn.com/abstract=4339586



Table 3: Variation in Wind Direction

Within standard deviations (SD) PM2.5 (µg/m3) North South East West
(1) (2) (3) (4) (5)

SD within year 2.526 0.097 0.177 0.134 0.047
SD within MSA 1.613 0.024 0.027 0.029 0.022
SD within MSA and year 0.683 - - - -
SD within 4-digit ZIP code 1.623 0.022 0.026 0.027 0.022

Unique categories

# of unique years 17
# of unique MSAs 215
# of unique 4-digit ZIP codes 1,228

Note: SD = standard deviation. MSA = metropolitan statistical area. The wind
direction gives the direction the wind is blowing towards. The simple standard deviations
over the entire sample can be found in Table 2.

Figure 1: NCREIF properties in sample with county Census boundaries. Alaska and Hawaii dropped
for visual ease.
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Table 4: Full Sample OLS & IV Results

Dependent var. (in ln): Market value Total Income Rental Income NOI CapEx Net Asset Value
(1) (2) (3) (4) (5) (6)

Panel A: OLS

PM2.5 (µg/m3) -0.0215∗∗∗ -0.0130∗∗∗ -0.0099∗∗∗ -0.0042∗ -0.0537∗∗∗ 0.0006
(0.0021) (0.0014) (0.0016) (0.0022) (0.0055) (0.0029)

R2 0.977 0.977 0.975 0.925 0.621 0.970
Property FE Yes Yes Yes Yes Yes Yes
Observations 46,696

Panel B: OLS

PM2.5 (µg/m3) -0.0054∗∗∗ -0.0027∗ -0.0036∗ -0.0020 0.0168∗∗ -0.0070∗∗
(0.0014) (0.0015) (0.0016) (0.0024) (0.0028) (0.0027)

R2 0.985 0.979 0.977 0.930 0.630 0.978
Property FE Yes Yes Yes Yes Yes Yes
Prop. type × year FE Yes Yes Yes Yes Yes Yes
Observations 46,696

Panel C: OLS

PM2.5 (µg/m3) -0.0058∗∗∗ -0.0030∗ -0.0039∗ -0.0016 0.0199∗∗ -0.0065∗∗∗
(0.0019) (0.0016) (0.0017) (0.0028) (0.0085) (0.0024)

R2 0.988 0.981 0.980 0.934 0.652 0.983
Property FE Yes Yes Yes Yes Yes Yes
Prop. type × year FE Yes Yes Yes Yes Yes Yes
MSA × year FE Yes Yes Yes Yes Yes Yes
Observations 46,696

Panel D: IV

PM2.5 (µg/m3) -0.0061∗ -0.0122∗∗∗ -0.0134∗∗∗ -0.0127∗∗ 0.0467∗ -0.0083∗∗
(0.0036) (0.0038) (0.0038) (0.0065) (0.0253) (0.0041)

R2 0.988 0.981 0.980 0.934 0.652 0.983
Property FE Yes Yes Yes Yes Yes Yes
Prop. type × year FE Yes Yes Yes Yes Yes Yes
MSA × year FE Yes Yes Yes Yes Yes Yes
First State F-stat 19.1
Observations 46,696
Clustered (4-digit zip code) standard-errors used to determine signif.
Signif. Codes: ***: 0.01, **: 0.05, *: 0.1

Note: All specifications contain the climate controls of temperature (C◦), precipitation (mm), and wind speed (m/h).
The instruments for the IV specification are interactions between the main four wind directions (N/S/W/E) and 4-digit
zip code. For rental income we have slightly less observations, namely 46,650.
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Table 5: Property Type IV Results

Dependent var. (in ln): Market value Total Income Rental Income NOI CapEx Net Asset Value
(1) (2) (3) (4) (5) (6)

Panel A: Apartments

PM2.5 (µg/m3) -0.0046 -0.0060∗∗ -0.0056∗ -0.0152∗∗ 0.0423 -0.0014
(0.0035) (0.0028) (0.0029) (0.0062) (0.0313) (0.0036)

R2 0.987 0.988 0.988 0.966 0.679 0.984
Observations 13,420

Panel B: Commercial

PM2.5 (µg/m3) -0.0077∗ -0.0145∗∗ -0.0158∗∗ -0.0089 0.0575∗ -0.0085∗
(0.0081) (0.0048) (0.0051) (0.0086) (0.0288) (0.0049)

R2 0.988 0.980 0.977 0.930 0.656 0.982
Observations 33,276

Panel C: Commercial - Retail

PM2.5 (µg/m3) -0.0047 -0.0104 -0.0065 -0.0089 0.0346 -0.0071
(0.0081) (0.0069) (0.0068) (0.0095) (0.0647) (0.0084)

R2 0.990 0.989 0.989 0.973 0.709 0.988
Observations 7,474

Panel D: Commercial - Industrial

PM2.5 (µg/m3) 0.0042 -0.0013 -0.0004 0.0042 0.0273 0.0068
(0.0058) (0.0076) (0.0082) (0.0142) (0.0540) (0.0061)

R2 0.985 0.962 0.957 0.885 0.536 0.980
Observations 13,531

Panel E: Commercial - Office

PM2.5 (µg/m3) -0.0156∗∗ -0.0009 -0.0013 0.0112 0.0139 -0.0191∗∗∗
(0.0061) (0.0069) (0.0066) (0.0129) (0.0318) (0.0070)

R2 0.988 0.977 0.974 0.920 0.675 0.980
Observations 12,271
Clustered (4-digit zip code) standard-errors used to determine signif.
Signif. Codes: ***: 0.01, **: 0.05, *: 0.1

Note: All specifications contain the climate controls of temperature (C◦), precipitation (mm), and wind speed (m/h).
Market value is defined as either appraised (average over a year) or transaction price (if sold). Income is the total
amount of revenue the property generated over the year (rent and other income). NOI (Net Operating Income) is
the total income, minus operating expenses (OpEx). OpEx include: utilities, taxes, management fees, and regular
maintenance. CapEx (Capital Expenditures) are discretionary costs, which include: renovations, property additions,
and fees for brokers. All models are estimated via our instrumental variable approach. The instruments are interactions
between the main four wind directions (N/S/W/E) and 4-digit zip code.
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Table 6: One- and Two-Period IV Lag Results

Dependent var. (in ln): Market value Total Income Rental Income NOI CapEx Net Asset Value
(1) (2) (3) (4) (5) (6)

Panel A: All properties

PM2.5 (µg/m3)
Lag: 1 -0.0050 -0.0014 -0.0030 0.0030 0.0288 -0.0069∗

Lag: 2 -0.0049∗ 0.0013 0.0001 -0.0004 0.0233 -0.0054∗

Panel B: Apartments

PM2.5 (µg/m3)
Lag: 1 -0.0004 -0.0020 -0.0022 -0.0053 0.0090 -0.0010
Lag: 2 -0.0025 -0.0017 -0.0018 0.0025 -0.0045 -0.0037

Panel C: Commercial

PM2.5 (µg/m3)
Lag: 1 -0.0073∗ -0.0039 -0.0041 0.0016 0.0267 -0.0091∗∗

Lag: 2 -0.0070∗∗ 0.0008 0.0010 -0.0025 0.0114 -0.0065∗

Panel D: Commercial - Retail

PM2.5 (µg/m3)
Lag: 1 0.0035 0.0066 0.0082 0.0146 0.0313 0.0009
Lag: 2 0.0067 0.0052 0.0070 0.0046 -0.0323 0.0058

Panel E: Commercial - Industrial

PM2.5 (µg/m3)
Lag: 1 -0.0053 -0.0165∗ -0.0221∗∗ -0.0276∗ 0.1048∗∗ -0.0008
Lag: 2 -0.001 0.0029 0.0066 0.0049 0.1027∗∗∗ 0.0021

Panel F: Commercial - Office

PM2.5 (µg/m3)
Lag: 1 -0.0015 0.0069 -0.0243∗ 0.0137 -0.0043 -0.0089
Lag: 2 -0.0138∗∗ -0.0038 -0.0051 -0.0115 0.0145 -0.0149∗∗

Clustered (4-digit zip code) standard-errors used to determine signif.
Signif. Codes: ***: 0.01, **: 0.05, *: 0.1

Note: All specifications contain the climate controls of temperature (C◦), precipitation (mm), and wind speed (m/h)
and property type×year and MSA×year fixed effects. Market value is defined as either appraised (average over a year)
or transaction price (if sold). Income is the total amount of revenue the property generated over the year (rent and other
income). NOI (Net Operating Income) is the total income, minus operating expenses (OpEx). OpEx include: utilities,
taxes, management fees, and regular maintenance. CapEx (Capital Expenditures) are discretionary costs, which include:
renovations, property additions, and fees for brokers. All models are estimated via our instrumental variable approach.
The instruments are interactions between the main four wind directions (N/S/W/E) and 4-digit zip code.
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Table 7: Robustness: Changes in U.S. Clean Air Standards: PSM

Dependent var. (in ln): Market Value Total Income Rental Income NOI CapEx Net Asset Value
Model: (1) (2) (3) (4) (5) (6)

Variables
PM2.5 (µg/m3) -0.0503∗ -0.0243∗ -0.0252∗∗ -0.0129∗ 0.1132 -0.0849∗

(0.0050) (0.0022) (0.0016) (0.0017) (0.0446) (0.0114)

Fixed-effects
Property FE Yes Yes Yes Yes Yes Yes
Prop. type × year FE Yes Yes Yes Yes Yes Yes

Fit statistics
Observations 576 576 576 576 576 576
R2 0.988 0.983 0.980 0.955 0.699 0.977

First Stage
Nonattainment -0.757∗∗
F-test 13.900
Clustered (Nonattainment) standard-errors in parentheses
Signif. Codes: ***: 0.01, **: 0.05, *: 0.1

Note: time period: 2001 – 2003 and 2006 – 2008. All specifications contain the climate controls of temperature
(C◦), precipitation (mm), and wind speed (m/h) and property specific and property type×year fixed effects. Market
value is defined as either appraised (average over a year) or transaction price (if sold). Income is the total amount
of revenue the property generated over the year (rent and other income). NOI (Net Operating Income) is the total
income, minus operating expenses (OpEx). OpEx include: utilities, taxes, management fees, and regular maintenance.
CapEx (Capital Expenditures) are discretionary costs, which include: renovations, property additions, and fees for
brokers. All models are estimated using an instrumental variable approach, and all explained variables are log
transformed. The instrument is properties that got designated to be in nonattainment (NA) in 2006. Properties in
attainment areas are matched 1-on-1 with properties in nonattainement areas using a logit model (Table A6) using
pre-PM2.5 concentration levels only.
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Table 8: Robustness: Wildfire Smoke

Dependent var. (in ln): Market Value Total Income Rental Income NOI CapEx Net Asset Value
(1) (2) (3) (4) (5) (6)

Variables
PM2.5 (µg/m3) -0.1199∗ -0.1204 -0.1274∗ -0.1606 0.5549 -0.1094∗

(0.0785) (0.0815) (0.0746) (0.1280) (0.4983) (0.0648)

Fixed-effects
Property FE Yes Yes Yes Yes Yes Yes
MSA × year FE Yes Yes Yes Yes Yes Yes
Prop. type × year FE Yes Yes Yes Yes Yes Yes

Fit statistics
Observations 37,763 37,763 37,745 37,763 37,763 37,730
R2 0.986 0.979 0.978 0.929 0.612 0.983

First Stage
Smoke days 0.0081∗∗
F-test 23.400
Clustered (Zip codes) standard-errors in parentheses
Signif. Codes: ***: 0.01, **: 0.05, *: 0.1

Note: All specifications contain the climate controls of temperature (C◦), precipitation (mm), and wind speed (m/h)
and property specific and property type×year fixed effects. Market value is defined as either appraised (average over
a year) or transaction price (if sold). Income is the total amount of revenue the property generated over the year
(rent and other income). NOI (Net Operating Income) is the total income, minus operating expenses (OpEx). OpEx
include: utilities, taxes, management fees, and regular maintenance. CapEx (Capital Expenditures) are discretionary
costs, which include: renovations, property additions, and fees for brokers. All models are estimated using an
instrumental variable approach, and all explained variables are log transformed. The instrument is the number of
smoke days during a specific year.
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Appendix

A1 First Stage Summary of Main Results

The use of ZIP code-specific wind direction instruments generates over 3,000 instrumental

variables in the first stage. Further, first stage results are generated for each property type

stratification as well as for the full sample and property type stratified samples with the lags.

As a result, for brevity we refrain from reporting a full set of estimated first stage coefficients

and report a summary in Table A1 for the main specification. The left hand side variable in

our first stage regression are PM2.5 levels per year per building, as shown in Eq. (3).

[Place Figure A1 about here]

Given the reference wind direction of East, the instrument coefficients can be interpreted

as follows: how much higher/lower would the levels of PM2.5 be, if the wind had blown—for

a full year—in the given direction, compared to the baseline of the wind blowing to the East

for a full year? On average, the estimated coefficients are not large since they are essentially

“averaged out” over the entire country. A possible exception being wind direction toward

the West which increases PM2.5 levels by 14 µg/m3 over a full year as compared to the East

wind.

Still, this number is low compared to the standard deviation of the coefficients, implying

there is substantial variation in the coefficient within the United States. More importantly

however, when looking at the summary statistics within the MSA, we find that the standard

deviation decreases, but still remains large (the mean is zero by definition). This gives us

confidence in the instruments used in this study. Weak instrument bias is not a concern in

our setting. As illustrated by Table 3, wind direction is a strong predictor of air pollution

levels, and this is confirmed by the large first-stage F-statistics provided in results Tables 4

to 6.
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[Place Figure A1 about here]

[Place Figure A2 about here]

To get a sense of what the estimates look like within an MSA we provide two examples.

Figure A1 gives the choropleth plot for Chicago, and Figure A2 for Los Angeles.

For Chicago we find that wind blowing towards the West lowers PM2.5 the most for

downtown Chicago (blue color), which is caused by Lake Michigan located directly to the

East. However, this does increase pollution levels in the western suburbs given the likely

flow of central urban pollution.

In Los Angeles, wind blowing to the East and the North results in the lowest levels of

pollution. This is likely related to the location of the ocean shoreline—directly to the West

and the South. Wind blowing to the West results in the most pollution for Los Angeles

on average. Also note that the range of pollution is larger for Los Angeles compared to

Chicago.19 For example, downtown Los Angeles will experience over 50 µg/m3 more in

PM2.5 if the wind direction is going to the West instead of going to the East. In downtown

Chicago the biggest difference is approximately 30 µg/m3 of PM2.5.

19See legend in Figures A1 – A2.
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Table A1: Summary of First Stage Coef-
ficients

Wind going towards: Mean St. Dev.

North 0.568 122.659
- within MSA 0.000 37.385

South −1.128 87.345
- within MSA 0.000 35.055

West 13.881 74.294
- within MSA 0.000 30.630

Note: Left hand side variable is local PM2.5

level. The first stage is described in Eq. (3).
The instruments are interactions between the
main four wind directions (N/S/W/E) and 4-
digit zip code. As a result we have 100s of
coefficients. Wind blowing towards the East
is the reference category, and is therefore left
out to circumvent multicollinearity issues.
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Figure A1: First Stage Coefficients: Chicago
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Note: Each choropleth plots the values of the first stage coefficient of wind direction interacted
with zip code. The direction indicated beneath each subfigure references the direction the wind is
moving towards not coming from.
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Figure A2: First Stage Coefficients: Los Angeles
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Note: Each choropleth plots the values of the first stage coefficient of wind direction interacted
with zip code. The direction indicated beneath each subfigure references the direction the wind is
moving towards not coming from.
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A2 Additional Results

[Place Table A2 about here]

[Place Table A4 about here]

[Place Table A5 about here]
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Table A2: Estimates of Climate Covariates (Table 4).

Dependent var. (in ln): Market value Total Income Rental Income NOI CapEx Net Asset Value
(1) (2) (3) (4) (5) (6)

Panel A: OLS

Precipitation (mm) -0.0099∗∗ -0.0011 -0.0014 -0.0050 -0.0206 -0.0085∗∗
Temperature (◦C) 0.0409∗∗∗ 0.0075∗∗∗ 0.0078∗∗∗ 0.0134∗∗∗ 0.0603∗∗∗ 0.0378∗∗∗
Wind speed (m/h) -0.0302∗∗ -0.0082 -0.0067 -0.0105 -0.1162∗∗ -0.0080

Property FE Yes Yes Yes Yes Yes Yes

Panel B: OLS

Precipitation (mm) -0.0040∗ -0.0025 -0.0034∗ -0.0052 -0.0102 -0.0036
Temperature (◦C) 0.0102∗∗∗ 0.0012 0.0023 0.0049 0.0070 0.0138∗∗∗
Wind speed (m/h) 0.0288∗∗∗ 0.0082 0.0089 0.0089 -0.0127 0.0303∗∗∗

Property FE Yes Yes Yes Yes Yes Yes
Prop. type × year FE Yes Yes Yes Yes Yes Yes

Panel C: OLS

Precipitation (mm) -0.0027 -0.0059 -0.0065 -0.0133 0.0562 -0.0036
Temperature (◦C) 0.0086 -0.0219∗ -0.0234∗ -0.0394 0.0307 0.0140
Wind speed (m/h) 0.0163 0.0099 0.0320 0.0100 -0.2625 -0.0003

Property FE Yes Yes Yes Yes Yes Yes
Prop. type × year FE Yes Yes Yes Yes Yes Yes
MSA × year FE Yes Yes Yes Yes Yes Yes

Panel D: IV

Precipitation (mm) -0.0027 -0.0059 -0.0065 -0.0133 0.0562 -0.0036
Temperature (◦C) 0.0086 -0.0229∗ -0.0245∗ -0.0407∗ 0.0337 0.0138
Wind speed (m/h) 0.0163 0.0095 0.0316 -0.0116 -0.2615 -0.0004

Property FE Yes Yes Yes Yes Yes Yes
Prop. type × year FE Yes Yes Yes Yes Yes Yes
MSA × year FE Yes Yes Yes Yes Yes Yes
Clustered (4-digit zip code) standard-errors used to determine signif.
Signif. Codes: ***: 0.01, **: 0.05, *: 0.1

Note: The instruments for the IV specification are interactions between the main four wind directions (N/S/W/E) and
4-digit zip code.
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Table A3: Estimates of Climate Covariates per Property Type (Table 5).

Dependent var. (in ln): Market value Total Income Rental Income NOI CapEx Net Asset Value
(1) (2) (3) (4) (5) (6)

Panel A: Apartment

Precipitation (mm) 0.0002 0.0010 0.0007 0.0015 -0.0607 -0.0057
Temperature (◦C) -0.0121 -0.0024 -0.0006 -0.0064 -0.3205∗∗∗ -0.0113
Wind speed (m/h) -0.0573 -0.0121 -0.0152 -0.0740 -0.3309 -0.1012∗∗

Panel B: Commercial

Precipitation (mm) -0.0028 -0.0070 -0.0077 -0.0160 0.0589 -0.0024
Temperature (◦C) 0.0155 -0.0234 -0.0255 -0.0415 0.1229 0.0202
Wind speed (m/h) 0.0600 0.0339 0.0610 0.0262 -0.1282 0.0664

Panel C: Commercial - Retail

Precipitation (mm) 0.0054 -0.0057 -0.0160 -0.0187 -0.0031 0.0177
Temperature (◦C) -0.0151 -0.0215 -0.0280 -0.0234 0.2645 -0.0183
Wind speed (m/h) 0.0145 0.0658 0.1039 0.2069 0.5845 0.0496

Panel D: Commercial - Industrial

Precipitation (mm) -0.0089 -0.0206 -0.0122 -0.0344 0.2508∗∗ -0.0056
Temperature (◦C) 0.0548∗∗∗ 0.0145 0.0251 0.0220 0.0510 0.0552∗
Wind speed (m/h) 0.0274 -0.0586 -0.0226 -0.0453 -0.8516 -0.0595

Panel E: Commercial - Office

Precipitation (mm) 0.0032 0.0038 -0.0010 -0.0189 -0.1411 -0.0121
Temperature (◦C) 0.0152 -0.0536 -0.0623∗ -0.0944 0.2256 0.0222
Wind speed (m/h) 0.1157∗ -0.0132 0.0536 -0.0106 -0.2409 0.1852∗∗

Property FE Yes Yes Yes Yes Yes Yes
Prop. type × year FE1 Yes Yes Yes Yes Yes Yes
MSA × year FE Yes Yes Yes Yes Yes Yes
Clustered (4-digit zip code) standard-errors used to determine signif.
Signif. Codes: ***: 0.01, **: 0.05, *: 0.1

Note: The instruments for the IV specification are interactions between the main four wind directions (N/S/W/E)
and 4-digit zip code.
1 Only for panel B.
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Table A4: Impact of PM2.5 (µg/m3) on Occupancy.

OLS OLS OLS IV
(1) (2) (3) (4)

Variables
PM2.5 (µg/m3) 0.0023∗∗∗ -0.0000 -0.0009 -0.0029

(0.0006) (0.0007) (0.0010) (0.0022)

Fixed-effects
Property FE Yes Yes Yes Yes
Prop. type × year FE Yes Yes Yes
MSA × year FE Yes Yes

Fit statistics
Observations 46,696 46,696 46,696 46,696
First Stage F-stat - - - 19.1
R2 0.975 0.977 0.980 0.980
Clustered (4 digit zip code) standard-errors in parentheses
Signif. Codes: ***: 0.01, **: 0.05, *: 0.1

Note: All specifications contain the climate controls of tempera-
ture (C◦), precipitation (mm), and wind speed (m/h) and property
type×year and MSA×year fixed effects. Market value is defined as
either appraised (average over a year) or transaction price (if sold).
Occupancy is the percentage of space that is leased to tenant and is
logged. The instruments for the IV approach (column IV) are interac-
tions between the main four wind directions (N/S/W/E) and 4-digit
zip code.
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Table A5: Impact of PM2.5 (µg/m3) on Occupancy Rate per Property Type, using the IV Approach
Only.

apartment commercial retail industrial office
(1) (2) (3) (4) (5)

Variables
PM2.5 (µg/m3) -0.0022 -0.0012 0.0038 0.0048 -0.0045

(0.0019) (0.0026) (0.0033) (0.0052) (0.0038)

R2 0.768 0.562 0.795 0.509 0.605

Observations 13,420 33,276 7,474 13,531 12,271
First Stage F-stat 15.1 12.8 10.8 20.7 12.2
Property FE Yes Yes Yes Yes Yes
Prop. type × year FE Yes
MSA × year FE Yes Yes Yes Yes Yes
Clustered (4-digit zip code) standard-errors in parentheses
Signif. Codes: ***: 0.01, **: 0.05, *: 0.1

Note: All specifications contain the climate controls of temperature (C◦), precipitation
(mm), and wind speed (m/h) and property type×year and MSA×year fixed effects.
Market value is defined as either appraised (average over a year) or transaction price
(if sold). Occupancy is the percentage of space that is leased to tenant and is logged.
All models use the IV approach, where the instruments are interactions between the
main four wind directions (N/S/W/E) and 4-digit zip code.
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A3 Alternative IV Approach

To compliment our main IV approach, we employ an alternative IV specification that exploits

changes in the U.S. Clean Air Act standards in 2005. The act came into effect the following

year and identified locations of high PM2.5 concentrations—deemed “nonattainment areas”.

This designation allowed the EPA to enforce air quality improvement plans, withhold fed-

eral funding, and deny permits for infrastructure projects. Areas were designated to be in

nonattainment if the average yearly PM2.5 concentration levels were above 15µg/m3 during

a three year measurement period between 2001 and 2003.20 The nonattainment areas largely

coincide with Metropolitan Statistical Areas or Commuting Zones, with some adjustments

made to reflect the fact that pollution can spill over to neighboring areas.21

As a first pass, one may be inclined to simply instrument PM2.5 with a dummy variable

for nonattainment under the assumption that nonattainment areas experience an exogenous

shock to PM2.5. In other words, isolate the variation in PM2.5 caused by the policy to causally

identify the relationship between changes in PM2.5 and building level economic indicators.

However, extant literature shows that when identifying the effect of the policy on PM2.5

in a difference-in-difference setting (DiD), the parallel trends assumption is violated. More

specifically, heavily polluted areas see larger reductions in PM2.5-levels even without being

designated as nonattainment (Currie et al., 2020; Sager and Singer, 2022). As a result, DiD

can overestimate the impact of nonattainment on PM2.5 concentration levels without further

caution.

To circumvent this issue, we follow Sager and Singer (2022) and employ a matched DiD

methodology for the first stage of our IV regression. The matching approach centers on

two observations. First, some properties in the data were exposed to high yearly PM2.5

20Technically, there were two thresholds. If the three year average of the 98th percentile daily PM2.5

concentrations was above 65µg/m3, the area was also designated as being in nonattainmnet, whichever came
first. However, as Sager and Singer (2022) shows, the yearly average threshold was the leading indicator;
thus, similarly to Sager and Singer (2022), we focus on this threshold throughout the paper.

21The shapefiles are readily available from the EPA green book.
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concentration levels, sometimes even in excess of 15µg/m3 during 2001 and 2003, but were

contained in MSAs/CZs that were not designated as nonattainment. Second, some properties

in the nonattainment areas did not experience high levels of PM2.5 even though the larger

MSA/CZ they were contained in did on average. In other words, on the property level, there

is overlap in the average PM2.5 concentration levels in 2001 – 2003, even though only some

are designated as being in nonattainment (based on the larger area average). We exploit this

feature in our matching exercise where every property in a nonattainment area is matched to

a property in an attainment area on the basis of the 2001 – 2003 average PM2.5 concentration

levels. Nonattainment areas where the average PM2.5 concentration levels in 2001 – 2003

(designated pre-PM2.5 levels going forward) was higher than the highest pre-PM2.5 levels

found for properties in the attainment areas. This results in a control and treatment group

with relatively similar pre-PM2.5 levels. Details of the matching exercise follow in the next

section.

After completing the filtering and matching, we run the following regressions (2SLS);

lnYipt = βPMit +X ′
itγ + αpt + ηi + ϵipt, (A1)

where PM are the fitted values of property unique PM2.5 concentration levels from a first

stage which is provided by;

PMipt = λNAit +X ′
itω + νpt + ϕi + εipt, (A2)

where NA is a (1/0) dummy for properties located in nonattainment areas after the desig-

nation took place. In both Equations A1 and A2 we include the full set of controls used in

main specification. The matching exercise generates a sample where half of the observations

are treated and half are not, but both halves have comparable pre-PM2.5-levels. Note that we

omit the MSA-by-year fixed effects in both equations, as they are highly collinear with the
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nonattainment designation. In our main method (Section 3.2) the impact of nonattainment

designation is therefore absorbed by the MSA-by-year fixed effects.

Finally, it is important to describe the data structure for this setup. First, we only

consider data between 2001 – 2003, and data between 2006 – 2008. The main reason to look

at such a short window only is that regulations changed over time, weakening the instrument.

For example, a rule change in 2006 resulted in a few additional counties being designated

in nonattainment in 2012. In addition, the first states to appeal the nonattainment status

was in 2011. Even more stringent regulations came into effect in April of 2015 (reducing the

average pre-PM2.5 levels to 12µg/m3). We do not consider 2009 and 2010 due to the large

impact of the Great Financial Crisis had on CRE in this period.

A4 Propensity Score Matching Details

We perform propensity score matching (PSM) in order to match properties in attainment

and nonattainment (NA). We use a logit model with nonattainment (1/0) on the left-hand

side:

NAi = α + τpre-PMi + ϵi (A3)

where pre-PM are average annual PM2.5 levels in 2001 and 2003 for property i. The matching

is done at the individual property level; hence, the time subscript t is dropped. Note that

nonattainment status does not vary over the time period considered. The results are provided

in Table A6. Reassuringly, we see that higher pre-PM2.5 levels are (significantly) associated

with properties being in nonattainment areas.

[Place Table A6 about here]

Next, we use the coefficients to match properties in our control group (i.e. properties in

attainement areas) with properties in the treated group (i.e. properties in nonattainment
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areas). In Table A7, we provide the averages of our variables of interest before and after

matching.

[Place Table A7 about here]

Comparing the full sample we find that pre-PM2.5 levels are lower on average for proper-

ties in attainment areas compared to those in nonattainment areas, in line with the results

in Table A6. After the matching we find that the sample is balanced, which is a result of

matching 1-on-1 without replacement. Matched properties have very similar pre-pre-PM2.5

concentration levels compared to those in nonattainment areas. More specifically the pre-

PM2.5 levels is 13.2 (13.3) µg/m3 for properties in our control (treated) group.

Table A6: Results from Propensity Score
Matching

Dependent var.: nonattainment
(1)

Pre-PM2.5 levels 0.173∗∗∗
(0.060)

Constant -3.481∗∗∗
(0.799)

Observations 222
Log Likelihood -111.434
Akaike Inf. Crit. 226.867
Clustered standard-errors in parentheses
Signif. Codes: ***: 0.01, **: 0.05, *: 0.1

Note: Pre-PM2.5 levels are average yearly
PM2.5 between 2001 – 2003. Dependent vari-
able is nonattainment status (0/1), model es-
timated via logit.
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Table A7: Mean of Match Variables Before and After Em-
ploying Propensity Score Matching

Sample Status Pre-PM2.5 levels Observations
(1) (2)

Full sample nonattainment 13.345 288
Full sample attainment 11.944 1,044
After PSM attainment 13.345 288

Note: Pre-PM2.5 levels are average yearly PM2.5 between 2001 –
2003. PSM is propensity score matching, based on Table A6. Af-
ter matching, the number of observations is equal, as we match
one-to-one without replacement. We match attainment and nonat-
tainement properties only based on Pre-PM2.5 levels.
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