

Paper

Motivation

- Headline inflation vs Cross-sectional dispersion of CPI subcomponents
 - E.g. food, housing, medical care...

Data and Portfolio Formation

Relative Prices (RP)

$$RP_{k,t,\tau} = \left(\log \frac{CPI_{k,t}}{CPI_{k,t-\tau}}\right) - \left(\log \frac{CPI_{H,t}}{CPI_{H,t-\tau}}\right)$$

- Inflation rate of subcomponent k minus the headline inflation rate
- t: month, τ = 3, Jan 2000-Dec 2022
- Portfolio formation on RP
- BLS ~ CRSP via SIC codes
- Stocks with high RP earn higher returns than stocks with low RP

Portfolio Characteristics

- No typical characteristic sorted portfolio aligns with RP premium
- Price rigidity, size, value...
- Unrelated to inflation spread of
 - Boons et al. (2020)
 - Fang et al. (2022)

Inflation and the Relative Price Premium

Yun Joo An¹ Fotis Grigoris² Christian Heyerdahl-Larsen³ Preetesh Kantak¹

1. Indiana University Bloomington fgrigoris@uiowa.edu <u>yunjooan@iu.edu</u>

2. University of Iowa

3. BI Norwegian Business School christian.heyerdahl-larsen@bi.no pkantak@iu.edu

Research Question

- 1. Are relative prices informative about cross-section of asset prices?
- 2. Are changes in price dispersion good or bad for investors?

Empirical Findings

- 1. Relative Price Premium of 0.88% per month
- Firms with high (low) relative prices earn 1.14% (0.26%) per month
- Large and significant alphas
- 2. High price dispersion \rightarrow bad state of world (high marginal utility)
 - Increases in price dispersion carry a negative market price of risk

		E [[R]	$\sigma(R)$	N(F	irms)
Low (L)		0.26		6.07	170	
Medium		0.84		4.69	898	
High (H)		1.14		5.17	134	
Spread		0.88		5.01		
(H-L)		(3.27)				
	CAPM	FF3F	FF4F	FF5F	FF6F	q^5
α	1.03	0.99	0.89	0.94	0.90	0.71
	(4.02)	(3.64)	(3.18)	(3.32)	(3.19)	(2.13)

Theoretical Model and Intuition

- 1. Rationalize via a consumption-based asset-pricing model
- Shocks to the size and composition of the consumption basket
- Shocks to composition of consumption drive relative price changes
- These shocks carry a negative market price of risk
- 2. High relative price goods more exposed to composition shocks if baskets are substitutes (empirically verified)
- 3. → High relative price goods command a risk premium.

Website

Consumption-based Model

- 1. Rep. investor's CRRA utility over aggregate consumption C_t
 - Economy w/ two goods $C_{1,t}$, $C_{2,t}$

$$U_{C_t} = E_t \left[\int_t^{\infty} e^{-\rho u} \frac{\hat{C}_u^{1-\gamma}}{1-\gamma} du \right]$$

 \hat{C}_t from CES aggregator

$$\hat{C}_{t} = \left[\alpha^{\frac{1}{\eta}} C_{1,t}^{\frac{1-\eta}{\eta}} + (1-\alpha)^{\frac{1}{\eta}} C_{2,t}^{\frac{1-\eta}{\eta}}\right]^{\frac{\eta}{1-\eta}}$$

- \triangleright η : elasticity of substitution
- > α: distribution parameter
- Geometric Brownian motion for C_t

$$\frac{dC_t}{C_t} = \mu_C d_t + \sigma_C dW_t^C$$

- dW_t^C shock to the level of consumption
- Consumption share s_t follows
 - $ds_t = \kappa(\overline{s} s_t)dt + s_t(1 s_t)\sigma_s dW_t^s$
 - dW_t^s : shock to the composition of consumption
- 2. SDF and Prices of Risk

$$M_t = \hat{C_t}^{-\Upsilon} = (C_t X_t)^{-\Upsilon}$$
, where $X_t = f(s_t)$

- Marginal utility depends on:
- 1 How much we consume?
- ② What types of good/services?

Market Prices of risk (GMM)

$$E[(1 - b^{MKTRF}MKTRF_t - b^{\Delta RP}\Delta RP_t)R_{i,t}^e] = 0$$

- High excess mkt returns (good times)
- High price dispersion (bad times)

	RP portfolios			
b^{MKTRF}	0.16	0.29		
	(2.13)	(1.62)		
$b^{\Delta RP}$		-2.39		
		(-1.71)		
MAE	0.20	0.12		