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Estimating the cost from a ton of CO2 to society requires connecting a model
of the climate system with representation of the economic and social effect
of changes in climate and the valuation and aggregation of diverse, uncertain
impacts across both time and space. The literature on this cost, termed the
social cost of carbon (SCC) is large and growing, with substantial differences in
underlying assumptions both across and within studies. Significant prior work
has focused on better constraining parameter values such as climate sensitivity,
the discount rate, and the damage function. A growing literature, however,
has also examined the effect of varying more fundamental structural elements
of the models supporting SCC calculations. These structural model choices
- including the introduction of climate or economic tipping points, changing
the structure of economic preferences, and the persistence of climate damages
- have often been analyzed in piecemeal, uncoordinated fashion, leaving their
relative importance unclear. Here we perform a comprehensive synthesis of the
evidence on the SCC, combining 1823 estimates of the SCC from 147 studies
published between 2000 and 2020 with a survey of the authors of these studies.
We find that the distribution in published and expert SCCs are both wide and
substantially right-tailed. Survey evidence suggests that experts believe there
to be a substantial downward bias in published SCC values. Analysis of the
drivers of variance in the distribution reveals that structural variation across
SCC models is important, particularly the persistence of climate damages. We
estimate a random forest model based on SCC variation in the literature and
combine this with expert assessment to generate a ’synthetic SCC’ distribution
integrating over expert assessments of uncertainty in model structures and the
discount rate as well as parametric and residual uncertainty represented in the
literature. Thisdistributionhas a mean of $467 per tCO2 for a 2020 pulse year
(5%–95% range: $14–$1379). There is thus a substantial and varied body of
evidence pointing towards using a high SCC in policy-making.
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1 Introduction1

Anthropogenic climate change will affect the welfare of people around the world for centuries into the2

future. Because these costs are largely not Incorporated into energy or land-use decisions, climate3

change has been termed “the greatest and widest-ranging market failure ever seen” (1, p. i). Incorpo-4

rating climate costs into the prices of economic activities that emit greenhouse gases, either through5

carbon pricing or other regulations, is essential for averting the worst climate outcomes. Quantifying6

these costs is extremely challenging as it involves projecting and valuing the effects of climate change in7

all countries and sectors far into the future, an exercise that is rife with uncertainties and contestation.8

The external costs of carbon dioxide emissions are summarized by the ‘social cost of carbon’ (SCC):9

the present value of all future impacts from an additional ton of CO2 emissions. The SCC is key for10

understanding the benefits of emissions-reduction policies and is used for climate and energy policy11

analysis in the United States, Germany, Canada, and several sub-national jurisdictions (2, 3). Inte-12

grated assessment models (IAMs) commonly used to calculate the SCC have been criticized on various13

grounds, including inaccurate climate and carbon-cycle modeling, ignoring irreversibilities and tipping14

points in the climate system, failing to adequately model uncertainty or the potential for catastrophic15

outcomes, and relying on dated science in the representation of climate impacts (4–8).16

The continuing importance of the SCC as a tool for climate policy analysis (2) and recognition of17

failings in IAMs currently used to calculate it has led to a surge of research seeking to improve,18

expand, and update the estimates. Major strands of this literature include: improving modeling19

of Earth system dynamics (9–12); disentangling preferences over risk and time using more complex20

utility functions (13–15); representing tipping points and associated uncertainties in damages (16–19);21

addressing model uncertainty, ambiguity, and learning new information (20–24); allowing climate22

damages to affect the growth rate rather than just the level of economic output (11,25–27); calibrating23

aggregate climate damages on recent economic and scientific evidence (11,20,25,28,29); modeling the24

distribution of climate damages and incorporating spatial inequality aversion (30–32); and allowing25

for climate damages to non-market goods, such as natural systems or cultural heritage, which are26

imperfectly substitutable with market-traded goods (33–36).27

Although this literature is now substantial, it has accumulated piecemeal. The vast majority of papers28

make one or two structural model choices to a simpler IAM and report how these alter SCC values, of-29

ten with an exploration of associated parametric uncertainty. The implications of the full suite of issues30

addressed by this literature have not been assessed, including what are the most significant drivers of31

the variance in SCC estimates. Previous syntheses have quantified the distribution of SCC estimates32

and explored a limited set of covariates, such as publication year and discounting (37, 38), as well as33
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the possible role of publication bias (39). Previous modeling studies have made multiple simultane-34

ous changes to individual IAMs (12, 40), or have undertaken systematic IAM inter-comparisons and35

evaluations (41, 42), albeit focusing on a limited number of IAMs with comparable model structures.36

Previous expert surveys have either imposed very specific structure or none at all (43–45), or have37

focused on carbon prices (46). Thus, prior studies only illuminate the role of a subset of mechanisms38

and structural model choices.39

This paper provides the most comprehensive assessment to date of SCC estimates, including how40

structural modeling choices shape the SCC. It builds on two complementary approaches. First, we41

perform a systematic analysis of SCC values published between 2000 and 2020. After reviewing over42

2800 abstracts, we identified 1823 estimates (or distributions of estimates) published in 147 studies.43

SCC estimates and, where reported, the distribution of parametric uncertainty were recorded, along44

with over 35 covariates capturing details of the estimate itself (e.g., SCC year, discounting scheme,45

and socio-economic and emissions scenarios), major structural model choices to the standard SCC46

modeling approach (e.g., growth rate damages, inequality aversion, and disentangled preferences over47

risk and time), and sources of parametric variation (e.g., distributions over productivity growth, climate48

sensitivity, and damage function parameters). Second, we conduct an expert survey of the authors49

of the SCC papers in our analysis. We elicit estimates of what experts perceive is the distribution of50

published SCC values in the literature, and the distribution of what they believe best approximates51

the “true” SCC, all things considered. We also ask experts to break down the wedge between their52

central estimates of the literature SCC and the “true” SCC, which allows us to investigate divergence53

between the distributions and their determinants. Furthermore, we elicit experts’ views on how much54

a selection of structural modeling changes in the literature affects SCC estimates and their assessment55

of whether these model modifications improve SCC estimates.56

Our study therefore contains two complementary data-generation processes: a meta-analysis, which57

collects much richer data on published SCC estimates and their determinants, and an expert survey.58

Their combination allows us to present the most comprehensive characterization yet of SCC estimates59

and their drivers. We furthermore combine these two lines of evidence using a random forest model60

to create a “synthetic SCC” that reflects both the SCC variation in the reported literature and expert61

assessments of discounting and structural model choices. Additional details on the literature review,62

coding of values, data cleaning and processing, and expert survey are provided in the Supplementary63

Information.64
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2 The SCC Distribution65

The systematic review of the literature yields 1823 SCC estimates (or distributions) from 147 studies.66

Many studies report multiple SCC estimates. For each of the 1823 estimates, we collect information67

on the central SCC estimate, emission pulse year, discounting, damage function, economic and emis-68

sions scenario, structural assumptions, and distribution resulting from parametric uncertainty (where69

reported, 832 of the 1823 estimates).70

To characterize the distribution of SCC values appearing in the published literature, we sample from71

the dataset using a hierarchical sampling scheme. We draw 10 million SCC values sampling uni-72

formly from the 147 studies in the dataset, then uniformly from the set of estimates within each73

paper (i.e. unique SCC year-discounting-scenario-model structure combinations), and finally from the74

parametric uncertainty of each estimate, if applicable. Alternate sampling schemes that account for75

non-independence between papers using sets of shared authors, or for different quality of studies using76

a normalized citation-based weighting, give quantitatively similar distributions (Table S4).77

Figure 1 gives the distribution of SCCs reported in the literature for pulse years between 2010 and78

2030, which we use as the 2020 SCC equivalent sample. The variation in SCC values from the literature79

is substantial and asymmetric, exhibiting a long right tail, and a mean value ($151 per tCO2 after80

truncating the upper and lower 0.1% of values) that is several times higher than the median ($41).81

Statistical tests show evidence for a heavy tail in the SCC distribution, echoing (47), with slope of the82

mean excess function greater than 1 and α values between 1 and 2, indicative of a distribution with83

infinite variance but finite mean (see Table S5 in the SI). Table S6 shows evidence that the upper tail84

of SCC values is particularly associated with papers integrating persistent or growth rate damages and85

certain types of parametric variation (specifically around adaptation rates, the damage function, and86

income elasticity).87

Figure 1 also shows SCC distributions arising from two other lines of evidence: our survey of SCC88

authors conducted as part of this study and two distributions arising from U.S. government exercises.89

Survey participants were asked to provide both their estimates of the distribution of published SCC90

values (literature estimate, Figure 1), and their best estimate of a “true” or “comprehensive” SCC91

distribution – accounting for anything missing from the published literature or any systematic biases92

therein. These two distributions show that experts believe there is a substantial bias in the published93

literature, with the median estimate increasing from $34 per tCO2 for the literature estimate to $8594

per tCO2 for the comprehensive estimate. Similarly to values from the literature, expert assessment95

shows a long right-tail on the comprehensive SCC distribution, with a mean of $160 and a 95th96

percentile over $580. Notably, while the mean of the literature distribution ($151) and the expert97

4



comprehensive assessment ($160) are similar, the shapes of the distribution are quite distinct with the98

expert assessment putting substanatially higher probability on SCC values over $100 per tCO2.99

Figure 1 also shows the distribution from two U.S. government SCC estimates: the current distribution100

from the Inter-Agency Working Group on the Social Cost of Carbon, which uses the DICE, PAGE and101

FUND models and 2.5, 3, and 5% discount rates; this underpins the still formal US-SCC of around102

$50 per tCO2; and a new proposed distribution from EPA which uses three updated damage estimates103

and 1.5, 2, and 2.5% discount rates, as well as updated distributions over socio-economic and emissions104

trajectories and climate system uncertainty (3). Figure 1 makes clear that multiple lines of evidence105

demonstrate that the current IWG SCC distribution is down-ward biased. For instance, the literature106

distribution, expert comprehensive assessment and more recent EPA analysis put the probability of107

an SCC over $100 per tCO2 at 24.5%, 43.5% and 67.8% respectively, compared to only 9.4% in the108

current IWG estimate.109

Interagency Working Group: 2020 SCC

EPA Proposed Estimate: 2020 SCC

Expert Survey: Literature 2020 Estimate

Expert Survey: Comprehensive 2020 Estimate

−100 0 100 200 300 400 500 1000
2010−2030 SCC ($ per ton CO2)

Figure 1: SCC distribution from the published literature (2020 $ per ton CO2) for the 2010-2030 time
period (pink). Central panel shows two distributions from the expert survey: respondents’ estimate of
the distribution of 2020 SCC values in the literature (light green) and their comprehensive assessment
of the actual 2020 SCC distribution (dark green). Lower panel shows two distributions of U.S. Federal
Government 2020 SCC estimates: the 2021 Interagency Working Group (light blue) and a proposed
update by the U.S. Environmental Protection Agency (dark blue). Boxplots show the median (line),
inter-quartile range (box), 5-95% range (solid line) and 2.5-97.5% range (dashed lines). Dots show the
mean after trimming the upper and lower 0.1% of each distribution

2.1 SCC Distribution Under Alternate Structural Models110

Figure 2a shows the 2010-2030 SCC distribution differentiated by nine major classes of structural111

models for SCC calculations found in the literature. (More detailed descriptions of these changes,112

along with example references integrating them are given in SI section S3). Other than papers in-113
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corporating learning, these changes tend to increase SCC values; largest effects are seen for estimates114

distinguishing between risk and time preferences via Epstein-Zin utility, estimates that allow for limited115

substitutability between market and non-market goods, and estimates allowing for persistent damages116

typically via impacts to economic growth. These raise the median SCC from $38 per ton CO2 in117

the reference distribution to $57, $128, and $180 per ton CO2 respectively. Effects on the upper tail118

of the distribution are also substantial; the 75th percentile of the distribution increases from $70 in119

the reference distribution to $108, $197, and $534 respectively. Table S12 shows evidence that these120

differences are not driven by systematic differences in discount rate or pulse year.121

Figure 2: The role of structural model choices in the literature SCC distribution. a) SCC
distribution for pulse years between 2010 and 2030 with (changed, blue) and without (reference, white)
particular structural model choices to the SCC modeling. The reference distribution shows estimates
without any of the 9 structural model choices and is the same in all rows. Numbers to the right of
the graph give the number of papers making that structural model choices and, in parentheses, the
total number of SCC observations making up the changed distribution in that row. Distributions are
shown on a log scale, which requires dropping 2.9% of the distribution at or below $0 per ton CO2.
b) Distribution of views from the expert survey asking respondents for their assessments of the SCC
papers incorporating different structural model choices.

Figure 2b shows results from the expert survey asking respondents to what extent they agree with122

the statement that papers incorporating various structural modifications (relative to a baseline model123

approximating the DICE-2016 IAM (48) with a 2020 SCC of around $40 per tCO2, similar to the124

reference distribution in Figure 2a) produce better SCCs than models that omit them. Over 50%125

of experts agree or strongly agree that a structural model choice constitutes an improvement for all126

modifications, except the incorporation of aversion to model uncertainty or ambiguity. The strongest127

agreement is on improvements to Earth system modeling, including the integration of climate system128
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tipping points, and the incorporation of limited substitutability between market and non-market goods129

in the utility function, with some polarization over the issue of whether using explicit distributional130

weights, as applied in the literature, improves SCC estimates.131

3 Drivers of Variance in SCC Estimates132

Figure 1 documents wide variance in published SCC estimates. The rich set of covariates we record133

allow us to investigate how many different features of SCC modeling - including structural model134

features, parametric uncertainty, and other model covariates - affect SCC values. Figure 3a shows135

coefficient values from three regression models using different variation in the dataset. Model 1 com-136

pares values across the full SCC distribution (shown in Figure 1). Model 2 adds paper fixed effects,137

meaning the comparison is between SCC values using alternate modeling and parametric assumptions138

within the same paper (note both models control quadratically for SCC year, but these coefficients are139

not shown in Figure 3). Model 3 uses variation between reported central SCC estimates and, where140

available, comparable “Base SCC” values. Base SCCs were recorded where papers reported values141

from runs with an unmodified version of the selected IAM. This comparison implicitly controls for142

SCC year, discount rate, and socio-economic scenario.143

Looking first at the effects of structural model choices, Figure 3a reaffirms the importance of per-144

sistent/growth damages for SCC estimates represented in the literature across all three regression145

models. The question of whether and how damages from climate shocks persist in the economy is146

of major importance for the aggregate costs of climate change, potentially shifting the SCC by an147

order of magnitude. Consistent and statistically significant increases in the SCC are also seen with148

the incorporation of explicit distributional weights across space, reflecting the general observation that149

climate impacts are likely to be regressive in nature (49, 50). Allowing for learning over time (typi-150

cally about equilibrium climate sensitivity or the damage function) tends to decrease the SCC. This151

is consistent with theoretical models showing that the additional emissions allowed by laxer climate152

policy can provide a more informative signal about uncertain parameters and lead to better future153

climate policy (24). The effects of other structural model choices are smaller, more mixed, or have154

larger uncertainties. The estimated effects of changes to the Earth system model or incorporating155

climate system tipping points tend to be small, a finding consistent with other recent work (19).156

Adding non-linear, stochastic tipping points to damages tends to increase the SCC (Models 2 and157

3). Incorporating Epstein-Zin preferences that disentangle risk and time preferences, and allowing158

for limited substitutability of non-market goods, also tend to increase the SCC, but with uncertainty159

ranges overlapping zero.160
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Figure 3: The relative importance of structural model choices for the SCC. (a) Regression
coefficients for three different multivariate regressions with 95% confidence intervals. The top panel is
for our set of 9 structural model choices, the middle panel is for parametric variation, and the bottom
panel is for other changes such as the base model. In all cases the dependent variable is logged SCC (in
$ per ton CO2). Models also include non-linear controls for SCC year (details in Methods). Reported
coefficients may be missing if the variable is collinear with the fixed effects or no paper reported a
base SCC. Full model results are given in the Appendix. (b) ANOVA decomposition of the variance of
logged SCC estimates in the literature, corresponding to the paper fixed-effects regression in column
(a). (c) Disentangled components of the wedge between expert’s estimates of the literature SCC and
the “true” SCC (SCC wedge), aggregated across the 45 experts providing disentangled weights.

Figure 3a also shows the effects of parametric variation on the SCC distribution. Even though pa-161

rameter values are both increased and decreased, some parameters still have an effect on the average162

SCC, which could arise either through asymmetry in the input distributions or non-linearities in the163

SCC calculation. Specifically, parametric variation in TFP growth reduces the SCC, while variation164

in discount rate parameters and two parameters related to climate damages (i.e., the adaptation rate165

and the income elasticity of damages) tends to increase it. SCC values calculated using the FUND166

model tend to be systematically lower.167

Second, we perform an ANOVA decomposition analysis of the variance of (logged) SCC estimates168

in the literature. This analysis combines selected parametric and structural predictors into thematic169

categories (see SI Section E). Figure 3b shows that the single largest driver of the variance is dis-170

counting, followed by model and model uncertainty (i.e., this groups together the identity of the IAM,171

e.g., DICE, FUND, or PAGE, with the model uncertainty/ambiguity structural model choices), per-172
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sistent/growth damages, and the Earth system representation (i.e., transient climate response, carbon173

cycle parametrization, equilibrium climate sensitivity, and Earth system structural model). Note that174

the overall share of the variance explained by discounting and damage-function parameters (i.e., dam-175

age function, adaptation rates, and the income elasticity of damages) is only 31 percent, with most of176

the remainder relating to structural model choices and model uncertainty.177

Figure 3c shows findings from the expert survey asking experts to decompose the difference between178

their central estimate of the 2020 SCC in the literature and their central “comprehensive” estimate,179

which we call the “SCC wedge”. This measure captures factors experts consider to be both material180

to SCC estimates and under-represented in the published literature. Figure S20 shows SCC estimates181

as well as the SCC wedge and its determinants at an individual level. Noteworthy is not only the182

heterogeneity of SCC estimates across experts, but also the considerable heterogeneity in what explains183

experts’ SCC wedges. The median weights across experts on the determinants of the SCC wedge are184

zero with the exception of damage function parameters, limited substitutability of non-market goods,185

persistent/growth damages, and climate tipping points, all of which contribute positively to the SCC186

wedge. Figure 3c aggregates this information on the expert SCC wedge. We find that damage-function187

and discounting parameters make up around a third of the SCC wedge. Around two thirds of the SCC188

wedge is driven by structural model choices, particularly limited substitutability of non-market goods189

(13%), persistent/growth damages (9%), tipping points in the climate system (8%) and in damages190

(8%), and distributional weights (6%). Endogenous technological progress and adaptation as well as191

learning pull down experts’ true SCC compared to their estimate of the literature SCC.192

Finally, we fit a random forest model to the literature SCC distribution (see SI for details). Machine-193

learning models can complement linear regressiong and ANOVA by flexibly capturing potential non-194

linearities and interaction effects in settings with many explanatory variables, optimizing for out-of-195

sample predictive power. Figure S22 gives an estimate of the importance of different predictor variables196

based on the change in class impurity associated with that variable (i.e., a variable is of high importance197

if inclusion in the model substantively increases the discrimination between different SCC values). In198

addition to the discount rate and SCC pulse year, we see important effects of several structural model199

choices that also appear in Figure 3, specifically persistent/growth damages and the Earth system200

model. Also highlighted in Figure S22 is the important role of the damage function. Publication201

year is the third most important variable, reflecting the general upward trend in SCC values over the202

20-year publication period of the sample (38).203
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4 Synthetic SCC Distributions Accounting for Structural Drivers204

and Parametric Uncertainty205

Combining the predictive capabilities of the random forest model, information from the literature206

on unexplained parametric variation, and expert assessment of model structure and discount rates207

allows us to develop a ‘Synthetic SCC’ distribution that integrates over both parametric and structural208

uncertainty in SCC estimation. We generate distributions of one million SCC values for each emissions209

pulse year based on random draws that sample from three inputs: (i) the distribution of social discount210

rate recommendations from a previous expert survey (51) (median of 2% and an inter-quartile range of211

1-3%); (ii) the distribution of expert assessments of whether different structural model choices in the212

literature improve the estimation of the SCC, shown in Figure 2b (accounting for covariance between213

different structural model choices, to the extent that such covariation is reflected in the survey results,214

using a Bayesian model described in the SI and shown in Figure S21); and (iii) the residual uncertainty215

not explained by the random forest model. These random draws from expert assessments (i and ii)216

serve as inputs to the random forest model, to generate predicted SCC values under combinations of217

model structure and discounting not directly observed in the literature. Residual variation from the218

random forest model is sampled and added to the predicted values to generate the full synthetic SCC219

distribution.220

Figure 4 and Table 1 report ‘Synthetic SCC’ distributions as predicted by this model, focusing on an221

emissions pulse in 2020. Figure 4 starts with the synthetic SCC prediction for a base DICE model and222

sequentially adds changes before arriving at the full synthetic SCC. Compared with the literature dis-223

tributions in Figure 1, which could be influenced by factors such as the number of researchers working224

on certain topics or the ease with which certain types of parametric uncertainty are represented, the225

Synthetic SCC distribution has a clearer interpretation: it captures epistemic (and normative) uncer-226

tainty among experts over model structures and the discount rate, as well as parametric uncertainty227

represented in the literature and model residuals.228

The mean of the 2020 Synthetic SCC distribution is $467 per ton CO2, with a median of $298, substan-229

tially higher than either the literature or expert assessments shown in Figure 1. The decomposition230

shown in Figure 4 shows the contribution of various components to these higher values, showing the231

substantial contribution of parametric uncertainty (particularly in the damage function and equilib-232

rium climate sensitivity), alternate model structures (particularly alternate earth system models and233

growth damages), and lower discount rates.234

One of the advantages of the random forest model trained on the literature is that it can provide sythetic235
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Figure 4: 2020 Synthetic SCC distributions with structural and parametric uncertainty
Top: The 2020 Synthetic SCC distribution arising from the random forest model trained on published
SCC values combined with input distributions over discount rates and structural model choices from
expert surveys, including its evolution from a baseline DICE comparison. Boxplots show the mean
(bar), median (dot), and inter-quartile ranges (error bars). Bottom: Additional distributions of SCCs
from the random forest model under different assumptions. From left to right, (a) different structural
assumption sets, (b) different damage function assumptions, (c) different constant discount rates, and
(d) different pulse years. H&S is the Howard and Sterner (2017) damage function.

SCC estimates under a range of alternate specifications. In the lower portion of Figure 4, we show SCC236

distributions from the random forest model for different (a) sets of structural model assumptions, (b)237

damage-functions, (c) social discount rates, and (d) pulse years. Removing all nine structural model238

choices would reduce the median SCC by more than $100, comparable to increasing the social discount239

rate to 5%. The Synthetic SCC is relatively insensitive to changes in damage-function type, although240

this may be because damage-function type is a noisy proxy for damages uncertainty. Reducing the241

discount rate to 1% would lead to a much higher median SCC of $691.242

5 Discussion and Conclusion243

We present the most comprehensive synthesis to date of SCC estimates, as well as their parametric and244

structural drivers. Our study is informed by two complementary data-generating processes: a meta-245
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2.5% 5% 10% 25% 50% 75% 90% 95% 97.5% Mean
5 14 36 139 298 727 920 1379 1670 467

Structural modifications
None -0 3 15 71 185 515 841 884 1131 323
All -3 2 16 146 325 719 848 1219 1601 452
Discount rates
1% 24 86 163 356 677 844 1284 1658 2010 692
2% 7 17 36 124 237 638 882 1362 1419 405
5% 1 5 15 65 185 405 847 957 1370 313
Damage functions
DICE 4 10 27 120 262 700 891 1330 1624 439
FUND 4 10 30 126 275 719 903 1364 1639 452
H. & S. 9 22 51 158 350 755 992 1404 1741 502
PAGE 4 10 29 121 264 704 889 1335 1626 441

Table 1: Synthetic SCC values. Distribution of 1 million predictions for Synthetic SCCs (for an
emissions pulse in 2020, in 2020 US dollars, rounded to full numbers) from the random forest model,
sampling over structural model choices and discount rate ranges from expert surveys. The first row
corresponds to the main meta-analytic result. Residual parametric uncertainty is included by randomly
sampling from the distribution of random forest residuals. Additional details in Methods.

analysis of published SCC estimates from two decades of research, and an expert survey. Standard246

discounting and damage-function parameters continue to be important. They explain around a third247

of the variance in published SCC estimates, and account for around a third of the wedge between248

what experts estimate is the central value of the SCC in the literature and what they estimate is249

the “true” SCC, all things considered. But we find that SCC estimates are also strongly shaped250

by structural model variation in the literature, reflecting alternate characterizations of preferences,251

Earth system processes, and the nature of climate change impacts. We find particularly important252

roles for improvements to Earth system modeling, allowing for persistent climate damages, and the253

representation of limited substitutability of non-market goods. Collectively, these structural model254

choices explain most of the remaining two thirds of the variation in published SCC estimates and in255

the experts’ SCC wedges.256

We find that the distribution of 2010-2030 published SCC values have a median value of $41 per257

tCO2 and a mean of $151 (after truncating the upper and lower 0.1% of the distribution). Two258

further estimates of the overall SCC and its distribution show high probabilities of SCC values well259

above current official US Government estimates of around $50 per tCO2. The first comes from experts’260

estimates of the comprehensive SCC, with a median SCC of $85 and a mean of $160 tCO2. The second261

combines the results of a random forest model fitted on the distribution of published SCCs with the262

results of the expert survey on the SCC, and a separate expert survey on the social discount rate.263

The ’synthetic SCC’ distribution derived from this approach is based on expert assessment of both the264

discount rate and alternate model structures, but is calibrated to variation in the published literature265

and also includes residual parametric uncertainty derived from the literature. This distribution has266
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a median value of $298 for the 2020 SCC and a mean of $467 tCO2 (5%–95% range: $14–$1379).267

Expert’s comprehensive assessment is thus around three times as large as what they deem reflected in268

the literature, while the Synthetic SCC is yet around three times as large as the mean in the literature,269

which is strongly driven by uncertainties. Furthermore, the mean estimates from the comprehensive270

expert assessment and the Synthetic SCC are roughly three and nine times larger than the current271

formal US SCC estimate, respectively. The Synthetic SCC is also considerably higher in magnitude272

than other recent estimates that included fewer structural models and a smaller set of parametric273

uncertainties (3, 12, 38), while experts’ comprehensive SCC estimate is only slightly lower. There is274

thus a substantial and varied body of evidence pointing towards using higher SCCs in policy-making.275

Qualitative evidence from expert recommendations (detailed in SI Section S.2.2.8) and our quantitative276

findings suggest that future work on the SCC should more closely consider the role of structural model277

variation alongside parametric uncertainty.278

Beyond the multiple lines of evidence for relatively high central estimates of the SCC, our findings also279

reinforce the critical role of uncertainty in climate policy analysis. All SCC distributions reported in this280

paper are both broad (with 90% confidence intervals spanning 2 orders of magnitude) and substantially281

right-tailed (with mean values between 50 and 100% larger than the median). Our analysis of variance282

suggests this uncertainty arises both from well documented parametric uncertainties (for instance in the283

equilibrium climate sensitivity) but also from more fundamental structural uncertainties in the nature284

of the welfare loss from climate change. Median SCC values from the literature, expert assessment285

and synthetic SCC distribution are all higher - in some cases very substantially so - than the official286

U.S. government estimate, implying an urgent need to update these estimates (and the corresponding287

level of climate policy ambition) to reflect current scientific and economic understanding. However, it288

is also the case that a substantial fraction of the expected (i.e. mean) SCC arises from the existence289

of unlikely but very adverse outcomes. This in turn implies an important role for the insurance-like290

benefits of climate policy in limiting exposure to downside risk (8,35).291
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S1 Dataset summary

Summary statistics are shown in Table S1, but to provide a taste of the data: the median paper has
two authors and reports 6 estimates; it calculates the SCC of an emission in 2020, using a pure rate
of time preference (PRTP) of 1% and a elasticity of marginal utility of consumption (EMUC) of 1.45;
this results in a central SCC value of $71.25.

The following figures describe other features of the published papers dataset collected as part of the
meta-analysis.

1



Unique values
N unique

Papers 1823 147
Estimates 1823 1360
Authors 1823 231
Emissions Scenario 1813 88
Socio-Economic Scenario 1702 63
Damage Function Info. 1142 91
Structural model modifications and assumptions

N present
Backstop Price? 1823 19
Other Market Failure? 1823 50
Declining Discounting? 1823 72
Market Only Damages 1823 53
Carbon Cycle 1823 359
Climate Model 1823 382
Climate Tipping Points 1823 50
Damages Tipping Points 1823 168
Persistent Damages 1823 122
Epstein-Zin 1823 77
Model Ambiguity 1823 42
Limitedly-Substitution 1823 60
Inequality Aversion 1823 117
Learning 1823 108
Alternative ethics 1823 16

Uncertainty assumptions
N present

Parametric sources of uncertainty
TFP Growth 1823 120
Population Growth 1823 55
Emissions Growth 1823 70
Transient Climate Response 1823 74
Carbon Cycle 1823 95
Equilibrium Climate Sensitivity 1823 464
Tipping Point Magnitude 1823 130
Damage Function 1823 368
Adaptation Rates 1823 41
Income Elasticity 1823 82
Constant Discount Rate 1823 4
EMUC 1823 61
PRTP 1823 43
Risk Aversion (EZ Utility) 1823 7

Uncertainty information
Extreme limits 1823 348
Tails (≥ 95%) 1823 261
Central uncertainty (< 95%) 1823 276

Summary values
N mean median min max

Authors per paper 1823 2.61 2.00 1.00 9.00
Estimates per paper 1823 12.40 6.00 1.00 249.00
SCC Year 1820 2039.62 2020.00 1995.00 2300.00
Central Value ($ per ton CO2) 1701 252.21 71.25 -23.79 75287.61
Reported Base Model SCC (if applicable) 837 107.00 43.74 -1.98 15063.81
Constant Discount Rate (%) 493 2.92 3.00 0.00 10.00
PRTP 1298 1.01 1.00 -1.10 5.00
EMUC 1234 1.41 1.45 0.00 5.00
RRA 78 6.84 9.50 0.00 10.00
IES 76 1.26 1.50 0.50 2.00
Tail uncertainty level 363 91.19 95.00 50.00 99.90

Table S1: Summary statistics of the SCC dataset. The Unique values table list the number of unique
values given for categorical attributes of the estimates. The Structural assumptions and Uncertainty
assumptions list the number of estimates for which the structural model modification or source of
uncertatinty, respectively, was included. The Summary values table describes numeric columns in the
database.
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(a) Distribution of publication years (b) Distribution of SCC pulse years
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Figure S1: Distribution of (a) publication years and (b) SCC pulse years in the dataset. The distribu-
tion of publication years is per publication, while the distribution of SCC pulse years is per estimate
since a publication may have multiple estimates.
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Figure S2: Discount rates used in SCC studies, by year.
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Figure S4: Number of estimates with each pair of structural model modifications. Numbers along the
diagonal show the total number of estimates containing each change.
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S2 Methods

S.2.1 Meta-analysis

S.2.1.1 Abstract Search

SCC values for use in the meta-analysis were identified from a systematic search of Web of Science,
EconLit and Scopus databases. Criteria for the search were peer-reviewed papers published from 2000
to 2020 and containing one of the following search terms:

social cost of carbon, social cost of CO2, social cost of greenhouse gases, social cost of GHG, optimal
climate policy, optimal carbon price, optimal CO2 price, optimal carbon tax

The search was conducted at the end of September 2020 and so included papers published by that
end point. After removing duplicate entries, the search returned 2839 papers. These were further
screened by a team of research assistants who read through the abstracts to determine whether the
paper was likely to report an original, global social cost of carbon estimate. RAs were instructed to err
on the side of keeping papers in the sample if in doubt to avoid dropping relevant papers. 1110 of the
2472 papers initially identified as not containing an original SCC value were re-evaluated by a second
RA, an exercise that produced 98% agreement with the original coding. A further 478 abstracts were
re-evaluated a third time by a different RA with 99% agreement with the second round of coding.

After the initial abstract review, 295 papers remained that potentially contained original SCC esti-
mates. These were read by members of the author team and SCC values with details of modelling,
preference parameters and uncertainty ranges were coded in an initial round of data collection. The
author team identified 139 papers producing original SCC estimates of the 295. A further 8 papers
meeting the inclusion criteria were identified at this stage and were also included, bringing the total
number of papers included in the analysis to 147.

S.2.1.2 Data Collection and Coding

A challenge of attempting to analyze and compare variation in reported SCC across multiple papers
is the variety of scenarios, model structures, and parameter values used in different papers. Authors
also take different approaches in presenting results and in sampling and investigating uncertainties. A
data coding template was developed to extract data on SCC and modeling covariates in a consistent,
flexible, and parsimonious way to allow for comparison of values across papers.

The template developed iteratively during the initial round of paper review by the author team. Once
all papers had been coded once, 18 papers were coded for a second time by a different person and
SCC distributions compared. Using experience from the initial coding and comparing discrepancies
and ambiguities arising from the re-coding exercise, we developed a finalized code book describing how
SCC values and model covariates should be recorded from papers. All papers were re-read and coded
using this finalized code book.

The coding process adopted (given in full as an addition to this Supplement) allows for recording
unique SCC values from papers for particular years, discounting assumptions, socio-economic and
emissions scenarios, damage functions, and model structure. If the paper reports effects of parametric
variation on the SCC, this is also recorded (as distribution quantiles or min and max values) along
with the nature of the parametric variation reported in the paper. The final round of coding produced
1823 unique SCC values (or distributions) arising from the 147 papers.

S.2.1.3 Data Cleaning and Standardization

Following the systematic collection of raw data from the papers, we undertook a series of steps to make
values comparable across papers. Firstly, SCC dollar values were adjusted to 2020 dollars using the
GDP Implicit Price Deflator from the St Louis Fed (1) . If a paper did not report the dollar year of the
SCC, we first attempted to infer a dollar year based on that used by the baseline model modified or
re-calibrated in that paper (e.g DICE2016 or FUND3.9). If this was also unavailable then we assumed
a dollar year of 5 years prior to the publication date.
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A second important standardization involved imputing comparable discount rates across all values.
Approximately 30% of our entries use a constant discount rate to calculate the SCC. The vast majority
of the remainder use Ramsey discounting, which depends on two preference parameters (the pure rate
of time preference and the elasticity of marginal utility of consumption) and the consumption growth
rate. To infer an effective discount rate for SCC values using the Ramsey rule, we merge in information
on the consumption growth rate for the relevant time-period under the socio-economic scenario used
in the paper. Consumption growth rates from 2020 to 2200 (if available) were identified for multiple
different integrated assessment models (10 versions of DICE, RICE 2010, 13 versions of FUND, the
SSP scenarios and the older SRES scenarios). After merging in the per-capita consumption growth
rate, we calculate the effective discount rate for that SCC value using the Ramsey rule given the
reported preference parameters. If we are unable to match a consumption growth rate to a particular
SCC value, we impute an estimate based on the average consumption growth rate across all scenarios
for that SCC year.

S.2.1.4 Distribution Fitting

We record quantiles of the probability distribution for each SCC value, to the extent that this infor-
mation is provided by the underlying papers. The full set of quantiles recorded across paper consist
of 0.1%, 1%, 2.5%, 5%, 10%, 17%, 25%, 50%, 75%, 83%, 90%, 95%, 97.5%, 99%, 99.9%. Where SCC
sensitivity to non-probabilistic parameter changes are reported, we record the minimum and maximum
of these. The number of SCC observations reporting each of these quantiles is shown in table S2.

Quantile Count Percent
Min 309 17%
0.1th 3 0.2%
1th 4 0.2%
2.5th 4 0.2%
5th 224 12.3%
10th 23 1.3%
17th 72 3.9%
25th 21 1.2%
50th 377 20.7%
75th 21 1.2%
83rd 72 3.9%
90th 29 1.6%
95th 257 14.1%
97.5th 4 0.2%
99th 36 2%
99.9th 7 0.4%
Max 324 17.8%

Table S2: The quantiles recorded across SCC distributions. The number of SCCs with information
on each quantile is shown in the Count column, and this as a percent of all SCCs is shown in the
Percent column. The Min and Max entries are recorded when sensitivity tests are described with
no probabilistic information, while the remaining are used when recording probabilistic analyses (e.g.
confidence intervals).

Depending on the available quantiles, we fit different probability distribution functions. The following
conditions are applied to each observation:

1. If only the central value is given, the SCC is treated as deterministic.

2. If only the minimum and maximum are given with the central value, a triangular distribution
over the provided values is used.

3. If other quantiles are given along with a minimum (maximum), the distribution is bottom-coded
(top-coded) to this value.

4. If a 0.1% or 99.9% value is given, the distribution is truncated to these values.
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5. If a central value (mean or median) and one other (non-truncating) quantile is given, the distri-
bution is assumed to be Gaussian.

6. If a central value (mean or median) and two other (non-truncating) quantiles are given, the
distribution is assumed to be either a Skew normal or a exponentially modified normal, whichever
produces a better fit to the quantiles.

7. Otherwise, the distribution is assumed to be a mixture of up to k - 2 Gaussians, where k is the
number of fitting values (quantiles and the mean SCC value).

8. If cases 2 - 6 are used, an alternative model consisting of a piecewise uniform distribution with
weights from the spans between quantiles is tried as an alternative, and the best-fitting distri-
bution is returned. We also fit a left and right tail extending beyond the most extreme reported
quantiles, selecting either a Gaussian, triangular, or exponential distribution based on which best
fits the quantiles reported above (right) or below (left) the mean.

In cases where no analytical solution exists to the parameters of the distribution, we evaluate the fit
of a potential distribution as

RMSE =

√
(µ− µ̂)

2
+
∑
k

(ak − âk)
2

where µ is the reported central value, µ̂ is the distribution mean, ak is the kth reported quantile, and
âk is the corresponding estimated quantile. This is used both to estimate parameters for distributions
and to select the preferred distribution according to the rules above. The distributions selected are
shown in figure S5 and in S3.
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Figure S5: Histogram of the continuous distributions used to fit the quantile information. The solutions
are plotted against the degree of miss-fit, described by the ratio of the RMSE to the reported central
SCC value.

S.2.1.5 Sampling

Describing the distribution of SCC values in the literature requires sampling over papers and reported
values. We investigate three different approaches to sample over the set of SCC papers:

1. Equal Paper Weighting: Each paper in the data-set receives equal weighting
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(a) Count of distributions fit to data
Distribution Unbounded Truncated

Delta 1140
Triangle 273
Gaussian 19 1

Skew-Normal 102 2
Piece-wise Uniform 225 61

Total stochastic 683
(b) Count of tails fit to piece-wise distributions

Distribution Left-Tail Right-Tail
Triangle 139 99
Gaussian 88 97

Exponential 3 34
Total piece-wise tails 230 230

Table S3: Information about the distributions fit to the reported SCC information. (a) The general
distribution applied, and whether it is truncated or not. Delta, Triangle, and Gaussian distributions
are applied in particular cases, while Skew-Normal and Piece-wise Uniform distributions are chosen
based on goodness-of-fit. The Total stochastic row excludes Delta distributions. (b) For piece-wise
uniform distributions, the tails fit based on quantile information. In total 230 piece-wise uniform
distributions have tail information, including 5 which are truncated; the remaining 56 are bounded
(uniform to the minimum and maximum).

2. Informational Weighting: Papers more likely to contain more independent estimates are
weighted more heavily than papers likely to have estimates highly correlated with other papers
in the dataset. We operationalize this by calculating a shared co-author index that compares
the average number of co-authors shared between paper i and paper j compared to an estimated
null value based on 250 random draws that fix the number of authors in the sample and the
number of authors on papers, but randomly reshuffles co-authors. Papers with average shared
authorship less than the mean of the null distribution receive full weight while those with higher
values receive lower weights that gradually decline with higher levels of shared authorship across
the 147 papers in the dataset.

3. Citation Weighting: Papers with higher citation counts (based on Google Scholar) are weighted
more heavily. To avoid mechanically placing higher weight on older papers, weighting is based
on the average citations per year since publication

After sampling the paper, using the three alternate sampling schemes, all SCC observations (either
single values or distributions, depending on whether the paper reported parametric uncertainty) are
equally likely to be sampled. Table ?? gives quantiles from the three alternate sampling schemes
and shows relatively small differences across the distributions at the median and lower half of the
distribution. But the co-author weighted and citation-weighted sampling schemes have substantially
more probability mass in the upper tails, particularly the citation-weighted distribution. For simplicity,
analysis and discussion in the paper focuses on the distribution using the equal-weighting of papers.

S.2.1.6 Sensitivity Analysis

Figure S6 shows the change in the mean SCC value for the full literature distribution after iteratively
dropping each paper in the dataset (Figure S6 shows the 15 papers with the largest effect on the
mean SCC). By far the highest-leverage paper is (2), largely because this paper includes a value of
over $65,000 per ton CO2 under a “super-low” discounting scheme with a constant 0.1% discount
rate (Table J-1). Dropping this paper reduces the mean 2010-2030 SCC by $136. Only two other
papers (3,4) change the mean SCC by more than $10 and one (5) changes it by between $5 and $10.
The remaining 143 papers affect the mean SCC value by less than $5 each. Because of the extreme
effect of this single supplementary value, we drop this most extreme value from (2) in all subsequent
analysis, including all results reported in the main text.

We further investigate the degree to which the shape of the literature SCC distribution shown in 1 is
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Quantile Equal-Weighting Co-Author Weighted Citation Weighted
0.01 -9.6 -10.1 -19.1
0.025 0 1.0 0.2
0.05 2.3 4.1 3.3
0.1 6.5 9.1 7.8
0.25 17.5 22.3 17.8
0.5 46.4 56.4 52.1
0.75 130.0 157.2 177.1
0.9 290.2 354.8 591.3
0.95 615.3 660.6 1046.2
0.975 934.8 1046.2 1495.7
0.99 1438.60 1640.1 3038.44

Table S4: Quantiles of the full SCC distribution using alternate weighting schemes to sample papers.
Results in the main text sample uniformly from all papers (Equal-Weighting). Here we compare
quantiles from this distribution with alternate weighting schemes. Co-Author Weighted down-weights
papers that share large numbers of co-authors with other papers in the dataset on the basis that the
information content of these papers may be not fully independent. Citation Weighted weights the
sampling of papers based on citation counts, normalized by the number of years since publication.
The central 5% - 75% of the distributions are very similar, but citation weighting in particular results
in more probability mass on SCC values above $200 per ton CO2.

Figure S6: 15 Papers with Largest Effect on Mean SCC for the 2010-2030 period, Defined as the
Change in Mean SCC Value after Dropping the Paper from the Distribution
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Figure S7: Same as Figure 1 but separated by paper type

driven by papers reporting pure sensitivity analysis rather than papers reporting economic enhance-
ments or empirical improvements to SCC estimates. We split the distribution in Figure 1 into three
classes: pure sensitivity analyses, papers expanding the economic framework used to calculate the
SCC, and papers reporting empirical improvements to elements of the IAMs supporting SCC calcula-
tions. (This information was recorded during original data collection and more specific descriptions of
these classes is given in the attached coding document).

Figure S7 shows that high SCC values and the long right tail of values are not driven by papers
conducting pure sensitivity analysis, particularly for emissions pulse years in the 2010-2030 period.
Instead, the highest mean and median values appear in papers categorized as empirical improvements.

S.2.1.7 Tail Behavior

One of the most notable features of Figure 1 is the long right tail, extending well above $500 per
ton of CO2. The question of the role that low probability but very bad outcomes (i.e., the “right
tail” of climate damages) should play in driving climate policy has been written about extensively.
In developing his “dismal theorem”, Weitzman described the potentially high sensitivity of expected
climate damages to behavior in the far tail of the distribution (6,7). In extreme cases, the presence of
fat tails may lead to unlimited downside exposure and a distribution with an infinite mean. Even in
less extreme cases, substantial probability mass in the tails may cause the expected value to be highly
sensitive to necessarily subjective judgements regarding the probability of very bad outcomes (7).

Previous work in the literature has shown evidence for a long-right tail in climate damages. Anthoff
and Tol (8) for example, looking only at parametric uncertainty included in the FUND model, find
evidence for fat tails as the mean of the distribution continues to increase with the number of Monte
Carlo runs. Other work looking at parametric uncertainty across multiple variables and several IAMs
also typically shows a right tail on the SCC distribution (9, 10). Recently, Anthoff and Tol (11)
examined evidence for fat tails in both the parametric distribution of DICE, PAGE and FUND, as
well as across published estimates of the SCC, again finding support for fat tails in the FUND model
but only mixed evidence in the other models and in the meta-analysis.

The presence of fat tails in a distribution can be tested using the mean excess function (MEF) – the
mean of the distribution conditional on being above some threshold (12–14). If the mean above the
threshold is increasing faster than the threshold itself – then it indicates the presence of a fat tail.
The slope of the mean excess function can be used to find the value of the shape parameter for the
Generalized Pareto Distribution (GPD) that best fits the distribution (12), and the tail index (α)
of the distribution. A tail index greater than 2 indicates a thin-tailed distribution, 1 < α < 2 is a
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thick tailed distribution with finite mean but infinite variance, while α < 1 is a fat tailed distribution
with infinite mean and variance. Table S5 shows estimates of the tail index using multiple threshold
quantiles for the estimation. Regardless of how we weight observations or set a minimum threshold for
inclusion in the sample, we consistently find mean excess function slopes greater than 1, and α values
between 1 and 2. This is indicative of a fat-tailed distribution with infinite variance but finite mean.
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Table S5: Estimates of the Mean Excess Function slope, the Generalized Pareto Distribution shape parameter, and tail index.

(1) (2) (3) (4) (5) (6) (7) (8)

MEF Slope 1.731*** 1.661*** 1.315*** 1.477*** 2.856*** 2.746*** 2.624*** 1.477***
(0.085) (0.043) (0.022) (0.006) (0.094) (0.060) (0.035) (0.006)

Num.Obs. 67 135 338 1316 67 135 338 1316
Minimum Threshold Percentile 95 90 75 0 95 90 75 0
Observational Weights Num. Obs. Num. Obs. Num. Obs. Num. Obs. 1/Num. Obs. 1/Num. Obs. 1/Num. Obs. 1/Num. Obs.
GPD Shape Parameter 0.63 0.62 0.57 0.6 0.74 0.73 0.72 0.6
Estimated Tail Index 1.58 1.6 1.76 1.68 1.35 1.36 1.38 1.68

* p < 0.1, ** p < 0.05, *** p < 0.01

Note:
Standard errors are robust to heteroskedasticity. All estimates are from a sample that excludes Nordhaus (2019). Columns 1-4 weight observations of the mean
excess by the number of SCC observations used to compute it. Columns 5-8 weight observations with the inverse.
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S.2.1.8 Damage function based SCCs

For 46% of the SCC observations, we have constructed a simple functional representation of the
underlying damage relationships. These consist of 13 versions of DICE damage functions across 241
estimates, 7 versions of FUND across 83 estimates, 2 versions of the Howard & Sterner function across
261 estimates, 5 estimates using PAGE damages, 68 estimates using Weitzman damages, 11 estimates
using Dietz & Stern damages, and 168 estimates where another explicit functional form was used. A
heat map of these various damages is shown in figure S8.

Figure S8: Damages projected across temperatures, shown as a heat map of the occurance of the given
damages across studies. Illustrative common damage functions shown as curves.

The SCCs that result from these damage functions are dependent upon not only the structural features
of interest in this paper, but also the climate and socioeconomic scenario, discounting, and baseline
assumptions.

As a simple proxy for damages, we generate a damage function based SCC under identical conditions.
This is done by simulating temperatures under DICE 2013 for a baseline RCP 8.5 scenario and an
additional pulse in 2020. Damages are calculated as fractional losses of GDP in each year and totaled
under a 3% discount rate. These total damages are translated into dollars per ton assuming a constant
global GDP of $84.54 trillion.

Figure S9 shows the damage function based SCC compared to reported SCCs. Reported SCCs show a
spread around each damage function based SCC, based on the range of assumptions used beyond the
damage function. However, damage function based SCCs raise proportionally with reported SCCs, on
average. A regression explaining reported central SCC as a function of SCC year, discount rate, and
damage function based SCC achieves an R2 of 0.52.
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Table S6: Odds ratio of being in the top 10 percent of SCC values.

Odds Ratios for Being in Right Tail of Distribution

2010-2030 2030-2070 2070-2100

Parametric Uncertainty
Adaptation Rates 3.0 0.0 Inf
Carbon Cycle 0.3 0.0 12.1
Constant Discount Rate 0.0 NA NA
Damage Function 2.9 1.7 5.9
Elasticity of Marginal Utility 0.0 0.0 NA
Emissions Growth 1.3 0.0 NA
Epstein-Zin Risk Aversion 0.0 NA NA
Equilibrium Climate Sensitivity 1.7 0.7 2.6
Income Elasticity 3.0 0.0 0.0
Population Growth 0.0 0.0 0.0
Pure Rate of Time Preference 1.4 0.0 0.0
TFP Growth 0.5 0.0 1.5
Tipping Point Magnitude 0.3 0.0 0.0
Transient Climate Response 0.0 0.0 NA

Structural Change
Alternative Ethical Approaches Not Discount 0.0 NA NA
Ambiguity Model Uncertainty 1.6 3.1 0.0
Climate Tipping 2.1 0.0 0.0
Damage Tipping 0.7 0.0 0.0
Earth System 2.3 0.9 1.4
Epstein-Zin Preferences 0.8 0.0 0.0
Inequality Aversion 1.1 0.0 0.0
Learning 0.2 0.0 0.0
Limitedly Substitutable Goods 0.3 0.0 0.0
Persistent Growth Damages 8.2 3.8 0.0

Note:
The values are the odds ratio of being in the top 10 percent of the SCC distribution in each of the three periods
comparing SCCs computed using the listed change to those computed without. NA values correspond to when
we do not have SCC values with the listed change during that time period (e.g. emissions growth uncertainty
in the late period). 0 values correspond to the SCC never being in the top 10 percent with the listed change.
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Figure S9: Calculated damage function based SCC values, compared to reported central values, for
each estimate for which we can calculate a damage function based SCC. Dots are colored by the class
of damage function used, where ‘Explicit’ refers to an explicitly described functional form rather than
a standard damage function. The black line shows has unit slope, and a regression line is shown in
blue.

S.2.1.9 Multi-Variate Regression

The multi-variate analysis shown in Figure 3a uses three different types of variation in the data.

1. Full Variation (No Fixed Effects) The first model identifies the effects of different modeling
decisions using the full variation across the whole SCC distribution. The estimating equation is
(betas omitted for clarity):

log(SCCdp) = Y eari+Y ear2i +DiscountRated+DiscountRate2d+Strucd+Paramd+Otherd+
ϵidp

Where the dependent variable is the log of an SCC observtion from distribution d, from paper
p. (Using logs requires dropping the 2% of the distribution below $0.) Strucd is set of nine
indicator variables indicating whether or not the estimate comes from a model that includes
a particular structural model modifications. Paramd is a set of indicator variables describing
whether the estimate is drawn from a distribution containing parametric variation in one of 14
possible parameters. Otherd contains an additional six binary variables describing the estimate,
such as whether it is a backstop price, and whether it is derived from versions of the DICE,
PAGE or FUND models. Finally, the specification includes quadratic controls for the SCC year
and discount rate. Residuals are clustered at the distribution level (i.e. allowing for correlation
in the error term for draws from the same distribution of parametric uncertainty).

2. Within-Paper Variation (Paper Fixed Effects) The second approach adds fixed-effects by
paper. The specification is the same as above, except for the addition of paper fixed-effects that
control for all average differences between papers. Model parameters are then estimated off of
variation reported within a single paper. For instance, a single paper might report the SCC
under alternate discount rates, or with and without various structural model modifications to
the model.

3. Base SCC Comparison The final multi-variate comparison uses variation between central SCC
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values and a standard model comparison point, which we term a ”base SCC”. Many papers run
a standard version of an IAM, make some modification and report the effect of that modification
on the SCC. Since the base SCC values are not original estimates, we record them specifically as
comparison points, not separate observations of the SCC. The ’Base SCC Comparison’ regression
specifically uses variation between the base SCC values and other central SCC values that are
comparable except for specific structural model modifications reported in the paper.

The equation for this estimate is (betas omitted for clarity):

log(SCCtrs) = Struc+Other+ θtrs + ϵtrs

Where the dependent variable is the log of the SCC for a ton emitted in year t, calculated using
discount rate r, using scenario s, using both original and base SCC values. Struc and Other
are defined as above. θtrs is a fixed-effect for each unique combination of SCC year, discount
rate, and scenarios. This means that parameters are only estimated off of variation coming from
differences in model structure (or a limited set of other variables that might affect the SCC),
conditioning on these other SCC determinants. Note that because we do not have data on
parametric variation in the base SCC values from most papers, this regression uses only reported
central values, not the full distribution including parametric uncertainty.

Note that the different variation used in these three approaches is distinct and, correspondingly, that
the interpretation of the coefficients shown in Figure 3a is different for each model. For example, the
effects of incorporating tipping points in the damage function are positive for the Base SCC comparison
and the Paper Fixed Effects models, but are slightly negative in the Full Variation model. This can
be rationalized if the set of papers that allow for tipping points in the damage function tend to, on
average, incorporate them into a base model that produces an SCC on the low end of the full set in
the data. This means that, on average, SCC from models with this structural model modification
are lower than average (i.e. a negative coefficient in the Full Variation model), but the effect of this
change, relative to a model that is the same except for this change, is an increase in the SCC (i.e.
positive coefficients in the Paper Fixed Effects and Base SCC Comparison models).

When all three sets of variables are included, a complex regression tree emerges (see Figure ?? a).
The inclusion of a Carbon Cycle is the most predictive division, in line with the previous analyses.
Beyond this, the SCC year and effective discount rate are highly predictive. Since these variables enter
into the SCC continuously, while the regression tree is best at identifying discontinuous changes, we
next factor our the analysis variables, as quadratics. These variables explain 18.5% of the variance in
log-SCC values.

The regression tree for the remaining variation continues to the dominated by the carbon cycle decision.
At the second level, the use of persistent damages is most significant, with models using persistent
damages showing double the SCC of the average model when carbon cycle changes are not used,
and showing 10 times the SCC when carbon cycle changes are included. Below this level, changes in
the damage function reflected in the damage function based SCC are more predictive than any other
structural model modification.

S.2.1.10 Analysis of variance

The analysis of variance determines the portion of the total variance attributable to each predictor.
For this analysis, we use Paper Fixed-Effects regression discussed in section 3, except that we drop
the SCC year quadratic and subset the data to just SCC years from 2010 to 2030 (inclusive). The
estimates for each predictor are reported in table S7.

When reporting variances in the bar chart in the main text (figure 3b), parametric and structural
predictors are combined. Specifically, Trans. Climate Resp., Carbon Cycle (Param), Eqm. Climate
Sens., and Earth System are reported as “Earth System”; Damages Tipping Points and Tipping Point
Size are reported as “Damages Tipping Points” (but not labeled in the figure); Epstein Zin and
Risk Aversion are reported as “Epstein-Zin”; Model group (an indicator of DICE, FUND, PAGE, or
other) and Ambiguity are reported as “Model & Model Uncertainty”; TFP Growth, Pop Growth, and
Emissions Growth are reported as “Socioeconomic Uncertainty”; Const. Discount Rate and a quadratic
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Source of variation Estimate LOO Range Bag Range
Earth System 5.05 5.24 [5 - 7] 7.75 [0 - 41]
Climate Tipping Points 0.56 0.58 [0 - 1] 1.24 [0 - 4]
Tipping Point Size 0.06 0.07 [0 - 0] 1.42 [0 - 3]
Growth Damages 12.29 12.9 [12 - 17] 23.45 [5 - 80]
Epstein Zin 0.71 0.77 [1 - 1] 3.39 [0 - 24]
Ambiguity 0.01 0.02 [0 - 0] 0.53 [0 - 1]
Limited-Substitutability 4.53 4.66 [4 - 6] 4.95 [0 - 31]
Inequality Aversion 2.68 2.73 [2 - 4] 2.23 [0 - 9]
Learning 5.49 5.75 [5 - 7] 14.07 [6 - 84]
TFP Growth 2.57 2.74 [2 - 4] 9.76 [1 - 53]
Pop Growth 0.16 0.24 [0 - 1] 6.58 [0 - 36]
Emissions Growth 2.76 2.82 [2 - 4] 1.55 [0 - 5]
Trans. Climate Resp. 0.28 0.3 [0 - 0] 1.18 [0 - 4]
Carbon Cycle (Param) 0.2 0.23 [0 - 1] 0.55 [0 - 3]
Eqm. Climate Sens. 1.7 1.73 [1 - 3] 1.17 [0 - 4]
Damages Tipping Points 0.07 0.07 [0 - 0] 1.68 [0 - 9]
Damage Function 4.52 4.88 [4 - 7] 12.07 [1 - 49]
Adaptation Rates 0.91 1.03 [1 - 2] 7.61 [1 - 43]
Income Elasticity 0.42 0.47 [0 - 1] 4.59 [0 - 15]
Const. Discount Rate 0.59 0.75 [0 - 2] 7.49 [0 - 45]
EMUC 3.47 3.67 [3 - 5] 9.64 [2 - 45]
PRTP 0 0.06 [0 - 1] 5.26 [0 - 46]
Risk Aversion 0.16 0.15 [0 - 0] 0.99 [0 - 6]
Model group 23.59 23.87 [21 - 27] 27 [13 - 69]
Other Market Failure 1.45 1.52 [1 - 2] 1.72 [0 - 7]
Damage-based SCC 0.44 0.56 [0 - 2] 2.82 [0 - 16]
Discount Rate 25.32 25.77 [24 - 29] 37.78 [23 - 80]

Table S7: Analysis of variance (ANOVA) results corresponding to the regression in figure 3b. All
entries are percentages of explained variance, excluding variance from paper fixed effects. The Estimate
column reports the percent of explained variance across all included variables, as shown in the figure.
The LOO Range reports the central estimate and range of variances calculated when each individual
predictor is dropped, and the Bag Range reports central estimate and range of variances calculated
when a random subset of these predictors is selected. Ranges are 95% ranges.
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in (effective) Discount Rate are reported as “Discounting”; and the Damage-based SCC, Damage
Function, Adaptation Rates, and Income Elasticity are reported as “Damage Function Parameters”.
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S.2.2 Expert survey

We invited all authors of SCC estimates included in our meta-analysis, and for whom we could obtain
a workable e-mail address, to participate in the expert survey. In the e-mail introduction (see text in
annex to this supplement), we explained that the goal of the survey is to elicit experts’ views on the
SCC, uncertainty about its value, and how various structural model modifications affect the SCC. We
communicated that results will be published without identifying any individual participant, and that
we had obtained approval from the research ethics review board at UC Davis and approval from the
social science research deanery and social science research laboratory at the University of Hamburg.
We sent invitations to the effective population of 176 SCC authors on May 22, 2022, and closed the
survey on July 07, 2022. 72 of the invited SCC authors participated, of which 68 provided quantitative
responses and 48 responded non-anonymously, with response rates of 41%, 39% and 28%, respectively,
which compares very well with similar expert surveys (15–18).

S.2.2.1 Survey design

The survey contains four questions with sub-questions and was conducted online via platform SoSci
Survey (screenshots with all survey details are provided in figures S10 to S18). The first question
elicits estimates of the distribution of the SCC in the literature for the year 2020 (the central value
and the 2.5 and 9.75 percentiles), akin to a prediction study as in the experimental literature (19),
and the distribution of the appropriate or “true” SCC in the year 2020 “all things considered”. We
consider this as an expert’s ‘comprehensive estimate’. In the second question, we elicit experts’ views
on how strongly selected structural model modifications in the literature affect SCC estimates and
whether and to what extent these model extension as reflected in the literature provide improved SCC
estimates. In the third question, we elicit experts views on what drives the potential wedge between
the SCC in the literature and the “true” SCC all things considered. Finally, in the fourth question,
we asked for expert’s views on the most important steps for improving estimates of the SCC going
forward with an open ended qualitative response option.
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Figure S10: Screenshot of the Preamble.
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Figure S11: Screenshot of Question 1.
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Figure S12: Screenshot of Question 2, Part 1.
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Figure S13: Screenshot of Question 2, Part 2.
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Figure S14: Screenshot of Question 2, Part 3.

Figure S15: Screenshot of Interim Question in case the mean estimates for the SCC from Q1 were not
answered (completely).
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Figure S16: Screenshot of Question 3, Part 1.
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Figure S17: Screenshot of Question 3, Part 2.
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Figure S18: Screenshot of Question 4 and Ending.
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S.2.2.2 Survey response cleaning

We took the following steps to clean the response data, indicated by row values #XXX, for final
analysis. Row values of 1000 and beyond relate to response received via e-mail. Specifically, we

• removed one duplicate response, which was a subset (#698, retained #699)

• changed 2.5 and 9.75 percentiles for a single case in which they were entered reversely (#718)

• disregarded responses to Q3 of respondents who did not move any of the cursors.

• disregarded responses to Q3 in one case that only provided an all-things-considered SCC but no
literature value and where the weights did not add up (#682)

• disregarded responses to Q3 in one case where weights did not add up and respondent ticked
“Do not answer this question.” (#626)

• disregarded responses to Q3 in one case where weights did not add up, appeared extremely
strange and the respondent was anonymous so that it was not possible to follow-up.

• re-weighted weights in Q3 to add up for one respondent (#599) whose weights did not add up
and who ticked “Rescale my weights such that they add up.” in the survey

• added additional response categories, such as explained non-responses for authors who had retired
in the meantime

• corrected SCC values of one expert (#576) based on e-mail communication following-up on a
comment in the survey (see below) that the respondent had missed the option to go back within
the survey to adjust the SCC estimates for equity weighting.

• de-anonymized one expert after the respondent had identified themselves and their response
bilaterally (#750)

• added qualitative responses to Q4 from four experts who respondent via e-mail, and a quantitative
response to the SCC wedge for one respondent (#1000).
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S.2.2.3 Publication bias analysis

Figure 1 shows the distribution of SCCs published in peer-reviewed journals over the 2000-2020 period.
It is important that this is not interpreted as a standard meta-analysis. In the classic meta-analysis,
multiple studies have produced empirical measurements of the same quantity, which can be combined
to give lower-variance estimates of the quantity of interest. The SCC estimates we bring together here
are fundamentally distinct in that they are not observational measurements of an empirical quantity,
but primarily results of model simulations. The variation in Figure 1 reflects not uncertainty related to
statistical sampling (as in a classic meta-analysis), but epistemological uncertainty in model parameters
and structure. The distribution should be thought of as an integration over this uncertainty as reflected
in the published literature over the last 20 years.

This interpretation does raise the question of how different the distribution would be if it also included
unpublished SCC estimates (or those published but not in peer-reviewed journals). The question of
publication bias arises repeatedly in the context of standard meta-analyses, where it refers to missing
evidence of small effect sizes due to a lack of incentives to publish null effects. It is not clear whether
similar asymmetric publication incentives operate around SCC values and, if so, in what direction
they would shift the distribution. On the one hand, there is some evidence of a conservatism in
scientific publishing, such that one might expect an anchoring around previously published estimates
and therefore a narrower distribution in the published literature compared to unpublished model
results (20, 21). On the other hand, others might suggest that extreme SCC values (either very high
or very low) might be more noteworthy and so be more likely to proceed to publication, implying
a wider distribution in the published literature. Existing studies show evidence in both directions,
with Havranek et al. (22) finding substantively lower average SCC values in peer-reviewed published
journals than those published in other outlets while a review by Tol (23) finds the opposite.

Our expert survey was designed to fill key knowledge gaps on the SCC that the meta-analysis alone
cannot answer: the role of publication bias and insights on key drivers of the SCC and next steps for
improving its estimation. The standard concern regarding publication bias is that due to researcher
and editorial incentives, leading to file drawer problems or questionable to fraudulent research practices
(e.g. p-hacking, data fabrication), estimates of a true effect size is represented in a biased form in the
literature. Standard approaches are to examine z-scores of irregularities in p-values for experimental
studies that aim to investigate some true effect size. Yet, these are not directly applicable to our setting,
as many individual SCC papers do not have the goal of producing the best estimate of the SCC. These
papers are comparative in nature and explore the effect of some variation in plausible parameters or
some extension of the IAM structure to investigate how this affects the SCC. Oftentimes, they do so
starting from a well-established, conventional baseline, such as the latest DICE model, and consider
only one or a few extensions. Thus, these studies will—by design—provide a ‘biased’ estimate of what
the study authors may themselves consider an appropriate estimate of the “true” SCC.1

Previous work has investigated publication bias by comparing peer-reviewed and non peer-reviewed
work on the SCC (22). Yet, for the reasons detailed above, comparing published and unpublished
papers trying to estimate the SCC does not provide the most useful benchmark for detecting pub-
lication bias. We therefore investigate the role of publication bias by means of the expert survey.
Specifically, any differences between an expert’s estimate of the 2020 SCC in the literature and the
true comprehensive value of the SCC serves as an indication of publication bias.

Our data suggests that, at least in the view of our surveyed experts, the peer-reviewed literature
exhibits a substantial and significant downward bias in the central SCC as compared to experts’
subjective ”true” central estimate (t-test, t=6.063, two-sided P<0.000). This is also apparent given
the substantial rightward shift in the ”true” distribution—one that asked experts to account for all
things they deemed missing or imbalanced in the published literature—compared to the estimated
literature distribution in Figure 1. Indeed, we find that 82.82% of experts think the central SCC in
the literature to be biased downwards as compared to its true value, 9.09% think that it is represented
correctly in the literature and 9.09% think the SCC to be biased upwards in the literature.

1There may be an incentive—akin to p-hacking in the empirical literature—for such comparative studies, as the
chance that they get published well may increase if the paper reports a strong effect of introducing a certain structural
model modifications. The magnitudes of structural model modifications may thus be overestimated in the literature.
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S.2.2.4 Non-response and strategic response bias analysis

We conduct a number of non-response and strategic response bias checks (15, 16). To investigate
non-response bias, we compare non-anonymous respondents with the rest of the population of authors
along observable characteristics such as their continental location, gender and year of PhD, number
of publications in SCOPUS and their h-index. We complement this with data from our meta-analysis
on the median 2010-2030 SCC in their published papers, the median synthetic discount rate employed
in their SCC papers, as well as the proportion of their SCC estimates that contain one of the major
structural model modifications, and the proportion of their SCC estimates that we classified as ‘frame-
work expansion’ or as ‘empirical improvement’. Overall, we find that identified respondents (nir = 48)
exhibit very similar characteristics as the anonymous part of the population sample (nnon−ir = 128),
which contains the anonymous respondents (nar = 27). We find no significant differences across groups
in terms of being located in North-America (t-test, t=0.970, two-sided P=0.334), Europe (t-test, t=-
1.476, two-sided P=0.142), Asia (t-test, t=0.522, two-sided P=0.602) or Oceania (t-test, t=0.598,
two-sided P=0.550), being classified as ‘male’ (nir = 44, nnon−ir = 109; χ2(1)=1.303; P=0.339),
year of PhD award (t-test, t= -0.4799, two-sided P=0.632), number of publications (t-test, t=0.701,
two-sided P=0.484) and h-index (t-test, t=0.570, two-sided P=0.0.569. We also find no significant
differences in terms of their synthetic discount rates employed (t-test, t=-1.461, two-sided P=0.146)
and their 2010-2030 SCC estimates (t-test, t=-0.189, two-sided P=0.851). Furthermore, identified
respondents have published more frequently on what we classified as ‘empirical improvement’ (t-test,
t=-2.432, two-sided P=0.016), they do not exhibit a higher proportion of having published a ‘frame-
work expansion’ (t-test, t=-0.384, two-sided P=0.702), nor on any of the sub-classifications, such as
on climate or damage tipping points (t-test, t=0.615, two-sided P=0.975; t-test, t=-1.461, two-sided
P=0.540), earth system model updates (t-test, t=-1.281, two-sided P=0.202), alternative utility func-
tion specifications, e.g. using Epstein-Zin (t-test, t=-1.281, two-sided P=0.0.885), or alternative ethical
approaches (t-test, t=0.283, two-sided P=0.778). This null finding is noteworthy as having mentioned
some of these in the initial e-mail invitation might have induced experts who have published more on
these to be more likely to respond to the survey.

To investigate strategic response bias, we compare responses by anonymous and identified respondents.
We find no significant difference in views on the central “true” SCC all things considered (t-test, t=-
0.991, two-sided P=0.325), and the upper and lower percentile ranges are almost identical (two-sided
P=0.898 and P=0.949). While anonymous respondents estimate a much lower central 2020 SCC in the
literature (t-test, t=-2.497, two-sided P=0.015), the upper and lower SCC literature range estimates
do not differ (two-sided P=0.420 and P=0.241). Both groups also do not differ in terms of how
frequently they think that the “true” central SCC is higher than the central SCC in the literature
(nar = 25, nir = 41; χ2(1)=0.916; P=0.339), and in the quantitative size of their SCC wedges
(t-test; t=-0.486, two-sided P=0.628). Further, we do not find any differences in their views on
whether any of the structural model modifications represent an improved estimate of the SCC (t-tests,
lowest P=0.140, for persistent growth effects), and anonymous respondents are also not more likely to
provide comments on any of the questions (lowest χ2(1)=0.012 is P=0.358 for Q3). Yet, anonymous
respondents put considerably more weight on ‘other drivers’ in question 3 (t-test, t=-3.027, two-sided
P=0.004), and less weight on pure time discounting (t-test, t=1.731, two-sided P=0.090). Whereas
anonymous respondents are not more likely to provide comments on structural model modifications
in Q2 or on next steps for improving the SCC (nar = 27, nir = 48; χ2(1)=0.012; P=0.913). While
responses of the anonymous sample are different along some dimensions, we do not detect a clear signal
of efforts to strategically distort the survey results, in particular as the “true” comprehensive SCC does
not differ across samples. Differences appear to rather stem from different views on the SCC in the
literature and on the role of pure time preference in driving the SCC wedge. To be inclusive of the
whole range of reasonable views, we thus retain anonymous responses as part of our main analysis. We
repeat the strategic response bias analysis by splitting the sample at the median into early and late
respondents. The general hypothesis is that respondents who want to strategically affect the results
may respond earlier. We find no significant differences along all those dimensions reported on above,
except that early respondents are more likely to provide comments on next steps for improving the
SCC (nearly = 33, nlate = 33; χ2(1)= 7.174; P=0.007).
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S.2.2.5 Additional analyses of the merged dataset

Among the identified respondents, a higher 2010-2030 SCC median in an expert’s own publications
is highly significantly associated with estimating a higher SCC in the literature (β=0.05, t33=4.50,
P <0.000), and weakly significantly associated with a higher “true” SCC estimate (β=0.12, t33=1.75,
P=0.089).

We do not find significant differences in literature or “true” SCC estimates across continents (but those
by experts from Asia tend to be lower and those by experts from Europe tend to be higher).

We find a strongly significant gender effect: The few female experts estimate a significantly higher
SCC value in the literature (t-test, t=4.269, two-sided P<0.001) and also a “true” SCC value that is
more than twice as high as the corresponding estimate by male experts, with $288 versus $130 (t-test,
t= 3.80, two-sided P<0.001), and a higher SCC-wedge (t-test, t= 2.74, two-sided P=0.009).

We next relate the proportion of an expert’s included papers published on a specific structural model
modification and whether they are more likely to agree or strongly agree that “papers in the current
literature that incorporate this structural change produce a better estimate of the SCC than papers
that exclude it” (Q2). We do not find this to be the case for any of the extensions. However, we
find that having published (a higher share) of papers on some specific extensions—persistent growth
damages (β=14.01, t40=2.13, P=0.040), Epstein-Zin preferences (β=22.73, t40=6.63, P <0.000), and
distributional weights (β=27.34, t40=2.87, P=0.007)—is associated with assigning more weight on
these structural model modifications as drivers of the central SCC-wedge.

S.2.2.6 Survey Distribution

Experts were asked their estimates of the mean SCC (for both the literature and their comprehensive
estimate) and the 2.5th and 97.5th percentile. We a similar algorithm as that described in S.2.1.4 for
the literature distribution to find best-fit distributions for the reported values, though with a focus
on matching the surveyed mean value over the surveyed tails, following our principle above to assume
short tails when possible.

The fitting algorithm proceeds as follows:

If the expert only provided a mean estimate without quantiles, the SCC is assumed to be deterministic
at that central value.

If the expert provided one quantile (2.5% or 97.5%), a symmetric triangular distribution is assumed.

If the expert provided two quantiles (2.5% or 97.5%), a piecewise uniform distributions is assumed
with two segments. The mid-point and width of these two distributions is uniquely determined by
the quantiles and mean value. We further assume symmetric tails, using the tail fitting method above
to generate left and right tails and then treating each tail as a mixture of these two results. In some
cases (three total responses), no distribution following these assumptions can fit the reported data,
and these entries are dropped from the combined distribution.

Expert distributions shown in Figure 1 are based on 1000 samples from each fitted distribution from
each expert. This therefore incorporates elicited tail information from experts in addition to the
central estimates. The results are reported in Table S8. The mean of $158 differs slightly from the
mean of reported mean values taken directly from the survey, due to dropping three responses for
which distributions could not be identified.

2.5% 5% 25% 50% 75% 95% 97.5% Mean
Literature -4 3 18 34 62 245 450 65
Comprehensive -7 3 41 85 166 581 1055 158

Table S8: Fitted expert survey SCC estimates. We elicited the central (mean) SCC and the 2.5
and 97.5 ranges. From this, we fit a istribution of expert survey estimates of the 2020 SCC in the
literature and the comprehensive SCC, all things considered. Additional details in Methods.
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S.2.2.7 Survey Meta-analysis

We apply a form of Bayesian hierarchical modeling to interpret survey responses to the question “To
what extent do you agree with the statement that papers including X produce a better SCC than those
excluding it?” The model makes the following assumptions:

• Each expert has a belief about the likelihood that including a given structural model modification
is beneficial. This believe is uncertain, and represents a distribution over probabilities.

• The response categories– “Strongly Disagree”, “Disagree”, “Neither Agree nor Disagree”, “Agree”
and “Strongly Agree”– represent a discretization of this probability space. To choose one cate-
gory, an expert will take a random draw from their belief distribution.

• Each expert has a consistent ordered scheme for mapping probability values to categories. Also,
they accurately report their beliefs.

• We can usefully talk about the “common belief” across experts. This is a (hyper-)distribution,
from which each expert’s beliefs are drawn. It is possible to partially pool the beliefs across the
experts to generate an estimate of this common belief.

This represents a kind of meta-analysis, which allows us to simultaneously generate an estimate of
the common beliefs about structural model modifications, and expert beliefs that are consistent with
these. If the expert beliefs are estimated to be very uncertain, a high level of pooling will be used since
all estimates will be consistent with a common value. If expert beliefs are certain and not alike, little
pooling will be used and the estimate of the common belief will be uncertain.

We use the following Bayesian model to implement these ideas. Let the central logit value of the belief
of expert j on question k be

θjk ∼ N (µk, τk)

The actual reported level is a categorical variable drawn from an ordered logistic:

ljk ∼ OrderedLogistic(hθjk, hc⃗j)

where h is a global parameter that determines the spread around the central value (that is, how likely
it is for an expert to report a category higher or lower than their central belief).

The categorical divisions are deviations from a prior understanding of the categories, represented by

cj ∼ N ([logit(0.2), logit(0.4), logit(0.6), logit(0.8), logit(1.0)], σ)

where σ determines the variation between expert understandings of the categories.

We further impose weakly informative priors that h ∼ Exponential(0.001) and τk ∼ Cauchy(0, 1).

The result of this analysis is shown in Figure S21. Some questions show a higher degree of agreement
(e.g., ambiguity/model uncertainty) than others (e.g., Epstein-Zin preferences). The mean of the
common belief estimate is always very close to a simple average of experts’ answers. However, the
range of probabilities for the common belief, with a standard deviation of about 0.1, is considerably
better constrained than the original values. Summary statistics and parameter values are shown in
Table S9.
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Persistent / Growth Damages Tipping Points: Climate Tipping Points: Damages

Inequality Aversion Learning Limited Substitutability
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Figure S21: The Bayesian hierarchical modeling estimates of expert central beliefs. Each expert is
shown as a line, colored by the category of their answer and placed along the x-axis at their estimate
belief level. The distribution of the common belief is shown in black, and a simple average of expert
opinions, assuming that reported answers represent the center of five probability bounds, is shown in
grey.

mean se mean sd 2.5% 25% 50% 75% 97.5% n eff Rhat
Ambiguity µ 0.35 0.00 0.10 0.15 0.28 0.35 0.42 0.56 5881.72 1.00

Earth System µ 0.79 0.00 0.12 0.56 0.71 0.79 0.87 1.05 4277.46 1.00
Epstein-Zin µ 0.40 0.00 0.12 0.16 0.32 0.40 0.48 0.63 4430.73 1.00
Inequality µ 0.48 0.00 0.14 0.21 0.39 0.49 0.58 0.76 3132.52 1.00
Learning µ 0.34 0.00 0.10 0.15 0.27 0.34 0.41 0.54 7069.27 1.00

Limited Sub. µ 0.77 0.00 0.11 0.56 0.70 0.77 0.85 1.00 5690.99 1.00
Persistence µ 0.42 0.00 0.10 0.22 0.34 0.41 0.49 0.62 5665.33 1.00

TPs: Climate µ 0.73 0.00 0.13 0.47 0.64 0.73 0.81 0.98 4692.44 1.00
TPs: Damages µ 0.49 0.00 0.12 0.25 0.41 0.49 0.58 0.74 4303.60 1.00

Ambiguity τ 0.19 0.01 0.14 0.01 0.08 0.17 0.28 0.51 609.14 1.00
Earth System τ 0.44 0.01 0.19 0.04 0.31 0.45 0.57 0.81 503.55 1.01
Epstein-Zin τ 0.39 0.01 0.19 0.03 0.25 0.39 0.52 0.76 443.44 1.01
Inequality τ 0.68 0.01 0.19 0.25 0.58 0.69 0.80 1.04 249.03 1.02
Learning τ 0.21 0.01 0.14 0.01 0.10 0.20 0.31 0.51 577.08 1.01

Limited Sub. τ 0.29 0.01 0.18 0.02 0.15 0.28 0.42 0.65 598.69 1.01
Persistence τ 0.22 0.01 0.16 0.01 0.09 0.20 0.33 0.56 506.57 1.00

TPs: Climate τ 0.48 0.01 0.22 0.04 0.33 0.49 0.64 0.90 364.83 1.01
TPs: Damages τ 0.49 0.01 0.20 0.07 0.36 0.51 0.63 0.86 430.27 1.01

h 3.22 0.05 0.54 2.57 2.89 3.12 3.40 4.60 130.10 1.03
σ 0.36 0.00 0.04 0.29 0.34 0.36 0.39 0.45 799.47 1.00

Table S9: Posterior distribution statistics for common parameters, computed by Stan, using 4 chains,
each with iter=2000; warmup=1000. n eff is a measure of the effective number of MCMC draws of the
posterior distribution that were achieved. Rhat is a measure of convergence, where full convergence
produces a value of 1.0.
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S.2.2.8 Qualitative comments

Below we report qualitative comments received in the online survey or via e-mail, not edited except
in cases where this is necessary to preserve anonymity. Numbers refer to individual experts by row
values (#XXX). Row values of 1000 and beyond relate to response received via e-mail.

Comments on Question 2: Structural drivers of the SCC in the literature

#553 Persistent effects are still under debate about how to integrate them in IAM. Current implemen-
tations are not satisfying.

#558 My responses to b are all else equal - I would have preferred this to say the same model or paper
with or without a specific feature.

#562 Uncertainty would not alter SCC that much. Exceptions would include uncertainty about the
damage function related to tippiing points or uncertainty about how rapid the temperature
increases I believe.

#569 For most of these I put ”Neither agree or disagree” not because I don’t think they are important
to develop further, but because I don’t think the evidence base is quite there yet or because I
think there are a set of difficult ethical assumptions inherent in making these changes that I’m
not sure are better than the current assumptions.

#572 most of my responses are very impressionistic based on recollections of a partial and idiosyncratic
reading of the literature. would have to conduct a more systematic review to have any confidence
in my answers. but i assume what you want here are impressions

#576 When producing my own distribution in the previous page, I really focused on damages and
discount rate holding structure constant. However, I would note that some of these parameter
changes do not impact the social cost of carbon as much in my opinion, but instead the optimal
tax. This is particularly true for learning by doing, as learning by doing can substantially impact
the optimal tax, though I think it will have a limited effect on the most likely climate scenario.

#598 In simple models, a lot depends on how the damage function is calibrated. A simple damage
function could also include damage on capital, tipping points, non-market goods, etc. In models
with learning on damages, I assume that the model without learning does monte-carlo, does not
have the option to change the plan when information is discovered and has therefore a much
larger risk premium.

#623 I don’t think ”tipping points” as advanced by Lenton, Schellnhuber, etc are physically justified
by the available science. I think the main thing missing in terms of losses associated with CC
is a reasonable representation of the on-going costs of extreme events. These have been mostly
neglected in the development of DICE-like IAMs. I think lots of ideas around equity-weighting in
SCC estimations start to lose contact with political reality quite fast. I’m not exactly sure how
to bound ”structural changes” so I down-weighted the potential effects. These could be higher,
given some possible interpretations.

#628 it is hard to distangle the impacts of uncertainty and learning in the questions. Generallyu I
would think that uncertainty (for example in ECS, tipping points etc) increases SCC, but with
that uncerrtainty eventual learning of the issue at hand (eg ECS) reduces the SCCncreases

#633 Each of these questions merits a proper meta survey paper so my answers are highly noisy and
should not be taken too serious at all

#645 Some of the statements were ambiguous, like ’Structural changes to the temperature response to
emissions’, ’tipping points in the damage function’ or ’persistent effects of temperature change on
output’. It was very hard to evaluate what these actually mean, what their inclusion means (i.e.
how are they included in a model) and thus what impact they could have on the SCC. Model
uncertainty and ambiguity are very important concepts in this context. But are they something
that we can objectively judge and quantify in the SCC? Or are they rather points that we
should recurrently remind ourselves and reflect upon. Yes, there are mathematical theories that
allow one to incorporate second-order probabilities and the aversion to ambiguity. But does that
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really capture all the ambiguity there is, or do these theories just convey ’artificial crispness’ (as
Weitzman described this) that is not truly the thing we are after?

#659 Re some of the above topics I am aware of only one study, in others not even one. So difficult to
come up with my guesstimate.

#660 Why did you leave out CO2 fertilization effects? That’s one of the big differences among IAMs
and SCC estimates. I took the ”structural changes to temperature response” to mean the Equi-
librium Climate Sensititivity parameter. This is one of the big uncertainties in climate modeling
not only among models but between model-based and empirical estimates. The term ”tipping
points” is overly vague. The proper term is ”bifurcations”. If they exist they are properties
of the climate system, they are not induced by forcings. The literature ”incorporating tipping
points” gives a sense of looking for ways to make a simulation model crash and generate a dra-
matically larger SCC, without explaining how such a bifurcation could have existed throughout
the present and previous interglacials without causing similar crashes even during much warmer
periods. This genre looks to me to lead to higher SCC’s of lower scientific quality. Adding
growth impacts from temperature and precip changes in principle should increase the quality of
the empirical estimate but in practice the results are very uncertain and of indeterminate sign.
So they look to me like better quality but no change to the mean or median estimate. I don’t
have any familiarity with the techniques for incorporating aversion to ambiguity, Epstein-Zin
preferences or constrained substitutability.

#687 On inequality, it depends on what you mean by inequality. Current estimates show convergence
of incomes so this would increase the discount rate and reduce SCC. If you add in the inequality
of the impacts of climate change,, which are borne by the poor, then this could well increase the
SCC. If you then introduce catastrophic effects to the poor, you will have dismal theorem type
effects which could be really important welfare wise. None of this nuance can be captured by the
questions. On the climate science questions: whether updating the energy balance model will
increase or decreas the SCC, I am afraid that I have not read so many papers on this topic, so i
do not have a good basis for giving answers here. On tipping points, this is a dificult question.
We know so little about how likely they are to occur and how bad tipping points will be in terms
of economic damages that it is a difficul tcall to say that an estimate of the SCC for policy
purposes is better for their inclusion. What is required is a presentation of the range of what
is known, coupled with some decision / welfare theoretical approach to assess what the welfare
maximisng approach is when faced with such dramatic uncertainties (a la Barro, Weitzman etc.).
recent work by Dietz et al (2021) tends to indicate that tipping points will be trivial in terms of
impact on GDP due to physial factors (e.g. feedbacks) but also economic factors (discounting,
damage function and the fact that an optimal path will reduce the risks considerably) . So,
difficult to say whether I think they should inform THE SCC,but they should inform the range
of possibilities that are presented to policy makers for sure. the above comments are written
rather quickly. I think they make sense. Happy to clarify ex post if need be.

#738 I found it really hard to answer these questions. First of all because I do not think there is a true
SCC. The SCC depends on valye laden assumptions such as the discount rate, how to value the
loss of a statistical life in poor countries, how to value risk, and how to value nature... hence,
there can be no true answer here. Furthermore - how a change in the model will affect the SCC
depends of course on how the change was implemented and how that structural phenomena was
implemented before... so for some of these questions I was uncertain about how to ask. ,

#749 The only truly realistic change is including uncertainty in the scc rather than speaking of a
distirbution of scc, and that change will raise the scc

#752 I find this page of questions somewhat ambiguous as the answer usually depends on the details
of what is considered ”structural change”. Depending on these details in many if not most cases
the answer to ”part a” can change the sign and the answer to ”part b” can change from Agree
to Disagree. I decided in each case what I guessed you might be after, and I did not represent
the literature per se but that part of the literature corresponding to my guess of what you might
be after. E.g. growth change: even the DICE model has a pass through of the damages on
the capital stock (so yes, agree, important), but I assumed you are likely after assuming direct
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damages on the growth rate rather than output or capital stock (then answer is, no, disagree
that it improves the estimates conditional on current knowledge). There are similar ambiguities
in most questions.

Comments on Question 3: Drivers of the SCC wedge.
“If you put some weight on “Other drivers”, please briefly detail which other driver or
drivers you have considered, ideally with an indication of the relative magnitude?”

#576 I did not consider equity weights in my $200. If I considered equity, then I would have multipled
my estimate by 2.5 coming to an estimate of $500. I put 5% on the elasticity of marginal utility
of consumption and Epstein Zinn preferences each, as these are really a joint decision in my
opinion. I think though that market rates have declines, which further supports these differing
parameter values underlying an extended Ramsey equation.

#617 Difficult for me to answer. My main thinking and own contribution have concerned the tail
probabilities.

#626 hard to grasp this question I am afraid

#641 Shares with sliders?

#650 Generally, nonconstant discounting and monetizing more sources of damages should lead to
a higher SCC. Adaptation and more granular (geographically) treatment of damages should
decrease the SCC.

#660 Other drivers: I include endogenous adaptation here (I wasn’t sure if that’s what you meant by
allowing for learning). Updating the earth system module: I take this to mean updating the ECS
parameter to empirically-constrained ranges Adjusting the climate damage function: I include
incorporation of CO2 fertilization and global greening effects here.

#679 Measurability problem in climate damage functions: SCC considers only measurable/marketable
damages. F.e. costs of ”wildlife extinction” not considered/not measurable in terms of GDP/welfare
loss.

#687 I didn’t say other but, my responses are based on the fact that one does not need too much in the
way of other changes to get to the SCC that I would prefer. Many of the other points above are
important, but not necessary to explain the difference. there may be some discrepancy between
these responses and the previous responses, but i am explaining here the primary deerminants
of the gap in terms of my original position on the SCC which rested on the above aspects.

#697 Impact on sentient animals

#738 Of course - this is tricky to answer... so please see my answers as rough estimates. For instance
- changes in the damage function, could be done by change ion the parameters or by adding
tipping points. It is not trivial to disentangle these.. the same with the discount rate and eta vs
rho

#742 I will need to go back and do the first question. I think it would be better to have one think
through the components first, no?

Question 4: Comments on next steps in improving the SCC.
“What do you think are the most important steps for improving estimates of the SCC
going forward?”

#553 Understanding the impact of damage persistence and the interplay with adaptation.

#558 better incorporation of the latest science in the earth system modeling; ability to more ade-
quately capture tipping points, including economic ones such as collapse of maritme food sources
and massive migration better modeling of how economic systems and prices will adjust; better
modeling of uncertainty

#562 SCC fully considering the effect of learning on multiple uncertain features at the same time
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#567 Transparency about modelling choices and their effects on the SCC; improving climate damage
estimations; explicity taking into account nature’s values and relative price changes; societal
discussions and refelctions about intergenerational equity and fairness

#569 Exploring tipping points, better characterizing damage functions, improving exploration of dif-
ferent ethical frameworks.

#572 improved evidence base for calibration of damage function parameters. i.e., more empirical
studies of the influence of climate changes on economic performance and well-being.

#579 macro-economic modeling to understand pathways by which climate change might haver persis-
tent effects on the economy

#598 Combine risk and non-marketed goods, a more dynamic damage function (warming speed matters
and temperature may affect tfp growth) It is not widely known that in most models the risk
premium is actually low (increasing the risk aversion parameter from 2 to 6 increases the SCC
by a mere 5 to 10% even when there are tipping points in the model). I find that puzzling, but
it might also simply be true. Requires further research though.

#608 Better representation of the natural cycles of heat, emissions, and ecological processes (e.g.,
tipping points, methane emissions from thawing permafrost, etc.) Identification of permanent
asset damages by climate change

#620 Better damage estimates, especially better treatment of adaptation and extreme weather

#641 less theory, more empirics an end to climate determinism inclusion of the large literature on the
links between vulnerability and development inclusion of the large literature on the valuation of
health and nature young economists should learn how to use search engine and read the literature,
including papers that are more than 5 years old

#644 Invistigate and incorporate individual’s perference towards climate change, at present, we only
consider the economists’/politicians’ perferences.

#650 Quantifying and monetizing more sources of damages (e.g. impacts to marine resources). Ulti-
mately, modeling the climate system with tipping points and feedback is likely to have a larger
impact but my sense is that omitted damage sectors are the lower hanging fruit.

#659 Identifying the best studies and focusing mean statistics on these (i.e. removing clearly incom-
plete or biased studies, as they contaminate the statistics. The topic is too important to leave it
to statistics. Informed judgement is important too.

#660 Spend less time dreaming up implausible ”tipping point” catastrophes and more time quantifying
aerial CO2 fertilization effects, agricultural adaptation strategies and global greening impacts.
Also, the authors who look for growth/TFP impacts make glib associations with extreme weather,
without citing any data or IPCC assessments on the subject. The links to changes in extreme
weather are weak and of ambiguous sign. It doesn’t provide a credible rationale for expecting
TFP changes due to warming. The use of RCP8.5 and related SSP’s should be stopped. It’s
a ridiculous storyline. Authors who use it are clearly putting their finger on the scale to get a
dramatic result and a splashy headline but it is a waste of the reader’s time. There’s been very
little attention paid to Tiebout sorting, but it seems to me it should result in people relocating
themselves closer to their privately-optimal temperatures.

#669 Need better process-based models.

#673 Estimates of limited substitutability of non-marked goods Estimates of the persistence of damages
on market and non-market sectors with adaptation Robustness analyses with regard to alternative
approaches to intergenerational equity and efficiency

#679 Inclusion of additional ”damage types” in climate damage functions

#683 Dissagregation. A single number is too abstract to be useful for policy making.

#687 Damages. value of environment/relative prices, One thing that is missing from all of this is the
handling of catastrophic risk and risk in general. Issues related to the climate beta, the insurance
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properties of climate mitigation and so on.

#693 better understanding of climate damages, both the aggregate across time for different climate
futures, but also the spatial and socio-economic distribution of damages

#697 Including climate impacts on sentient animals

#708 Better understanding and measuring the pathways through which changes in climate affect the
economy (e.g. not just TFP level hits calibrated to reduced form estimates).

#710 ethics, uncertainties-, distribution- and related preferences

#718 Better and more comprehensive modeling of cliamte damages. Better assesment of risks and
ambiguities associated with cliamte change.

#738 Damage function

#739 A better estimation of damages, as well as of possibilities and costs of adaptation

#749 I believe we should better try to model the limits of our knowledge

#750 distinguishing between growth and level effects, accounting for non-market damages, damages
functions that reflect climate impacts adequately

#752 Getting the valuation of climate (and ecosystems) over an extended future right/or more right
in our simplistic economic valuation functions.

Additional feedback

#562 Look forward to the result very much!

#569 This is a really interesting survey!

#570 Bottom line – huge uncertainty over the SCC.

#572 Good luck with your study! This was not an easy survey to complete. I’ve tried to give you
responses that are at least better than just noise : )

#576 This is an interesting survey, though, in some ways, I would have liked a slightly different set
up. I wonder if the structural questions should have been upfront to debias individuals. By
considering a variety of factors first, you may have better prevented anchoring. If I were to
factored in equity weights for example, I think that my response would be very different. In
particular, I would have given a range of $50 to $10,000 with a central estimate of $500. Most of
the other considerations were factoring into thinking about the appropriate damage function and
discount rate, except for substitutability. If I factored this in completely, I would probably have
increased by SCC estimates between 50% to 100% even more. In fact, seeing everything laid out
in your table about structural assumptions, made me realized how downward biased that I really
think that SCC may be despite frequently thinking about the topic.

#592 Good luck with the study. I hesitated to put my name for a moment because i was embarassed
if i wrote something contradictory or stupid. But i felt there is a value to being transparent for
you. I should say though that answering seriously i should have spent an hour or two. Many
of the issues are complex and some questions perhaps could be interpreted in different ways. I
am however - as is common every evening, rushed to get through emails and decided to do the
questionnaire quickly in 10 minutes and without going back over questions or consulting any
document - just straight from the top of my head. I look forward to seing what will come of it
and maybe discussing at some point.

#608 It was rather a hard task. I couldn’t provide confident numbers myself, but you may still find
some patterns from the data when combined with the others’ responses.

#620 This is quite possibly the best survey I have ever filled in.

#623 Interesting survey - I’d like to hear the results.

#644 Thanks for your invitation! I think this survey is really useful in terms of gathering ideas.
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#687 Tough survey. I am not confident in some of the answers since my reading of the literature is
partial and my personal views on the SCC are heavily influenced by my papers and the few
papers that I have been influenced by.

#710 It feels VERY wrong to answer this ”off the cuff” without thinking longer about it. But some
answer is better than no answer (...?). I want to ”object” against the framing, at least a little.
There is no such thing as an SCC ”estimate”. We project future marginal damages, at best. And
we cannot even do that without several value judgments. To call the SCC an ”estimate” may
increase its political influence but masks what it is. And makes it vulnerable - you can always
critisize any projected value or distribution based on the welfare function parameter choices or
structural- or heroic assumptions of any specific model. That’s why I really do not like that we
use the same terminology as for say a neat RCT estimate of the impact of policy X on behavior
Y. Anyway, that was my little pet peeve there. Good luck with the project. PS: Now I’ll try to
google the actual distribution and bite myself if I am very off ;-)

#738 Good luck with this. Sometimes it was difficult to give a clear cut answer...

#749 One note: I answered your questions as if you were asking for the mean via ”central value”.
Median would be quite different.

#752 I found parts 1 and 3 quite useful. I am afraid that I found part 2 too ambiguous to be mean-
ingfully interpreted.

#1000 I believe the literature has overestimated the SCC. My reasons are the following. Economists
are quick to dismiss the benefits of CO2 fertilization. Economists tend to also dismiss future
adaptation. Many economists do not realize tipping points are already part of traditional damage
estimates. Some economists are reaching for damages that are likely to be small in the labor
market, with conflict, from migration, and ecosystem change. Finally, my colleagues are a little
confused about the endogeneity of the SCC. If society adopts a high SCC, there will be a lot of
mitigation. This will lower the SCC. They should not be calculating an SCC based on Business
as Usual unless they believe the SCC will have and should have no effect on policy.

#1001 Thanks for sending me the survey. Honestly, I feel I cannot respond. Sorry for that. Actually,
I am now more convinced that the SCC is not helping us and that the cost-benefit analysis of
climate change has caused more confusion to the decision-makers that benefit. When Nordhaus
obtained the Nobel prize in 2018 the committee included a figure with an ”optimal” stabilization
temperature of 3C..., something that any IPCC report would endorse. With all my respect, I
think the economic methods have been pushed too far in relation to what our data, models and
projections and knowledge can really say and not. I have personally worked with the DICE
model in the past and I know how sensible it is to small variations to few parameters and on the
damage function selected. For that reason, I cannot respond. It can be 10 or it can be 10.000.
I don´t know. I am not trying to deviate you from your plans or to argue on this (I might be
wrong), but as I have received the mail 4 times, I had the necessity to explain to you why I
cannot respond. Of course, I think we need to devote more efforts on putting monetary values
to the damage (present and future) of climate change where we have information and keep on
with the carbon pricing/markets. Also, if we need a reference-value for guiding decision-makers,
I think that the cost of abatement (for example to achieve the Paris Agreement targets) can be
a good reference-point as we have less uncertainty on some key technologies. Of course, this is
my point of view.

#1002 I looked at your survey, but I can’t answer the questions because they are based on the flawed
assumption that the current BAU allocation is efficient, which it is not due to the mispricing of
Greenhouse Gas Emissions. At an inefficient allocation the Social Cost is not well-defined.

#1003 For building a more complex IAM, I think non-linear climate feedback effects and distributional
effects are really important. In the literature on real world impacts of climate change and
extremes, it’s very clear that the majority of the actual impact comes from climate extremes - heat
waves, coastal erosion/inundation and hydrological extremes - which tend to have a non-linear
response to climate forcing and there are the huge uncertainties and potentially catastrophic
scenarios of runaway feedback mechanisms. In proportional terms, climate change clearly affects
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Predictor Variable Value Reasoning
SCC Year Varied Varied to generate predictions for multiple SCC emission years
All Parametric Variation 1 Allow for any difference in mean SCC due to parametric uncertainty
Backstop 0 True SCC not backstop technology price
Other Market Failure 0 Capture climate externality and not other market failures

Table S10: Random forest prediction variables. Parametric uncertainty is over 14 variables given in
Figure 3

the poor a lot more than the rich. That’s unlikely to change. I know economists and philosophers
go back and forth about the discount rate - what it is and what it should be...but the distributional
effects of damages within generations really matter to real people. And if massive inequality of
consequence is not adequately addressed, it may lead to an increase in political instability and
conflict.

#1007 Thank you for writing. I hope it is ok if I pass on filling in the form. As you probably know, I
am not enthusiastic about using IAMs as the basis for calculating social cost of carbon or indeed
as a basis for public policy in general. A challenge is to change the structures of economies
fundamentally and rapidly. As I have argued, I think we should approach shadow pricing for
carbon in a way which helps directly with that question and thus asking what are the prices that,
when combined with other structural polices, help make this transformation happen. I fear that
the process you are embarking might keep IAMs at centre stage when they really don’t capture
the urgent and major policy questions.

S.2.3 Random Forest Model and Distribution

The multi-variate analysis described above in Section S.2.1.9 is one way of analysing the variance in
literature SCC estimates with a relatively simple, ceteris-paribus interpretation of results. But the
method requires selecting a functional form for the regression equation, limiting the extent to which
non-linearities or interactions between variables can be examined. Machine-learning models can be
used as a complementary analysis to flexibly capture potential non-linearities and interaction effects
in settings with many explanatory variables, optimizing for out of sample predictive power. This is
particularly valuable in this setting, where the underlying IAMs producing SCC estimates are known
to have complex, non-linear relationships between model variables.

We estimate a random forest model on a sample of 1 million draws from our SCC distribution. The
distribution used to fit the random forest model samples distributions from the SCC dataset to produce
approximately equal representation of all nine major structural model modifications we examine. The
model was fit using a dependent variable of log SCC value (requiring us to drop the 2% of observations
with a negative SCC value) and 31 predictor variables (9 binary variables representing the presence or
absence of a particular structural model characteristic, 14 binary variables representing the presence
or parametric variations (distributions) in the model, 2 variables capturing the damage function based
SCC estimates, and 6 other variables including discount rate, SCC pulse year etc). The forest is
composed of 500 regression trees with a minimum node size of 200 and maximum depth of 12 branches.
Feature importance is determined through permutation of individual predictor variables.

For each of the 1 million predictions for each SCC emissions year, we create a vector for predictions
from the random forest model based on the SCC year, a draw of the discount rates based on the
expert survey in Drupp et al. (15), the presence or absence of 9 structural model modifications based
on sampling probabilities given by the expert survey in Figure 2 b, and a set of un-varied predictor
variables given in Table S10. A random sample of the residuals of the random forest model is added
to the predicted value to give a distribution that reflects expert assessments of discount rates and
structural model characteristics, variation in the SCC due to structural and parametric uncertainty as
reflected in the literature, and residual parametric variation.
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Structural Model Characteristic Probability of Inclusion
Earth System 0.71
Tipping Points: Climate 0.68
Tipping Points: Damages 0.63
Limited Substitutability 0.70
Persistent or Growth Damages 0.62
Epstein-Zin 0.61
Ambiguity or Model Uncertainty 0.60
Learning 0.59
Inequality Aversion 0.63

Table S11: Probability of inclusion in random forest predictions

Probabilities for inclusion or exclusion of a structural model modification in the random forest pre-
diction distribution were based on responses to the expert survey question ”To what extent do you
agree with the statement that papers including X produce a better SCC than those excluding it?”.
Probabilities for each structural model characteristic were based on an equal weighting of all sur-
vey responses, assigning probabilities of 0,0.25,0.5,0.75 and 1 for the responses ”Strongly Disagree”,
”Disagree”, ”Neither Agree nor Disagree”, ”Agree” and ”Strongly Agree” respectively, producing the
aggregate probabilities give in Table S11.
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SCC Year Discount Rate
Reference 2045 3.44

(62) (1.52)
Earth System 2042 3.21

(35) (2.00)
Tipping Points: Climate 2024 3.56

(27) (1.32)
Tipping Points: Damages 2023 3.16

(29) (1.05)
Persistent / Growth Damages 2027 4.65

(29) (1.44)
Epstein-Zin 2034 3.16

(35) (1.05)
Ambiguity/Model Uncertainty 2043 4.3

(36) (0.94)
Limited Substitutability 2021 2.69

(20) (0.78)
Inequality Aversion 2019 4.07

(27) (1.85)
Learning 2030 3.08

(33) (0.91)

Table S12: Mean and standard deviation (in parentheses) of SCC Year and Discount Rate for data-
points in the reference distribution shown in Figure 2 (estimates without any structural model modi-
fications) and estimates including each of the 10 structural model modifications.

S3 Description of structural model modifications

In this section we describe each of the nine structural model modifications, their relevance to the SCC,
and provide example references.

S.3.0.0.1 Ambiguity / Model Uncertainty: (24,25) Climate policy grapples with many kinds
and sources of uncertainty, and in many cases there is no agreed-upon quantitative distribution to
describe that uncertainty. When multiple possible distributions are available, this problem is referred
to as model ambiguity, and solutions typically assume that agents make pessimistic assumptions across
the range of possibilities. A standard implementation of model ambiguity would follow a minimax
approach, minimizing the welfare loss under the worst set of assumptions.

Higher values of the SCC represent larger losses in welfare for any emissions scenario, so model am-
biguity selects higher values of the SCC across any range of possible values. Model ambiguity can
also be included when selecting the optimal emission pathway. In this case, model ambiguity results
in more cautionary decision-making, lower emissions, and a resulting lower SCC. In this context, the
particular role of model ambiguity and the definition of the scenario (exogenous or optimal) is central.

S.3.0.0.2 Earth System (26,27) Studies in this class make changes to the structure of the carbon
cycle or warming modules in IAMs compared to the baseline or calibration model. These modules
map carbon dioxide emissions into atmospheric concentrations and atmospheric concentrations into
climatic changes (principally temperature increases), respectively. Some models collapse the process
into a single functional relationship between emissions and temperature.

The Earth system representation matters for the SCC because it determines how much temperatures,
and where relevant other climatic variables, respond to CO2 emissions.

S.3.0.0.3 Epstein-Zin Preferences (28,29) Epstein-Zin utility functions disentangle risk across
time and states of nature, introducing both a richer set of preferences and the need to solve models
recursively. While these types of utility functions have become standard in financial economics over the
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Figure S22: Feature Importance for the random forest model, showing mean change in model testing
RMSE after randomly permuting input variables. Error bars show range from permutations.

past 2-3 decades, they are relatively new in climate-economy models. Models that incorporate Epstein-
Zin preferences are either computationally involved empirical calibration exercises or highly stylized,
attempting to tease out the importance of individual parameters in a set of sensitivity analyses.

Epstein-Zin preferences matter for the SCC, as they ensure that higher risk aversion does not lead
to higher discount rates, which in turn lead to lower SCCs. The greater are assumed risks and
uncertainties, the greater is the impact of switching to Epstein-Zin preferences on the SCC.

S.3.0.0.4 Inequality Aversion (30, 31) The same monetary loss results in a greater welfare
loss in poorer regions than it does in richer regions. This intuition is embedded in the concavity
of an regional representative agent’s utility function or in the region-specific discount factor applied
to damages. There is also expected to be a difference between the effect of unequally distributed
impacts over space (how welfare losses affect poorer regions) and over time (how welfare losses affect
the present, which is assumed to be poorer, from the future).

Populations in hot regions (e.g., near the equator) tend to be poor, and these regions are also expected
to have some of the greatest climate impacts. If poorer regions are exposed to greater losses, accounting
for inequality aversion can produce large increases in the SCC.

S.3.0.0.5 Learning (32,33) Models that incorporate learning allow the distribution over one or
more unknown parameters to evolve over time, typically through a Bayesian update, as data generated
by the relationship governed by the unknown parameter are observed over time. Some of the learning
models are myopic in that the social planner in the model does not anticipate future learning. Other
learning models are forward-looking where the social planner anticipates future learning and adjusts
policy accounting for how it affects learning and subsequent welfare. A plurality of the papers in the
literature have focused on learning about the equilibrium climate sensitivity – which can be learned
from observations of temperature and levels of greenhouse gases – while other papers have included
learning about damages, climatic and damage tipping points, and other aspects of the climate economy.

Learning matters for the SCC because as policymakers refine distributions over unknown parameters,
they are better able to match climate policy to the true state of the system which will affect the
SCC. Learning typically reduces the SCC because of active learning motives where additional carbon
emissions magnify the signal of the unknown parameter relative to background noise, allowing for
faster learning. Theoretically, learning’s effect is a priori ambiguous and depends on nonlinearities and
stock effects in the climate-economy.

44



S.3.0.0.6 Limited Substitutability (34, 35) Models that explicitly allow for limited substi-
tutability disaggregate a comprehensive consumption good or a comprehensive capital stock into more
detailed component parts. For instance, these model changes feature non-market environmental goods
as a direct source of utility and allow for various degrees of substitutability vis-a-vis human-made
consumption goods. These models also typically disaggregate the effects of climate damages on both
market and non-market goods.

As standard IAMs, like the DICE model, implicitly feature some degree of limited substitutability
(Drupp and Hänsel 2021), the effect of explicitly introducing limited substitutability on the SCC is
ambiguous. When the degree of substitutability is considered as more limited than implicit in standard
models, these model extensions can substantially increase the SCC.

S.3.0.0.7 Persistent / Growth Damages (4, 36) Models that allow for persistent or growth
damages introduce pathways for transient changes in temperature to have permanent effects. This
is usually modeled as temperature affecting the growth rate of factor productivity or increasing the
depreciation rate of capital stocks.

Accounting for persistent impacts of temperature generally increases the SCC. If temperature has
persistent effects, then a temperature shock today affects output today as well as in all future years.
This raises damages and the SCC.

S.3.0.0.8 Tipping Points: Climate (2,32) Climate tipping points/elements have been defined
as “subsystems of the Earth system that are at least subcontinental in scale and can be switched –
under certain circumstances – into a qualitatively different state by small perturbations” (Lenton et
al., 2008). Examples include the permafrost carbon feedback, melting of the Antarctic and Greenland
Ice Sheets, and a slowdown of the Atlantic Meridional Overturning Circulation (AMOC). Some models
include a representation of the key underlying geophysical relationships that govern the tipping point,
while others simulate climate tipping points in a stylized way.

Climate tipping points are diverse in nature and affect the SCC in different ways. Some are positive
feedbacks in the climate system that increase the temperature response to CO2 emissions, for example
the permafrost carbon feedback. Ice sheet melting increases sea levels and thereby increases coastal
adaptation costs and residual costs/damages. Large-scale circulation changes such as AMOC slowdown
may primarily change the distribution of impacts across countries and this may affect the overall SCC
depending on the incomes of the countries most affected.

S.3.0.0.9 Tipping Points: Damages (29, 34) Models that incorporate damage tipping points
allow for economic output to be irreversibly reduced, potentially stochastically, if a particular climate
threshold is crossed. Damage tipping points are aimed to be stylized ways of capturing events such as
melting of the Greenland ice sheet or collapse of the Atlantic Meridional Overturn Circulation. These
models incorporate a new state variable that captures the extent of tipping and the probability of this
state variable progressing (capturing further advances in tipping and greater damage) depends on the
state of the climate system and random shocks.

Damage tipping points matter for the SCC because crossing a tipping threshold irreversibly moves
us into a higher-damage world. This tends to increase the SCC because the value of the next ton of
carbon must now account for the probability that the tipping threshold is crossed and the subsequent
permanent increase in damages. Damage tipping points tend to significantly increase the SCC.
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SCC Meta-Analysis Code Book

Overarching study / value inclusion criteria:

1. Study calculates an “original” SCC (i.e. does not only report values calculated in other
studies)

2. Excludes previous meta-analysis estimates
3. Excludes reporting SCC estimates calculated using a model presented in a previous

paper. For example, if standard DICE 2007 is run and then modified in some way, the
SCC from the modified model should be reported as a new central value, but the value
from the standard run should not. (Instead it can be recorded as a “Base Model” value) -
this avoids over-counting estimates from models that are re-used by multiple papers

4. Excludes estimates of an “optimal carbon tax” where the primary focus of the paper is
modeling market failures other than climate change damages. Optimal carbon tax values
that account for market failures other than climate change can be included, but should
be flagged in Column M.

5. Excludes estimates of the social cost of methane, N2O or other greenhouse gases /
radiatively active species

6. Includes values reported as supplementary analysis in appendix tables

Note that not all values in a paper will necessarily be explicitly coded in the spreadsheet. In
some cases, reported variation in the SCC due to parametric variation will be “collapsed” into
min-max values and reported as a range in the “SCC Distribution” section. Variation other than
that due to SCC year, emissions scenario, discounting scheme, damage function, base /
calibration model, or model structure should mostly be reported within a single row.

Bibliographic and Base Model Info

Column A: Unique ID number from full abstract list in “Paper Tracking” spreadsheet

Column B: Add Bibtex reference to this document and record Bibtex name here

Columns C-F: Self-Explanatory

Columns G-H: Report any prior model used for calibration purposes or for comparison. Use
Column G (“Base IAM”) if study reports using a prior model and then adding modifications. Use
Column H (“IAM Calibrated To”) if study reports calibrating an original IAM using a prior model.

Column I: Categorize the type of SCC study into one of four types:

1. Empirical Improvement: These are studies where the clear goal of the analysis is to
improve representation of the climate system, climate damages, or otherwise better align
IAM model results with pre-existing scientific or economic findings. Examples might
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include improved representation of climate change (e.g. SLR dynamics) or incorporation
of econometric damage estimates.

2. Framework Expansion: These are studies where they are adding to or extending the
analytical IAM framework, with a view to better representing relevant factors driving
climate change costs, but without as strong a tie to a particular empirical literature.
Examples could include EZ utility papers, inequality aversion, learning, new discounting
frameworks, multi-good utility papers.

3. Sensitivity Analysis: These are studies with a stated intention of only examining the
sensitivity of SCC to modeling choices. Often these studies deliberately present a wide
range of parameter values and do not take a strong position on which are or are not
empirically preferred.

4. Other: Other types of papers can be coded as “Other”. Most notably this includes papers
reporting “standard” models (e.g. paper reporting the DICE 2013 update and results)

NOTE: This is a categorization of the *paper*, not a particular value from the paper. All rows
from the same study should have the same value in this column. If a paper has multiple rows
that could be coded differently (i.e. some framework expansion and some empirical
improvement) then code the whole paper using the “highest” value, i.e. empirical improvement >
framework expansion > sensitivity analysis.

Central SCC Value

Column J: Year of SCC.
● For papers reporting only discrete years, record all SCC years in separate rows.
● For papers reporting continuous SCC values (e.g. graphically), report 2020, 2050

and 2100 if possible. If post-2100 values are reported, also record latest SCC
year reported.

● If these specific dates are not available, report earliest available, a mid-century
value, and latest available

Column K: Report Central SCC value in $ per ton CO2. If central value is a median, then also
record it in Column AR (50th percentile).

● Convert values reported in $ per ton C into $ per ton CO2 by dividing by 3.666667
● For values reported in other currencies, convert into $ per ton CO2 using exchange rate

from the reported currency year, or the publication year if there is no currency year
reported. Report exchange rate in the notes Column (BQ)

● If there is no clear central SCC value (e.g. just high and low values are reported) then
this can be left blank and only the range or distribution reported in the “SCC Distribution”
section of the sheet.

Column L: Backstop Price? - Enter a 1 if the value recorded in Column K is a backstop price
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Column M: Other Market Failure? - Enter a short description of other market failures included in
the value in Column K, if that value is an optimal carbon tax that includes market failures other
than climate change damages. Examples could include “R&DExternality” or
“LimitedRedistribution”.

Column N: Dollar year of SCC - record SCC dollar year if reported.

Column O: Emissions Scenario - record emissions or radiative forcing scenario used for SCC
estimate in the row. Examples include:

● Optimal - SCC along the optimal emissions path
● BAU - SCC along the BAU emissions path
● Some radiative forcing scenario (e.g. RCP 7) or socio-economic scenario with

associated emissions (e.g. A1B) - assumption is that reported SCC is a BAU SCC along
this emissions trajectory (i.e. no mitigation)

● Some temperature or CO2 concentration threshold (e.g. 1.5 degree, 450 ppm) or other
implicit emissions constraint (e.g. some risk level). For these cases, enter using the
formulation “Constraint - <SPECIFIC CONSTRAINT>” e.g. “Constraint - 2degrees” or
“Constraint - 400ppm”. This will help us identify these cases later on in the coding.

-> Only record variation in *emissions* scenario in this column, not variation across other model
parameters

Column P: Socio-Economic Scenario - record socio-economic scenario used for SCC estimates
in this row. This will particularly be used for determining the consumption growth rate for
calculating the Ramsey discount rate. Possible entries include:

● If population and GDP or TFP growth rates are unchanged from the underlying base or
calibration model, record the model name here, e.g. “DICE 2007”

● Record standard socio-economic scenarios e.g. SSP2 or A2
● If per-capita consumption growth rate is specified in the paper, record that here (e.g. 2%

per year)

Column Q: Reported Base Model SCC - if available, record a Base Model SCC value that is
“comparable” to the Central SCC value in the sense of sharing the same 1) discounting
assumptions and 2) emissions scenario and 3) SCC year.

Discounting Parameters and Damage Function

Column R: If a constant discount rate (i.e. rather than the Ramsey formula) is used, record the
% value here (i.e. 1.5 instead of 0.015 or 1.5%). If a declining discount rate is used, record the
initial value here.

Column S: Record Pure Rate of Time Preference. If a declining PRTP is used, record the initial
value here.
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Column T: If central estimate uses a declining discount rate, add a 1 here. Otherwise leave
blank.

Column U: Record EMUC used in Ramsey formula of Central Estimate

Column V-W: Record parameters of Epstein-Zin preferences, if applicable. Note most papers
report IES = 1 / EMUC. If necessary convert from EMUC to IES.

Column X: Market Only Damages - Enter a 1 if the Central SCC Value is based on damages
that explicitly include only market damages (e.g. calibrated to studies examining variation in
GDP)

Column Y: Damage Function Info - Use this column to record the functional form of the damage
function for models with only one damage function that depends only on temperature and falls
on production (i.e. single region, single sector models). Leave blank if the model is not of this
type (e.g. multi-region models). Information can be recorded in one of three ways:

1. If the damage function is left unchanged from the base or calibration model, re-enter that
model name in here (eg. DICE 2007)

2. If the damage function is a variation commonly referred to by the original authors, enter
the corresponding name here. Possible entries are:

a. Weitzman - corresponding to damage function used in Weitzman (2012, Journal
of Public Economics Theory)

b. HowardSterner - corresponding to base damage function reported in Howard and
Sterner (2017, Environmental and Resource Economics). (Note - some
HowardSterner damage function specifications also include calibration to growth
rate impacts, which can be indicated using “Calibrated” in Column AD)

c. DietzStern - corresponding to damage function in Dietz and Stern (2015, The
Economic Journal)

3. If neither 1 nor 2 apply, directly enter the damage function into the column, using T as
the GMST change from the baseline used in the paper (e.g. 0.0004 * T^3). Any R
expression is permitted. T is assumed to be contemporaneous temperature (i.e. warming
in the same time period as damages occur) unless otherwise indicated, using syntax
T_{t-k}.

Structural Changes

Column Z: Carbon Cycle - Enter a 1 if the values in this row include a structural change in the
Carbon Cycle model, compared to the baseline or calibration model, or compared to DICE if no
baseline or calibration model is reported.

Column AA: Climate Model - Enter a 1 if the values in this row include a structural change in the
Climate Model (i.e. effects on the physical climate system, conditional on greenhouse gas
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concentration, including temperature and sea-level rise), compared to the baseline or calibration
model, or compared to DICE if no baseline or calibration model is reported.

Column AB: Climate Tipping Points - Enter a 1 if the values in this row include climate tipping
points. This means a representation of specific changes in the earth system such as ice-sheet
processes, Amazon dieback, changes to the thermo-haline circulation.

Column AC: Damage Tipping Points - Enter a 1 if the values in this row include a stylized or
abstract representation of tipping points as a change in damages without modeling the
underlying drivers from the climate system (e.g. Cai, Lonztek JPE).

Column AD: Persistent / Growth Damages - Enter a 1 here if the values in this row include
persistent damages, for instance via damages to the capital depreciation rate, TFP growth, or
capital stock. Enter “Calibrated” if the damage function is calibrated to partially account for
persistent damages but they are not represented structurally in the model.

- Note that standard DICE, because of endogenous capital formation, includes some small
persistence in damages. Do NOT enter a 1 here for standard versions of DICE.

Column AE: Epstein Zin Utility - Enter a 1 if the values in this row come from a model using
Epstein-Zin preferences

Column AF: Ambiguity / Model Uncertainty - Enter a 1 if the values in this row explicitly account
for ambiguity or model uncertainty

Column AG: Non-Substitutable Goods - Enter a 1 if the values in this row come from a model
with more than one good in the utility function that are imperfectly substitutable with each other

Column AH: Inequality Aversion - Enter a 1 if the values in this row include inequality aversion.
Enter “Calibrated” if the damage function is calibrated to account for inequality aversion but it is
not represented structurally in the model.

Column AI: Learning - Enter a 1 if the values in this row are from a model explicitly representing
a learning process.

Column AJ: Alternative Ethical Approaches - Enter a 1 if the values in this row are based on a
different ethical approach than discounted utilitarianism.

SCC Distribution

Columns AK to BA

Use these columns to record any reported variation around the Central Value recorded in
Column K of this row. Values recorded in these columns should share the same SCC year,
emissions scenario, and structural changes as the recorded central value. Unless damage
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function parameters and / or discounting parameters are being varied, they should also share
the same damage function and discount rate.

Use “Min” (Column AK) and “Max” (Column BA) to report ranges with the two most extreme
SCC values at the upper and lower end resulting from parameter changes not associated with
probabilities

Use quantile columns to enter any reported quantiles of the distribution. This could come either
from quantiles reported from a Monte Carlo sampling, from reported confidence intervals around
values (e.t. 95% confidence intervals), or from one at a time sensitivity analysis, where the
varying parameters have quantiles associated with them (e.g. varying the climate sensitivity to
+1 or -1 standard deviation).

Note that the recorded distribution must be “well behaved” - i.e. values must be strictly
increasing with quantiles. Otherwise the distribution sampling algorithm will not be able to
interpret the entries.

All units in $ per ton CO2. If necessary, convert from $ per ton C or from values reported in other
currencies, consistent with recording central value.

If central value is a median, also record value in the 50th percentile column (column AS)

Parametric Uncertainty

Use these columns to record parametric variation giving rise to either:

1) Variation recorded in the SCC distribution block. Enter a 1 if variation in this parameter
contributes to the range reported in Columns AJ to BA

OR

2) If no distribution is reported, but the central value recorded in Column K is a central
value from a distribution (without the distribution being reported), then add 1s in the
relevant columns in this section. For example, most PAGE09 values come from Monte
Carlo runs of PAGE that include variation in:

a) Transient climate response
b) Carbon cycle
c) Tipping Point Magnitude
d) Damage Function
e) Adaptation Rates
f) Damage Income Elasticity
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Additional Information

Column BP: Paper Location - Record where in the paper values in the row come from (e.g page
number, figure, table). Could be multiple locations if central value and parametric variation
ranges come from different places

Column BQ: Flag - Use this to add other informational flags to aid interpretation of values in this
row

Column BR: Notes - Add any other notes here aiding interpretation of the values in this row

● Any additional notes on decisions made in coding a paper or information required to
interpret values can be added in this Google Doc.
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https://docs.google.com/document/d/1TUvJFIUifDnc-tzj-00Xp3W64225A8okE_uw3E-4udc/edit?usp=sharing

	Main_Sep2023.pdf
	Introduction
	The SCC Distribution
	SCC Distribution Under Alternate Structural Models

	Drivers of Variance in SCC Estimates
	Synthetic SCC Distributions Accounting for Structural Drivers and Parametric Uncertainty
	Discussion and Conclusion

	SI plus Code Book_Sep2023
	SI.pdf
	Dataset summary
	Methods
	Meta-analysis
	Abstract Search
	Data Collection and Coding
	Data Cleaning and Standardization
	Distribution Fitting
	Sampling
	Sensitivity Analysis
	Tail Behavior
	Damage function based SCCs
	Multi-Variate Regression
	Analysis of variance

	Expert survey
	Survey design
	Survey response cleaning
	Publication bias analysis
	Non-response and strategic response bias analysis
	Additional analyses of the merged dataset
	Survey Distribution
	Survey Meta-analysis
	Qualitative comments

	Random Forest Model and Distribution

	Description of structural model modifications

	SCC Meta-Analysis Code Book


