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Supervised machine learning algorithms
use large amounts of labeled data to per-
form specific predictive tasks (see LeCun,
Bengio and Hinton (2015) for an early
review.) These algorithms have demon-
strated superior performance compared to
human experts in several key areas. (Liu
et al. (2019); Lai et al. (2021); Mul-
lainathan and Obermeyer (2019); Klein-
berg et al. (2017)). Many anticipate sig-
nificant job displacements due to these de-
velopments, especially in diagnostic radiol-
ogy.1 A counterargument holds that the
short-term risk of job displacement is lim-
ited because the workflow in most jobs re-
quires a number of different tasks to be per-
formed, not all of which are squarely about
prediction (see Agrawal, Gans and Gold-
farb (2019); Langlotz (2019) for example).
One hypothesis is that humans may re-

main relevant even within prediction do-
mains, at least in the medium-run, because
humans can learn from relatively few exam-
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1“We should stop training radiologists now. It’s just

completely obvious that within five years, deep learn-
ing is going to do better than radiologists” – Geoffrey

Hinton (in 2016).

ples (see Malaviya et al. (2022); Kühl et al.
(2022); Lake et al. (2011); Coutanche and
Thompson-Schill (2014); and Casler and
Kelemen (2005)).2 Specifically in radiology,
Langlotz (2019) argued that humans will
remain relevant because “radiologists know
the ‘long tail’” of diseases, each of which are
uncommon but are together relevant for a
large proportion of patients.3 Similar ar-
guments can be made for other important
applications where AI has made inroads.
Autonomous cars, for instance, suffer from
a “curse of rarity” (Liu and Feng (2022)),
because specific constellations are rarely en-
countered due to the high dimensionality of
the prediction problem. Humans can over-
come this curse by drawing on their knowl-
edge outside the specific domain of driving.
This paper examines whether zero-shot

learning algorithms – which learn broadly
because they do not require structured la-
bels – have diminished the advantage of
human radiologists in diagnosing rare dis-
eases. Specifically, we compare the per-
formance of CheXzero (Tiu et al. (2022)),
a zero-shot algorithm for diagnosing chest
pathologies using X-rays, to human radi-
ologists across 79 diseases. As a point of
comparison, we compare the two to predic-
tions from the CheXpert algorithm (Irvin
et al. (2019)), a traditional supervised deep
learning algorithm capable of diagnosing 12
chest pathologies.4 To examine the hypoth-
esis that humans will remain relevant in the
long-tail of diseases, we study how the com-

2A large literature in cognitive philosophy questions

how humans establish knowledge with limited observa-
tion (see Russell (2009), for example), with some hy-

pothesizing that aspects of human knowledge must be
innate (see Chomsky (1986), for example).

3A similar idea within economics posits that the

“long-tail” of products together can account for a large

fraction of total surplus (Waldfogel, 2017).
4We exclude support devices and an overall assess-

ment of whether there are “no findings” from the anal-

ysis.

1



2 PAPERS AND PROCEEDINGS MAY 2024

parative performance of these algorithms
and human radiologists varies with disease
prevalence.

I. Background and Data

A. CheXzero vs CheXpert

CheXzero is a self-supervised learning al-
gorithm based on zero-shot learning meth-
ods (Tiu et al. (2022)). It is trained on
377,110 chest X-ray images paired with a
radiological report taken from the MIMIC-
CXR dataset (Johnson et al. (2019)). It
uses contrastive learning methods to pre-
dict whether a positive prompt for a pathol-
ogy is a better pairing for an image as com-
pared to a negative prompt. This allows
the algorithm to score X-rays for multiple
labels in a self-supervised manner without
the need for explicit labels during training.
The CheXpert algorithm is a supervised

deep learning algorithm trained on 224,316
radiographs taken from Stanford hospital
(Irvin et al. (2019)). It can predict the
presence of the twelve pathologies for which
the training data contain explicit labels. In
prior studies, it has been shown to match
or surpass the performance of professional
radiologists on each of these diseases (Irvin
et al. (2019)).

B. Data Collection

For this study, we use data first re-
ported in Agarwal et al. (2023), henceforth
AMRS. Our analysis focuses exclusively on
the treatment arms of the AMRS experi-
ment where no AI assistance was provided
as our focus is to document the compar-
ative performance of human and AI algo-
rithms across pathology prevalence rather
than the use of AI assistance by humans,
which is the focus of AMRS.
Participants use a remote interface we de-

veloped, as shown in figure 1. This inter-
face mimics typical clinical practice, but in-
stead of a free-text report, it elicits struc-
tured data on radiologists for 79 patholo-
gies. Radiologists’ probability reports are
elicited through a continuous slider.5 These

5AMRS also collect radiologist assessments for the

assessments are obtained using a pathology
hierarchy.
We use data from 227 radiologists, each

reading between 30 and 120 cases (approx-
imately 46 cases on average) from a sample
of 324 cases from Stanford hospital. None
of these cases were used to train the AI
models we study. We refer the reader to
AMRS for further details on the samples
and the data collection process.

II. Comparing Human and AI
Performance

We compare the performance of AI and
radiologist predictions using the concor-
dance statistic C, which is a generalization
of area under the receiving operating char-
acteristic curve (AUROC) to a continuous
setting.6 Crt is defined as the proportion of
concordant pairs: Crt = P (pirt > pi′rt|p̄it >
p̄i′t) where i represents a case and p̄it repre-
sents an aggregated probability assessment
from a panel of radiologists specializing in
chest radiology, which we call the consen-
sus probability given the available diagnos-
tic information for a case. This approach
mirrors methods used in computer science
for evaluating AI algorithms (see Sheng,
Provost and Ipeirotis (2008), and references
therein). 7 Crt is computed separately for
each radiologist r and pathology t, which
we then average across r to obtain Ct. AI
concordance is represented as CA

t . Because
concordance is correlated across pathologies
and within radiologists, we will employ a
bootstrap for inference.8

The choice of concordance as a perfor-
mance metric is based on the property
that it is invariant to prevalence and does

presence of support devices and hardware and an over-

all assessment if the case is normal. We exclude these
assessments and focus on the 79 remaining pathologies.

6Like AUROC, a random classifier has a concordance

of 0.5, while a perfect classifier has a concordance of 1.
7The method circumvents the challenge, discussed

in AMRS, that oftentimes a diagnostic test that is more

definitive than an X-ray does not exist or is not admin-
istered.

8Specifically, we estimate the standard error of Ĉrt

using a block bootstrap that samples radiologists and
then the cases that we read within within each bootstrap

iteration. To estimate the standard error of ĈA
t , we

sample cases within each pathology.
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Figure 1. Data Collection Interface

Note: This figure presents an example of the interface seen by radiologists with clinical history information.

not depend on preferences. In fact, it
is calculable even in the absence of cases
that are positive with very high proba-
bility. This feature is vital in our con-
text, where 45 pathologies show no cases
for which the consensus probability, p̄it, ex-
ceeds 0.5. Concordance will provide an in-
formative signal about the performance of
the classifier as long as there is some varia-
tion across cases in p̄it.
The main disadvantage to using concor-

dance is that it is an ordinal measure of
performance. As an ordinal classifier that
compares two cases, a translation to treat-
ment recommendation is not immediate.
An alternative measure of performance

that we consider in the appendix is the devi-
ation from consensus probability, |pirt−p̄it|.
Like concordance, it is calculable for all
pathologies. However, as a performance
measure it is misleading for low prevalence
pathologies – those with a distribution of
p̄it concentrated at low values – because
any classifier that predicts low probabilities
will perform well and yield very small de-
viations. It therefore under-weights perfor-
mance in the long-tail relative to concor-
dance. Some of our conclusions are there-
fore sensitive to the use of this alternative.

III. Overall Performance

We now turn to comparing the classifica-
tion performance of human radiologists to
the CheXzero and CheXpert algorithms.
Table 1 summarizes the data and over-

all performance. The average prevalence,

defined as the average value of p̄it across
pathologies and cases, is low at approxi-
mately 2.42%. The distribution of its mean
across pathologies is heavily skewed, with
the prevalence p̄t of some pathologies ex-
ceeding 15%.

Radiologists perform worse than
CheXzero and CheXpert with an average
concordance of 0.58. CheXpert performs
slightly better than CheXzero. However,
the comparison between AIs should be
interpreted with caution, as CheXpert only
has predictions for 12 pathologies, while
CheXzero has predictions for 79.

One hypothesis is that human and AI
performance is highly correlated – patholo-
gies in which humans perform well would
be the same as those in which CheXzero
does well. Figure 2 examines this relation-
ship. Pathologies in the figure are sorted
by CheXzero performance, each point rep-
resents a pathology overlayed with a local
regression. Interestingly, we find that hu-
man performance is only weakly correlated
with CheXzero performance. This suggests
that CheXzero and human radiologists fo-
cus on different features of an X-ray. Hu-
mans still outperform zero-shot algorithms
on select pathologies, but there are few of
them.

Another important takeaway from the
figure is that CheXzero’s performance is
more varied than that of humans – its con-
cordance across pathologies spans the range
from 0.45 and 0.94, while human concor-
dance lies in a narrower range between 0.52
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Table 1—Summary statistics

Mean Std. Dev.

Pathology prevalence 2.42 3.87
Radiologist concordance 0.58 0.06
CheXzero concordance 0.67 0.15
CheXpert concordance 0.72 0.12
Reads per radiologist 46.2
Number of radiologists 227
Number of pathologies 79

Note: Means and standard deviations are calculated across pathologies, except for the number of reads per radiologist,
which is calculated across radiologists. Prevalence is a calculated from the consensus probability and multiplied by
100.

and 0.72.

IV. The Long Tail

Figure 3 assess the importance of the
long tail. It shows the empirical CDF of
prevalence (p̄t) across pathologies. The
pathologies are arranged so that those with
CheXpert assessments appear before oth-
ers. Within the two groups, the patholo-
gies are ordered by prevalence. The twelve
pathologies with CheXpert assessments to-
gether constitute less than 60% of the over-
all prevalence. Thus, a significant propor-
tion of relevant pathologies are not pre-
dicted by the supervised learning algorithm
that we study. These, together with the
four most prevalent pathologies covered by
CheXzero, constitute 80% over the overall
prevalence.
We next examine whether or not hu-

mans out-perform the AI algorithms for low
prevalence pathologies. Figure 4 compares
human performance to the performance of
the two algorithms across bins of patholo-
gies classified by low, medium, and high
prevalence in our sample of cases. The bar
charts represent the mean concordance, and
the error bars show 95% confidence inter-
vals.
Both human and AI performance in-

creases with pathology prevalence. CheX-
pert displays the largest improvements
when moving from medium to high preva-
lence. Although not reported, a test for the
difference in performance between the high
prevalence and either the medium or low
prevalence bin is statistically significant at

the 1% level for CheXpert. This increase
may be expected because CheXpert relies
heavily on both the quantity and quality of
training data. Humans display modest and
consistent improvements as prevalence in-
creases, with all pairwise differences in per-
formance between bins being statistically
significant. CheXzero’s performance is no-
tably less sensitive to prevalence, perhaps
due to the zero shot learning method it re-
lies on. In fact, the differences in perfor-
mance are either insignificant or marginally
significant at the 1% level between any of
the two pathology groups.

Within any pathology group, CheXzero
outperform humans, with statistically sig-
nificant differences in each group. Hu-
mans perform significantly worse than
CheXzero in the low prevalence bin and
only marginally better than a purely ran-
dom classifier, providing initial evidence
against the argument that humans will re-
main relevant in the long tail of diseases.

We next turn to analyzing the effect of
the long tail on the overall concordance of
humans versus the two algorithms we con-
sider. Figure 5 shows how the overall con-
cordance of these modes of diagnosis varies
as the number of pathologies that we rely
on them for increases. In each case, the con-
cordance is set to 0.5, which corresponds to
a random guess, for any pathology that is
not assessed. Thus, the graph begins at 0.5
if no pathologies are assessed and increases
to the average concordance. Since CheX-
pert only produces assessments for twelve
out of the 79 pathologies, its graph ends
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Pathologies sorted by CheXzero performance
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Figure 2. Correlation between human and CheXzero performance

Note: This figure compares human to AI concordance with pathologies sorted by CheXzero concordance. Each
scatter point represents a pathology, and the locally weighted regression curve estimated using lowess are displayed.
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Figure 3. Empirical CDF of prevalence

Note: This figure plots the empirical CDF for the total share of positive cases. Pathologies are ordered from most
prevalent to least, with the condition that pathologies with CheXpert reads are displayed first.

early. The pathologies in this figure are ar-
ranged the same as in figure 3.

Figure 3 shows that performance in the
long tail is critical for assessing the over-
all quality of an algorithm or human ra-
diologists. While CheXpert beats humans
and matches CheXzero for pathologies for
which it makes predictions, its ability to
only predict a smaller subset of pathologies
hinders its overall performance. Consider-
ing all pathologies, its concordance is less
than 0.54 which indicates that the table 1
estimate of 0.72, which was calculated only
on the twelve pathologies, is severely over-
estimated. Indeed, when considering all

pathologies, its performance is lower than
that of human radiologists.

Perhaps the most important takeaway
from the figure that deserves discussion is
that CheXzero performance is significantly
higher than human performance, suggest-
ing that the AI may have humans beat even
in the long tail (c.f. Langlotz (2019)). A
note of caution on this conclusion is that
although concordance is a reasonable met-
ric for comparing classifiers, it is an ordinal
metric for comparing algorithms. Convert-
ing ordinal algorithmic output to diagnostic
decisions requires several additional steps,
such as calibrating the algorithm and de-
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Figure 4. Human vs AI Performance

Note: This bar chart compares the concordance between humans and AI separately for low, medium, and high
prevalence pathologies, and the lower and upper bounds of each bin are displayed on the x-axis. Humans and
CheXzero have reads for all the pathologies, so there are 26 pathologies in each bin. CheXpert has reads for 12
pathologies, and there are 4 pathologies in each CheXpert bin. Bootstrapped standard errors computed separately
for each bin are used to calculate 95% confidence intervals. For CheXpert and CheXzero, we use a block bootstrap,
in which cases are drawn to account for correlations in performance across pathologies within a case. For human
radiologists, we use a block bootstrap in which radiologists are drawn followed by cases.

termining an appropriate threshold for de-
cisions. These tasks are particularly chal-
lenging for uncommon pathologies.

V. Conclusion

While supervised machine learning algo-
rithms have surpassed human performance
in specific prediction tasks, humans may
continue to add value because of their su-
perior ability to deal with the large number
of uncommon cases – the long tail. Zero-
shot learning algorithms are one attempt to
make progress in the long tail by avoiding
the need for large data sets with specifically
annotated labels.
We compared the quality of 227 radi-

ologists’ assessments on 79 pathologies to
two leading algorithms for diagnosing chest
pathologies using X-rays – CheXpert, a su-
pervised learning algorithm capable of as-
sessing twelve pathologies, and CheXzero,
which can produce assessments for any
pathology. Our results suggest that self-
supervised algorithms are quickly catching
up or surpassing humans in the long tail of
diseases in terms of predictive ability.
Yet, there are a number of hurdles

remaining before algorithms, even those
based on zero-shot learning methods, are

deployed or result in job displacement. The
output of the algorithm doesn’t immedi-
ately yield either probabilities, recommen-
dations or decisions. Perhaps more impor-
tantly, prediction is just one task in a job
(Agrawal, Gans and Goldfarb (2019)). For
this and other reasons, it is possible that
these tools are more likely to provide as-
sistance to humans, as opposed to replace
them. In our opinion, factors that deter-
mine the optimal use of predictive AI tools
are understudied and a fruitful avenue for
research in economics.
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