Strategic Bargaining and Portfolio Choice in Intermediated Markets

Jessica Li (Chicago Booth)

Summary

Over-the-counter (OTC) financial assets typically trade in intermediated markets, where dealers serve as intermediaries while investors trade with dealers bilaterally. **Features:**

- Imperfect search and matching → trading delays and illiquidity
- \blacksquare Strategic investor-dealer relationship \to terms of trade determined by strategic bargaining

Question: How does asset liquidity, defined as the ease of trading an asset, affect investors' dynamic portfolio choice and equilibrium asset prices?

Main Results:

- Relationship between asset prices and asset liquidity in intermediated markets is non-monotonic
- Price-liquidity relationship is positive for relatively liquid assets, but negative for very illiquid assets
- Transaction costs are asymmetric between investor buy and sell trades
- Transaction costs are higher for investor sales than for investor purchases

Model Environment

Time is continuous with $t \in [0, \infty)$.

Risky Asset

- Asset is in fixed supply s > 0
- Cumulative dividend flow D_t follows $dD_t = \bar{D}dt + \sigma dZ_t$
- Traded OTC, intermediated by a unit measure of dealers
- Bilateral investor-dealer trading with random search + competitive inter-dealer market
- Dealers discount time at rate r>0
- Investor-dealer search intensity λ , capturing asset liquidity

Investors

- Measure one of investors. An investor holding x units of risky asset derives mean-variance flow benefit $u(x)=\bar{D}x-\frac{\gamma}{2}\sigma^2x^2$
- Idiosyncratic patience shocks:
- Investor is either patient and discounts time at rate r or impatient and discounts time at $r+\epsilon$
- Patience type $\xi \in \{h, l\}$, transitions $h \to l$ with intensity ζ_{hl} and $l \to h$ with intensity ζ_{lh}
- Steady-state proportion of impatient investors $\pi = \frac{\zeta_{hl}}{\zeta_{hl} + \zeta_{lh}}$

Strategic Bargaining

 When investor and dealer meet, they enter into a Rubinstein-style bargaining game that occurs in virtual time

- Key feature: investors' bargaining powers are endogenous and depend on their patience types
- Intuition: an impatient investor is more averse to bargaining delays that could happen. Such investor has lower ability to capture surplus (i.e., lower bargaining power).

Equilibrium

Bargaining Outcome: When an investor with patience type $\xi \in \{h, l\}$ and asset holding x meets a dealer in a trading session, trade price $P_{\xi}(x)$ and trade quantity $q_{\xi}(x)$ satisfy

- Pareto Optimality: $V_{\xi}'(x+q_{\xi}(x))=\bar{P}$
- Surplus Split: $P_{\xi}(x)q_{\xi}(x) = (1-\theta_{\xi})\left[V_{\xi}(x+q_{\xi}(x))-V_{\xi}(x)\right]+\theta_{\xi}\bar{P}q_{\xi}(x)$ \rightarrow investor receives fraction $\theta_{\xi}=\frac{(1-z)r}{r+z\epsilon\mathbb{I}_{\{\xi=l\}}}$ of joint trade surplus

Asset Demand: Optimal asset holding by type h and type l investors are

$$x_{h} = \frac{\bar{D} - \left(r + \frac{\zeta_{hl}\epsilon}{r + \epsilon + \zeta_{lh} + \zeta_{hl} + \lambda\theta_{l}}\right)\bar{P}}{\gamma\sigma^{2}}$$

$$x_{l} = \frac{\bar{D} - \left(r + \epsilon - \frac{\zeta_{lh}\epsilon}{r + \zeta_{lh} + \zeta_{hl} + \lambda\theta_{h}}\right)\bar{P}}{\gamma\sigma^{2}}$$

- Due to illiquidity, investors hold less extreme positions (attenuate demand)
- Patient investors attenuate demand more than impatient investors

Intuition

- Investors hold less extreme positions
- Trading delays expose investors to risk of holding imbalances
- To "hedge" against this risk, investors hold less extreme positions
- Patient investors attenuate demand more than impatient investors
 Due to strategic bargaining investors' bargaining powers weaken when they
- Due to strategic bargaining, investors' bargaining powers weaken when they become impatient
- Knowing that they will receive worse terms of trade when trading upon shocks, patient investors lower asset demand to begin with

Stationary Equilibrium: there exists a unique stationary equilibrium in the economy

Inter-dealer clearing price is

$$\bar{P} = \frac{\bar{D} - \gamma \sigma^2 s}{r + \pi \epsilon + \Delta}$$

where demand wedge

$$\Delta = \frac{\zeta_{hl}\zeta_{lh}\epsilon}{\zeta_{hl} + \zeta_{lh}} \frac{\lambda(\theta_h - \theta_l) - \epsilon}{(r + \epsilon + \zeta_{lh} + \zeta_{hl} + \lambda\theta_l)(r + \zeta_{lh} + \zeta_{hl} + \lambda\theta_h)}$$

Asset Liquidity and Prices: $\Delta'(\lambda) > 0$ if $\lambda < \overline{\lambda}$ and $\Delta'(\lambda) < 0$ if $\lambda > \overline{\lambda}$

$$\bar{\lambda} = \frac{\epsilon \theta_l \theta_h + \sqrt{\epsilon^2 \theta_l^2 \theta_h^2 + (\theta_h - \theta_l) \theta_l \theta_h [(\theta_h - \theta_l) k_1 k_2 + \epsilon (k_1 \theta_h + k_2 \theta_l)]}}{(\theta_h - \theta_l) \theta_l \theta_h}$$

- Sufficiently liquid asset $(\lambda > \bar{\lambda})$, liquidity $\uparrow \to \text{lower } \Delta$ and higher \bar{P}
- Highly illiquid asset $(\lambda < \bar{\lambda})$, liquidity $\uparrow \to$ higher Δ and lower \bar{P}

Discussion

Existing literature takes axiomatic approach to bargaining where bargaining powers are fixed

- Type-dependent bargaining powers key departure from literature
- To compare with existing models, shut down strategic bargaining by setting $\theta_h=\theta_l=1-z$
- $\Delta \doteq 0 \Rightarrow X$ and \bar{P} first-order converge to Walrasian benchmark
- Intuition: demand attenuations by patient and impatient investors net out in aggregate

Price-Liquidity Relation: Intuition

- $\lambda \to 0$
- ullet Asset is perfectly illiquid o no trading or bargaining in this limit
- Demand wedge results from strategic bargaining, and bargaining is irrelevant in this limit case
- No demand wedge $\Delta \to 0$, and price \to Walrasian benchmark
- \bullet $\lambda \uparrow$
- Effect of bargaining becomes pertinent → positive demand wedge emerges and price ↓
- lacktriangle Demand attenuations by both patient and impatient investors \downarrow , Δ shrinks
- $\lambda \to \infty$
- ullet No demand attenuations by investors, zero demand wedge and price ightarrow Walrasian benchmark

Empirical Evidence

Empirical setting: U.S. corporate bond market

Asset Liquidity and Prices: non-monotonic price-liquidity relationship

- Credit spreads of sufficiently liquid bonds are positively related to transaction costs
- Credit spreads of highly illiquid bonds are negatively related to transaction costs
- Empirical Strategy: 2SLS exploiting institutional feature that newly-issued bonds are more liquid than older bonds of same issuer

	Panel A: First Stage						
	Transaction Cost (bps)						
	(1)	(2)	(3)	(4)	(5)	(6)	
New Bond	-3.061***	-6.026***	-4.631***	-2.852***	-2.529***	-5.415***	
	(0.135)	(0.768)	(0.163)	(0.574)	(0.205)	(0.188)	

	Panel B: Second Stage						
	Credit Spread (bps)						
	(1)	(2)	(3)	(4)	(5)	(6)	
Transaction Cost	0.424***	-0.502*	0.801***	-2.760***	2.538***	0.938***	
	(0.156)	(0.297)	(0.094)	(1.017)	(0.368)	(0.097)	
Sample	Low Cost	High Cost	IG	HY	ST	LT	
Controls	Yes	Yes	Yes	Yes	Yes	Yes	
Issuer-Day FE	Yes	Yes	Yes	Yes	Yes	Yes	
R^2	0.461	0.433	0.331	0.505	0.465	0.368	
Observations	3,303,875	563,984	3,527,369	835,465	485,363	3,381,645	

Standard errors in parentheses * p < 0.1, ** p < 0.05, *** p < 0.01

Asymmetric Transaction Costs: transaction costs are higher for selling investors than for buying investors

	Transaction Cost (bps)					
	(1)	(2)	(3)	(4)		
Investor Sell	2.544*	6.161***	4.523***	3.337**		
	(1.376)	(1.936)	(1.701)	(1.537)		
Sample	Full	VIX Filter	DEF Filter	B/S Filter		
Issue-Day-Size FE	Yes	Yes	Yes	Yes		
R^2	0.050	0.044	0.038	0.052		
Observations	6,591,026	4,556,170	5,203,854	5,374,874		

Standard errors in parentheses

* p < 0.1, ** p < 0.05, *** p < 0.01