
Measuring Regulatory Complexity ∗

Jean-Edouard Colliard†

HEC Paris

Co-Pierre Georg‡

University of Cape Town

January 1, 2024

Abstract

Despite a heated debate on the complexity of financial regulation, a comprehensive

framework to study regulatory complexity is lacking. We propose one inspired by the

analysis of algorithmic complexity in computer science. We use this framework to

distinguish different dimensions of complexity, classify existing measures, develop new

ones, compute them on two examples—Basel I and the Dodd-Frank Act—and vali-

date them using novel experiments. Our framework offers a quantitative approach to

the policy trade-off between regulatory complexity and precision. Our toolkit is freely

available and allows researchers to measure the complexity of any normative text and

test alternative measures.
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The regulatory overhaul that followed the global financial crisis has triggered a hefty

debate about the complexity of financial regulation. Haldane and Madouros (2012), for

instance, articulate the view that bank capital regulation has become so complex as to

be counter-productive and likely to favor regulatory arbitrage. The Basel Committee on

Banking Supervision is aware of the issue, and considers that there is a trade-off between

the simplicity and the precision of regulation (Basel Committee on Banking Supervision

(2013)). In the United States, similar concerns have led to the exemption of smaller banks

from several provisions of the 2010 Dodd-Frank Act.1

While there is a widespread concern that regulation has become too complex, “regulatory

complexity” remains an elusive concept. Debates about the complexity of different rules and

contracts have come up in other contexts, such as structured products (Célérier and Vallée,

2017), securitizations (Ghent et al., 2017), loan contracts (Ganglmair and Wardlaw, 2017),

compensation contracts (Bennett et al., 2019), or corporate taxes (Zwick, 2021). A growing

number of papers propose measures and theories of the complexity of rules, but they focus

on different dimensions of complexity and a unifying framework is lacking. We propose such

a framework and develop a toolkit including measures of complexity, validation experiments,

and normative analyses. We show that with these ingredients one can approach the trade-off

studied by the Basel Committee on Banking Supervision (2013) in a quantitative manner.2

We hypothesize that a regulation can be seen as an algorithm: it is a sequence of in-

structions that are applied to an economic agent and return a regulatory action. Previous

1See Gai et al. (2019) for a comprehensive discussion of the policy issues at stake, and Calomiris (2018)
for the case of the United States.

2To encourage further work within the same framework, we make the toolkit we developed available online:
https://github.com/cogeorg/RegulatoryComplexity_Public. The replications files for this paper are
available here: https://ufile.io/7al4cyzg.
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research has used this analogy and focused on adapting some measures of algorithmic com-

plexity to the study of law (see, e.g., Li et al. (2015)). We go further and use this approach

to distinguish between different dimensions of complexity, derive six measures of regulatory

complexity in a unified model of regulation, test the validity of these measures experimen-

tally, compute them on a large scale regulatory text (the Dodd-Frank Act), and include them

in a normative model of the trade-off between precision and complexity.

We first use our framework to formally define measures of regulatory complexity, and dis-

tinguish between the different dimensions of complexity that can be captured. In particular,

we make a distinction between: (i) “problem complexity”—a regulation is complex because

it aims at imposing many different rules on the regulated entities, independently of the lan-

guage used; (ii) “psychological complexity”—a regulation is complex because it is difficult

for a human reader to understand; and (iii) “computational complexity”—a regulation is

complex because it is long to implement. We relate these different dimensions to empirically

observable quantities, namely the occurrence of mistakes in the regulatory process, and the

effort necessary to understand and apply the regulation. These quantities can be seen as “ex

post” measures of regulatory complexity.

In many applications such ex post measures are not available, and as a proxy it is nec-

essary to use “ex ante” measures based on the content of regulatory documents. Most

measures that have been proposed rely on linguistics and only cover psychological complex-

ity. To derive measures of problem complexity as well, we use the approach developed by

Halstead (1977) for measuring algorithmic complexity. As we detail in Section 1, this ap-

proach represents an algorithm as a sequence of “operators” (e.g., +, −, logical connectors)

and “operands” (variables, parameters), and the measures of complexity aim at capturing
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the number of operations and the number of operands used in those operations. In the con-

text of regulation, these measures can capture the number of different rules (“operations”)

in a regulatory text, whether these rules are repetitive or different, whether they apply to

different economic entities or to the same ones, etc. We show that within this model we can

encompass three measures of regulatory complexity that have already been proposed in the

literature, and go on to define three new ones.

As a proof of concept, we show how to measure the complexity of a regulation in practice

by considering the design of risk weights in the Basel I Accords. This regulation is a suitable

testing ground because it is close to being an actual algorithm. We compare two different

methods: (i) We write a computer code corresponding to the instructions of Basel I and

measure the algorithmic complexity of this code directly; and (ii) We analyze the text of the

regulation and classify words according to whether they correspond to what would be an

operand or an operator in an algorithm, and compute the same measures, this time trying to

adapt them from the realm of computer science to an actual text. In particular, we observe

that the measures of “problem complexity”, which in principle should not depend on the

language used, are indeed very close in the text and the algorithm versions.

An important gap in the existing literature on regulatory complexity is the validation

of complexity measures: how does one show that a proposed measure indeed captures some

dimension of complexity? Here again the parallel with algorithms suggests an answer. The

literature in computer science tests the validity of different measures of algorithmic com-

plexity by testing their ability to forecast mistakes made by programmers or the time they

need to code the program (see, e.g., Canfora et al. (2005)). We apply the same idea to the

context of regulation. We give participants to an experiment different regulatory instruc-
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tions consisting in (randomly generated) Basel-I type rules, and the balance sheet of a bank.

They have to compute the bank’s risk-weighted assets. We analyze how different measures

of complexity explain whether a participant returns a wrong value, and the time taken to

give a correct answer. In both cases we also test whether a given measure has explanatory

power beyond the mere length of the regulation. We find that only two of the five measures

we propose (other than length) pass this test, suggesting that our experimental design is a

powerful touchstone to test the validity of new measures. Interestingly, these are the two

measures meant to capture problem complexity, which validates the idea that this is indeed

a dimension not captured by length alone. All the material is online and can be directly

used to validate any measure of regulatory complexity based on the text of a regulation, not

only ours, thus opening the path to comparing the performance of different measures within

a unified framework.

To show that our approach can be adopted at scale, we apply our text analysis approach

to the 2010 Dodd-Frank Act. Because the Dodd-Frank Act covers many different aspects

of financial regulation, by doing so we created a large dictionary of 5,872 operands and 429

operators. We expect that a large fraction of words found in other texts will already be

in our dictionary. To show this, we look at the fraction of words in each of the 16 titles

of the Dodd-Frank Act that would have already been included in a dictionary obtained

using only the other 15 titles. We find that, on average across all titles, 88% of operands

and 96% of operators would have already been in this counterfactual dictionary. We make

this dictionary available online, so that interested researchers can compute our measures on

other regulatory texts and collaboratively enrich the dictionary. In addition, this dictionary

can serve as a training sample for identifying operands and operators in longer texts using
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machine learning.

Finally, we show how building on our approach could eventually lead to a quantitative

model of the trade-off between the precision and the complexity of regulation mentioned

in Basel Committee on Banking Supervision (2013). To explore this possibility, we build a

simple model of a bank capital regulation relying on risk buckets, as in Basel I. We can use

our measures and the experimental estimates to compute the complexity cost of additional

buckets, and hence study the optimal trade-off between these costs and the benefits of

additional precision. More generally, this example shows that our measure can be used in

normative models of regulation. For instance, in the context of a model this allows us to

compare a complex regulation achieving the first-best to a simpler one that still achieves a

high level of welfare.

We review the literature on measures of regulatory complexity in the next section, where

we show how different measures fit into our framework, or explain why they do not.3 As

mentioned above, a growing number of papers have studied the complexity of various financial

products and contracts more generally. We provide a unifying framework for these different

applications, to the extent that they consider rules describing how to perform a certain

operation.4

A growing number of recent theory papers have implications for the complexity of reg-

ulation. Hakenes and Schnabel (2012) develop a model of “capture by sophistication” in

which some regulators cannot understand complex arguments and “rubber-stamp” some

3We do not include measures of algorithmic complexity more generally, and refer the interested reader to
Zuse (1990), and Yu and Zhou (2010) for a more recent survey.

4For example, we have applied our framework to study the complexity of the OECD’s blueprints on
the tax challenges arising from digitalization (Colliard et al., 2021). In contrast, our approach does not in
principle apply to the complexity of objects that are not rules, for instance firm disclosures, where complexity
is probably better captured by stylistic or linguistic measures (e.g., Loughran and McDonald (2014)).
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claims made by the industry so as not to reveal their lack of sophistication. Oehmke and

Zawadowski (2019) develop a model in which regulatory complexity is in itself desirable (e.g.,

it allows for more risk-sensitivity), but regulators neglect that a more complex regulation

consumes the limited attention of agents, and crowds out other activities. In Asriyan et al.

(2021), a policymaker proposes a regulation that then needs to be accepted, e.g., by Par-

liament. Making the regulation more complex makes the regulation more complicated to

study, so that members of parliament will rely more on their prior regarding the regulator’s

competence and less on their own understanding of the proposed regulation. Foarta and

Morelli (2022) also model the dynamics of legal complexity over time, and make predictions

regarding these dynamics. We hope that by proposing new measures of regulatory complex-

ity our paper will make it possible to test these theories, which to our knowledge has not

been done yet.5

There is a broader theoretical literature on complexity in product markets, developing

the idea that complexity can be used by firms to “obfuscate” and gain market power (see in

particular Gabaix and Laibson (2006), Carlin (2009), and Ellison (2016) for a survey). The

economic mechanisms studied in this literature are not easy to transpose to the complexity

of regulation, although there is a similarity with the idea of “capture by sophistication”. In

addition, Arora et al. (2009) argue that computational complexity creates a new form of

asymmetric information when one agent is able to solve a computational problem and the

other is not, an interesting example being the sale of derivatives. Carlin et al. (2013) find

support for this idea in a trading experiment, with adverse selection being larger for more

5Some empirical papers study the increase in the stringency or quantity of regulations. For instance,
Kalmenovitz (2023) shows that increased regulatory intensity leads to a significant reduction in firm-level
investment and hiring. Gutiérrez and Philippon (2019) argue that the increase in regulation can account for
the decline in the elasticity of entry with respect to Tobin’s Q since the late 1990s.
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complex assets.

Further from finance applications, the experimental approach we use in Section 3 is

related to a literature that tries to measure the complexity of solving mathematical problems

for humans. In particular, Murawski and Bossaerts (2016) and Franco et al. (2021) ask

experimental participants to solve different versions of the knapsack problem, and study how

their performance correlates with measures of the complexity of the problem and measures of

the complexity of different algorithms used to solve it. Our approach is conceptually similar,

but the Halstead model we use is a more flexible representation of an algorithm, allowing us

to apply our approach to entire regulatory texts and not only to well-identified mathematical

problems and algorithms.

Finally, a literature in behavioral economics dating back to Rubinstein (1986) models

the strategies and decision procedures of economic agents as automata, and associates mea-

sures of the complexity of these automata (in particular, the number of states involved)

to the cognitive costs that following these strategies imposes on agents. Oprea (2020) uses

an experimental approach to measure the cognitive costs of following different procedures

(“implementation complexity”), and shows that these costs correlate well with complexity

measures of the associated automata.6 Our approach differs in that we do not represent

regulation as an automaton. This is in principle possible but extremely costly to do on a

large scale text, so that we believe the Halstead representation of an algorithm is a more

promising approach for the study of regulatory complexity.

6See also Kendall and Oprea (2021) who study experimentally the computational complexity of inferring
the process that generated a particular data sequence.
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1 A unifying framework

Because the term “complexity” is used somewhat vaguely in the social sciences, different au-

thors, policymakers, and industry participants have different concepts in mind when referring

to “regulatory complexity”. To clarify this issue, we first propose a model of the regulatory

process that emphasizes the parallel between regulation and code. We then use this model to

define the different dimensions of complexity and discuss how to measure them empirically.

Finally, we propose measures based on an extension of Halstead (1977) and review how the

different measures proposed in the literature fit in our framework.

1.1 A model of the regulatory process

We start by formalizing the analogy between regulations and algorithms which then allows us

to draw from the computer science literature studying algorithmic and software complexity.7

Knuth (1973) describes an algorithm as: “a finite set of rules that gives a sequence of

operations for solving a specific type of problem” and identifies five features an algorithm

must satisfy. First, an algorithm must terminate after a finite number of steps. Second,

each step of the algorithm must be precisely defined—be it verbally or through formal use

of mathematics or a programming language. Third, an algorithm has zero or more inputs,

taken from a well specified set of objects. Fourth, it has one or more outputs—quantities

that have a specified relationship to the inputs. Lastly, an algorithm should use sufficiently

simple operations so that it can be computed, in principle, “by someone using pencil and

7Software complexity is typically defined in reference to psychological complexity and Zuse (1990), for
example, defines it as the “psychological complexity of programs”. This is echoed by the IEEE (1990), who
define software complexity as “the degree to which a system or component has a design or implementation
that is difficult to understand and verify”.
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paper.”

Surprisingly, a formal definition of an algorithm beyond the informal characterization

provided above is not without difficulty, but for the purpose of our paper, the informal

description of an algorithm is sufficient. In the case of regulation, the “inputs” are the

characteristics of regulated entities (e.g., an individual financial institution, a market, or the

entire financial system), and the “output” a certain regulatory action (e.g., imposing a fine

on a bank, imposing higher capital requirements, or simply allowing the bank to continue

operating). The regulation is a list of rules describing how to map a regulated entity with

certain characteristics to a certain regulatory action.

It is important to make a distinction between an algorithm and the problem it tries

to solve. As an example, consider the problem of sorting a deck of cards. There are dif-

ferent algorithms, or lists of operations, to solve this problem, e.g., the InsertionSort or

QuickSort algorithms. They all solve the same problem, take as input the deck of cards

that is to be sorted, and return as output the sorted deck of cards, but they can differ in

their complexity. In the case of regulation, the problem is the mapping between regulated

entities and regulatory actions, and the regulation is a description of this mapping:

Definition 1. A regulatory problem is a mapping ϕ : x 7→ y from a set of regulated entities

X to a set of regulatory actions A.

In a world of unlimited cognitive ability of regulators and supervisors, the mapping ϕ

would be sufficient to describe the regulatory process. The traditional literature on banking

regulation implicitly makes this assumption, and derives ϕ as the optimal solution to a

contract theory or mechanism design problem. Similarly, in the realm of coding, one could
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posit a mathematical problem, show it has a solution, and simply assume that some code

exists to compute this solution. We depart from this assumption by considering that writing

down the actual rules or “code” and then implementing them is not trivial, and is actually

costly and error-prone. In the following, we write down a simple model of drafting and

implementing regulations (or code), that allows for errors at different steps.

The first step of the regulatory process is the drafting of a regulation. We define a

“regulation” as a list of written rules that aim at solving the regulatory problem ϕ:

Definition 2. A regulation F is a finite sequence of elements taken in a vocabulary V. This

sequence of elements is interpreted through a language L.

We assume that a regulator needs to draft the regulation F . This regulator is endowed

with a certain skill θD at drafting regulations, and may exert a certain quantity of costly

effort eD when drafting. The regulation is then a function of the regulatory problem the

regulator tries to solve, her skill, and her effort:

F = D(ϕ, θD, eD,L,V). (1)

The second step of the regulatory process is interpretation: one needs to read and in-

terpret the regulation F in order to apply it to a particular entity. Note that F is not a

mapping but simply a list of elements of V , i.e., words. If this list is perfectly interpreted

according to the rules of language L, it describes a mapping from X to A. We denote f this

mapping corresponding to a perfect interpretation of F .

In the context of coding, the code is interpreted by a computer and this interpretation

is usually correct. In the context of regulation, the interpretation is done by a human
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reader who may misunderstand the regulation. Such a reader may have a certain skill θI

at interpreting the text, and exerts a costly effort eI . The reader’s interpretation of the

regulatory text is a new mapping from X to A denoted f̃ :

f̃ = I(F, θI , eI ,L,V). (2)

The last step of the regulatory process is to apply the mapping f̃ to a given entity x

and determine the regulatory action to take, a step we call supervision. In the context of

coding, a computer would always, mechanically, associate the output f(x) to the input x. In

the context of regulation, however, a human supervisor whose understanding of regulation

is represented by f̃ may not necessarily associate f̃(x) to an entity x. Instead, we denote

f̂(x) the action taken by the supervisor. We allow this action to depend on the supervisor’s

skill θS and effort eS.

f̂(x) = S(x, f̃ , θS, eS). (3)

At the end of this regulatory process, we reach a regulatory action f̂(x). In the absence

of mistakes at the drafting, interpreting, and supervision stages, this action is equal to ϕ(x).

However, at each stage there is room for mistakes, with the consequence that ultimately the

wrong regulatory action may be taken, f̂(x) 6= ϕ(x). Figure 1 summarizes our model of the

regulatory process and which mistakes can occur during this process.

[Insert Fig. 1 here.]
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1.2 Dimensions of complexity

We now define different dimensions of complexity based on how costly and prone to mistakes

are the different stages of the regulatory process described in Section 1.1. An advantage

of this approach is that the different dimensions of complexity we define are measurable

empirically, based on the implementation of a certain regulation, and we call these measures

ex-post measures of regulatory complexity. The experiments described in Section 3 follow

this approach. In contrast, Section 1.3 defines ex-ante measures of regulatory complexity,

that are only based on the observation of a regulatory text and on ex ante principles.8

We give both “mistake-based” definitions of complexity as the propensity of making a

mistake in the regulatory process, and “cost-based” definitions based on the cost (in terms

of labor or mental effort) associated with each step of the regulatory process. Formally, we

always consider a regulation F associated with a correct interpretation f . We assume a given

entity x, and given types θD, θI , θS and effort levels eD, eI , and eS.9

We first define problem complexity :

Definition 3. The mistake-based problem complexity of regulation F is given by Pr[D(f, θD, eD(f, θD),

L,V) 6= f ]. The cost-based problem complexity of regulation F is given by eD(f, θD).

In words, a regulation has a higher mistake-based problem complexity when the regulator

drafting such a regulation is more likely to make a mistake, so that the correct interpretation

of the draft is actually different from what was intended. If we apply this definition to the

8The distinction of ex-ante and ex-post measures was prominent in the early literature on software
complexity. Weyuker (1988), for example, develops a framework of axioms within which to evaluate software
complexity measures without reference to specific code. See also Fenton (1994). For ex-post measures based
on experiments with coders see, among others, Zhang and Baddoo (2007) who study the performance of
different widely-used measures of software complexity, including the McCabe (1976) measures we also use.

9In applications it is straightforward to extend the formalism of this section to a population of regulated
entities, regulators, readers, and supervisors, with types following a distribution.
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context of coding, we would say that, for example, factoring a number has a higher problem

complexity than sorting a vector, if we observed that a coder asked to program both tasks

is more likely to succeed at the latter than at the former. A regulation has a higher cost-

based problem complexity if we observe that the regulator spends more effort at drafting the

regulation.

Similarly, we define psychological complexity :

Definition 4. The mistake-based psychological complexity of regulation F is given by Pr[I(F, θI ,

eI(F, θI),L,V) 6= f ]. The cost-based psychological coomplexity of regulation F is given by

eI(F, θI).

In words, a regulatory text has a higher psychological complexity if it is more likely to

be misinterpreted by a reader, or if the reader has to exert more effort interpreting it. Note

that if two regulations F and F ′ have the same correct interpretation (f = f ′) then they

have the same problem complexity and hence any difference in psychological complexity

only comes from the way the regulatory text is drafted. If instead one compares texts

corresponding to different regulatory problems, then differences in problem complexity also

generate differences in psychological complexity.

Finally, we define computational complexity :

Definition 5. Denoting f̃ = I(F, θI , eI(F, θI),L,V), the mistake-based computational com-

plexity of regulation F is given by Pr[S(x, f̃ , θS, eS(x, f̃ , θS)) 6= f(x)]. The cost-based com-

putational complexity of regulation F is given by eS(x, f̃ , θS).

In words, a regulatory text has a higher computational complexity if the action taken

by a supervisor on a regulated entity is different from the one actually dictated by the text.
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Note that texts with different levels of psychological complexity will also have different levels

of computational complexity as a consequence: one reason why a supervisor may reach the

wrong regulatory action is that he misunderstands the regulation in the first place.

We believe that these three dimensions of complexity capture some of the main ideas that

people have in mind when talking about the complexity of regulation. Regulatory complexity

may mean that the regulatory problem is complex, e.g., it deals with many different aspects

of a bank’s business, or foresees a large number of regulatory actions. We call this the

problem complexity of regulation. Problem complexity depends on ϕ, but is independent

of which regulatory text F solves it. Regulatory complexity may also mean that an actual

text is complex, which may be due both to the complexity of the underlying problem ϕ

and to the complexity of the particular text F . Following the computer science literature

(e.g., Zuse (1990)), we call this dimension the psychological complexity of regulation, as it

reflects the difficulty of understanding a particular solution to a problem. Finally, regulatory

complexity may mean that applying a regulation to a particular entity is difficult. Imagine

for instance a regulation that exempts small banks from most rules. It could then be the

case that the regulatory text is complex, that applying it to large banks is costly, but that

applying it to small banks is simple. Thus, this dimension depends on the entity to which the

regulation is applied. Following again the computer science literature, we call this dimension

the computational complexity of regulation.

Finally, our formalization makes it clear that any notion of regulatory complexity is neces-

sarily relative to the regulated entities considered and the humans processing the regulation.

Depending on how a regulatory text is written, it might for instance seem more complex to

lawyers than to economists, or vice versa.
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A few papers have proposed ex-post measures based on how much effort regulated entities

spend on complying with regulations (computational complexity). For instance, Simkovic

and Zhang (2020) propose a Regulation Index based on the proportion of regulation-related

employees in different sectors, as measured in the Occupational Employment Statistics data

from the U.S. Bureau of Labor Statistics. Kalmenovitz (2023) proposes four RegIn indexes

of regulatory intensity, based on the number of forms required by Federal regulatory agencies

in the U.S., the number of completed forms they receive, and the associated time costs and

dollar costs. Calomiris et al. (2020) propose to measure the cost of regulation to U.S. firms

by NetReg, a measure based on the mention of regulatory topics in transcripts of earnings

calls. Singla (2022) uses estimates of regulatory costs provided by U.S. regulatory agencies

themselves at the level of each industry.

1.3 Ex-ante measures of complexity

Ex-post measures of regulatory complexity are appealing because they are empirically grounded.

However, in policy applications in particular it is preferable to measure the complexity of a

proposed text before it is actually implemented. It is then necessary to complement these

ex-post measures with “ex-ante” measures, that can be directly computed based on any

regulatory text F . In this section we derive a number of ex-ante measures. We will study

in Section 3 to what extent these measures correlate with ex-post measures of regulatory

complexity and can hence serve to proxy them.

We now show how several ex-ante measures of regulatory complexity can be derived

by modeling a regulation like an algorithm in Halstead (1977). We consider regulation
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F as a sequence of “n-grams” (expressions of length n that are elements in a language)

F = {w1, w2...wN}, from which we extract two sequences: a sequence of NOR operators

and a sequence of NOD operands, with NOR + NOD = N . The sets {o1, o2...oηOR
} and

{ω1, ω2...ωηOD
} are the sets of all operators and operands that appear in F , where ηOR is the

total number of unique operators, and ηOD the total number of unique operands.

Using Halstead’s definition, operands in an algorithm are “variables or constants” and

operators are “symbols or combinations of symbols that affect the value or ordering of an

operand”. Consider, for instance, the following “pseudo-code” to compute the vector norm

of an n-dimensional vector x = (x1, x2...xn) which can be written as:

y = sqrt(x_1^2+x_2^2...+x_n^2) (4)

Here, the operators are =, sqrt,+, ,̂ and the operands y, xi, 2. So we have ηOR = 4, NOR =

2n+ 1, ηOD = n+ 2, NOD = 2n+ 2.

To better take into account some differences between regulations and generic algorithms,

we propose a slightly finer partition than Halstead’s. Already in Halstead’s work, the as-

signment operator (the = sign in (4)) plays a different role from other operators. Similarly,

a regulation will necessarily contain words that indicate a rule, an obligation, a permission,

etc. We call such words “regulatory operators”. Operators that are not regulatory operators

fall into two categories: “logical operators” represent logical operations such as “if”, “when”,

etc., while “mathematical operators” represent operations like addition, product, subtrac-

tion, and so on. We denote NR, ηR, NL, ηL, NM , ηM the number of total/unique regulatory

operators, total/unique logical operators, total/unique mathematical operators, respectively.
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We have NR +NL +NM = NOR and ηR + ηL + ηM = ηOR.

We now derive six measures of complexity within our extended framework.

First, the simplest measure of regulatory complexity is the total number of words N in

a regulation, which we denote length. This measure is used for instance in Haldane and

Madouros (2012).

Second, a popular measure in computer science is cyclomatic complexity (McCabe, 1976),

which is the number of different paths an algorithm can follow. We denote it cyclomatic.

This is measured in practice by the number NL of different logical operators, as in, e.g., Li

et al. (2015).

Third, the quantity of regulations, denoted quantity, can be measured by counting the

total number of regulatory operators, NR. This corresponds to the RegData measure of

Al-Ubaydli and McLaughlin (2017), who count the number of words indicating a binding

constraint in the U.S. Code of Federal Regulations.10 A related example is Herring (2018),

who measures complexity through the number of different capital ratios Global Systemically

Important Banks need to comply with.

Fourth and fifth, Halstead (1977) suggests two additional measures, new to the literature

on regulatory complexity. The three measures above depend on the actual text F and hence

cannot capture problem complexity, which is independent of the text chosen to solve the

underlying problem ϕ. How can one obtain a measure of problem complexity, that depends

only on ϕ? Halstead’s answer to this question is to look at the shortest possible program that

can solve the problem, in the best possible programming language. Defining this algorithm

10See also McLaughlin et al. (2021) for a recent study using this measure.
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is easy. For example, the shortest possible program to compute the vector norm is:

y = vecnorm(x_1,x_2...x_n) (5)

where vecnorm is a function returning the vector norm. This is the shortest possible program

because any program to compute the norm of a vector would need to specify the input, the

output, an assignment rule, and an operation (which in our example already exists in the

programming language).

More generally, for any problem, the shortest program would still contain a minimum

number of operands η∗OD that represent the number of inputs and outputs of the program. All

the operations transforming the inputs into outputs would already be part of the language

as a single built-in function. The number of operators is then η∗OR = 2. If one assumes

that the list of inputs and outputs never includes some unnecessary ones, then we also have

η∗OD = ηOD. The volume of this minimal program, equal to 2 + ηOD, is a measure of problem

complexity called potential volume and denoted potential.

Finally, an interesting question to ask is whether an algorithm is close to the short-

est possible algorithm. Adapting Halstead (1977), we define the level of an algorithm as

level = potential/length. The measure level has an intuitive interpretation in the context

of regulatory complexity. If level is high (close to 1) this means that the regulation has a

very specific vocabulary—a technical jargon opaque to outsiders. Conversely, a low value of

level means that the regulation starts from elementary concepts and operations.

Sixth and last, by symmetry with potential we propose to also consider the number of

unique operators ηOR, or operator diversity, denoted diversity, as a measure of psychological
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complexity. Intuitively, there might be increasing returns to scale in always processing the

same operations, whereas a regulation that describes many distinct operations or relies on

different types of logical tests could be more difficult to understand.

For completeness, we briefly review other ex-ante measures that have been proposed in

the literature but do not directly fit within our framework.

Kalmenovitz et al. (2022) propose a measure of regulatory fragmentation, RegFragmen-

tation, which relies on counting the number of different regulatory agencies mentioned in

the Federal Register and relevant for the same industry. This measure is best interpreted

as a measure of computational complexity, the idea being that the overlap between different

authorities makes compliance more costly. It can be included in our framework by counting

separately the operands corresponding to regulatory authorities.

Amadxarif et al. (2019) use a number of measures from the linguistics literature, in

particular average word length, the Maas’ index of lexical diversity (Maas, 1972), and the

Flesch-Kincaid grade level readability metric (Kincaid et al., 1975). Katz and Bommarito

(2014) and Li et al. (2015) also use Shannon’s entropy as an alternative measure of lexical

diversity. All these measures do not rely on a partition of words between operands and

operators, and apply equally well to texts that have no normative or operational content.

These measures aim at capturing the complexity of the style used by an author, which can

be part of psychological complexity, rather than the complexity of the underlying ideas.

Boulet et al. (2011), Katz and Bommarito (2014), Li et al. (2015), and Amadxarif et al.

(2019) propose to analyze the network formed by different legal texts or regulations that

reference each other. Network measures such as the in-degree (how often a legal text is cited

by other legal texts), out-degree (how often a legal text cites other legal texts), or different
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network centralities can then be interpreted as measures of psychological complexity.11 These

network-based measures of complexity are quite different from our approach because they

are based on references between different legal texts in a corpus.

Table 1 summarizes the different measures surveyed in this section. The table also serves

to illustrate how different measures can be classified according to the dimension of complexity

they capture, following Section 1.2. This is different from other classifications we are aware

of (e.g., in Amadxarif et al. (2019)), which are based on how the different measures are

computed. In particular, our classification illustrates the special role of potential volume

and quantity, the only measures of problem complexity.

[Insert Table 1 here.]

2 Basel I

The Halstead measures we propose to use were initially designed for algorithms, in which

the classification of elements into operands and operators is unambiguous. In this section,

we show that it is possible to meaningfully adapt these measures to regulatory texts. We use

as an example the 1988 Basel I Accords (Basel Committee on Banking Supervision (1988)).

We focus on Annex 2, “Risk weights by category of on-balance-sheet asset”. As we will

illustrate below, this is a natural starting point because this part of the regulation can easily

be described as an algorithm. This allows us to compute our measures based both on an

algorithmic representation of Basel I, and on the actual text. We then compare the results

obtained in both cases and conclude that our measures can be applied directly on the text.

11Amadxarif et al. (2019), for example, discuss the use of PageRank centrality, which measures how often
a node in a network is cited by nodes that themselves are cited often.
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2.1 Basel I as an algorithm

The Basel I Accords are a 30-page long text specifying how to compute a bank’s capital ratio.

It maps different asset classes to different risk buckets, and different capital instruments

to different weights. The regulation then compares the risk-weighted sum of assets to the

weighted sum of capital, and the ratio has to be higher than 8%. As this succinct description

makes clear, Basel I is easily described as an algorithm. We write a “pseudo-code” that

implements the computation of risk-weighted assets described in the Annex 2 of the text,

i.e., our code maps a bank balance sheet to total risk-weighted assets under Basel I. We give

this program in Online Appendix OA.1. In this section, we briefly explain the structure of

the program and give the associated complexity measures.

Annex 2 of the Basel I text is a list of balance sheet items associated with 5 different

risk weights. For instance, in the 20% risk-weight category we have “Claims on banks

incorporated in the OECD and loans guaranteed by OECD incorporated banks”. In our

code this is translated into:

IF (ASSET_CLASS == "claims" AND ISSUER == "bank" AND ISSUER_COUNTRY == "oecd") THEN:

risk_weight = 0.2;

We can easily identify the operands and operators in such a piece of code, and compute

our measures of complexity. For instance here the operands are the different asset classes

(e.g., ASSET_CLASS), characteristics (e.g., ISSUER_COUNTRY), values of these characteristics

(e.g., oecd), and risk-weights (e.g., risk_weight, 0.2). The logical operators are IF, AND,

THEN, and we distinguish between the mathematical operator == and the regulatory operator

=. We thus obtain ηOD = NOD = 8, ηR = NR = 1, ηL = 3, NL = 4, ηM = 1, NM = 3. We
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conduct the same exercise for each of the 19 items covered by Basel I, and report the full

results in Online Appendix OA.2.

2.2 Text analysis and comparison

We now repeat the same analysis of the Appendix 2 of Basel I, but relying this time on

the actual text and not on our “translation” into code. A drawback of the text of Basel I’s

Appendix 2 is that some words are left implicit. In particular, the mapping between different

asset classes and their respective risk weights is only indicated by the layout of the page.

To circumvent this issue, we wrote a more explicit text in which each item ends with “shall

have an x% risk weight”. This is the only modification we made to the original text.12 We

then classify as “operands” the words or word combinations that have the same function

as operands in the program, more precisely economic entities (e.g., “bank” or “OECD”),

concepts (e.g., “maturity” or “counterparty”), and values (e.g., “one year”). We classify as

regulatory operators words that indicate an obligation or regulatory requirement, which are

“shall” and “have”. Logical operators are words that correspond to logical operations, such

as “and” or “excluding”. Mathematical operators are for instance “up to” and “above”.

Using this approach, we classify 81 unique words out of the 86-word vocabulary used by the

text. The remaining words are used for grammatical reasons and do not really correspond

to operands or operators (e.g., “by”, “on”, “the”), hence we don’t take them into account.

In the Online Appendix OA.2 we report the most frequent words in each category, as well

as the measures we compute for each item of Basel I.

We can now compute the correlations between the text-based measures and their algorithm-

12We report this modified text in Online Appendix OA.1.
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based counterparts. Table 2 gives the correlation coefficients.13 The correlation coefficients

we obtain are quite high, perhaps with the exception of diversity, which shows that the text-

based analysis and the algorithm-based analysis are capturing similar patterns. Differences

arise between the algorithm and the text because the text version is sometimes ambiguous

or leaves some elements implicit. A good example is item (2a), which has length = 43 in

the algorithmic version but length = 22 only in the text version. However, in both versions

this item stands out as one of the most complex according to cyclomatic, diversity, and

potential. More generally, the correlation is particularly high for measures of problem com-

plexity (quantity and potential), which indeed should theoretically not depend on whether

the regulation is expressed in English or in code.

Overall, we conclude from this comparison that measures of regulatory complexity relying

on a text analysis can be a good proxy for the more theoretically founded measures based

on the algorithmic version. This supports our adoption of the text-based approach for a

full-scale regulatory text in Section 4.1. In addition, this analysis confirms that quantity

and potential are indeed capturing problem complexity, as they are less affected by a change

in the language used.

[Insert Table 2 here.]

3 Experiments

The purpose of ex-ante measures of complexity such as those studied in Sections 1.3 and 2

is that they can be computed at scale and used for empirical or policy applications. How-

13Formally the coefficients are not defined for quantity. Since quantity is constant in both the algorithm
version and the text version we adopt the convention that the correlation coefficients are equal to 1.
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ever, these measures are necessarily somewhat arbitrary and one may wonder whether they

are good measures of regulatory complexity. The parallel with computer science suggests

a methodology to test the relevance of the different measures: in computer science, com-

plexity measures are tested by asking different programmers to write the same code. One

then checks whether the mistakes they make or the time they take to perform the task are

correlated with a measure of algorithmic complexity. We follow this idea and ask partici-

pants to an experiment to evaluate a regulatory action by computing regulatory quantities

based on different regulations. For each regulation, we can compute the performance of the

participants, which gives us ex-post measures of complexity. We then test whether different

ex-ante measures of regulatory complexity can explain the the variation in ex-post measures.

3.1 Design

For our experiments we continue to rely on the Basel I regulation, this time as a testing

ground. We generate a number of artificial “Basel-I like” instructions to compute risk-

weighted assets based on a balance sheet, where the instructions vary in the number of asset

classes to be considered, the different conditions attached to each asset class, and the number

of different risk-weights, so that they will also have different ex-ante measures of regulatory

complexity.

There is obviously a lot of flexibility and arbitrariness in writing artificial regulations.

In order to tie our hands and avoid introducing potential biases by manually writing them,

we generate a sample of randomized instructions for computing risk-weighted assets, all

following the template of Basel I, but with random variations. For instance, in our al-
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gorithmic version of Basel I (Online Appendix OA.1), the regulatory text “Cash items

in process of collection shall have a 20% risk weight” translates into a conditional state-

ment of the type IF-X-AND-Y-THEN with two conditions X: ASSET_CLASS == "cash" and

"CASH_COLLECTION == "in progress". A random variation could for instance consist in

changing the value of ASSET_CLASS to "loans", and add new attributes such as ISSUER,

DENOMINATION, and so on. Figure 4 shows the possible attributes for each asset class and

the values these attributes can take. Each randomly generated regulation consists of these

building blocks that are connected using a random number of AND and OR statements which

is no larger than the largest number of conditions in any IF-THEN clause in Basel I, which is

six.

[Insert Fig. 4 here.]

As a last step, we manually check that the instructions make sense, e.g., they do not

contain contradictory rules, and we make some minor manual changes to avoid ambiguities,

grammar mistakes, etc.14 At the end of this process, we obtain 38 regulations that we use in

our experiment. As shown in Table 3 below, there is significant variation in all the complexity

measures across the different regulations (in this section, all measures are computed based

on the actual texts seen by the participants to the experiment). A limitation of our sample

of randomly generated regulations is that several measures are quite correlated with each

other, as seen in Table 4. Such a high correlation is to be expected: there is a natural

correlation between the number of operands and operators, which we can also observe in the

Basel I instructions (Table OA.5).

14The Appendix C shows an example of such a randomly generated regulation. In addition, the replication
files of this paper give:15 (i) the program used to generate the random regulations; (ii) the raw regulations
generated by the program; (iii) the final regulations we used in the experiment.
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[Insert Tables 3 and 4 here.]

In order to find participants able to read the regulations and compute regulatory quan-

tities, we asked the students of the MSc in International Finance of HEC Paris, class of

2020-2021, to volunteer for taking part in the experiment. The students had taken an

18-hour course on “Economics of Financial Regulation”, which included in particular a de-

scription of the Basel I framework and a short example of how to compute risk-weighted

capital requirements. Importantly, the course did not discuss how to measure regulatory

complexity, so that there was no “priming” of the students.

Students were offered (i) 2 bonus points for completing the experiment, regardless of

performance and (ii) 1/3 bonus point for each correct computation. Since there were 9

computations in total, students could obtain up to 5 bonus points, compared to 100 points

for the final exam. This scheme served as an incentive to participate in the experiment

and try to get a correct answer. As a result, 125 out of 191 students participated in the

experiment. After excluding from the analysis 7 students who mistakenly took the test

several times, and whose answers are potentially affected by a learning effect, we have a

sample of 118 participants who give answers on 9 randomly selected regulations each, for a

total of 1,062 participant-question observations.

Given the sanitary situation in early 2021, our experiment was conducted online. Each

participant had to register on a website designed for conducting the experiment (https:

//regulatorycomplexity.org/).16 After an introductory page, the participant registers

and gives some background information. The participant is then shown a screen with expla-

16The interested reader can try the experiment anonymously by using the login “test account” and pass-
word “test”.
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nations about the experiment and how to compute capital requirements. The next screen

is a “test-round”, which is the same for all participants (Figure 2). The computer screen is

split vertically in two. On the right-hand side, there is a series of instructions that mimick a

Basel-I like capital regulation. On the left-hand side, there is a simplified bank balance sheet

with details about the different assets of the bank that correspond to the regulation. The

participant has to compute the risk-weighted assets of the bank following the instructions.

We record the answer given by the participant (and hence whether it is correct), as well as

the time taken to answer.

If the answer to the test-round is correct, the participant is notified that he/she found

the correct answer. If the answer is wrong, the participant is told so. In both cases, the

participant is given an explanations on how to compute the correct answer, and then moves

to the second round. The second round is similar to the first one, except that the regulation is

drawn randomly from our set of randomly generated regulations. Moreover, the participant

doesn’t receive any feedback on his/her answer. The experiment is then repeated for a total

of 10 rounds (including the first training round). The balance sheet displayed on the left-

hand side is constant across rounds and across participants. All the pages of the website are

reproduced in Online Appendix OA.3.

[Insert Fig. 2 here.]

3.2 Results on mistake-based complexity

The answers form a balanced panel with 118 participants, indexed by i, answering a series of

9 questions each, indexed by t. The t-th question for each participant corresponds to regu-
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lation Ri,t ∈ {1...38}, which is randomly drawn from our 38 randomly generated regulation,

with draws being independent across questions and students. We denote correcti,t a dummy

variable equal to 1 if the participant i’s answer to question t is correct. Following Definition

5, correcti,t is a measure of mistake-based complexity for participant i and regulation Ri,t.

There is substantial variation across regulations. If one computes the proportion correctj of

correct answers for each regulation j, the average of correctj is 68.61%, the standard devi-

ation is 16.78%, the minimum 37.50%, first quartile 58.62%, median 64.68%, third quartile

82.14%, and two regulations have the maximum of 100.00%.

Denoting µ(Ri,t) an ex ante complexity measure for regulation Ri,t, in order to show

whether µ is a useful ex ante measure of complexity we study its power to explain the

variation in correct. First, we evaluate the following probit model, at the participant-

question level, using both participant and question fixed effects:

Pr(correcti,t = 1) = Φ(α + βµ(Ri,t) + γi + δt), (6)

where Φ(.) is the cdf of the standardized normal distribution. As our ex-ante measures are

all based on the classification of words in the different regulations into operands and different

types of operators, we first check that operands and operators have statistically significant

different effects on correcti,t. For each regulation j we compute lengthj the total length

of the regulation, as well as NOD,j, NOR,j, NR,j, NL,j, NM,j the total numbers of operands,

operators, regulatory operators, logical operators, and mathematical operators, respectively.

We also compute the numbers ηOD,j, ηOR,j, ηR,j, ηL,j, ηM,j of unique terms in each category.

We then run the probit regression (6) on different subsets of these variables, as shown in
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Table 5.

[Insert Table 5 here.]

Column (1) of Table 5 shows that length is negatively associated with correct answers,

and together with participant and question fixed effects explains 24.3% of the variation

of correcti,t across the 1,062 participant-question pairs (against 18.1% for a specification

with fixed effects alone). In column (2) we split lengthj = NOD,j + NOR,j into its two

components and run the probit separately on NOD,j and NOR,j. Only the coefficient on

NOD,j is statistically significant, suggesting that total operands and total operators play a

different role. However, perhaps due to the small sample size, we can reject the hypothesis

that the coefficients on NOD,j and NOR,j are equal to each other in this regression at the

10% level only (p-value of 9.6%). Column (3) shows that the total number of unique words

is negatively associated with correct answers. Splitting again into unique operands and

operators in Column (4), we obtain that unique operands are negatively associated with

correct answers, whereas unique operators are positively associated. The difference between

the two coefficients is statistically significant, and remains so after controlling for lengthj

in Column (5) (p-value lower than 0.1% in both cases). Finally, in Column (6) we further

decompose unique operators into unique mathematical operators ηM,j and unique logical

operators ηL,j. We do not include unique regulatory operators as ηR,j is equal to 1 for every

j. We find that the impact of unique mathematical operators is higher than that of unique

logical operators. The coefficients on ηM,j and ηL,j are statistically significantly different

from each other and from the coefficient on unique operands (all p-values are below 0.1%).

We conclude from this series of regressions that separating the words used in the various
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regulations into operands and different categories of operators does indeed help explain the

variation of mistake-based complexity across regulations.

We now turn to testing our ex-ante measures. First, we run the probit regression (6) on

each of the six measures separately, across the 1,062 participant-question observations. In

these regressions, we expect a reliable measure of mistake-based complexity to be negatively

associated with correct answers, and the pseudo-R2 of the regression measures how much of

the variation of complexity across regulations is captured by the measure. The results are

reported in Table 6. Second, we run each regression again, adding length as an independent

variable. As length is a natural and standard measure of complexity, a new measure is useful

only to the extent that it is able to explain the variation across regulations beyond what

is already captured by length alone. Hence, we expect a good measure of mistake-based

complexity to be significantly negatively associated with correct even after controlling for

length, and to lead to a higher pseudo-R2 than in the regression on length alone.

[Insert Table 6 and 7 here.]

We observe that length, cyclomatic, quantity, potential, and diversity have the ex-

pected negative correlation with correct, while level does not. In addition, once we control

for length, we see that quantity stands out, as it is the only measure that has the expected

negative correlation with correct and explains the variation across regulations beyond length.

These results have natural interpretations. cyclomatic is a measure of psychological com-

plexity, like length, which may be why it does not capture much beyond what is already

captured by length. In contrast, quantity and potential are both measures of problem com-

plexity and were hence expected to capture a dimension not already reflected in length, and
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we indeed find this is the case for quantity. Actually, quantity has a large marginal effect

on correct: for a given length, participant, and question order, adding one rule (compared

to an average of 4.79) decreases the probability of a correct answer from a baseline of 68.6%

to 53.8%. Conversely, once controlling for quantity it seems length is unrelated to correct.

diversity was introduced by symmetry with potential, but it does not rely on any theoretical

foundation, and accordingly it performs poorly. level is given some theoretical foundations

in Halstead (1977), but it is expected to have a different impact for more sophisticated and

less sophisticated participants, hence it’s correlation with correct is a priori ambiguous.

We conclude from this analysis that quantity seems to be the best ex-ante measure of

mistake-based complexity, and the only one to provide information beyond length. For

robustness, in Online Appendix OA.4 we repeat the same analysis using OLS regressions of

the percentage of correct answers at the regulation level on the different measures, and we

obtain very similar results.

3.3 Results on cost-based complexity

We repeat the analysis with cost-based complexity. For each participant i and question t

answered by this participant, we know the time taken to answer, denoted timei,t. According

to Definition 5, we can consider the time taken for each regulation as a measure of cost-

based complexity. However, there are three issues that complicate the measurement: (i)

A participant may take an abnormally long or short time to answer because he or she

misunderstood the regulation. Hence, it is not clear whether wrong answers given after a

short time really reflect a low cost-based complexity; (ii) Some participants may have “given
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up” on some regulations that looked more daunting, and given a random answer after a short

amount of time, making again such answers difficult to interpret; (iii) A few correct answers

were given after a long time (the maximum being 958 seconds, or about 16 minutes). While

it is possible that it actually took that long to the participants to answer, it is likely that

they got distracted while completing the online experiment, in which case the actual effort

exerted may be vastly overestimated.

To address these issues, we restrict the sample to answers that we think are the least

likely to be affected by them. Starting with 1,062 observations, we keep only those 728 that

correspond to correct answers, which solves issues (i) and (ii). We then delete 6 observa-

tions for which timei,t is above 579 seconds (99 percentile of the initial distribution), which

alleviates (iii). There is still significant variation in timei,t in this restricted sample: the

average is 132 seconds, the standard deviation 98, minimum 6, first quartile 59, median 107,

third quartile 180, and maximum 561 seconds. We then run an OLS regression of timei,t on

different measures of complexity, with participant and question fixed effects:

timei,t = α + βµ(Ri,t) + γi + δt. (7)

[Insert Tables 8 to 10 here.]

We verify that separating operands and operators helps explaining the variation of timei,t

across regulations. Table 8 shows that this is the case. Column (2) shows that total operands

and operators have a different impact on time (p-value below 0.1%), Column (4) and (5) that

unique operands and operators have a different impact, including when controlling for length,

although the statistical significance is weaker (p-values of 8.7% and 8.5%, respectively).
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However, and differently from the analysis of mistake-based complexity, we cannot reject the

hypothesis that unique logical operators and unique mathematical operators have the same

impact (p-value of 17.7%).

Table 9 shows that all the ex-ante measures of complexity except level have the expected

positive correlation with time. When controlling for length in Table 10, we see that potential

and to a lesser extent quantity are significantly and positively correlated with time. In terms

of magnitude, for a given length, participant, and question rank, adding one extra unique

operand (compared to an average of 16.66) increases time from an average of 132 seconds to

145 seconds.

For robustness, Online Appendix OA.4 shows the results obtained when aggregating

answers at the regulation level. Online Appendix OA.5 shows the results obtained with

several other filtering choices, including keeping all observations, and winsorizing instead of

trimming outliers. In all cases we obtain qualitatively similar results, with the exception that

the impact of quantity, already weaker in the main specification, becomes not significant at

the 10% level in some specifications.

3.4 Discussion

The conclusion of our experimental analysis is that two of the five new ex-ante measures

we consider, namely potential and quantity, seem to be good proxies for ex-post measures

of complexity, beyond length. Interestingly, these are the two measures that were expected

to capture problem complexity, a different dimension from the one captured by length.

These two measures also seem to capture different subdimensions of problem complexity:
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quantity is mostly related to mistake-based complexity, with an extra rule increasing the

probability of a mistake by 14.8 percentage points, while potential is mostly related to cost-

based complexity, with an extra unique operand increasing the time to provide a correct

answer by 13 seconds (controlling for length in both cases). This suggests that more generally

making a regulation easier to understand does not necessarily make it less costly to process,

and conversely.

While we believe these results are interesting in their own right, our main conclusion is

broader: this methodology inspired by the validation of algorithmic complexity measures in

computer science provides a powerful touchstone for testing novel measures of regulatory

complexity. Indeed, out of five measures we tested, only two pass the test. Reassuringly

for our methodology, these two measures are also the ones that were expected to perform

the best ex ante. As we provide the texts of the regulations we used and the results of the

experiments online, other researchers have a tool to test any other text-based measure of

complexity and compare it to the five we considered.

4 Applications

In this section we discuss the two main possible applications of our approach, and develop

tools for these applications. The first one is to apply our ex-ante measures of complexity

on various regulatory texts, either in the context of an academic study on the impact of

regulatory complexity on economic outcomes, or as part of a policy process to keep track

of the complexity of new proposed regulations. Our ex-ante measures can be applied at

scale on a variety of texts, provided that one has a sufficiently rich dictionary of operands
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and operators. We explain in Section 4.1 how we developed such a dictionary. The second

application is to use our measures in the context of a normative model of regulation, which

could eventually be used by policymakers to quantify the trade-off between the complexity

of regulation and other objectives. As a proof of concept, Section 4.2 builds a simple model

of the trade-off pointed out by the BCBS between the risk-sensitivity and the simplicity of

capital requirements.

4.1 A dictionary for positive analysis: The Dodd-Frank Act

To build a dictionary of operands and operators and prove that our measures can be imple-

mented at a larger scale, we compute our complexity measures for the different titles of the

2010 Dodd-Frank Act. There are two reasons for this choice. First, the Dodd-Frank Act is

one of the key regulations introduced after the financial crisis. It has triggered a lot of debate,

in particular regarding its perceived complexity. Second, the Dodd-Frank Act touches upon

a wide range of issues in finance, so that by classifying the words of the Dodd-Frank Act we

created a comprehensive dictionary that can be used for a broad range of other regulatory

texts.

The scale and scope of the Dodd-Frank Act also creates three new challenges compared

to the more limited example of Basel I.

First, a lot of operands in the Dodd-Frank Act are “n-grams”, expressions made of n

distinct words. For instance, “Consumer Financial Protection Bureau” should be considered

as one operand, not four distinct words. To take this into account, we read the entire Act

and manually made a list of all such n-grams (for details see Online Appendix OA.6). We
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classified each n-gram into a category, and then removed them from further counts. That

is, we made sure that “Consumer Financial Protection Bureau” is counted only once as an

operand, not once as an operand and then again as four distinct words.

Second, some words in the text can sometimes be used as an operand and sometimes as

an operator. The most prominent example is the word “is”. In principle, “is” could be a

regulatory operator (as in, e.g., “the risk-weight is 20%”). However, it could have a merely

grammatical function to indicate the passive voice (e.g., “at the time at which each report is

submitted”, Sec. 112 (b)). We classify such ambiguous words in the category “other”, and

hence don’t count them in our different measures.17

Third, the Act uses a lot of external references. As an example, Section 201 (5) reads “The

term “company” has the same meaning as in section 2(b) of the Bank Holding Company Act

of 1956 (12 U.S.C. 1841(b)) [...]” How should one deal with such a case? A possible solution

would be to include the text referenced in the example as being implicitly part of the Act.

However, with such an approach we would quickly run into the “dictionary paradox” (every

reference refers to other texts). Instead, and more consistent with the Halstead approach, we

consider that if a legal reference is mentioned it is part of the “vocabulary” one has to master

in order to read the Act, similar to a program calling a pre-programmed function. The role

of legal references is ambiguous, they are sometimes used as operators and sometimes as

operands. Thus, we include them in the “other” category.

These difficulties required us to classify the words manually. After classifying words in

the 16 Titles of the Dodd-Frank Act plus its introduction, we created a dictionary containing:

17There is necessarily some judgement involved in this decision. One could consider other possibilities,
such as estimating the fraction of occurrences in which “is” is a regulatory operator, an operand, etc., but
we believe these estimates would not necessarily carry over to other regulatory texts, thus running against
the objective of building a reusable dictionary.
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429 operators (230 logical operators, 161 regulatory operators, 38 mathematical operators),

5,872 operands, as well as 2,799 “other” words (2,450 legal references, 222 function words,

and 127 ambiguous words). Table 11 shows the top 10 words in each category as well as the

number of occurrences. Similarly to what we did in Section 2.2, we then compute different

measures for the different titles of the Dodd-Frank Act, and the entire act separately. The

results are reported in Table 12.

The objective of building this dictionary is that it can be used on other regulatory texts.

To test whether the dictionary is rich enough, we conduct the following exercise. For each

title i between 1 and 16 of the Dodd-Frank Act, we create an alternative dictionary based on

all the words classified outside of title i. We then treat title i as a new regulation, and count

what percentage of words we are not able to classify based on the alternative dictionary. In

addition, we also count the proportion of these unclassified words that are actually operands,

operators of different types, and other words. As shown in Table 13, on average across all

titles we are able to retrieve 86% of all words. Moreover, many of the words we cannot find

are in the “Other” category and would not be used in the complexity measures anyway. We

also find more than 96% of operators of all categories, so that measures relying on operators

(cyclomatic and diversity) seem the easiest to compute on other texts without having to

expand the dictionary.

[Insert Tables 11, 12, and 13 here.]

We made the dictionary of all the classified words in the Dodd-Frank Act available online.

In addition, the code for the dashboard we used is available, and can be used to manually

enrich our dictionary with words from other regulatory texts. Moreover, for regulatory texts
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with too many unclassified words our dictionary can be used to train a supervised machine

learning algorithm to classify words into operands and operators.

4.2 Normative analysis: “balancing risk-sensitivity and simplic-

ity”

To use our approach for normative purposes, we extend the framework of Section 1 by assum-

ing that the regulator designing the regulation has a model of the economy that associates

an entity x and a regulatory action y to some measure of social welfare U(x, y). For a given

regulation ϕ associating each possible entity to a regulatory action, the welfare achieved by

the regulation is:

W0(ϕ, x) = U(x, ϕ(x)). (8)

In a standard microeconomic model of regulation, we would solve for the ϕ∗(x) that

maximizes W0(ϕ, x), and this would define the optimal regulation. We extend this standard

case by taking into account that while ideally regulation ϕ associates x to ϕ(x), the possibility

of mistakes at the various steps studied in Section 1 implies that the actual regulatory action

may be f̂(ϕ, x) 6= ϕ(x). More precisely, we assume that, for a given x, with probability p̂(ϕ, x)

the regulation is correctly implemented and f̂(ϕ, x) = ϕ(x), whereas with the complementary

probability f̂(ϕ, x) contains a random mistake following some distribution. In addition, we

denote t̂(ϕ, x) the total effort (e.g., hours of work) spent on supervising entity x, and denote

w the cost per unit of effort. We can then define a social welfare function that takes into
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account the costs of complexity:

W(ϕ, x) = p̂(ϕ, x)U(x, ϕ(x)) + (1− p̂(ϕ, x))E[U(x, f̂(ϕ, x))|f̂(ϕ, x) 6= ϕ(x)]− wt̂(ϕ, x). (9)

Note that the choice of ϕ affects the probability p̂(ϕ, x) of a mistake, the distribution of

f̂(ϕ, x) in case of a mistake, and the total effort t̂(ϕ, x). In particular, according to our

definitions in Section 1, a more complex regulation ϕ means that the probability of a mistake

and the effort costs are higher. Hence, there is potentially a trade-off between having a

regulation “close” to ϕ∗ and generating regulatory mistakes and costs.

We illustrate this approach with a simple model of risk-sensitive capital requirements.

The intense policy debate on the complexity of capital requirements led the Basel Committee

to publish a discussion paper on the trade-offs between “risk sensitivity, simplicity and

comparability” (Basel Committee on Banking Supervision, 2013). Nine years later, the right

trade-off remains elusive, in particular due to the lack of a normative framework to think

about regulatory complexity. We sketch how our framework could eventually serve such a

normative purpose and be used to think about the optimal level of complexity.

Assume a bank invests in assets that have a certain “asset class” x ↪→ U [0, 1], and

denote y the minimum level of capital the bank must have. In Online Appendix OA.7, we

derive for illustration a simple function U(x, y) in a model of bank risk-shifting, such that

capital regulation can improve welfare.18 We consider the following family of bank capital

18In future research going beyond this proof of concept, one should use a quantitative model of the economy
rich enough to accommodate different regulations. This is precisely where the literature on bank capital
requirements is heading. See for instance Begenau and Landvoigt (2021), or the BIS’ “Financial Regulation
Assessment: Meta Exercise” (https://www.bis.org/frame/) for a meta-analysis of the quantitative impact
of capital requirements.
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regulations:

if x < x̄1 then y ≡ E∗1

else if x < x̄2 then y ≡ E∗2

...

else if x < x̄I−1 then y ≡ E∗I−1

else y ≡ E∗I

where y is the amount of equity the bank is required to have for an asset belonging

to class y, the x̄i are thresholds chosen by the regulator, the E∗i are capital levels chosen

by the regulator, and I is the number of risk buckets considered by the regulator. We

denoteW0(I) = E[U(x, y)] the expected economic welfare if the regulation above is perfectly

implemented, with the E∗i chosen optimally. The Appendix shows that this welfare increases

in I. This captures in a stylized way the benefits of risk-sensitivity, the first leg of the

trade-off described in Basel Committee on Banking Supervision (2013).

The second leg, simplicity, the opposite of complexity, can be captured by our complexity

measures. In the regulation above, the logical operators are “if”, “else”, and “then”, ≡ is a

regulatory operator, and < is a mathematical operator. The operands are x, y, the x̄i, and

the E∗i . We have ηR = 1 and NR = I, ηL = 3 and NL = 3(I − 1), ηM = 1 and NM = I − 1,

ηOD = 2I + 1 and NOD = 4I − 2. Given the number I of intervals used, we can then easily

compute the measures using the formulas in Table 1 and see how they vary with the number

of asset classes I.

For illustration, we then use the estimates of Section 3 to translate the measures into the

probability p̂(I) with which the regulation is applied without mistake and the total effort

t̂(I). More specifically, we use the estimates from specification (3) in Table 6 and (4) in
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Table 9 to compute, for every I:19

p̂(I) = Φ(2.877− 0.507quantity(I)) (10)

t̂(I) = 4.055 + 7.965potential(I). (11)

We can now quantitatively measure how increasing the number of distinct asset classes

affects W0(I) (welfare absent costs of complexity), p̂(I), t̂(I), and welfare W(I) (including

the costs of complexity). Figure 3 displays the results for the particular welfare function

derived in Online Appendix OA.7.20 In particular, whileW0(I) is strictly increasing in I, we

obtain thatW(I) is bell-shaped and for more than I = 3 risk-buckets the costs of complexity

outweigh the benefits. Hence, the policymaker can compute the optimal trade-off between

“risk-sensitivity” and “simplicity”.

[Insert Fig. 3 here.]

The method we outline here is only a proof of concept, but to our knowledge this is the

first proposal offering policymakers a quantitative approach to the trade-off between regula-

tory complexity and other policy objectives. The actual implementation of this approach for

policy would require policymakers to complete two additional tasks: (i) develop quantita-

tive models of regulation, rich enough to estimate the welfare impact of different regulatory

19In each case the constant term is the sum of the constant in the regression, the average participant fixed
effect, and the average question fixed effect.

20In addition to the parameters discussed above, we assume that conditionally on a mistake being made
f̂(ϕ, x) is uniformly distributed over [0, 1]. In addition, we assume λ = 0.025, δ = 0.01, p = 0.05, w = 0.
The effort costs then play no role in the graphs, but obviously a higher w would make W(I) decrease more
quickly in I.
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alternatives; (ii) run richer and more robust experiments to have a more precise view of the

costs of psychological complexity for different audiences.21

5 Conclusion

We propose a comprehensive framework, inspired by the computer science literature, to

analyze regulatory complexity. Our framework allows us to distinguish different dimensions

of regulatory complexity, derive six measures of regulatory complexity that can be applied to

large scale regulatory texts, conduct a validation test that can be applied to any text-based

measure, and study the trade-off between the costs and benefits of more complex regulations

in a normative model.

The present work is only a first step in applying this new approach to the study of

regulatory complexity, and is meant as a “proof of concept”. We believe our first results are

encouraging and highlight several promising avenues for future research.

First, our dictionary will allow other interested researchers to compute complexity mea-

sures for other regulatory texts and compare them to those we produced for Basel I and

the Dodd-Frank Act. One can for instance compare the complexity of different regulatory

topics, different updates of the same regulation, different national implementations, etc. A

rich database of the complexity of different regulations could eventually be used in empirical

studies aiming at testing some of the mechanisms that have been proposed in the theoretical

literature.

21More specifically, the type of experiment we consider in Section 3 should ideally be reproduced with
regulations actually under discussion, and with participants closer to the actual audience of regulatory texts
(bankers, lawyers, regulators, etc.).
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Second, the experiments we conducted and the validation criteria we propose allow in-

terested researchers to test any alternative text-based measure and compare it to the six

measures considered in this study. They could also serve as a useful benchmarking tool for

policymakers drafting new regulations.

Finally, the measures of complexity we propose can be computed also on models of

regulation, opening the possibility for policymakers to conduct the trade-off between the

precision and the complexity of regulation under the guidance of a quantitative model.
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A Tables

Table 1: Summary of Measures of Regulatory Complexity.

Name Source Formula Complexity Dimension Approach

Length e.g., Haldane and Madouros (2012) N Psychological Ex-ante
Cyclomatic complexity McCabe (1976) NL Psychological Ex-ante
Quantity of regulations Al-Ubaydli and McLaughlin (2017) NR Problem Ex-ante
Potential volume This paper and Halstead (1977) 2 + ηOD Problem Ex-ante
Operator diversity This paper ηOR Psychological Ex-ante
Level This paper and Halstead (1977) 2+ηOD

N
Psychological Ex-ante

RegFragmentation Kalmenovitz et al. (2022) - Computational Ex-ante

Average word length e.g., Amadxarif et al. (2019) - Psychological Ex-ante
Lexical diversity Maas (1972) - Psychological Ex-ante
Readability metric (Kincaid et al., 1975) - Psychological Ex-ante
Shannon’s entropy e.g., Katz and Bommarito (2014) - Psychological Ex-ante

PageRank Amadxarif et al. (2019) - Psychological Ex-ante
Network Centralities Boulet et al. (2011) - Psychological Ex-ante

Regulation Index Simkovic and Zhang (2020) - Computational Ex-post
RegIn Kalmenovitz (2023) - Computational Ex-post
NetReg Calomiris et al. (2020) - Computational Ex-post
Regulatory costs Singla (2022) - Computational Ex-post

Table 2: Correlation coefficients between the measures based on the algorithmic represen-
tation of Basel I and the measures based on the text of Basel I.

Pearson Spearman

length 0.76 0.84
cyclomatic 0.41 0.64
quantity 1 1
potential 0.82 0.8
diversity 0.4 0.48
level 0.39 0.43
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Table 3: Summary statistics on complexity measures - sample of 38 randomly generated
regulations.

mean sd min max

length 31.82 12.46 10.00 57.00
cyclomatic 5.32 3.58 1.00 13.00
quantity 4.79 1.19 2.00 6.00
potential 16.66 5.45 7.00 28.00
diversity 4.24 0.94 3.00 7.00
level 0.55 0.09 0.39 0.70

Table 4: Pairwise correlations between complexity measures, sample of 38 randomly gen-
erated regulations.

Panel A: Pearson Correlation Coefficients

length cyclomatic quantity potential diversity level

length 1 0.89 0.87 0.92 0.8 -0.7
cyclomatic 0.89 1 0.68 0.72 0.63 -0.79
quantity 0.87 0.68 1 0.82 0.7 -0.69
potential 0.92 0.72 0.82 1 0.83 -0.4
diversity 0.8 0.63 0.7 0.83 1 -0.43
level -0.7 -0.79 -0.69 -0.4 -0.43 1

Panel B: Spearman Rank Correlation Coefficients

length cyclomatic quantity potential diversity level

length 1 0.89 0.85 0.91 0.83 -0.69
cyclomatic 0.89 1 0.75 0.7 0.67 -0.86
quantity 0.85 0.75 1 0.8 0.69 -0.65
potential 0.91 0.7 0.8 1 0.86 -0.39
diversity 0.83 0.67 0.69 0.86 1 -0.45
level -0.69 -0.86 -0.65 -0.39 -0.45 1
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Table 5: Correlation of mistake-based complexity with operands and operators.
This table reports the coefficients, t-statistics (in brackets), and Pseudo-R2, of probit re-
gressions of correcti,t over different counts of total and unique operands and operators, with
participant and question fixed effects.

(1) (2) (3) (4) (5) (6)

length = NOD +NOR -0.037*** -0.044*** -0.042***
(-7.95) (-3.83) (-3.59)

NOD -0.062***
(-3.94)

NOR 0.006
(0.22)

ηOD + ηOR -0.065***
(-7.27)

ηOD -0.144*** -0.070*** -0.093***
(-7.44) (-2.60) (-3.32)

ηOR 0.451*** 0.559***
(4.04) (4.77)

ηM 1.103***
(6.30)

ηL 0.396***
(3.22)

Pseudo-R2 0.243 0.246 0.232 0.253 0.266 0.283

Table 6: Correlation of mistake-based complexity with ex-ante measures of com-
plexity. This table reports the coefficients, t-statistics (in brackets), and Pseudo-R2, of
probit regressions of correcti,t over the six ex-ante measures of complexity separately, with
participant and question fixed effects.

(1) (2) (3) (4) (5) (6)

length -0.037***
(-7.95)

cyclomatic -0.095***
(-6.23)

quantity -0.507***
(-9.34)

potential -0.078***
(-7.59)

diversity -0.243***
(-4.34)

level 4.061***
(6.52)

Pseudo-R2 0.243 0.217 0.277 0.237 0.198 0.221
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Table 7: Correlation of mistake-based complexity with ex-ante measures of com-
plexity, controlling for length.This table reports the coefficients, t-statistics (in brackets),
and Pseudo-R2, of probit regressions of correcti,t over length and each of the five other mea-
sures of complexity separately, with participant and question fixed effects.

(1) (2) (3) (4) (5) (6)

length -0.037*** -0.055*** 0.005 -0.030*** -0.065*** -0.031***
(-7.95) (-5.69) (0.62) (-2.75) (-7.85) (-5.16)

cyclomatic 0.068**
(2.13)

quantity -0.554***
(-5.92)

potential -0.017
(-0.70)

diversity 0.438***
(4.16)

level 1.275
(1.55)

Pseudo-R2 0.243 0.248 0.277 0.244 0.260 0.246

Table 8: Correlation of cost-based complexity with operands and operators. This
table reports the coefficients, t-statistics (in brackets), and adjusted R2, of OLS regressions
of timei,t over different counts of total and unique operands and operators, with participant
and question fixed effects. The sample is restricted to correct answers with time ≤ 579.

(1) (2) (3) (4) (5) (6)

length = NOD +NOR 3.388*** 0.654 0.597
(14.39) (1.01) (0.92)

NOD 7.102***
(8.04)

NOR -3.193**
(-2.09)

ηOD + ηOR 6.886***
(15.27)

ηOD 8.452*** 7.272*** 7.601***
(8.30) (4.69) (4.85)

ηOR -3.309 -4.550
(-0.55) (-0.75)

ηM -13.953
(-1.51)

ηL -1.296
(-0.20)

R2
a 0.445 0.461 0.462 0.464 0.464 0.465
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Table 9: Correlation of cost-based complexity with ex-ante measures of com-
plexity. This table reports the coefficients, t-statistics (in brackets), and adjusted R2, of
univariate regressions of time over the six ex-ante measures of complexity separately, with
participant and question fixed effects. The sample is restricted to correct answers with
time ≤ 579.

(1) (2) (3) (4) (5) (6)

length 3.388***
(14.39)

cyclomatic 9.338***
(10.18)

quantity 32.996***
(13.80)

potential 7.965***
(15.39)

diversity 39.316***
(12.28)

level -265.538***
(-6.90)

R2
a 0.445 0.363 0.433 0.465 0.403 0.308

Table 10: Correlation of cost-based complexity with ex-ante measures of com-
plexity, controlling for length. This table reports the coefficients, t-statistics (in brackets),
and adjusted R2, of regressions of correct over length and each of the five other measures of
complexity separately, with participant and question fixed effects. The sample is restricted
to correct answers with time ≤ 579.

(1) (2) (3) (4) (5) (6)

length 3.388*** 5.371*** 2.234*** 0.556 2.946*** 4.183***
(14.39) (10.46) (4.39) (0.88) (6.81) (12.74)

cyclomatic -8.084***
(-4.33)

quantity 13.072**
(2.56)

potential 6.807***
(4.79)

diversity 6.899
(1.22)

level 165.462***
(3.44)

R2
a 0.445 0.461 0.450 0.465 0.445 0.455
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Table 11: Top 10 words in each category, entire Dodd-Frank Act.

Operands Operators

Regulatory Logical Mathematical

COMMISSION 1573 SHALL 3595 AND 9352 ADDING 267
PERSON 920 AMENDED 651 OR 8928 ADDITIONAL 125
BUREAU 788 REQUIRED 548 ANY 4007 TOTAL 101

CORPORATION 771 ESTABLISHED 282 AS 2646 MINIMUM 86
INFORMATION 731 ESTABLISH 247 OTHER 1546 EXCEED 70

DATE 692 REQUIRE 220 NOT 1128 OVER 69
STATE 607 PRESCRIBED 219 AFTER 906 ADDED 68

APPROPRIATE 569 DETERMINES 212 INCLUDING 761 INCREASE 48
REPORT 564 PRESCRIBE 202 EACH 687 MAXIMUM 41

AUTHORITY 552 DETERMINE 181 WITH RESPECT TO 678 MINIMIZE 28

Table 12: Complexity measures of the 16 titles of the Dodd-Frank Act.

Title length cyclomatic quantity potential diversity level

1 10581 2271 729 1389 190 0.13
2 16388 4479 852 1559 212 0.10
3 7269 2052 335 889 130 0.12
4 1938 466 117 444 94 0.23
5 3539 828 163 784 107 0.22
6 7662 1960 503 1040 157 0.14
7 32055 8195 2195 2127 231 0.07
8 3852 882 263 634 119 0.16
9 26319 5826 1614 2533 277 0.10
10 31872 7938 1916 2724 277 0.09
11 3277 764 220 674 113 0.21
12 780 155 49 248 42 0.32
13 575 141 31 152 32 0.26
14 16126 3389 866 2068 237 0.13
15 2013 376 106 549 76 0.27
16 68 22 3 32 14 0.47
Entire Act 164314 39744 9962 5874 429 0.04
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Table 13: Fraction of words found in each title of the Dodd-Frank Act, using dictionaries
built from the other titles only.

Title All Operands Operators Other

Logical Regulatory Mathematical

1 0.89 0.89 0.92 1.00 0.88 0.84
2 0.92 0.94 0.98 0.97 0.93 0.81
3 0.83 0.93 1.00 0.96 1.00 0.66
4 0.93 0.92 0.98 1.00 1.00 0.91
5 0.87 0.84 1.00 0.97 1.00 0.90
6 0.86 0.90 0.98 0.98 0.92 0.73
7 0.80 0.83 0.95 0.98 0.80 0.70
8 0.94 0.95 1.00 1.00 1.00 0.88
9 0.77 0.81 0.93 0.94 0.95 0.60
10 0.75 0.81 0.91 0.93 0.90 0.55
11 0.90 0.91 0.97 0.97 1.00 0.84
12 0.95 0.95 1.00 1.00 1.00 0.95
13 0.87 0.89 1.00 1.00 1.00 0.80
14 0.77 0.80 0.90 0.84 0.95 0.64
15 0.85 0.84 0.98 0.97 1.00 0.85
16 0.91 0.87 1.00 1.00 . 0.91
Average 0.86 0.88 0.97 0.97 0.96 0.79
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B Figures

ϕ

f 6= ϕf = ϕ

f̃ = f = ϕ f̃ 6= f f̃ 6= ϕ

f̂(x) = f̃(x) = ϕ(x) f̂(x) 6= f̃(x) f̂(x) 6= ϕ(x) f̂(x) 6= ϕ(x)

Problem
Complexity

Psychological
Complexity

Computational
Complexity

Drafting

Interpretation

Supervision

Figure 1: How problem- psychological- and computational complexity affect the likelihood
of correctly solving the regulatory problem ϕ for a given entity e. If the regulation is drafted
incorrectly, then f 6= ϕ. If a correct regulation is interpreted incorrectly, then f̃ 6= f . Lastly,
if a mistake is made at the supervision stage then f̂(x) 6= f̃(e).
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Figure 2: Online experiment - Test round.
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Figure 3: Frequency of correct implementation, effort spent, social welfare without com-
plexity costs, and social welfare with complexity costs, as functions of the number I of risk
buckets.
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C Example of a randomly generated regulation

We report here one of the random regulations generated by our algorithm. We first report

the raw output and then the “translated” text that students saw in the experiment.
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Online Appendix to “Measuring Regulatory

Complexity”

This Online Appendix provides additional material omitted from the main text.

OA.1 Two representations of Basel I risk-weighted as-

sets

In the following, we provide a description of the Basel I regulation in the form of a stylized

algorithm and compare it side by side with the actual text of the regulation. We use pseudo

code that simply captures the logical flow of the instructions in Basel I. To compute the Hal-

stead measures for each item we consider the code contained between two “ASSET CLASS

==” (excluding this expression). This section reports the text we used to compute the

complexity measures in Table OA.4.
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OA.2 Complexity of Basel I - Descriptive statistics

This section gives additional descriptions of the measures we computed on the Basel I rules,

both the algorithmic version and the text version.

We report the measures computed on the algorithmic version of Basel I in Table OA.1.

In addition, Table OA.2 gives the pair-wise correlation coefficients between the different

measures, across the 19 regulatory instructions. We report both the Pearson and Spearman

correlation coefficients. Since each item between (1a) and (5h) contains by construction

exactly one regulatory instruction, the measure quantity is always equal to 1 and its cor-

relation with other measures is undefined. The measures length, cyclomatic, and level are

highly correlated with each other, while potential and diversity are less correlated and thus

potentially bring information not captured before.

Turning to the text version, we first report the top 5 words in each category in Table OA.3.

We then report the measures computed for each item in Table OA.4, and the correlations

between the different measures across items in Table OA.5. We observe that the text-based

measures tend to be less correlated with each other than the algorithm-based measures.
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Table OA.1: Complexity measures of the 19 items of Basel I (algorithmic version).

Regulation length cyclomatic quantity potential diversity level

1a 8 2 1 6 4 0.75
1b 24 6 1 12 6 0.5
1c 20 5 1 11 6 0.55
1d 16 4 1 9 6 0.56
2a 43 11 1 14 7 0.33
3a 68 17 1 14 6 0.21
3b 26 7 1 12 6 0.46
3c 34 9 1 14 8 0.41
3d 44 11 1 15 7 0.34
3e 12 3 1 8 5 0.67
4a 20 5 1 11 6 0.55
5a 12 3 1 8 5 0.67
5b 20 5 1 12 7 0.6
5c 22 6 1 12 6 0.55
5d 16 4 1 10 5 0.63
5e 21 6 1 9 5 0.43
5f 13 4 1 7 5 0.54
5g 16 4 1 10 6 0.63
5h 5 2 1 4 3 0.8

Total 440 114 19 54 10 0.12
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Table OA.2: Pairwise correlations between complexity measures, across the 19 items of
Basel I (algorithmic version). quantity is not included, as it is constant across items.

Panel A: Pearson Correlation Coefficients

length cyclomatic potential diversity level

length 1 1 0.81 0.6 -0.93
cyclomatic 1 1 0.8 0.58 -0.94
potential 0.81 0.8 1 0.9 -0.83
diversity 0.6 0.58 0.9 1 -0.67
level -0.93 -0.94 -0.83 -0.67 1

Panel B: Spearman Rank Correlation Coefficients

length cyclomatic potential diversity level

length 1 0.99 0.94 0.78 -0.93
cyclomatic 0.99 1 0.92 0.76 -0.95
potential 0.94 0.92 1 0.89 -0.79
diversity 0.78 0.76 0.89 1 -0.65
level -0.93 -0.95 -0.79 -0.65 1

Table OA.3: Top 5 words in each category in Basel I (text version).

Operands Operators:
Regulatory Logical Mathematical

risk weight 19 have 19 and 12 up to 2
claims 15 shall 19 other 6 above 1
banks 10 or 5 all 1
OECD 10 outside 4 over 1
central 9 excluding 2
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Table OA.4: Complexity measures of the 19 items of Basel I (text version).

Regulation length cyclomatic quantity potential diversity level

1a 5 0 2 5 2 1
1b 16 2 2 12 3 0.75
1c 12 2 2 9 4 0.75
1d 16 1 2 13 3 0.81
2a 22 3 2 18 5 0.82
3a 21 2 2 17 4 0.81
3b 14 1 2 9 3 0.64
3c 26 3 2 13 5 0.5
3d 18 3 2 14 5 0.78
3e 8 0 2 8 2 1
4a 15 2 2 13 3 0.87
5a 7 0 2 7 2 1
5b 13 1 2 11 4 0.85
5c 17 3 2 12 6 0.71
5d 10 0 2 10 2 1
5e 12 3 2 9 4 0.75
5f 15 5 2 10 6 0.67
5g 12 2 2 9 4 0.75
5h 7 1 2 5 4 0.71

Total 266 34 38 69 14 0.26
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Table OA.5: Pairwise correlations between complexity measures, across the 19 items of
Basel I (text version). quantity is not included, as it is constant across items.

Panel A: Pearson Correlation Coefficients

length cyclomatic potential diversity level

length 1 0.65 0.88 0.63 -0.62
cyclomatic 0.65 1 0.48 0.89 -0.69
potential 0.88 0.48 1 0.44 -0.24
diversity 0.63 0.89 0.44 1 -0.72
level -0.62 -0.69 -0.24 -0.72 1

Panel B: Spearman Rank Correlation Coefficients

length cyclomatic potential diversity level

length 1 0.71 0.93 0.64 -0.42
cyclomatic 0.71 1 0.56 0.89 -0.64
potential 0.93 0.56 1 0.47 -0.1
diversity 0.64 0.89 0.47 1 -0.67
level -0.42 -0.64 -0.1 -0.67 1
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OA.3 All pages of the experiment’s website

Figure OA.1: Online experiment - Welcome page.
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Figure OA.2: Online experiment - Registration page.
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Figure OA.3: Online experiment - Instructions page.

Figure OA.4: Online experiment - Feedback after correct answer in the test round.
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Figure OA.5: Online experiment - Feedback after wrong answer in the test round.

OA.4 Experiments - Regulation-level analysis

In this section we replicate the results of Section 3 after aggregating the answers of all par-

ticipants at the regulation level. For each regulation j ∈ {1, 2..., 38} we compute the average

proportion correctj of correct answers and the average time taken timej (excluding incorrect

answers and times above 579 seconds, as in the main analysis of Section 3). This gives us

a database with 38 observations, one for each regulation. We then run OLS regressions of

correctj and timej on the same measures of complexity as in Section 3. Tables OA.6 to OA.8

below correspond to Tables 5 to 7, and Tables OA.9 to OA.11 correspond to 8 to 10. The

results are qualitatively the same as in our preferred specification at the participant-question

level.
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Table OA.6: Correlation of mistake-based complexity with operands and opera-
tors. This table reports the coefficients, t-statistics (in brackets), and adjusted R2, of OLS
regressions of correctj over different counts of total and unique operands and operators.

(1) (2) (3) (4) (5) (6)

length = NOD +NOR -0.007*** -0.007 -0.006
(-3.63) (-1.41) (-1.35)

NOD -0.013*
(-1.75)

NOR 0.003
(0.23)

ηOD + ηOR -0.013***
(-3.26)

ηOD -0.029*** -0.017 -0.020*
(-3.88) (-1.42) (-1.82)

ηOR 0.097** 0.107**
(2.21) (2.45)

ηM 0.217***
(3.37)

ηL 0.067
(1.48)

R2
a 0.247 0.240 0.206 0.308 0.327 0.398

Table OA.7: Correlation of mistake-based complexity with ex-ante measures of
complexity. This table reports the coefficients, t-statistics (in brackets), and adjusted R2,
of OLS regressions of correct over the six ex-ante measures of complexity separately.

(1) (2) (3) (4) (5) (6)

length -0.007***
(-3.63)

cyclomatic -0.019**
(-2.60)

quantity -0.091***
(-5.04)

potential -0.016***
(-3.51)

diversity -0.045
(-1.56)

level 0.813***
(2.78)

R2
a 0.247 0.134 0.398 0.234 0.037 0.154
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Table OA.8: Correlation of mistake-based complexity with ex-ante measures of
complexity, controlling for length. This table reports the coefficients, t-statistics (in
brackets), and adjusted R2, of OLS regressions of correct over length and each of the five
other measures of complexity separately.

(1) (2) (3) (4) (5) (6)

length -0.007*** -0.011** 0.002 -0.005 -0.012*** -0.006**
(-3.63) (-2.54) (0.63) (-0.93) (-3.88) (-2.17)

cyclomatic 0.015
(1.01)

quantity -0.111***
(-3.04)

potential -0.006
(-0.48)

diversity 0.083*
(2.03)

level 0.225
(0.58)

R2
a 0.247 0.248 0.388 0.231 0.307 0.233
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Table OA.9: Correlation of cost-based complexity with operands and operators.
This table reports the coefficients, t-statistics (in brackets), and adjusted R2, of OLS regres-
sions of time over different counts of total and unique operands and operators. The sample
is restricted to correct answers with time ≤ 579.

(1) (2) (3) (4) (5) (6)

length = NOD +NOR 3.256*** 0.570 0.576
(7.11) (0.52) (0.52)

NOD 7.171***
(4.49)

NOR -3.523
(-1.30)

ηOD + ηOR 6.809***
(8.07)

ηOD 9.666*** 8.594*** 8.555***
(5.77) (3.23) (3.13)

ηOR -12.026 -12.925
(-1.24) (-1.30)

ηM -11.821
(-0.75)

ηL -13.331
(-1.21)

R2
a 0.573 0.629 0.634 0.661 0.654 0.643
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Table OA.10: Correlation of cost-based complexity with ex-ante measures of
complexity. This table reports the coefficients, t-statistics (in brackets), and adjusted R2,
of univariate regressions of time over the six ex-ante measures of complexity separately. The
sample is restricted to correct answers with time ≤ 579.

(1) (2) (3) (4) (5) (6)

length 3.256***
(7.11)

cyclomatic 8.310***
(4.06)

quantity 33.663***
(6.88)

potential 7.939***
(8.45)

diversity 34.465***
(4.64)

level -228.199**
(-2.41)

R2
a 0.573 0.295 0.556 0.656 0.357 0.115
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Table OA.11: Correlation of cost-based complexity with ex-ante measures of
complexity, controlling for length. This table reports the coefficients, t-statistics (in
brackets), and adjusted R2, of regressions of correct over length and each of the five other
measures of complexity separately. The sample is restricted to correct answers with time ≤
579.

(1) (2) (3) (4) (5) (6)

length 3.256*** 5.549*** 1.899** 0.324 3.286*** 4.177***
(7.11) (5.93) (2.12) (0.30) (4.20) (6.87)

cyclomatic -8.940***
(-2.74)

quantity 16.403*
(1.75)

potential 7.254***
(2.93)

diversity -0.487
(-0.05)

level 189.632**
(2.17)

R2
a 0.573 0.638 0.596 0.647 0.560 0.613

OA.5 Experiments - Alternative filters

In this section we check that the results reported in Tables 9 and 10 are robust to different

ways of filtering out observations that are likely to be affected by measurement error. We

report results on the following alternative specifications: (i) we winsorize outliers at 579

seconds instead of trimming these observations (Tables OA.12 and OA.13) ; (ii) we keep the

outliers but exclude incorrect answers (Tables OA.14 and OA.15) ; (iii) we keep incorrect

answers and exclude outliers with time above 579 seconds (Tables OA.16 and OA.17) ; (iv)

we keep all observations (Tables OA.18 and OA.19).

The results of 9 and 10 on potential are robust across all specifications. However, the

positive coefficient on quantity when controlling for length is no longer significant when the

outliers on time are included (specifications (ii) and (iv)) or winsorized (specification (iii)).
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More precisely, the coefficient on quantity drops from 13.072 with a t-stat of 2.56 in Table

10 to 7.373 with a t-stat of 1.28 in the most adverse specification where all outliers are kept

(specification (ii)). While we believe that observations with time > 579 are with a very high

probability contaminated with measurement error and should be excluded, it is certainly the

case that the impact of quantity on time is statistically weaker than the impact of potential

and not robust to how outliers are treated.

Table OA.12: Correlation of cost-based complexity with ex-ante measures of
complexity. This table reports the coefficients, t-statistics (in brackets), and adjusted R2,
of univariate regressions of time over the six ex-ante measures of complexity separately,
with participant and question fixed effects. The sample is restricted to correct answers.
Observations with timei,t above 579 are winsorized.

(1) (2) (3) (4) (5) (6)

length 3.713***
(14.81)

cyclomatic 10.860***
(11.31)

quantity 35.135***
(13.55)

potential 8.507***
(15.19)

diversity 41.307***
(11.94)

level -315.129***
(-7.70)

R2
a 0.447 0.378 0.422 0.454 0.390 0.313
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Table OA.13: Correlation of cost-based complexity with ex-ante measures of
complexity, controlling for length. This table reports the coefficients, t-statistics (in
brackets), and adjusted R2, of regressions of correct over length and each of the five other
measures of complexity separately, with participant and question fixed effects. The sample
is restricted to correct answers. Observations with timei,t above 579 are winsorized.

(1) (2) (3) (4) (5) (6)

length 3.713*** 5.091*** 2.952*** 1.437** 3.585*** 4.397***
(14.81) (9.16) (5.47) (2.11) (7.89) (12.44)

cyclomatic -5.569***
(-2.78)

quantity 8.692
(1.59)

potential 5.497***
(3.59)

diversity 2.018
(0.34)

level 141.549***
(2.73)

R2
a 0.447 0.453 0.448 0.457 0.446 0.453

Table OA.14: Correlation of cost-based complexity with ex-ante measures of
complexity. This table reports the coefficients, t-statistics (in brackets), and adjusted R2,
of univariate regressions of time over the six ex-ante measures of complexity separately,
with participant and question fixed effects. The sample is restricted to correct answers.
Observations with timei,t > 579 are included.

(1) (2) (3) (4) (5) (6)

length 3.806***
(14.33)

cyclomatic 11.229***
(11.10)

quantity 35.685***
(12.98)

potential 8.618***
(14.46)

diversity 41.938***
(11.45)

level -331.373***
(-7.71)

R2
a 0.434 0.370 0.407 0.437 0.377 0.310
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Table OA.15: Correlation of cost-based complexity with ex-ante measures of
complexity, controlling for length. This table reports the coefficients, t-statistics (in
brackets), and adjusted R2, of regressions of correct over length and each of the five other
measures of complexity separately, with participant and question fixed effects. The sample
is restricted to correct answers. Observations with timei,t > 579 are included.

(1) (2) (3) (4) (5) (6)

length 3.806*** 5.100*** 3.160*** 1.791** 3.759*** 4.427***
(14.33) (8.65) (5.53) (2.47) (7.81) (11.80)

cyclomatic -5.229**
(-2.46)

quantity 7.373
(1.28)

potential 4.867***
(2.99)

diversity 0.739
(0.12)

level 128.356**
(2.34)

R2
a 0.434 0.439 0.435 0.441 0.433 0.438
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Table OA.16: Correlation of cost-based complexity with ex-ante measures of
complexity. This table reports the coefficients, t-statistics (in brackets), and adjusted R2,
of univariate regressions of time over the six ex-ante measures of complexity separately, with
participant and question fixed effects. The sample is restricted to answers with time ≤ 579.
Incorrect answers are included.

(1) (2) (3) (4) (5) (6)

length 3.236***
(16.76)

cyclomatic 8.915***
(12.48)

quantity 31.785***
(15.79)

potential 7.326***
(16.84)

diversity 36.647***
(13.45)

level -276.547***
(-9.20)

R2
a 0.488 0.428 0.474 0.489 0.441 0.388

Table OA.17: Correlation of cost-based complexity with ex-ante measures of
complexity, controlling for length. This table reports the coefficients, t-statistics (in
brackets), and adjusted R2, of regressions of correct over length and each of the five other
measures of complexity separately, with participant and question fixed effects. The sample
is restricted to answers with time ≤ 579. Incorrect answers are included.

(1) (2) (3) (4) (5) (6)

length 3.236*** 4.631*** 2.238*** 1.611*** 3.131*** 3.592***
(16.76) (11.08) (5.85) (3.23) (9.15) (13.57)

cyclomatic -5.499***
(-3.76)

quantity 11.868***
(3.01)

potential 3.972***
(3.53)

diversity 1.707
(0.37)

level 74.121**
(1.97)

R2
a 0.488 0.495 0.492 0.494 0.487 0.489
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Table OA.18: Correlation of cost-based complexity with ex-ante measures of
complexity. This table reports the coefficients, t-statistics (in brackets), and adjusted R2,
of univariate regressions of time over the six ex-ante measures of complexity separately, with
participant and question fixed effects. The sample includes all answers.

(1) (2) (3) (4) (5) (6)

length 3.652***
(16.45)

cyclomatic 10.625***
(13.18)

quantity 34.465***
(14.64)

potential 8.050***
(15.87)

diversity 39.086***
(12.32)

level -330.806***
(-9.64)

R2
a 0.468 0.421 0.442 0.459 0.409 0.376
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Table OA.19: Correlation of cost-based complexity with ex-ante measures of
complexity, controlling for length. This table reports the coefficients, t-statistics (in
brackets), and adjusted R2, of regressions of correct over length and each of the five other
measures of complexity separately, with participant and question fixed effects. The sample
is restricted to answers with time ≤ 579. The sample includes all answers.

(1) (2) (3) (4) (5) (6)

length 3.652*** 4.507*** 3.049*** 2.520*** 3.929*** 3.916***
(16.45) (9.26) (6.95) (4.38) (10.14) (12.78)

cyclomatic -3.345**
(-1.97)

quantity 7.232
(1.59)

potential 2.779**
(2.13)

diversity -4.589
(-0.87)

level 54.825
(1.25)

R2
a 0.468 0.469 0.468 0.470 0.467 0.468

OA.6 A dictionary for studying the complexity of reg-

ulatory texts

As discussed in Section 4.1, we have created a dictionary consisting on n-grams that appear

in the text version of the Dodd-Frank Act. We have followed the following steps to create

our dictionary:

1. We started by manually classifying n-grams using the dashboard discussed in Section

4.1, and reproduced in Fig. OA.6 below. This results in 6, 115 unique entries and

a marked-up version of the Dodd-Frank Act where each classified n-gram is enclosed

in a <span class="Category"> </span> html tag. The Category of each n-gram is

either Logical Operators, Regulatory Operators, Operands (Economics Operands or

Attributes), or Other (Legal References, Function Words, or ambiguous words). We
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record all residual text that is not manually classified as an n-gram.

2. We then standardize the n-grams in our dictionary by stripping away all special char-

acters such as ‘",;:.() and transforming each n-gram into uppercase. This leaves us

with a standardized dictionary of 9, 099 n-grams.

3. Next, we sort those n-grams from longest to shortest and iterate through the similarly

standardized text of the Dodd-Frank Act again, removing each identified n-gram from

the remaining text. We do this for each n-gram and in turn are able to match virtually

the entire text of the Dodd-Frank Act.
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Figure OA.6: The Dashboard we developed to help us classify words in the Dodd-Frank
Act as one of the following seven categories: Logical Connectors, Regulatory Operators,
Economic Operands, Attributes, Legal References, Function Words, or Other. Top: The
plain text of the Dodd-Frank Act. When highlighting a word or phrase, our dashboard
displays a simple drop-down menu from which the category can be selected. The dashboard
also provides some simple statistics on the right of the screen, and navigation on the left.
Bottom: A mark-up of the Dodd-Frank Act when all words and phrases have been classified.
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OA.7 A model of risk-sensitivity

We consider a bank with 1 in assets, that can be financed either with deposits D or equity

E. In case the bank fails, depositors are reimbursed by the government using public funds,

which have a marginal cost of 1 + λ. These losses can be mitigated by asking the bank to

use more equity, but we take as given that equity has a marginal social cost of 1 + δ.

There is a continuum x ∈ [0, 1] of asset types. The bank starts with an asset of type x,

drawn from the uniform distribution over [0, 1]. With probability p, the economy is growing

and asset x pays r(x). With probability 1− p, the economy enters a recession and the asset

pays only 1−x, i.e., the bank makes a loss of x on its investment. If E < x the bank defaults,

and the government has to repay D − (1− x) = x− E to the depositors.

We assume that the social cost of capital is lower than the expected gain of reducing

losses to the public sector:

λ(1− p) > δ. (OA.1)

For a given level of equity y and an asset type x, total welfare writes as:

pr(x) + (1− p)[1− x− λmin(x− E, 0)]− δy. (OA.2)

We want to derive an objective function for the regulator. As pr(x) + (1 − p)(1 − x) is

exogenously given, we can consider the following objective function:

W(x, y) = −λ(1− p) min(x− y, 0)− δy. (OA.3)
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As long as y < x, we have ∂W/∂y = λ(1 − p) − δ, which by assumption is positive. It is

then clear that the optimal regulation would be to have y∗(x) = x for any x, so that the

bank never defaults. Total expected welfare would then be:

∫ 1

0

W(x, x)dx =

∫ 1

0

−δxdx = −δ
2
. (OA.4)

Such a regulation requires to associate a continuum of different asset types to different levels

of capital, which may be very complex, and hence costly.

We assume instead that the regulator defines different buckets, that is, intervals [ai, bi]

such that if x ∈ [ai, bi] then y ≥ Ei. For a given interval [a, b] the optimal capital requirement

y∗a,b is given by:

y∗a,b = b− δ b− a
λ(1− p)

. (OA.5)

Proof: For a given y ∈ [a, b], total welfare is given by:

Wa,b(y) =

∫ b

a

[−λ(1− p) min(x− y, 0)− δy]dx (OA.6)

= −λ(1− p)
∫ b

y

(x− y)dx− δy(b− a) (OA.7)

= −λ(1− p)(b− y)2

2
− δy(b− a). (OA.8)

Maximizing this quantity with respect to y gives the desired result. �

Note that we indeed have a ≤ y∗a,b ≤ b. This means that banks with assets x close

to a will be over-capitalized (they have more capital than what is necessary to sustain the

losses x), while banks with assets x close to b will be undercapitalized (they default with
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probability 1− p).

We obtain that the optimal welfare over interval [a, b] is given by:

Wa,b(y
∗
a,b) = δ(b− a)

[
δ(b− a)

2λ(1− p)
− b
]
. (OA.9)

Using this expression, we can determine the optimal intervals chosen by the regulator. If the

regulator uses I intervals it is actually optimal to split [0, 1] into I intervals of equal length.

To see why, consider the case of two intervals, [0, x̄] and [x̄, 1]. Total expected welfare is then

given by:

W0,x̄(y
∗
0,x̄) +Wx̄,1(y∗x̄,1) = δx̄

[
δx̄

2λ(1− p)
− x̄
]

+ δ(1− x̄)

[
δ(1− x̄)

2λ(1− p)
− 1

]
(OA.10)

= δx̄(1− x̄)
λ(1− p)− δ
λ(1− p)

− δ

2λ(1− p)
[δ − 2λ(1− p)].(OA.11)

We immediately see that the optimal x̄ is equal to 1/2, that is, the two intervals are sym-

metric.

Consider now any number I of intervals. Following the same approach it is easily proved

that all intervals must have the same length, so that the I intervals are [0, 1/I], [1/I, 2/I]...[(I−

1)/I, 1]. The i+ 1-th interval has a welfare of:

Wi/I,(i+1)/I(y
∗
i/I,(i+1)/I) =

δ

I

[
δ

2Iλ(1− p)
− i+ 1

I

]
(OA.12)

=
δ

I2

[
δ − 2λ(1− p)

2λ(1− p)
− i
]
. (OA.13)
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We use this lest expression to compute total welfare:

W0(I) =
I−1∑
i=0

Wi/I,(i+1)/I(y
∗
i/I,(i+1)/I) = −δ

2
− δ

2Iλ(1− p)
[λ(1− p)− δ]. (OA.14)

Total welfare is thus increasing in I, and converges to the continuous case −δ/2 as I → +∞.

Without any cost of complexity, it would be optimal to define as many risk buckets as

possible. We use expression (OA.14) to plot W0(I) on Fig. 3, with λ = 0.05, δ = 0.01, and

p = 0.05. These parameters are meant for illustration only.
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OA.8 Legislative History of the Dodd-Frank Act

Summary:

• Introduced in the House of Representatives as “The Wall Street Reform and Consumer

Protection Act of 2009” (H.R. 4173) by Barney Frank (D-MA) on December 2, 2009

• (Committee consideration by Financial Services)

• Passed the House on December 11, 2009 (223-202)

• Passed the Senate with amendment on May 20, 2010 (59-39)

• Reported by the joint conference committee on June 29, 2010; agreed to by the House

on June 30, 2010 (237-192) and by the Senate on July 15, 2010 (60-39)

• Signed into law by President Barack Obama on July 21, 2010
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