
UNPACKING THE DEMAND FOR

SUSTAINABLE EQUITY INVESTING*

DON NOH† SANGMIN S. OH‡ JIHONG SONG§

DECEMBER 2023

Abstract

We investigate the heterogeneity in investor demand for sustainable equity investing

and study its implications. We measure firm-level sustainability across three dimensions:

third-party environment scores, emissions, and green patents. Separately estimated insti-

tutional investor demands are sensitive to scores and emissions, but not to green patents.

We then aggregate these heterogeneous demands in an equilibrium framework to draw

implications for the effectiveness of sustainable investing: (i) price-elastic investors do

not “undo” effects of sustainable investors, (ii) investor pressure for sustainability only

weakly predicts future improvements in firm sustainability, and (iii) incorporating green

patents into ESG ratings can be a valuable adjustment.

JEL Codes: G12, G23, Q54

Keywords: Sustainable investing, ESG, Asset demand system, Climate risk, Investor

pressure

*First draft: May 2020. This work previously circulated under the title “Measuring Institutional Pressure
for Greenness: A Demand System Approach.” For comments and discussions, we thank Moritz Lenel, Ernest
Liu, Ralph Koijen, Thomas Kroen, Lars Hansen, Stefan Nagel, Christian Opp, Jonathan Payne, Lubos Pastor,
Roberto Rigobon, Zacharias Sautner, Simon Schmickler, Daniel Schmidt (discussant), David Schoenherr, Xuan
Tian, Wei Xiong, Motohiro Yogo, and participants at the 2023 HEC-HKUST Workshop on Impact and Sustainable
Finance, 2023 MFR/IMSI Conference, 2020 MFR Young Scholars Workshop, 2020 CAFM, Chicago Booth Finance
Brownbag, Chicago Econ Dynamics Working Group, and Princeton Finance Student Workshop. This research
was funded in part by the John and Serena Liew Fellowship Fund at the Fama-Miller Center for Research in
Finance, University of Chicago Booth School of Business. All remaining errors are our own.

†Hong Kong University of Science and Technology (HKUST) (noh@ust.hk)
‡University of Chicago, Department of Economics and Booth School of Business (oh@chicagobooth.edu)
§Cubist Systematic Strategies

1



1 INTRODUCTION

Sustainable investing seeks to direct capital towards companies with positive environmental

and social impact and away from those with negative impact, thereby affecting their cost of

capital. Interest in sustainable investing has grown significantly in the last decade with ESG

(Environmental, Social, and Governance) assets predicted to reach over $53 trillion by 2025

(Bloomberg, 2021). This trend has been particularly pronounced in equity markets, resulting

in a plethora of academic research attempting to understand equity investors’ demand for

sustainability (Coqueret, 2021).

While existing research shows that the demand for sustainable assets in financial markets

has strengthened enough in aggregate to affect equity valuations (van der Beck, 2021; Pástor

et al., 2022), this trend alone masks the underlying heterogeneity in demand for sustainability

across investors. Often-cited threats to sustainable investing include concerns about price-

elastic investors picking up “brown” stocks divested by sustainable investors and political

backlash against ESG such as Florida’s banning of ESG considerations from state pension

investments (Bloomberg, 2022).1 Not every investor shares the enthusiasm for sustainability.

Taking this heterogeneity into account is of first-order importance for the outstanding

questions related to sustainable investing. Can investors meaningfully affect firms’ cost of

capital even if the hedge fund sector collectively invests in divested brown firms? If states or

countries ban ESG considerations, how will the cross-section of stock valuations be affected?

Do firms improve environmental performance in response to price pressure from sustain-

able shareholders?2 Answers to these questions cannot be deduced from valuation patterns

alone as they depend on the joint distribution of price elasticities, strength of demand for

sustainability, and the specific dimensions of sustainability that investors care about.

In this paper, we investigate the heterogeneity in investor demand for sustainability and

study its implications for firm decisions and asset prices. Not only do we estimate each

investor’s demand separately, but we also incorporate various dimensions of sustainability

that a particular investor may care about. As a result, we go beyond a simple dichotomy

of “green” vs. “brown” investors and provide a more nuanced classification of who green

1Popular media outlets often report hedge funds and private equity firms purchasing stakes in polluting
firms that are being divested by climate-conscious institutions (Fletcher and Brower, 2021; Gilbert, 2021). The
usual story is that institutional investors who face fewer constraints or less pressure from their clients happily
scoop up divested shares, thereby attenuating the effectiveness of sustainable investment mandates.

2In our framework, the first question will be the concern that price-elastic investors absorbing the excess
supply (demand) of brown (green) assets. A perfectly price-elastic market will completely “undo” the valuation
effect of sustainable investing, which also implies zero impact on the cost of capital of green and brown firms. The
second question will be a counterfactual scenario in which we “turn off” the demand coefficient on sustainability
for a subset of investors.
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investors are. We then apply an equilibrium asset pricing framework to derive model-based

empirical quantities and to consider counterfactual scenarios that allow us to answer policy-

relevant questions.3

Our findings reveal both the merits and limitations of sustainable equity investing. On

one hand, we show that the demand for firm sustainability has been rising for both active and

passive investors and is not driven by potential correlation of sustainability with other firm

characteristics. In addition, we find that investors not only demand firms with high third-

party sustainability ratings but also those with low emissions intensity. On the other hand,

they do not demand firms that innovate in sustainable technologies, which are the firms

that could benefit the most from cost of capital reductions. In addition, investor pressure

generated by these demand patterns seem to translate into only limited improvements in

firm sustainability.

As the first step in understanding the investor demand for sustainability, we start by

measuring three key dimensions of firm-level sustainability: emissions intensity, environ-

ment score, and green patents. To measure emissions intensity, we gather data on Scope 1

greenhouse gas emissions from S&P Trucost , which are emissions that come directly from

sources controlled or owned by the firm. Next, we create environment scores using data

from the MSCI ESG ratings database. Since these scores are correlated with greenhouse gas

emissions among firms, we extract the component of the score that is unrelated to emissions.

Finally, we use data from PatentsView to create company-level production of green patents.

By adopting this comprehensive approach, we obviate the need to assume a specific per-

spective on how investors perceive sustainability, thus improving upon existing studies that

typically examine only one dimension.

Using the firm sustainability measures, we present initial evidence that the three aspects

of sustainability are valued differently by investors. Our cross-sectional valuation regres-

sions from 2013 to 2021 reveal that third-party environment scores have been consistently

valued by investors over this period, and emissions intensity has been negatively valued

only after 2018. In particular, during the post-2018 period, a one standard deviation lower

emission intensity is associated with 6.45% lower market-to-book ratio, and one standard

deviation higher environmental score is associated with 11.5% higher market-to-book ratio.

On the other hand, the production of green patents is not valued by investors. These results

suggest that different aspects of sustainability may be valued heterogeneously in the equity

3Many existing equilibrium asset-pricing models on sustainable investing are based on one or two sources
of investor heterogeneity. Pástor et al. (2021), Pedersen et al. (2021), and Goldstein et al. (2022) all present models
that feature investors with different preferences or beliefs about ESG stocks. Zerbib (2022) offers a model that
has investors with both different ESG preferences and investment universes. Our paper builds on these works
by analyzing multiple sources of investor heterogeneity.
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market.

To gain a deeper understanding of this heterogeneity, we construct an asset demand sys-

tem that incorporates our sustainability measures into investor demand curves, along with

traditional stock characteristics that are known to influence investor demand. We model and

estimate investor demand using the approach in Koijen and Yogo (2019), which provides a

tractable model of investor demand that allows for rich heterogeneity. We also illustrate that

sustainability can enter investor demand in two ways: when sustainability is informative

about expected returns and when the investor faces a minimum sustainability constraint.

We document substantial heterogeneity in demand for sustainability across investors.

On average, investors have a positive preference for higher environment score and emis-

sions intensity but not for green patents. Comparing across investors, we find that active

investors—those who deviate more from the market benchmark weights—exhibit not only

higher price elasticities but also stronger demand for sustainability. This finding suggests

that active investors are not counteracting sustainable investing as commonly assumed, but

rather playing a crucial role along with passive investors in shaping the valuation patterns

in equity markets.

The trend of increasing overall demand for low-emissions firms can come from two

sources: (i) a within-investor preference shift towards low-emission stocks, or (ii) a shift

of AUM away from “brown” investors who prefer high-emission stocks, towards “green”

investors who prefer low-emission stocks. By examining trends based on estimated coeffi-

cients, we provide evidence that this trend is mainly driven by within-investors shifts in pref-

erences rather than shifts in capital across investors. We also confirm this evidence through

counterfactuals based on the estimated demand system.

Having documented the heterogeneity across investors, we then examine the implica-

tions of these patterns in investor demand. We first consider implications for firm decisions.

We use the estimated demand curves to quantify investor pressure for sustainability, which

captures the price pressure a firm receives, through investor demand, to become more sus-

tainable. Our closed-form expression shows that the pressure is determined by the average

demand for sustainability of the firm’s investors, adjusted for their collective price elasticity.

Our estimated demand parameters also suggest that, on average, firms have faced increased

pressure to improve sustainability. However, we find that higher investor pressure today

only weakly predicts future improvements in firm sustainability.

We next consider the asset pricing implications of two counterfactual scenarios that re-

flect important developments in sustainable investing. In the first, we study the impact of

introducing ESG-agnostic mandates by analyzing the valuation patterns when certain in-
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vestors “shut off” their demand for sustainability. This exercise shows that active and pas-

sive investors contribute roughly equally to the valuation patterns, challenging the often

held belief that active investors may “undo” sustainable investing.4

In the second scenario, we examine the effect of introducing hypothetical ESG ratings.

Specifically, we consider how leading sustainability score providers could adjust their method-

ology to incorporate firm-level green productivity. We find that such a change leads to a

meaningful increase in the valuation of top green patent producers while maintaining the

valuation gap between low- and high-emission stocks. These results suggest that the pro-

posed change in rating methodology can be implemented without compromising the objec-

tive of sustainable investing.

RELATED LITERATURE AND CONTRIBUTION

Our paper contributes to four main strands of literature in sustainable equity investing and

asset pricing. First, our paper contributes to the literature on the asset-pricing implications

of sustainable investing, to which Giglio et al. (2021) and Coqueret (2021) provide a com-

prehensive review. Our focus is on the equity market, and existing papers in this literature

study the return gap between green and brown stocks both through the lens of a theoret-

ical framework (Heinkel et al., 2001; Pástor et al., 2021; Pedersen et al., 2021 Zerbib, 2022)

and through empirical analyses based on realized returns (Görgen et al., 2020; Bolton and

Kacperczyk, 2021; Derrien et al., 2021; ; Glossner, 2021; Hsu et al., 2022; Pástor et al., 2022).5

To this literature, we provide two contributions. First, we provide new evidence on how

three different measures of environmental performance are priced in the cross-section of

stock valuations and how these pricing relationships have evolved over time. Our findings

complements Choi et al. (2022) who find that carbon emissions intensity is negatively cor-

related with stock valuation in 26 countries as well as Cohen et al. (2020) who show that

ESG investors lack incentive to invest in firms with high green innovation capacity. The cov-

erage of our results on all three green characteristics also adds to the discussion regarding

“ESG confusion” in Berg et al. (2022) that highlights the low correlation between different

sustainable metrics. Our second contribution is to illustrate how different changes in sus-

tainable demand could affect these valuation relationships via counterfactuals, which add

to the analysis of green-brown expected returns in Berk and van Binsbergen (2021) and the

4In the language of demand system asset pricing, this would be the concern that price-elastic investors ab-
sorbing the excess supply (demand) of brown (green) assets. A perfectly price-elastic market will completely
“undo” the valuation effect of sustainable investing, which also implies zero impact on the cost of capital of
green and brown firms.

5There also exists work with respect to demand for other types of assets such as bonds (Flammer, 2021) and
options (Ilhan et al., 2021).
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analysis of realized returns in van der Beck (2021).6

Second, our paper contributes primarily to the growing literature that directly studies

investor demand for sustainable assets. While some papers use the survey instruments

(Krueger et al., 2020; Gormsen et al., 2023), most papers analyze their portfolio choice de-

cisions directly. For institutional investors, Gibson et al. (2020) computes a portfolio-level

sustainability measure for all 13F investors and shows that institutions with high portfolio

sustainability earned higher returns after 2010. Pastor et al. (2023) computes ESG-related tilts

for 13F investors and find that they amount to approximately 6% of the invested AUM, even

controlling for confounding characteristics. Others have focused on subsets of institutional

investors by studying inflows into sustainable mutual funds (Hartzmark and Sussman, 2019;

van der Beck (2021); Baker et al. (2022)) or the greenwashing behaviors of hedge funds and

active mutual funds (Liang et al., 2021; Kim and Yoon, 2022). We contribute to this literature

by providing a comprehensive estimate of sustainable demand for institutional investors in

the U.S. stock market. The estimates of investor demand thus shed new light on both the

cross-sectional differences in sustainable demand across investors as well as the time-series

evolution of sustainable demand for each characteristic. While our paper shares the same

focus on asset demand as in Koijen et al. (2022), we provide more richness by analyzing a

comprehensive set of sustainability metrics and providing real impact analysis through our

model-based investor pressure measure.

Third, our paper contributes to the literature on the real impact of sustainable equity

investing. Theoretically, Broccardo et al. (2022) shows in a model of firm incentives that

divestment (“exit”) tends to be less effective than engagement (“voice”), and Edmans et al.

(2022) highlights the limits of blank exclusion of such full divestment strategies. Berk and

van Binsbergen (2021) also argues based on a CAPM calibration that even a large substitution

from brown to green stocks would only marginally increase the cost of capital for brown

firms. The empirical evidence is also generally mixed regarding the impact of sustainable

investing on real firm decisions (Heath et al., 2021, Gantchev et al., 2022; Hartzmark and

Shue, 2023). We contribute to this literature by deriving a new measure of a firm’s incentive

to improve its environmental performance and showing that while firms on average have

positive incentive from investor pressure to reduce carbon emission, the correlation between

a firm’s investor pressure and future environmental performance is only weakly positive.

Finally, our paper contributes to the burgeoning literature that studies questions in as-

set pricing based on estimation of asset demand in markets ranging from equity, corporate

6Instead of estimating the individual demand curves, van der Beck (2021) estimates the multiplier directly
using flow-driven trades by mutual funds and dividend reinvestment-induced flows.
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bonds, and country-level assets (Koijen and Yogo (2019), Koijen et al. (2022), Koijen and

Yogo (2020), Bretscher et al. (2020), Jiang et al. (2022)). In particular, our paper relates to

studies that apply demand estimation to specific asset-pricing questions, including Gabaix

et al. (2022) on the asset demand of U.S. households, Huebner (2022) on the source of equity

momentum, Jansen (2021) on long term bond demand, and van der Beck and Jaunin (2021)

on retail investor demand.7 Our paper contributes to the latter part of this literature by pro-

viding a structural analysis of sustainable equity investing through our emphasis on asset

demand of individual investors.

ROADMAP

We first describe the data as well as stylized facts from valuation regressions (Section 2). We

then set up the asset demand system that includes sustainability characteristics in investor

demand curves (Section 3), which we estimate and highlight key patterns (Section 4). With

the estimated demand system, we explore implications for both firm decisions and asset

prices. In Section 5, we quantify investor pressure for sustainability and examine whether

higher pressure today leads to greater future sustainability. In Section 6, we consider two

counterfactual scenarios related to investor preferences and measures of sustainability to

examine how valuation patterns changes.

2 DATA AND STYLIZED FACTS

We measure a firm’s sustainability across three dimensions, an approach that improves upon

the previous literature that usually focuses on one of the three dimensions (Section 2.1). We

then show that each sustainability characteristic is priced differently in the cross-section of

stocks, indicating that these characteristics may enter investor demand curves in different

ways (Section 2.2).

2.1 DATA

We construct three measures that capture different dimensions of firm-level sustainability:

(i) emissions intensity using data from S&P Trucost, (ii) environment score using data from

MSCI, and (iii) green patents using data from PatentsView. We later combine this data with

7Another strand of the literature focuses on asset demand elasticity: Gabaix and Koijen (2021) estimates low
“macro elasticity” of equity demand and proposes the inelastic market hypothesis, Davis et al. (2022) proposes an
explanation of inelastic demand based on a model of information acquisition, and Haddad et al. (2021) estimates
moderate strategic substitution in the price elasticity of investors.
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detailed holdings of institutional investors from FactSet as well as stock characteristics and

firm-level variables from CRSP and Compustat.

2.1.1 MEASURING FIRM SUSTAINABILITY

EMISSIONS INTENSITY We use firm-level Scope 1 greenhouse gas emissions from S&P Tru-

cost. We choose carbon emission as our primary measure because it is one of the most im-

portant objectives for sustainable investing and also the most quantifiable. We also focus on

Scope 1 emissions, which are the emissions that emanate directly from sources controlled or

owned by the firm. For our measure, we use the logarithm of Scope 1 emissions intensity,

which is defined as a company’s annual Scope 1 emissions divided by annual revenue8. We

henceforth refer to this measure as emissions intensity.

ENVIRONMENT SCORE We obtain firm-specific measures of environmental performance

from MSCI ESG Ratings database, which succeeds the MSCI KLD database used in previous

studies related to ESG investing. We choose MSCI ESG ratings over other ESG rating datasets

with a similar motivation as in Pástor et al. (2022): MSCI covers more firms than other raters,

exhibits the least noise (Berg et al., 2019), and is based on a comprehensive set of corporate

documents, government data, and news media.

Following Pástor et al. (2022), we use a combination of the Environment Pillar Score

and Environment Pillar Weight from MSCI to measure sustainability for asset n at time t.

Specifically, let Et (n) be the asset n’s most recent Environment Pillar Score before month t,

looking back no more than 12 months, and let wE
t (n) be the most recent Environment Pillar

Weight before month t, looking back no more than 12 months.

We define gt (n) as the following, which we call the raw environment score:

gt (n) =
− (10 − Et (n))wE

t (n)
100

The product is a combination of how far the asset’s rating is from a perfect score (10 − Et (n))

and the relative importance of environmental issues for the firm
(
wE

t (n)
)
. Due to the minus

sign, gt (n) is always negative and a value close to zero implies higher level of sustainability.

Appendix A.1 illustrates the importance of adjusting MSCI Environmental Pillar Scores by

the Environmental Pillar Weights by comparing the scores between oil & gas and banking

stocks. Appendix B.2 shows that our main results are robust to two alternative definitions of

8Fewer than 0.1% of all firm-year observations in the Trucost data have zero Scope 1 emission. We add the
minimum positive level of Scope 1 emissions intensity to the actual values before taking the logarithm.
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environmental score, based on different transformations of environmental pillar scores and

weights.

The quarterly average cross-sectional correlation between gt (n) and log Scope 1 emis-

sions intensity is -0.58, which suggest that emission is an important part in MSCI’s environ-

mental ratings. In order to improve precision and interpretability of our analysis, we regress

environmental score on log emissions intensity in each quarter and use this residual in all

cross-sectional analyses. This residual thus captures the component of environmental score

orthogonal to current level of carbon emission, and we henceforth refer to this residual as

the environment score.

GREEN PATENTS We construct firm-specific measures of green technology innovation based

on data of granted U.S. patents from PatentsView. We follow the method developed by

Haščič and Migotto (2015) and used in Cohen et al. (2020) to identify “green patents” related

to technologies for reducing emission, mitigating pollution, or improving environmental

performance in general. We use the firm identifier links provided by Autor et al. (2020) and

the WRDS Patents database to merge PatentsView data with our stock universe.

For cross-sectional analyses, we take the number of green patents that each firm develops

in the past five years, and scale the number of patents by the firm’s total asset. We hence-

forth refer to this measure as green patents and define non-green patents analogously using

the number of non-green patents9. Appendix A.2 provides further details on processing the

PatentsView data.

2.1.2 PORTFOLIO HOLDINGS, ASSET PRICES, AND CHARACTERISTICS

We use quarterly institutional portfolio holdings of U.S. stocks from the FactSet database,

which sources its data primarily from Securities and Exchange Commission Form 13-F fil-

ings. All institutional investment managers with more than $100 million of asset under man-

agement must file the form every quarter. The data comes at the investment manager level

rather than individual fund level (e.g. Vanguard files its aggregated holdings as one institu-

tion) and reports only long positions. We use the data from 2013Q1 to 2021Q3 and merge the

data with our quarterly stock universe from CRSP and Compustat via CUSIP. Appendix A.3

provides additional details.

9The correlation between the two measures is 0.54, which highlights the importance of including non-green
patents as a control variable that captures a firm’s overall innovation capacity. The correlations between all other
stock characteristics are below 0.1.
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2.1.3 SUMMARY STATISTICS

Table 1 provides summary statistics of investor and stock characteristics. Panel (a) first pro-

vides the distribution of stock characteristics. In an average quarter, 10.1% of stocks by mar-

ket cap does not have environmental score data, and 3.9% of stocks by market cap does

not have emissions data. For these observations with missing data, we impute the environ-

mental scores or emission intensities based on industry-quarter averages using Fama-French

12-industry classifications. Among observations with non-missing annual emissions inten-

sity, the median and mean are 13.6 and 189.7 tons per million dollars of revenue. In an

average quarter, 64.8% of stocks (constituting 67.3% of total market cap) have at least one

non-green patent granted in the previous 5 years, and 33.0% of stocks (constituting 29.6% of

total market cap) have at least one green patent granted in the previous 5 years. In panel (b),

we summarize the investors by type. Institutional investors constitute 69.3% of total AUM

in an average quarter and the top 25 largest investment advisors constitute 30.7% of the total

AUM. Hedge funds have highest average portfolio active share at 0.711. In Appendix B.1, we

also summarize the relationship between the three measures of firm sustainability and show

that the environment score has real information content with respect to future emissions and

green innovation.

2.2 STYLIZED FACTS: EVIDENCE FROM VALUATION REGRESSIONS

Next we provide results from cross-sectional valuation regressions during the period from

2013 to 2021. We find that environment score is consistently positively priced; the emissions

intensity is negatively priced only after 2018; and green patents is not priced. These results

imply that different aspects of sustainability may be demanded differently by investors,

thereby motivating a more structural analysis via the asset demand system in subsequent

sections.

Specifically, we estimate the following valuation regressions:

mbt (n) = at + λ′xt (n) + ϵt (n) (1)

where the dependent variable mbt (n) is the market-to-book ratio of firm n at time t and

xt (n) is a vector of time-varying firm characteristics that includes both sustainability and

non-sustainability characteristics that are cross-sectionally standardized in each quarter.

Table 2 summarizes the coefficients from the regressions. Column (1) shows the results

based on the entire sample. First, among the three green characteristics, only the environ-

mental score is significantly reflected in the cross-section of valuations: a one standard devi-
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ation higher environmental score is associated with 10.7% higher market-to-book ratio, with

t-statistic of 8.2 based on clustered standard errors. Second, emissions intensity is negatively

related to valuation, but the coefficient is not statistically significant over the entire sample.

Finally, although a firm’s overall innovation capacity is positively reflected in valuations

(strongly positive coefficient for the non-green patents), green patents are not reflected in the

cross-sectional of valuations.

Columns (2) - (3) of Table 2 provides subsample analyses based on data from 2013-2017

and 2018-2021 separately. First, the results for environmental score are similar over the two

sample periods, i.e., the environmental score is consistently valued in the cross-section. Sec-

ond, the coefficient for emissions intensity is not significant for the 2013-2017 subsample but

is strongly negative and significant for the 2018-2021 subsample. In the 2018-2021 sample,

one standard deviation higher emissions intensity is associated with 6.45% lower market-

to-book ratio in the cross-section. This difference across two sample periods suggests a sig-

nificant shift in investor demand that prefers low-emission over high-emission stocks in the

recent years.

Figure 1 plots the coefficients from estimating Equation (1) cross-sectionally for each

quarter. The time series of coefficients confirm both a consistent valuation gap for envi-

ronmental score and a strengthening valuation gap against emissions intensity. In fact, the

valuation regression coefficient for emissions intensity was positive and statistically signifi-

cant from 2013 to 2014 and then turned negative and statistically significant since 2018.

Overall, we find that the three sustainability characteristics are priced differently in the

cross-section of stocks and also for different time periods. These results suggest that charac-

teristics may enter investor demand curves in different ways, which we explore next.

3 THE ASSET DEMAND SYSTEM WITH SUSTAINABILITY

We set up the asset demand system that includes sustainability characteristics in investor

demand curves. We allow heterogeneity across both investors and time, which allows us to

examine how each of the sustainability measures are demanded differently across investors.

3.1 SETUP AND NOTATION

We adapt the setting and notation used in Koijen and Yogo (2019), which we partly introduce

here while omitting some details to avoid repeating the entire setup. A key addition is the

introduction of sustainability characteristics. Investors may care about sustainability either

for pecuniary or non-pecuniary reasons, and evidence can be found for both (e.g. Barber
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et al., 2021 and Bansal et al., 2018). While we remain agnostic on what the more prominent

motivation is, we show that sustainability should enter the characteristics-based demand

in at least two cases: sustainability is informative about expected returns or investors are

constrained to hold a sustainable portfolio (e.g. due to investment mandates or pressure

from clients).

Consider an economy with N assets indexed by n = 1, . . . , N and I investors indexed

by i = 1, . . . , I. We denote the outside asset as the 0th asset. Furthermore, let Pt(n) and

St(n) denote the price and shares outstanding of asset n at time t respectively. We denote the

logarithms of these variables in lowercase letters and the N-dimensional vectors in boldface.

Suppose each asset has K characteristics indexed by k = 1, . . . , K so that the kth characteris-

tics of asset n at time t is denoted xkt(n) and the vector of characteristics is denoted xt(n).

INVESTOR DECISIONS Investor i optimally chooses at each time t her weights on these as-

sets wit. Denoting the asset under management of investor i at time t by Ait, investor i max-

imizes expected terminal wealth Eit[log(AiT)] under the intertemporal budget constraint.10

Investors face short-sale constraints, wit ≥ 0 and 1′wit < 1. Investors have heterogeneous

beliefs about expected returns of assets, which they form by considering the observed char-

acteristics. Investor i’s unobserved latent demand for asset n is denoted log(ϵit(n)). Then

investor i’s information set for asset n can be written as

x̂it(n) =


met(n)

xt(n)

log(ϵit(n))

 (2)

and an Mth-order polynomial of this vector can be written as

yit(n) =


x̂it(n)

vec(x̂it(n)x̂it(n)′)
...

 , (3)

which determines the investors’ beliefs about expected returns.

FACTOR STRUCTURE We maintain Assumption 1 of Koijen and Yogo (2019), so that the

covariance of log excess returns, relative to the outside asset, is Σit = ΓitΓ′
it + γitI, where Γit

is a vector of factor loadings and γit > 0 is idiosyncratic variance, and that expected excess

10As in Pástor et al. (2021), we can have sustainability enter the utility directly, but we derive our results
without doing so for now.
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returns and factor loadings are polynomial functions of characteristics:

µit(n) = yit(n)′Φit + ϕit

Γit(n) = yit(n)′Ψit + ψit (4)

where Φit and Ψit are vectors and ϕit and ψit are scalars that are constant across assets. In

other words, returns have a one-factor structure and an asset’s own characteristics are suffi-

cient for its factor loadings.

SUSTAINABILITY AS CHARACTERISTICS Importantly, we further assume that firm-level sus-

tainability metrics are included in the vector of characteristics xt(n). In Appendix C.1, we use

an example of one sustainability metric to show that sustainability can enter an investor’s

characteristic-based demand function if either it is either informative about the expected re-

turns or the investor faces a “minimum sustainability constraint”. Moreover, Appendix A

of Koijen and Yogo (2019) shows that a particular coefficient restriction implies that the in-

vestors’ optimal portfolio weights follow logit functions of prices, characteristics, and latent

demand. In other words, optimal portfolio weight for stock n, for investor i, at a given period

t satisfies:
wit (n)
wit (0)

= exp
(
b0,it + β0,itmet (n) + β′

1,itxt (n)
)

ϵit (n) (5)

with sustainability entering as part of the characteristics xt(n).

3.2 IMPLEMENTATION

We estimate the demand model for investor i for a given quarter t, which can be written as:

∀i, ∀t :
wit (n)
wit (0)

= exp
(
b0,it + β0,itmbt (n) + β′

1,itst (n) + β′
2,itx

∗
t (n)

)
ϵit (n) (6)

where mbt (n) is the log market-to-book ratio of asset n at time t. st (n) denotes the cross-

sectionally standardized sustainability characteristics: emissions intensity, environmental

score, and green patents. x∗t (n) denotes other cross-sectionally standardized characteris-

tics: log book equity, profitability, investment, dividend to book equity, market beta, and

non-green patents. Note that we follow Koijen et al. (2022) to use log market-to-book ratio

as the measure for price. The coefficients β′
1,it measure investor i’s demand for the three

sustainability characteristics, after controlling for all other stock characteristics.

We use the same identification assumption as Koijen and Yogo (2019) for estimating

Equation (6): we assume the latent demand ϵit(n) is exogenous to all stock characteristics
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except log market-to-book ratio, all investors’ AUM Ait, and all investors’ investment uni-

verses Nit. Under these assumptions, mbt(n) is the only endogenous regressor in (6) as

mbt(n) is correlated with latent demand ϵit(n) through market clearing.

To instrument for mbt(n) in the demand estimation for investor i, we construct counter-

factual log market capitalization of stock n if all investors other than i or the household sector

holds an equal-weighted portfolio of their investment universes:

m̃ei,t(n) = log
(

∑
j ̸=i,HH

Ajt
1{n ∈ Nit}

1 + |Nit|

)
(7)

Based on the identification assumptions above, the instrument m̃ei,t(n) for investor i is exoge-

nous to the investor’s latent demand ϵit(n), and thus the instrument satisfies the exclusion

restriction:

Et [ϵit (n) | xt (n) , st (n)] = 1.

The instrument satisfies the relevance condition because all else equal, stocks held by more

and larger investors tend to have higher market capitalization and thus higher market-to-

book ratio. Koijen and Yogo (2019) documents that the instrument has high first-stage t-

statistics that pass the Stock and Yogo (2005) test for weak instruments. We use non-linear

GMM to estimate the demand equation (6) based on the instrument m̃ei,t(n) and all non-price

characteristics.

4 ESTIMATED DEMAND FOR SUSTAINABILITY

In this section, we summarize the estimated demand curves and highlight three key patterns.

First, we document strong heterogeneity in demand for sustainability across investors—in

particular, more price-elastic investors exhibit higher demand for sustainability in terms of

both environmental score and emission intensity. Second, we show that the increasingly neg-

ative demand for emissions intensity is primarily driven by within-investor demand shifts

rather than across-investor shifts in AUM. Third, we find that higher active share, and lower

portfolio turnover are associated with stronger sustainability demand, while indicators for

value investors or signatories of the United Nations Principles for Responsible Investment

(UNPRI) are not significantly correlated with sustainability demand.

4.1 SUMMARY STATISTICS OF ESTIMATED DEMAND COEFFICIENTS

The estimated demand system reveals a strong heterogeneity in demand for sustainabil-

ity across investors behind the valuation patterns. In particular, active investors are more
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price-elastic and exhibit higher demand for sustainability, which suggests that they are not

“undoing” sustainable investing but rather playing a key role in driving and maintaining

the valuation gap.

Table 3 provides summary statistics of our estimated demand coefficients. We compute

the summary statistics across investors in every quarter, and then take an equal-weighted

average across quarters. First, the demand for environmental score is positive on average,

with an AUM-weighted average coefficient of 0.031. The demand for emissions intensity is

negative on average, with an AUM-weighted average coefficient of -0.023. These coefficients

mean that an average investor increases its demand by 3.1% per one standard deviation

higher environmental score, and decreases its demand by 2.3% per one standard deviation

higher emissions intensity. Therefore, investors have positive demand for sustainability on

average, and they have positive preference for two orthogonal measures of environmental

performance—emissions intensity and environmental score. Moreover, the demand coeffi-

cients for these two green characteristics have comparable magnitudes with coefficients for

the five non-green characteristics.

The demand for green patents is near zero on average, with an AUM-weighted aver-

age coefficient of -0.003 for green patents. In comparison, the demand for a firm’s overall

innovation (measured by non-green patents) is positive, with an AUM-weighted average

coefficient of 0.02. Therefore, the average investor in our sample does not have specific pref-

erence for green patents. In addition, we observe strong heterogeneity of demand across

investors: the equal-weighted 10th/90th percentile of demand coefficients are -0.287/0.343

for environmental score, and -0.394/0.190 for emissions intensity. In line with Koijen and

Yogo (2019) and Koijen et al. (2022), this result highlights the importance of allowing cross-

investor heterogeneity for understanding demand for sustainability.

Figure 2 summarizes the relationship between pairs of demand coefficients across in-

vestors through binscatter plots. Panel (a) shows that price-elastic investors have higher de-

mand for sustainability on average for both environment score and emissions intensity. Be-

cause active investors tend to be more price-elastic11, these results provide the first evidence

that active investors are not “undoing” sustainable demand by aggressively buying brown

stocks. In contrast, the stronger sustainable demand for price-elastic investors suggests that

they play an important role in creating the valuation gap between green and brown stocks,

as the demand of price-elastic investors have higher relative impact on valuation (Koijen

et al., 2022). Furthermore, panel (b) of shows that investors with higher demand for environ-

ment score also tend to have larger negative demand for emissions intensity. These results

11The average quarterly cross-sectional correlation between active share and price inelasticity is -0.30.
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suggest that “green investors” consider both the actual emission of a firm and its third-party

environmental rating when making sustainable investment decisions.

Finally, in Figure 3, we study the time trends in the AUM-weighted average coefficients

for all investors as well as by broad investor types, which provides a validation of our ex-

ercise with respect to the valuation regression results. First, across all investor types, the

average demand coefficient for environmental score is positive and stable over time, while

the average demand coefficient for emissions intensity is negative and increasing in mag-

nitude over time. These results are consistent with the time series of valuation regression

coefficients in Figure 1, where the valuation gap between stocks with high and low envi-

ronmental scores is positive and stable over time, and the valuation gap between high- and

low-emission stocks is negative and opening up over time.

Second, we observe that the increasing demand for low-emission stocks is driven by both

active and passive institutional investors. For active institution types, the average demand

coefficient for emissions intensity decreased from -0.013 in 2013Q1 to as low as -0.105 in

2020Q2. For passive institution types, this coefficient decreased from -0.008 in 2013Q1 to

-0.040 in 2021Q3. These results suggest that the shift in asset demand towards low-emission

firms is a broad-based trend across different investor types.

4.2 WITHIN-INVESTOR DEMAND OR ACROSS-INVESTOR AUM SHIFT?

The trend of increasing overall demand for low-emission firms could come from two sources:

(i) a within-investor preference shift towards low-emission stocks, or (ii) a shift of AUM

away from “brown” investors who prefer high-emission stocks, towards “green” investors

who prefer low-emission stocks. We next show that the increasingly negative demand for

emissions intensity is primarily driven by within-investor demand shifts rather than across-

investor shifts in AUM.

To quantify the relative importance of each in driving the shift in overall demand, Fig-

ure 4 plots the time series of average demand coefficient for emissions intensity against a

counterfactual series where there is no within-investor preference shift. To construct this

counterfactual, let T0,i be the first quarter when investor i appears in our sample, and let

βi,GHG,t be investor i’s demand coefficient for emission in quarter t. With these notations,

βi,GHG,T0,i is investor i’s demand coefficient for emission in its earliest quarter in our sam-

ple. In each quarter, we compare the AUM-weighted average of demand coefficients βi,GHG,t

against the counterfactual coefficients if there was no preference shift over time, βi,GHG,T0,i :

β̄GHG,t := ∑i Ai,tβi,GHG,t

∑i Ai,t
(Actual Data)
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β̄∗
GHG,t :=

∑i Ai,tβi,GHG,T0,i

∑i Ai,t
(No Within-Investor Preference Shift)

Figure 4 shows that the decrease of β̄GHG,t over time—from -0.009 in 2013Q1 to -0.035

in 2021Q3—is almost entirely driven by preference shift within investor. If each investor’s

demand coefficient had stayed constant over time, the average demand coefficient for emis-

sions intensity would only decrease from -0.009 in 2013Q1 to -0.014 in 2021Q3. Therefore, the

overall demand shift towards low-emission stocks is mostly driven by portfolio rebalancing

decisions of each investor, rather than a shift of AUM from “brown” to “green” investors.

To formally test the analysis above, we also regress the emission demand coefficient

βi,GHG,t on a time trend with investor fixed effects. Within each quarter, the investors are

weighted by their AUM. If the time trend of decreasing coefficients is purely driven by the

shift of AUM across different investors, the time trend should not be significant after con-

trolling for investor fixed effects. On the other hand, if the time trend is driven by within-

investor change of demand, the time trend should remain significant after controlling for

investor fixed effects.

Table 4 displays the regression results. Column (1) shows the time trend without con-

trolling for investor fixed effects, and column (2) show the time trend after controlling for

investor fixed effects. We observe that adding investor fixed effects has little impact on the

time trend coefficient: the time trend coefficients in columns (1) and (2) are not statistically

significantly different from each other. Therefore, these results further bolster our finding

that the time trend of increasing demand towards low-emission stocks is mainly driven by

within-investor demand shifts, rather than a shift of AUM across investors. In Appendix

B.3, we further confirm this finding using a counterfactual analysis where we reverse the

investor-changes in demand for sustainability as well as the changes in AUM.

We note that our results here are complementary to and independent from the finding

of van der Beck (2021) that the outperformance of sustainable stocks from 2016 to 2021 can

be entirely attributed to the flow-driven price pressure from end investors’ portfolio real-

location from non-sustainable to sustainable mutual funds. The finding of van der Beck

(2021) shows that the AUM shift between mutual funds is important, but in our institution-

level data, shift of AUM between funds provided by a same institution will be reflected as a

within-institution demand shift in our analysis. For example, if many retail investors shifted

their investment from a Vanguard value-stock fund into a Vanguard sustainable fund, the

total AUM of Vanguard would not change, but Vanguard’s green demand coefficients will

increase. Therefore, as long as most flows from non-sustainable to sustainable mutual funds

occur among funds provided by a same institution, our results are consistent with van der
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Beck (2021). Furthermore, our sample of all 13F institutional investors is much larger than

the equity mutual funds and thus our findings provide new insights on the recent growth of

sustainable investing.

4.3 CROSS-SECTIONAL PATTERNS

In this section, we examine the relationship between green demand and investor characteris-

tics via cross-sectional regressions. In the cross-section of investors, we find that higher price

elasticity, higher active share, and lower portfolio turnover are all associated with stronger

sustainability demand. On the other hand, value investors and signatories of the UNPRI do

not have significantly different demand for sustainability.

4.3.1 INVESTOR CHARACTERISTICS

For each of our three sustainability measures, we regress the investor-quarter level demand

coefficients on four continuous (price inelasticity, log AUM, active share, and quarterly port-

folio turnover) and seven investor style or type indicators. For the indicators, we include

one dummy variable for non-US investors, two investment style indicators for value and

growth, and four investor type indicators for hedge funds, private banking, long-term, and

broker-dealer (the left-out type is investment advisors). We control for time fixed effects to

make the comparison across investors within each quarter, and we exclude the household

sector from this analysis.

Table 5 reports the cross-sectional regression results. First, columns (1) and (2) of the ta-

ble show that higher price elasticity, higher active share, and lower portfolio turnover are all

associated with stronger sustainability demand, for both environmental score and emissions

intensity. Also, growth investors have stronger sustainability demand than “generalist” in-

vestors who do not classify as either value or growth. We also find that foreign (non-U.S.)

investors have stronger sustainability demand than U.S. investors, which complements the

findings in Dyck et al. (2019) and may reflect Krueger et al. (2020) which highlights the im-

portance of geographical origins for investors’ sustainability preferences.

Second, compared with investment advisors, hedge funds have higher demand coeffi-

cients for both environmental score and emissions intensity—i.e., hedge funds have stronger

preference for stocks with higher environmental score and higher emission. On one hand, to

the extent that emission is a cleaner measure of firms’ current environmental performance

than environmental scores, these result could be interpreted as evidence of “green window

dressing” for hedge funds. Hedge funds might buy more high-environmental score stocks
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to boost their portfolio score, but at the same time buy more high-emission stocks12. On the

other hand, because higher environmental score predicts lower future emission in the cross-

section of stocks (Table A1), we can also interpret the results as evidence that hedge funds

prefer stocks that have high current emission but better emission reduction potential in the

future.

Finally, investors classified as “value” by FactSet do not have significantly different sus-

tainability demand compared with “generalist” investors. Together with our finding that

price-elastic investors tend to have stronger green demand, this result alleviates the popular

concern of value investors “undoing” sustainable investing by buying up brown stocks.

4.3.2 UNPRI SIGNATORY

We also examine whether signatories of the United Nations Principles for Responsible In-

vestment (UNPRI) have stronger sustainable demand. The UNPRI describes itself as the

“leading proponent of responsible investment” and one of its six main principles is that

“[investors] will be active owners and incorporate ESG issues into our ownership policies

and practices.”13 We use fuzzy string matching to match the UNPRI signatory list with the

institutional investors in FactSet data. In an average quarter in our sample, 9.9% of institu-

tional investors are UNPRI signatories, but they constitute 38.9% of total institutional AUM.

The fraction of institutional AUM controlled by UNPRI signatories has grown from 18.1% in

2013Q1 to 52.1% in 2021Q3.

However, we show from cross-sectional and time-series regressions that UNPRI signa-

tory status is not associated with higher sustainable demand. Table A2 shows that after

controlling for other investor characteristics, UNPRI signatories do not exhibit higher sus-

tainable demand than non-signatories14. Table A3 further shows that signing the UNPRI is

not significantly associated with any within-investor demand change, after controlling for

within-investor time trends. Our results are consistent with the findings of Kim and Yoon

(2022) and Liang et al. (2021) that investors who signed the UNPRI have not necessarily

increased their sustainable portfolio holdings.

12We only propose “green window dressing” as one potential explanation of the hedge fund coefficients in
Table 5. While we do not seek to prove the existence of “green window dressing”, we note that this proposition
is in line with the finding of Liang et al. (2021) that many hedge funds engage in “green washing”—i.e., holding
a brown portfolio while advertising themselves as green investors.

13See UNPRI’s website for these descriptions of the main principles (https://www.unpri.org/about-us/
about-the-pri) and the signatory list (https://www.unpri.org/signatories/signatory-resources/
signatory-directory), last accessed in December 2022.

14Without controls, UNPRI signatories have statistically significant higher demand only for environmental
score.

19

https://www.unpri.org/about-us/about-the-pri
https://www.unpri.org/about-us/about-the-pri
https://www.unpri.org/signatories/signatory-resources/signatory-directory
https://www.unpri.org/signatories/signatory-resources/signatory-directory


5 INVESTOR PRESSURE FOR SUSTAINABILITY AND REAL EFFECTS

Using the estimated demand system, we next study the real effects of sustainable investing.

To achieve this goal, we first use the estimated demand curves to quantify investor pressure

for sustainability, which captures the price pressure a firm receives, through investor de-

mand, to become more sustainable. While the average firm has experienced greater investor

pressure to become more sustainable, we find that higher investor pressure today predicts

greater future sustainability only to a limited extent, thus highlighting the limited real impact

of sustainable equity investing.

5.1 QUANTIFYING INVESTOR PRESSURE

We first derive a closed-form expression for investor pressure and show that the average

firm has experienced greater investor pressure to become more sustainable. Importantly,

we show that the investor pressure is the average of the coefficients on sustainability of the

firm’s investors adjusted for their price elasticity.

We define the investor pressure of firm n for the kth sustainability characteristic sk,t(n) as

the equilibrium price impact of a small change in sk,t(n), holding all other stock characteris-

tics and all investor demand curves constant:

∂mbt (n)
∂sk,t(n)

. (8)

This can be computed analytically from the demand system as below, with the proof in Ap-

pendix C:

Proposition 1. The price impact of a change in the value of sustainability characteristic k for firm n,

denoted as M, is given as the nth diagonal element of the matrix

M :=
∂p
∂sk

=

(
I − ∑

i
β0i AiH−1Gi

)−1(
∑

i
βki AiH−1Gi

)
(9)

where βki is investor i’s demand coefficient for sustainability characteristic sk, and we omit time

subscripts for simplicity. The matrices H and Gi are defined as follows:

H := diag

(
∑

i
Aiwi

)
= ∑

i
Aidiag (wi)

Gi := diag (wi)− wiw′
i.
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The quantity Mn,n, which is the nth diagonal entry of M, can be interpreted as the price

pressure that a firm receives through investor demand. Put differently, it represents the

firm’s marginal benefit in terms of stock valuations derived from increasing its sustainability

characteristic sk,t(n).15 Public firms have incentive to increase their stock valuations as they

are related to both equity cost of capital and value of share-based compensations.

Because we hold latent demand constant in the calculations above, the measure of in-

vestor pressure only captures the intensive margin of investor demand and thus is a lower

bound on the actual investor pressure that a firm may receive. If substantial variation in

holdings operates through the extensive margin, then the current methodology understates

how mbt(n) could change with st(n) as new investors would start to hold the stock if the

firm improves sufficiently. We note, however, that such response on the extensive margin is

not a first-order concern in our setup, as Koijen and Yogo (2019) shows that the set of stocks

that institutions invest in is usually small and highly persistent.

The matrix inside the inverse in Equation (9) is the aggregate demand elasticity. There-

fore, the valuation of a stock reacts more to a change in characteristic if the stock is held by

less price-elastic investors16. In addition, the nth diagonal entry of the second term is

∑i βki Aiwi(n)(1 − wi(n))
∑i Aiwi(n)

. (10)

This quantity can be viewed as an AUM weighted average of the coefficients on the sustain-

ability characteristic. Therefore, investor pressure for a given firm n is a weighted average of

sustainability demand coefficients of its institutional owners, adjusted for their price elastic-

ity. If a firm faces a representative owner who is price inelastic and exhibits a high coefficient

on the sustainability characteristic, this firm faces a large investor pressure on that dimension

of sustainability.

Table A4 reports the summary statistics for investor pressure of each sustainability char-

acteristic. The average investor pressure for environmental score is 0.063: an average firm

could expect its valuation to increase by 0.63% if it improves environmental score by 0.1

standard deviation. The average pressure for emissions intensity is -0.084: an average firm

could expect its valuation to increase by 0.84% if it improves Scope 1 carbon emissions in-

tensity by 0.1 standard deviation. The average pressure for green innovation is close to zero.

15We recognize that ideally, we need a fully micro-founded model with the supply side, or the firm side, of the
demand system to relate this quantity back to the firms’ objectives. Only in this way can we also account for the
adjustment cost of making the marginal change, but this is outside the scope of this paper. Instead, we control
for observed firm characteristics and industry classification in our empirical analysis and argue that doing so we
can compare firms with similar adjustment or marginal cost of changing the characteristic in question.

16The intuition is that a change of characteristic induces change in characteristic-based demand. A same
amount of demand shift creates stronger price pressure in stocks with less price-elastic demand curves.
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In addition, the investor pressure for each characteristic shows strong heterogeneity across

stocks. For example, the investor pressure for emission is -0.192 at 10th percentile and 0.004

at 90th percentile.

Figure 5 plots the average of investor pressure across stocks for each sustainability char-

acteristic in each quarter. The investor pressure for environmental score is positive and

roughly constant over time, and the investor pressure for carbon emissions intensity is neg-

ative and increasing over time in magnitude (a near twofold increase from -0.039 in 2013Q1

to -0.110 in 2021Q3). The investor pressure for green innovation is around zero for the en-

tire sample. These results are in line with the time series evolution of sustainable demand

coefficients, as discussed in Section 4.2.

The increasing investor pressure against carbon emission complements our previous

finding in Section 4.3 that the trend towards higher sustainable demand has not been “un-

done” by price-elastic investors. Because investor pressure for a characteristic is increasing

in the demand for that characteristic but decreasing in investors’ price elasticity, one might

be concerned ex ante that if investors have become more price-elastic over time, the increas-

ing demand for low-emission stocks we documented in Section 4.2 may not translate into

higher investor pressure. Figure A1 shows that this concern is not realized: the investors

on average has in fact become more price inelastic during our sample period, as the average

price inelasticity coefficient (β0,i,t) increased from 0.67 in 2013Q1 to 0.72 in 2021Q3. There-

fore, both the increasing demand for low-emission stocks and the decreasing price elasticity

contribute to higher investor pressure for the emission characteristic.

5.2 INVESTOR PRESSURE AND FUTURE ENVIRONMENTAL PERFORMANCE

We next examine whether a firm’s investor pressure is associated with its future environ-

mental performance. Table 6 shows results from regressing future 1-year environmental per-

formance on a stock’s characteristics and investor pressures. Column (1) shows that in the

cross-section, 1 standard deviation higher pressure for environmental score predicts 0.0187

standard deviation higher change of environmental score over the next year. Column (2)

shows that a 1 standard deviation higher pressure for emission (more negative pressure)

predicts 0.0251 standard deviation more reduction of emissions intensity over the next year.

Column (3) shows similar results for green innovation. Table A5 further shows that the re-

sults are robust for 2-year and 3-year future environmental performances.

We draw two conclusions from the regression results. One one hand, the coefficients

highlighted above are positive and statistically significant after controlling for a stock’s cur-

rent non-green and green characteristics. Therefore, higher investor pressure predicts better
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future environmental outcomes in the cross-section, even after controlling for current green

performance. On the other hand, the relationship between investor pressure and future 1-

year environmental outcome is very small in magnitude. The small magnitude might be due

to both the indirect relationship between stock valuation and firm decision making and the

long time needed to make environmental improvements.17

Taken together, our results in this section show that the average firm has experienced

greater investor pressure to reduce its carbon emissions intensity, but higher investor pres-

sure today only has weak predictive power for future sustainability performance.

6 COUNTERFACTUALS AND ASSET PRICING IMPLICATIONS

We next study the asset pricing effects of sustainable equity investing through two counter-

factual scenarios related to investor preferences and measures of sustainability. Specifically,

we calculate counterfactual asset prices under each scenario and examine how the valuation

patterns from Section 2.2 subsequently change. The steps for computing counterfactuals

closely follow the algorithm in Koijen and Yogo (2019), which we detail in Appendix D. In

the first counterfactual, we explore the impact of imposing ESG-agnostic mandates on select

investors. In the second, we consider incorporating the firm’s green patents, which is not

demanded by investors, into the construction of the environment score, a characteristics that

is heavily demanded.

6.1 IMPACT OF ESG-AGNOSTIC MANDATES

In the first counterfactual analysis, we “shut off” the demand for sustainability of select

investors to examine the contribution of different investors to the valuation of sustainability

characteristics. Our counterfactual exercise corresponds to “ESG-agnostic” policies that force

a subset of investors to not consider sustainability in their portfolio choice decisions.

Specifically, we consider three counterfactual scenarios where we set the demand coeffi-

cients for all three sustainable characteristics to zero for: (a) active institutions, (b) all insti-

tutions, and (c) all investors including the household sector.18 In each scenario, we regress

counterfactual valuations on stock characteristics as in Section 2.2, and we focus on the co-

17Stock valuation could affect firm decision making in two ways: first through expected stock return and thus
the firm’s cost of equity capital, and second through the incentive for firm management through stock-based
compensations. Both relationships are indirect in nature, therefore a large change of valuation might be needed
to generate a small change of management incentives and real investment decisions.

18Same as Section 4.2, we define “passive” institutional investors as large investment advisors, medium- or
small-passive investment advisors, and long-term investors; and we define “active” institutional investors as
medium- or small-active investment advisors, hedge funds, private banking, and brokers.
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efficients (“valuation gap”) on the three green characteristics. We attribute the difference

between actual data and scenario (a) to active institutions, the difference between scenarios

(a) and (b) to passive institutions, and the difference between scenarios (b) and (c) to house-

holds19. Any remaining valuation gap in counterfactual scenario (c) for green characteristics

are driven by the extensive margin of asset demand.20

Table 7 shows the valuation regression coefficients on three green characteristics under

each counterfactual scenario: panel (a) for the full sample from 2013 to 2021, and panel (b)

for the subsample from 2018 to 2021. First, the coefficients for environmental score in panel

(a) show that the valuation gap between high-environmental score and low-environmental

score stocks are not driven by the green demand of institutional investors. In the data,

stocks with 1 standard deviation higher environmental score is associated with 10.7% higher

market-to-book ratio on average. This valuation gap becomes 9.51% if we shut off the green

demand of all institutional investors in column (3), and it becomes 5.4% if we shut off green

demand of all investors in column (4). Therefore, the positive relationship between environ-

mental score and valuation is driven roughly in half by the households’ demand for high

environmental score stocks, and in another half by the extensive margin of asset demand.

On the extensive margin, Table A7 provides suggestive evidence that stocks with higher

environmental score appear in the investment universe of a higher fraction of institutional

investors, after controlling for other characteristics. Therefore, stocks with higher environ-

mental score would have higher valuation even without any sustainable demand on the

intensive margin.

Second, the coefficients for emissions intensity in both panels show that the gradually

increasing valuation gap between low- and high-emission stocks is entirely driven by the

green demand of institutional investors. Column (3) of panel (a) shows that emissions in-

tensity would become positively correlated with valuation in the full sample if we shut off

the green demand of all institutions. Column (3) of panel (b) also shows that the negative

relationship between emissions intensity and valuation from 2018 to 2021 would disappear

if we shut off green demand of all institutions. Together, these results show that the de-

mand of institutional investors against high-emission stocks is the main driver of their lower

valuations.

19Note that this attribution is subject to the order in which we shut off green demand for different types of
investors. Table A6 shows that our results are similar when we shut off the demand for passive institutions
before active institutions.

20The asset demand system we estimate only models the intensive margin of asset demand as a function of
stock characteristics. If a stock characteristic is correlated with the extensive margin of portfolio choice (i.e., the
fraction of investors that hold the stock in their portfolios, or have the stock in their investment universes), then
the stock characteristic will still be positively correlated with stock valuation even without any demand for it on
the intensive margin.
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Finally, the coefficients for emissions intensity in panel (b) also show that active and

passive institutions contribute equally to the valuation gap between low and high-emission

stocks. In the 2018-2021 sample, 1 standard deviation higher emissions intensity is associ-

ated with a 6.45% lower market-to-book ratio. This valuation gap is reduced to 3.45% if we

shut off the green demand for active institutions in column (2) and becomes a statistically in-

significant at 0.31% if we shut off the green demand for all institutions in column (3). Figure

6 also provides visual evidence by plotting the time series of quarterly valuation regression

coefficients for emissions intensity in the data and the counterfactual scenarios. Together,

these results reinforce our previous finding that active institutional investors as a whole are

contributing to sustainable investing thanks to their demand for low-emission stocks instead

of “undoing” sustainable investing by buying up high-emission stocks.

6.2 HYPOTHETICAL ESG RATINGS: INCORPORATING GREEN INNOVATION

In previous analyses, we show that our measure of green innovation—ratio of green patents

to asset—is not correlated with valuation in the cross-section, and does not have positive

characteristic demand from investors on average. We also showed in panel (b) of Table A1

that our green patents measure is negatively correlated with environmental score. Because

investors have positive demand for the environmental score on average, we can possibly

increase the valuation of top green innovators—thereby encouraging their green innovation

effort—by incorporating green innovation into the construction of environmental score. For

example, if MSCI adjusts its environmental score definition to make the score higher for top

green innovators, investors with positive demand for environmental score will be attracted

to these top innovators, which will in turn push up their valuation.

In the second counterfactual analysis, we show that this change would increase the val-

uation of top green innovators that produce the most green patents, but at the same time the

valuation gap between low- and high-emission stocks will still persist in the counterfactual

equilibrium. These results show that the proposed change could increase firms’ incentive to

produce green patents without jeopardizing the main effect of sustainable investing on the

valuation of emission.

6.2.1 SETUP AND ASSUMPTION

To proceed with the counterfactual, we start by increasing the environmental score for top

20% green innovators, ranked by our green patent characteristic. Specifically, we increase the

standardized environmental score by 1.0 for top 20% green innovators in each quarter, and

re-standardize the modified environmental score within each quarter. In an average year,
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the top 20% of green innovators develop 8,163 green patents, which make up 95.5% of the

annual green patents developed by the firms in our sample.

Importantly, we keep all demand coefficients unchanged in these counterfactual simu-

lations. Thus, our analyses is based on the assumption that modifying the content of en-

vironmental score will not change investors’ demand curves for the standardized environ-

mental score. While this assumption is strong and cannot be empirically verified, we offer

two supporting arguments for making this assumption. First, institutional investors’ de-

mand for high-environmental score stocks is at least partially driven by an environmental

score target, which can be either required by end investors or self-imposed in order to at-

tract flows (see, e.g., Hartzmark and Sussman (2019) for evidence of mutual fund investors

chasing funds with high sustainability rating on Morningstar). This type of demand for

high-environmental score stocks is likely unrelated to the specific content of environmental

score and thus unlikely to change in our counterfactual scenario. Second, green innovation

is more likely to be perceived by investors as a positive signal for better future environmen-

tal performance (or financial performance, if the green technology like electric vehicle can

be monetized). Therefore, it is unlikely that investors will reduce their environmental score

demand if they know that environmental score becomes more correlated with green inno-

vation. Based on these two reasons, we keep the demand coefficients unchanged in these

counterfactual simulations.

6.2.2 RESULTS

In Table 8, we examine the difference of log market-to-book ratios between actual data and

our counterfactual simulation. Column (1) shows that in the counterfactual simulation, the

average log market-to-book ratio for the top 20% green innovators will increase by 0.047,

and the average log market-to-book for other stocks will decrease by 0.022. These can be

interpreted as a 4.7% increase of market-to-book for the top green innovators, and a 2.2%

decrease of market-to-book for other stocks21. Columns (2) and (3) show that the relative

valuation change between green innovators and non-innovators stays roughly the same af-

ter controlling for time fixed effects and non-green characteristics. Therefore, our proposed

change of environmental score construction would move stock valuations in the intended

direction.

21These results are based on the average of log market-to-book ratios across innovator or non-innovator
stocks. Alternatively, we can treat each type of stocks as one asset and computes its aggregated market-to-
book (sum of market equity divided by sum of book equity). Using this method, the valuation for top 20% of
green innovators will increase by 7.17% in an average quarter, and the valuation for non-green-innovators will
decrease by 3.62% in an average quarter.
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Given the positive correlation between green innovation and current emissions intensity,

one might be concerned that our proposed change of environmental score would also in-

crease the valuation for high-emission stocks. Column (4) of Table 8 shows that this concern

is unnecessary: the valuation regression coefficient on emissions intensity does not change

significantly in the counterfactual simulation. This result shows that our proposed change

of environmental score can be implemented without attenuating the existing achievement of

sustainable investing (i.e., the valuation gap between low- and high-emission stocks).

7 CONCLUSION

In this paper, we investigate the heterogeneity in investor demand for sustainability and

study its implications for firm decisions and asset prices. By utilizing a comprehensive set

of measures for firm sustainability as well as a structural asset demand system, we provide

a more nuanced understanding of the heterogeneous demand for sustainability among in-

vestors. Our findings suggest that while investors do value third-party environment scores

and low emissions intensity, they do not value firms that innovate in sustainable technolo-

gies. In addition, investor pressure generated by these demand patterns translate into only

limited improvements in firm sustainability.

Overall, we contribute to the ongoing conversation about sustainable equity investing

by providing a more detailed understanding of investor demand for sustainability and its

implications for the effectiveness of sustainable equity investing. Our framework could be

used by future research to explore how the demand for sustainability varies across different

regions (e.g. U.S. vs. Europe) or asset markets (e.g. green bonds), or to study sustainable

demand at a more granular level (e.g. for individual mutual funds or households). We leave

these directions for future research.
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Table 1: Summary Statistics

(a) Distribution of Characteristics

Characteristic Count Mean Std. Dev. Min Q10 Q50 Q90 Max % Miss

Market Equity 64184 14.0 51.7 0.3 0.8 3.0 27.4 2324.4 0
Market / Book 64184 8.8 160.2 0.0 1.1 2.8 10.5 18596.4 0
Profit / Asset 64184 0.26 0.22 -0.50 0.04 0.23 0.55 0.98 0
Asset Growth 64184 0.10 0.20 -0.52 -0.07 0.06 0.33 1.20 0
Dividend / Book Equity 64184 0.04 0.05 0.00 0.00 0.02 0.10 0.29 0
CAPM Beta 64184 1.24 0.60 -0.34 0.52 1.18 2.02 3.34 0
Non-Green Patents (bps) 64184 315 687 0 0 11 1065 3525 0
Green Patents (bps) 64184 15 43 0 0 0 42 293 0
Environment Score 54142 -1.56 1.33 -8.55 -3.50 -1.29 -0.17 0.00 0.101
Emissions Intensity 47510 189.7 660.8 0.1 0.7 13.6 343.3 6315.6 0.039

(b) Investors by Type (Average Across Quarters)

Count AUM ($bil) AUM Share Active Share

Large IA 25 9178.2 0.307 0.301
Medium-Passive IA 42 2156.0 0.073 0.287
Medium-Active IA 43 1899.6 0.066 0.592
Small-Passive IA 854 1523.0 0.051 0.412
Small-Active IA 917 2074.4 0.072 0.659
Long Term 104 1060.6 0.037 0.344
Hedge Funds 351 975.4 0.034 0.711
Brokers 83 910.6 0.031 0.511
Private Banking 816 690.1 0.023 0.530
Household 1 9065.5 0.307 0.212

This table reports the summary statistics for select variables. Panel (a) provides the distribution of
stock characteristics. Panel (b) summarizes the investor types in our sample. The provided statistics
are computed for each quarter and then averaged across quarters. In panel (a), profitability is defined
as revenue minus cost of goods sold; asset growth rate is computed over 1 year; dividend to book
equity is computed based on rolling 1-year dividend; and CAPM beta is estimated based on rolling
60 months of data. In panel (b), active share is defined as one half of sum of the difference between
the weight of each stock in the portfolio and the market weight.
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Table 2: Valuation Regressions

Dependent Variable: Log Market-to-Book

(1) (2) (3)
Full Sample 2013-2017 2018-2021

Log Book Equity -0.390∗∗ -0.349∗∗ -0.451∗∗
[-18.78] [-16.80] [-17.66]

Profit / Asset 0.198∗∗ 0.188∗∗ 0.217∗∗
[12.08] [10.95] [10.35]

Asset Growth 0.121∗∗ 0.0990∗∗ 0.147∗∗
[9.542] [6.816] [7.952]

Dividend / Book Equity 0.274∗∗ 0.261∗∗ 0.292∗∗
[16.68] [13.85] [15.54]

CAPM Beta -0.0482∗∗ -0.0442∗∗ -0.0535∗
[-3.483] [-3.218] [-2.199]

Non-Green Patents 0.142∗∗ 0.114∗∗ 0.184∗∗
[7.961] [6.517] [8.175]

Environment Score 0.107∗∗ 0.0952∗∗ 0.115∗∗
[8.191] [6.738] [6.767]

Emissions Intensity -0.0156 0.0133 -0.0645∗∗
[-1.153] [1.056] [-4.261]

Green Patents 0.00359 0.0121 -0.0115
[0.237] [0.715] [-0.603]

Year-Quarter FE ✓ ✓ ✓
Within R2 .393 .377 .425
Observations 64184 37933 26251

This table summarizes the results from the valuation regression as shown in
Equation (1). Specifically, we regress the market-to-book ratio on a vector of
time-varying firm characteristics and year-quarter fixed effects. As sustainabil-
ity characteristics, we include environment score, emissions intensity, and green
patents as described in Section 2.1. Column (1) displays the results based on the
entire sample, while columns (2) and (3) display results for sub periods. Stan-
dard errors are clustered by year-quarter. (Significance Level: + p<.10, * p<.05, **
p<.01)
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Table 3: Demand Coefficients: Summary Statistics

AUM-Weighted Equal-Weighted

Mean SD Mean SD Q10 Q50 Q90

Log Market to Book 0.699 0.365 0.349 0.615 -0.485 0.454 0.990

Log Book Equity 1.275 0.406 0.693 0.598 -0.053 0.674 1.498

Profitability 0.010 0.179 0.046 0.371 -0.376 0.034 0.480

Asset Growth 0.031 0.151 0.082 0.327 -0.279 0.057 0.476

Dividend / Book 0.079 0.205 0.027 0.336 -0.370 0.019 0.436

Market Beta -0.028 0.176 -0.092 0.374 -0.556 -0.067 0.339

Non-Green Patents 0.020 0.210 -0.052 0.472 -0.562 -0.021 0.423

Environment Score 0.031 0.130 0.023 0.272 -0.287 0.013 0.343

Emissions Intensity -0.023 0.126 -0.085 0.251 -0.394 -0.061 0.190

Green Patents -0.003 0.168 -0.026 0.376 -0.407 0.004 0.341

This table provides summary statistics for the demand coefficients estimated from Equa-
tion (6). The three sustainability characteristics—environment score, emissions intensity,
and green patents—are as described in Section 2.1. For each coefficient, we compute the
summary statistics across investors in every quarter and then construct an AUM(equal)-
weighted average across quarters.
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Table 4: Demand for Emissions Intensity: Time Trend Analysis

Dep Var: Emission Demand Coef

(1) (2)

Time Trend -0.00114∗∗ -0.00121∗∗

[-4.718] [-4.670]

Investor FE ✓
AUM-Weighted ✓ ✓
Observations 113231 112942

This table summarizes the within-investor time trend of demand co-
efficients for emissions intensity. Data is at the investor-quarter level,
and each observation is weighted by the investor’s AUM share in a
quarter. (Significance Level: + p<.10, * p<.05, ** p<.01)
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Table 5: Demand for Sustainability and Investor Characteristics

Dep Var: Demand Coefficient

(1) (2) (3)
Environment Score Emissions Intensity Green Patents

Price Inelasticity -0.0796∗∗ 0.155∗∗ 0.00875
[-6.268] [12.03] [0.732]

Log AUM 0.0521∗∗ -0.0109 -0.00745
[5.236] [-1.102] [-0.992]

Active Share 0.0223+ -0.0671∗∗ -0.0814∗∗
[1.891] [-5.174] [-7.298]

Turnover -0.0184+ 0.0389∗∗ 0.00395
[-1.909] [3.843] [0.406]

1{Non-USA} 0.122∗∗ -0.0581+ -0.126∗∗
[4.724] [-1.764] [-4.935]

1{Style=Value} 0.0321 0.0509 0.0231
[1.014] [1.607] [0.789]

1{Style=Growth} 0.0885∗∗ -0.165∗∗ 0.0112
[3.201] [-5.420] [0.418]

1{Hedge Fund} 0.0680+ 0.0981∗ -0.158∗∗
[1.984] [2.543] [-4.598]

1{Priv. Banking} 0.00648 -0.0333 -0.0104
[0.283] [-1.386] [-0.465]

1{Long Term} -0.0570 -0.00978 -0.0583+
[-1.407] [-0.210] [-1.864]

1{Broker/Dealer} 0.0514 0.242∗∗ 0.0246
[1.280] [4.470] [0.772]

Time FE ✓ ✓ ✓
Within R2 .013 .041 .013
Observations 113231 113231 113231

This table summarizes the relationship between demand for sustainability and
investor characteristics via cross-sectional regressions. The three sustainability
characteristics—environment score, emissions intensity, and green patents—are
as described in Section 2.1. Data is at the investor-quarter level., and all variables
are cross-sectionally standardized. (Significance Level: + p<.10, * p<.05, ** p<.01)
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Table 6: Investor Pressure and Future Environmental Performance

Forward 1-Year Outcome

(1) (2) (3)
Environment Score Emissions Intensity Green Patents

Pressure: Environment Score 0.0187+ -0.000276 -0.0147∗

[2.006] [-0.0259] [-2.248]

Pressure: Emission Intensity -0.0279∗∗ 0.0251∗∗ 0.00184
[-3.097] [2.880] [0.319]

Pressure: Green Patents 0.00181 0.00322 0.00983+

[0.206] [0.342] [1.996]

Environment Score -0.228∗∗ -0.0617∗∗ -0.0103+

[-19.53] [-2.963] [-1.740]

Emission Intensity -0.0323∗ -0.0178 0.00130
[-2.648] [-1.225] [0.268]

Green Patents -0.00625 0.00685 0.769∗∗

[-0.706] [0.703] [37.07]

Time FE ✓ ✓ ✓
Non-Green Controls ✓ ✓ ✓
Within R2 .053 .007 .668
Observations 51065 51065 51065

This table summarizes the cross-sectional relationship between investor pressure and fu-
ture environmental performance. The dependent variables are: future one-year change in
environment score, future one-year change in emissions intensity, and the future one-year
green patents. The main independent variables are the investor pressure for three green
characteristics. “Non-Green” control variables include log book equity, investment, prof-
itability, market beta, and dividend to book equity. All outcome variables and regressors
are cross-sectionally standardized in each quarter. (Significance Level: + p<.10, * p<.05, **
p<.01)
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Table 7: Counterfactual Exercise: Impact of ESG-Agnostic Mandates

(a) Counterfactual Valuation Regressions: Full Sample (2013 - 2021)

Data CF: Shut off Green Demand

(1) (2) (3) (4)
Active Inst All Inst All Inst + HH

Environment Score 0.107∗∗ 0.0947∗∗ 0.0951∗∗ 0.0540∗∗
[8.191] [7.463] [7.194] [4.103]

Emissions Intensity -0.0156 0.0101 0.0330∗ 0.0387∗∗
[-1.153] [0.759] [2.634] [3.065]

Green Patents 0.00359 0.0309+ 0.0249 0.0161
[0.237] [1.942] [1.518] [0.993]

Time FE ✓ ✓ ✓ ✓
Controls ✓ ✓ ✓ ✓
Observations 64184 64184 64184 64184

(b) Counterfactual Valuation Regressions: Subsample (2018 - 2021)

Data CF: Shut off Green Demand

(1) (2) (3) (4)
Active Inst All Inst All Inst + HH

Environment Score 0.115∗∗ 0.107∗∗ 0.114∗∗ 0.0698∗∗
[6.767] [6.305] [6.529] [4.010]

Emissions Intensity -0.0645∗∗ -0.0345∗ 0.00311 0.00803
[-4.261] [-2.266] [0.199] [0.506]

Green Patents -0.0115 0.0241 0.0150 0.00618
[-0.603] [1.262] [0.784] [0.327]

Time FE ✓ ✓ ✓ ✓
Controls ✓ ✓ ✓ ✓
Observations 26251 26251 26251 26251

This table presents the results from valuation regressions in counterfactual scenarios where
we “shut off” green demand, i.e., set the demand coefficients for all three sustainability
characteristics to zero for one or more types of investors. Specifically, we consider three
scenarios in which we “shut off” green demand for all active institutions (column (2)), all
institutions (column (3)), and all investors including the household sector (column (4)). Af-
ter obtaining counterfactual valuations, we re-estimate the valuation regression as shown
in Equation (1). We present results for both the full sample as well as the 2018-2021 sub-
sample. (Significance Level: + p<.10, * p<.05, ** p<.01)
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Table 8: Counterfactual Exercise: Hypothetical ESG Ratings with Green Patents

Dep Var: Log M/B, Counterfactual − Actual

(1) (2) (3) (4)

1{Top 20% Green Innovator} 0.0470∗∗ 0.0692∗∗ 0.0684∗∗

[15.15] [18.79] [17.80]

1{Not Top Green Innovator} -0.0222∗∗

[-26.40]

Emissions Intensity 0.000495
[0.870]

Time FE ✓ ✓ ✓

Controls ✓ ✓

Observations 64184 64184 64184 64184

This table presents the results from the counterfactual exercise that explores the
consequences of adjusting the environmental score definition to reward com-
panies with high green innovation. Specifically, we increase the environmental
score by 1.0 for the top 20% green innovators as ranked by our green patent char-
acteristic in each quarter. We then re-standardize the modified environmental
score within each quarter. We keep the demand coefficients unchanged in these
counterfactual simulations. After obtaining the counterfactual valuations, we
compute the difference of log market-to-book ratios between the actual data and
the counterfactual. In columns (3)–(4), control variables include all non-green
stock characteristics in the valuation regressions plus the environmental score.
(Significance Level: + p<.10, * p<.05, ** p<.01)
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Figure 1: Valuation Regressions: Time-Series of Coefficients
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(c) Green Patents

This figure plots the time-series of the coefficients obtained from the
valuation regression as shown in Equation (1). We first estimate Equa-
tion (1) cross-sectionally for each quarter. The shaded area represents
the 95% confidence interval around the mean.
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Figure 2: Binned Scatterplots of Coefficients across Investors

(a) Price Elasticity vs. Demand for Sustainability
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(b) Demand across Sustainability
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This figure summarizes the relationship between pairs of demand coefficients across in-
vestors. In panel (a), we plot the binscatter of coefficient on environment score against
price inelasticity (left) as well as the coefficient on emissions intensity on price inelasticity
(right). In panel (b), we plot the coefficient on environment score against the coefficient on
emissions intensity.
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Figure 3: Trends in Average Coefficients
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This figure summarizes the time trends in the AUM-weighted average coefficient
of investors. We define “passive” institutional investors as large investment ad-
visors, medium- or small-passive investment advisors, and long-term investors;
and we define “active” institutional investors as medium- or small-active invest-
ment advisors, hedge funds, private banking, and brokers.
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Figure 4: Demand Coefficient for Emission: Role of Within-Investor Preference Shift
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This figure plots the AUM-weighted average demand efficient on emissions in-
tensity across time both in the actual data and in the counterfactual where there
is no within-investor shift in preference. Specifically, let T0,i be the first quarter
when investor i appears in our sample and let βi,GHG,t be investor i’s demand
coefficient for Log GHG1 intensity in quarter t. For each quarter, we compute the
average of demand coefficients in the data

(
β̄GHG,t

)
:

β̄GHG,t :=
∑i Ai,tβi,GHG,t

∑i Ai,t

as well as the average of the counterfactual coefficients if there is no shift in pref-
erences

(
β̄∗

GHG,t

)
:

β̄∗
GHG,t :=

∑i Ai,tβi,GHG,T0,i

∑i Ai,t

We then plot the time-series of both β̄GHG,t and β̄∗
GHG,t.
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Figure 5: Time Series of Average Investor Pressure across Stocks
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This figure plots the average investor pressure across stocks for each quarter and
each green characteristic. We compute the investor pressure for sustainability for
each stock using the procedure described in Section 5.
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Figure 6: Counterfactual: Impact of ESG-Agnostic Mandates

2013 2014 2015 2016 2017 2018 2019 2020 2021 2022

0.10

0.05

0.00

0.05

0.10

Data
CF Simulation 1: Shut Off Green Demand of Active Institutions
CF Simulation 2: Shut off Greend Demand of All Institutions

This figure plots the time-series of the quarterly valuation regression coeffi-
cients on emissions intensity in the data and in the counterfactual where we
shut off green demand of select investors.
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A DATA

A.1 MSCI DATA

As discussed in Section 2.1, we define the raw environment score as:

gt (n) =
− (10 − Et (n))wE

t (n)
100

where Et (n) is the environmental pillar score provided by MSCI, and wE
t (n) is the environ-

mental pillar weight provided by MSCI. Et (n) measures a firm’s environmental performance

relative to peers, and wE
t (n) measures the importance of environmental issue for the firm.

Et(n) ranges from 0 (worst) to 10 (best) and represents the weighted average score across

various dimensions related to environmental issues.

Figure A2 illustrates the distribution of Et(n), wE
t (n), and gt(n) for stocks in the Oil &

Gas and Banking industries. The distribution of MSCI environmental pillar score Et (n) is

similar across the two industries, which indicates that Et (n) is constructed based on peer-to-

peer comparisons. However, the MSCI pillar weights wE
t (n) for oil & gas stocks are signif-

icantly higher than those for banking stocks. Therefore, the pillar weights are necessary for

measuring the absolute (rather than peer-adjusted) level of companies’ environmental per-

formance. Figure A2 confirms that our raw environmental score gt(n) is significantly higher

for banking stocks compared to oil & gas stocks.

A.2 PATENTSVIEW DATA

We obtain data of granted U.S. patents from the PatentsView database provided by the U.S.

Patents and Trademark Office.22 For each patent granted from 1975 to 2021, we have the

name of patent assignee (the company that applied for the patent) and two patent classifica-

tion codes (Cooperative Patent Classification and International Patent Classification codes—

CPC and IPC).

We first match assignee names in the patent data to companies in CRSP. We start from

the mappings from individual patents to Compustat firm identifiers (GVKEY) provided by

Autor et al. (2020) from 1975 to 2012 and by the WRDS US Patents database from 2011 to

2019. Based on these two mappings, we construct a mapping from the PatentsView assignee

names to Compustat GVKEY, and extrapolate these mappings to patents from 2020 to 202123.

22https://patentsview.org/download/data-download-tables
23Because the WRDS data covers fewer patents than the Autor et al. (2020) data between 2011 to 2012, we also

extrapolate the patent assignee to Compustat mapping from Autor et al. (2020) to patents from 2013 to 2019 that
are not covered by the WRDS data.
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Based on these mappings, we match 2,319,184 out of 3,642,855 patents from 2008 to 2021 to

Compustat firms.

We then classify each patent as “green” or “non-green” based on a modified list of environment-

related CPC or IPC codes provided by Haščič and Migotto (2015)24. Compared with the orig-

inal list of Haščič and Migotto (2015), we add three more CPC sub-classes related to climate

change mitigation25. Among the 2,319,184 patents matched to Compustat firms from 2008 to

2021, 210,716 (9.1%) are classified as green based on our criteria.

A.3 PORTFOLIO HOLDINGS, ASSET PRICES, AND CHARACTERISTICS

The FactSet database provides an “Entity Sub-type” for each reporting institution. We first

follow Koijen et al. (2022) to classsify the type codes into five categories:

• Investment Advisors: IA, MF, IC

• Long-term Investors: FO, IN, PF, SV

• Hedge Funds: HF, FF, FH, FS

• Private Banking: PB, FY, CP, VC

• Brokers: BM, BR

Because “investment advisors” constitute 80% of total AUM of all institutional investors, we

break down this category further based on AUM and active share. We classify the largest

25 investment advisors (who constitute 50% of total AUM of all investment advisors) as

“large”. We then divide all other investment advisors into 4 groups of equal total AUM

(medium-passive, medium-active, small-passive, small-active) based on AUM and active

share.

We also aggregate all non-institutional holdings of stocks in our universe into a house-

hold sector. In cases where total institutional holdings exceeds shares outstanding due to

missing short positions or misreporting, we scale back the holdings of each institution to

ensure total institutional holdings equals shares outstanding. The demand estimation pro-

cedure also requires the investment universe for each institution-quarter. Following Koijen

and Yogo (2019), we define the investment universe for each institution as all stocks the in-

stitution has held in the previous three years.

24Cohen et al. (2020) uses the exact list provided by Haščič and Migotto (2015) to define “green” patents.
25The CPC sub-classes added are: Y02D (climate change mitigation technologies in information and commu-

nication), Y02P (climate change mitigation technologies in the production or processing of goods), and Y02W
(climate change mitigation technologies related to wastewater treatment or waste management).
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The data on stock prices, dividends, returns, and shares outstanding are from the Center

for Research in Security Prices (CRSP) Monthly Stock Database. We restrict our sample to or-

dinary common shares (i.e., share codes 10, 11, 12) that trade on NYSE, AMEX, and Nasdaq

(i.e., exchange codes 1, 2, and 3). We further restrict our sample to stocks with non-missing

price and shares outstanding. Accounting data are from the Compustat North America Fun-

damentals Annual and Quarterly Databases.

To mitigate the impact of missing data and make sure our results are not driven by micro-

caps, we only use the largest stocks that collectively constitute 99% of total market cap in each

quarter for analysis. There are 64,184 stock-quarter observations from 2013Q1 to 2021Q3 in

our sample, averaging to 1,834 stocks per quarter.

B ADDITIONAL EMPIRICAL RESULTS

B.1 RELATIONSHIP AMONG MEASURES OF FIRM SUSTAINABILITY

Table A1 summarizes the relationship between our three measures of firm sustainability. In

Panel (a), we examine the relationship between green patents and other dimensions of sus-

tainability based on cross-sectional regressions. Column (1) of the panel shows that in the

cross-section, firms with higher emissions intensity and lower environmental score tend to

have more green patents, after controlling for non-green patents. In the cross-section, 1 stan-

dard deviation higher environmental score (emissions intensity) is associated with 0.08 stan-

dard deviation lower (0.04 standard deviation lower) green innovation. Column (2) shows

that the negative relationship between environmental score and green innovation is entirely

across-industry, while the positive relationship between emission and green innovation still

holds within-industry.

Panel (b) examines whether our three green characteristics could predict future change

of emissions intensity in the cross-section. In column (1) of the panel, we regress future 1-

year change in emissions intensity on all stock characteristics, controlling for year-quarter

fixed effects. The regression show that 1 standard deviation higher environmental score is

associated with 4.14% lower emissions intensity over the next year, with t-statistic of 2.5

based on clustered standard errors. Columns (2) and (3) of the panel also show that this

predictive relationship is robust to adding industry fixed effects or using industry-time fixed

effects. These result show that the environmental score has real information content as it has

predictive power for future emissions reduction.26

26Igan et al. (2021) find that higher ESG scores do not predict larger decrease in carbon emissions. It should be
noted that the independent variable in their work is the firm-level ESG score from Refinitiv (Thomson Reuters),
while it is the residualized environment score in our case.
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B.2 ROBUSTNESS TO ALTERNATIVE ENVIRONMENTAL SCORES

In the paper, we construct environmental score as gt (n) =
−(10−Et(n))wE

t (n)
100 , where Et(n) is

the MSCI environmental pillar score and wE
t (n) is the MSCI environmental pillar weight; we

then residualize gt(n) against emission intensity in each quarter to arrive at the environmen-

tal score we use for valuation regressions and demand estimations. gt(n) will be high for

stocks that have superior environmental performance compared to their peers (high Et(n)),
or for stocks in industries where environmental issues are not important (low wE

t (n)).
In this appendix, we show that our results are robust to two alternative constructions for

gt(n):

• Alternative Environment Score (1): g(1)t (n) = Et(n): use MSCI environmental pillar

score directly without adjusting for environmental pillar weights. g(1)t (n) will only be

high for stocks with good peer-adjusted environmental performance.

• Alternative Environment Score (2): g(2)t (n) = (E(n)−5)wE
t (n)

100 . In this construction, we use

the environmental pillar weight wE
t (n) (which ranges from 0 to 100) to scale the peer-

adjusted environmental performance Et(n) − 5 (which ranges from -5 to 5). g(2)t (n)
will be high for stocks in environmentally-important industries that have better envi-

ronmental performance relative to its peers.

Importantly, compared to gt(n), neither the two alternative scores will be high for stocks in

environmentally-unimportant industries such as banking.

VALUATION REGRESSION Table A8 shows the valuation regression results based on the al-

ternative scores defined above. The alternative scores g(1)t (n) and g(2)t (n) are both residuzlied

against log scope-1 emission intensity in each quarter to maintain consistency with our main

specification in the paper. Table A8 first shows that both alternative scores are consistently

positively priced in the cross-section of valuations. Columns (2-3) also show that the MSCI

environmental pillar score has a significantly higher valuation coefficient in the 2018-2021

subsample compared to the 2013-2017 subsample. Comparing Table A8 with the valuation

regression results in the main paper (Table 2), we find that the coefficients for emission in-

tensity and green patents are almost the same.

DEMAND COEFFICIENTS Figure A3 shows the AUM-weighted average demand coefficient

for environmental score by broad investor types under different environmental score defi-

nitions. The figure confirms that there is consistently positive demand for stocks with high

third-party environmental score throughout our sample period.
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Figure A4 shows the demand coefficients for emission intensity under different envi-

ronmental score definitions. The figure shows that the demand coefficients for emission

intensity are not affected by how we construct the environmental scores.

B.3 COUNTERFACTUAL: WITHIN-INVESTOR DEMAND SHIFT OR ACROSS-INVESTOR

AUM SHIFT

In this counterfactual analysis, we undo the within-investor changes in demand for sustain-

ability as well as the changes in AUM to quantify the relative importance of within-investor

demand shift versus across-investor AUM shift. We find that the increasing valuation dif-

ference between low- and high-emission stocks is almost entirely driven by within-investor

demand shifts. This result highlights that the growth of sustainable investing is primar-

ily driven by institutional investors rebalancing their portfolios from high-emission to low-

emission stocks.

In the first counterfactual simulation, we shut off within-investor change of all three

green demand coefficients as in Section 4.2 by setting each investor’s green demand coef-

ficients to their values in the first quarter when the investor appears in our sample. In the

second counterfactual simulation, we first shut off within-investor demand change in the

same way as above, and then further shut off AUM shift across investors by reallocating

AUM across investors based on their AUM in 2013Q1 (we set counterfactual AUM to zero

for investors not in our data in 2013Q1). We attribute the difference between actual data

and the first counterfactual simulation to within-investor shift of green demand, and we at-

tribute the difference between the first and second counterfactual simulation to the shift of

AUM between green and brown investors.

Figure A5 plots the quarterly valuation regression coefficients for the emission character-

istic, based on the data or the two counterfactual simulations. In the data, the valuation gap

per 1 standard deviation higher emissions intensity is 4.65% in 2013Q1, which flips in sign

to -3.60% in 2021Q3 and subsequently reaches as low as -9.77% in 2020Q1 with t-statistic

greater than 5. If we shut off within-investor demand shift (the line labelled “Simulation

1” in the figure), this valuation gap is still a positive 2.83% in 2021Q3, and is never statisti-

cally significantly negative in any quarter. Columns (1) and (2) of Table A9 further supports

this results based on a pooled valuation regression on the 2018-2021 data, showing that the

valuation gap between low- and high-emission stocks mostly disappear if there had been

no within-investor demand change since 2013Q1. Moreover, the comparison between two

counterfactual simulations show that the shift of AUM across investors has little impact on

the green-brown valuation gap.

In sum, these results reinforce our finding that the increasing valuation difference be-
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tween low-emission and high-emission stocks is almost entirely driven by a preference shift

towards low-emission stocks within institutional investors.

C THEORY

C.1 INCLUDING SUSTAINABILITY AS A CHARACTERISTIC

In this section, we show that sustainability enters the investor’s characteristic-based demand

if either it is informative about expected returns or investors face a minimum sustainability

constraint.

If sustainability is informative about the expected returns, it immediately follows from

the same line of argument as in Koijen and Yogo (2019) that it should enter the characteristics-

based demand. Suppose on the other hand that sustainability is not informative about the

expected returns, but investors face a minimum sustainability constraint instead, similar to

Pástor et al. (2021). More concretely, suppose for some c > 0 investor i faces, on top of

short-sale constraints, an extra constraint27

b′
itwit = (digt)

′wit > c (A1)

where bit is an N × 1 vector of non-pecuniary benefits which is a product of di, investor

i’s ESG sensitivity, and gt, the vector of firms’ sustainability. Let νit ≥ 0 be the Lagrange

multiplier associated with this new constraint. Also, let us denote the kth elementary vector

by ek. Then we have the following result:

Proposition 2. If an investor faces a sustainability constraint, the optimal portfolio weight on asset
n for which the short-sale constraint is not binding is

wit(n) = yit(n)′Πit + πit,

where

Πit =
1

γit
(Φ̃it − Ψitκ̃it), πit =

1
γit

(ϕit − λit − ψitκ̃it)

27The current formulation implicitly assumes that green stocks counteract the effects of brown ones. This sim-
plifies the argument, and we motivate it by referring to Morningstar’s ESG rating methodology which rates each
fund using the weighted average of the fund’s Sustainalytics scores. In order to incorporate negative screening
against a group of stocks, the sensitivity di can be changed to a vector di with a very large di(n) value if stock n
is screened.
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are constant across assets. The modified factor loading is given by

Φ̃it = Φit + νitdiek,

the modified constant is given by

κ̃it =
Γ(1)′

it (µ̃
(1)
it − λit1)

Γ(1)′
it Γ(1)

it + γit

,

and µ̃it is the expected returns adjusted for the shadow benefits of sustainability

µ̃it = µit + νitbit.

Proposition 2 is identical to Proposition 1 in Koijen and Yogo (2019) but with a slight mod-

ification to the constant terms to account for the shadow benefit of sustainability, νitbit. This

addition comes from the fact that green assets are valuable beyond their expected returns

because they relax the sustainability constraint. Even with the new constraint, the key con-

tent remains: variation in characteristics yit(n) is the only source of variation in the portfolio

weights. Furthermore, the expression for Φ̃it reveals that even if investors do not believe

sustainability is informative about expected returns (the factor loading on sustainability is

zero in Φit), the optimal portfolio weights will still be positively related to sustainability.

C.2 DERIVATION OF INVESTOR PRESSURE IN PROPOSITION 1

To compute M, recall the following identity that holds by market clearing:

p = log

(
∑

i
Aiwi

)
− s (A2)
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Differentiating both sides by p :

I =


(

1
∑i Aiwi(1)

) (
∂

∂p(1) ∑i Aiwi (1)
)

· · ·
(

1
∑i Aiwi(1)

) (
∂

∂p(n) ∑i Aiwi (1)
)

(
1

∑i Aiwi(n)

) (
∂

∂p(1) ∑i Aiwi (n)
)

· · ·
(

1
∑i Aiwi(n)

) (
∂

∂p(n) ∑i Aiwi (n)
)


=


1

∑i Aiwi(1)
0 0

0
. . . 0

0 0 1
∑i Aiwi(n)




∂(∑i Aiwi(1))
∂p(1) · · · ∂(∑i Aiwi(1))

∂p(n)
...

...
∂(∑i Aiwi(n))

∂p(1) · · · ∂(∑i Aiwi(n))
∂p(n)


≡ H−1 ∂

∂p

(
∑

i
Aiwi

)
(A3)

where

H := diag

(
∑

i
Aiwi

)
= ∑

i
Aidiag (wi) (A4)

Furthermore, it can be shown that:

∂wi(n)
∂p(n)

= β0iwi(n)(1 − wi(n)),
∂wi(n)
∂p(m)

= −β0iwi(n)wi(m)

wi (n) ≡
δi (n)

1 + ∑ℓ δi (ℓ)

which can be rewritten as

∂wi

∂p
= β0iGi, Gi = diag (wi)− wiw′

i

Through analogous steps, it can be shown that the derivative with respect to the kth charac-

teristic is
∂wi

∂xk
= βiGi

Now going back to the market clearing condition (A2) and differentiating both sides by xk :

M :=
∂p
∂xk

= H−1

(
∑

i
β0i AiGi

)
M + H−1

(
∑

i
βki AiGi

)

Rearranging yields the desired expression:

M =

(
I − ∑

i
β0i AiH−1Gi

)−1(
∑

i
βki AiH−1Gi

)
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D COMPUTING COUNTERFACTUALS

We summarize the steps for computing counterfactual which closely follows the algorithm

in Koijen and Yogo (2019). For each quarter t, given AUM {Ai,t} and demand coefficients

{βi,t} for all investors i, non-price stock characteristics {xt(n), gt(n)} for all stocks n, and

latent demand {ε i,t(n)}, we compute the equilibrium log market capitalization m̃et(n) as

follows:

1. Start from an initial guess m̃et(n; 0).

2. Plug m̃et(n; 0) and {βi,t, xt(n), gt(n), ε i,t(n)} into Equation 5 for quarter t to compute

portfolio weights wi,t(n).

3. Use the market-clearing condition to compute the prices corresponding to portfolio

weights: m̃e∗t (n) = log ∑i Ai,twi,t(n)− log BEt(n).

4. Update the guess for prices: m̃et(n; 1) = m̃et(n; 0) + kt(n) ·
[
m̃e∗t (n)− m̃et(n; 0)

]
.

(a) kt(n) is the stock- and time-specific speed of update. Koijen and Yogo (2019) uses

the optimal k∗t (n) =
[
1 − ∑i β0,i,t Ai,twi,t(n)[1−wi,t(n)]

∑i Ai,twi,t(n)

]−1
derived based on Newton’s

Method.

(b) To improve numerical stability, we use a smaller update speed kt(n) = 0.25 · k∗t (n).
If the procedure fails to converge, we try kt(n) = 0.1 · k∗t (n) and kt(n) = 0.05 ·
k∗t (n).

(c) If the procedure still fails to converge, we then try fixed update speeds kt(n)= 0.8

/ 0.5 / 0.2.

5. Iterate back to step (1) until the price vector converges: min |m̃et(n; 1)− m̃et(n; 0)| <
10−4.

For each set of primary inputs, we can compute the counterfactual portfolio holdings and

investor pressures after computing the prices.
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Table A1: Relationship Between Green Characteristics

(a) Green Patent and Other Green Characteristics

Dep Var: Green Patents

(1) (2)

Non-Green Patent / Asset 0.545∗∗ 0.476∗∗

[16.53] [14.49]

E-Score Residual -0.0782∗∗ -0.00300
[-5.653] [-0.200]

Log GHG1 Intensity 0.0439∗∗ 0.0444∗

[4.570] [2.282]

Time FE ✓ ✓
FF-48 Industry FE ✓
Within R2

Observations 64184 64184

(b) Green Characteristics and Future Change in Emissions Intensity

Dep Var: Future 4Q Change in Emissions Intensity

(1) (2) (3)

E-Score Residual -0.0414∗ -0.0386∗ -0.0436∗

[-2.511] [-2.603] [-2.670]

Log GHG1 Intensity -0.00867 -0.0686∗ -0.0268∗

[-1.667] [-2.503] [-2.173]

Green Patent / Asset 0.00239 0.00187 0.00289
[0.782] [0.537] [0.903]

Non-Green Controls ✓ ✓ ✓
Time FE ✓ ✓
FF-48 Industry FE ✓
FF-12 Industry × Time FE ✓
Within R2 .021 .032 .022
Observations 51065 51065 51065

This table summarizes the relationships between the different measures of sustain-
ability. Panel (a) examines the relationship between the measure of green innovation
and other characteristics in the cross-section. Panel (b) examines the predictability
of each characteristic for future one-year ahead change in emissions intensity in the
cross-section. (Significance Level: + p<.10, * p<.05, ** p<.01)
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Table A2: Sustainable Demand and UNPRI Signatory Status: Cross-Sectional

E-Score Resid Emission Green Patent

(1) (2) (3) (4) (5) (6)

1{UNPRI Signatory} 0.0578∗ -0.0000795 -0.0252 -0.0225 -0.0275 -0.0108
[2.268] [-0.00309] [-0.801] [-0.749] [-1.058] [-0.414]

Time FE ✓ ✓ ✓ ✓ ✓ ✓
Investor Controls ✓ ✓ ✓
Within R2 0 .013 0 .041 0 .013
Observations 113231 113231 113231 113231 113231 113231

This table summarizes the relationship between green demand and investor characteristics
via cross-sectional regressions. Data is at the investor-quarter level, and all continuous
variables are cross-sectionally standardized. Controls include all investor charcteristics in
Table 5. (Significance Level: + p<.10, * p<.05, ** p<.01)
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Table A3: Sustainable Demand and UNPRI Signatory Status: Time-Series

Demand Coefficients

(1) (2) (3)
E-Score Resid Emission Green Patent

1{UNPRI Signatory} -0.00135 -0.00916 -0.00391
[-0.123] [-0.945] [-0.244]

Time Trend -0.000883∗∗ -0.00144∗∗ -0.00157∗∗

[-3.052] [-4.682] [-4.286]

Investor FE ✓ ✓ ✓
Within R2 .001 .004 .002
Observations 112942 112942 112942

This table summarizes the within-investor change in demand for sustainability
after an investor becomes a UNPRI signatory via time-series regressions. (Signif-
icance Level: + p<.10, * p<.05, ** p<.01)
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Table A4: Investor Pressure: Summary Statistics

Mean SD Q10 Median Q90

E-Score Residual 0.063 0.084 -0.033 0.056 0.162

Emission -0.084 0.085 -0.192 -0.071 0.004

Green Patent -0.008 0.092 -0.118 0.008 0.082

This table summarizes the investor pressure. Statistics are computed in each
quarter, and then averaged across quarters.
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Table A5: Investor Pressure and Future Environmental Performance: Longer Horizons

Forward 2-Year Outcome Forward 3-Year Outcome

(1) (2) (3) (4) (5) (6)
E-Score Resid GHG Green Patent E-Score Resid GHG Green Patent

Pressure: E-Score Residual 0.0236+ -0.0145 -0.0137+ 0.0131 -0.0453∗∗ -0.0155
[1.923] [-1.074] [-1.792] [0.929] [-3.245] [-1.689]

Pressure: GHG -0.0437∗∗ 0.0339∗∗ 0.00289 -0.0629∗∗ 0.0305∗ 0.00243
[-3.566] [2.788] [0.420] [-4.176] [2.164] [0.321]

Pressure: Green Patent -0.000842 0.0113 0.0152∗ 0.00769 0.0109 0.0200∗∗

[-0.0653] [1.064] [2.680] [0.490] [0.855] [2.983]

E-Score Residual -0.300∗∗ -0.123∗∗ -0.0138+ -0.349∗∗ -0.178∗∗ -0.0174+

[-20.03] [-4.839] [-1.916] [-19.25] [-6.342] [-2.007]

Log GHG1 Intensity -0.0414∗ -0.0429∗∗ 0.00233 -0.0438∗ -0.0530∗∗ 0.00291
[-2.620] [-2.816] [0.364] [-2.332] [-3.067] [0.380]

Green Patent / Asset 0.00293 0.00564 0.784∗∗ -0.000242 0.00360 0.781∗∗

[0.216] [0.469] [29.65] [-0.0144] [0.220] [24.48]

Time FE ✓ ✓ ✓ ✓ ✓ ✓
Non-Green Controls ✓ ✓ ✓ ✓ ✓ ✓
Within R2 .094 .029 .71 .134 .067 .722
Observations 41486 41486 40754 33182 33182 32099

This table summarizes the cross-sectional relationship between investor pressure and future environ-
mental performance. The dependent variables are: future 2/3-year change in environmental score,
future 2/3-year change in emissions intensity, and the future 2/3-year number of green patents di-
vided by total assets. The main independent variables are the investor pressure for three green char-
acteristics. “Non-Green” control variables include log book equity, investment, profitability, market
beta, and dividend to book equity. All outcome variables and regressors are cross-sectionally stan-
dardized in each quarter. (Significance Level: + p<.10, * p<.05, ** p<.01)
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Table A6: Counterfactual Exercise: Impact of ESG-Agnostic Mandates, Alternative Order

(a) Counterfactual Valuation Regressions: Full Sample (2013 - 2021)

Data CF: Shut off Green Demand
(1) (2) (3) (4)

Passive Inst All Inst All Inst + HH
E-Score Residual 0.107∗∗ 0.107∗∗ 0.0951∗∗ 0.0540∗∗

[8.191] [7.927] [7.194] [4.103]
Log GHG1 Intensity -0.0156 0.00697 0.0330∗ 0.0387∗∗

[-1.153] [0.552] [2.634] [3.065]
Green Patent / Asset 0.00359 -0.00211 0.0249 0.0161

[0.237] [-0.136] [1.518] [0.993]
Time FE ✓ ✓ ✓ ✓
Controls ✓ ✓ ✓ ✓
Observations 64184 64184 64184 64184

(b) Counterfactual Valuation Regressions: Subsample (2018 - 2021)

Data CF: Shut off Green Demand
(1) (2) (3) (4)

Passive Inst All Inst All Inst + HH
E-Score Residual 0.115∗∗ 0.123∗∗ 0.114∗∗ 0.0698∗∗

[6.767] [7.005] [6.529] [4.010]
Log GHG1 Intensity -0.0645∗∗ -0.0275+ 0.00311 0.00803

[-4.261] [-1.789] [0.199] [0.506]
Green Patent / Asset -0.0115 -0.0209 0.0150 0.00618

[-0.603] [-1.107] [0.784] [0.327]
Time FE ✓ ✓ ✓ ✓
Controls ✓ ✓ ✓ ✓
Observations 26251 26251 26251 26251

This table presents the results from valuation regressions in counterfactual scenarios where we “shut
off” green demand, i.e., set the demand coefficients for all three sustainability characteristics to zero
for one or more types of investors. Importantly, we shut off the demand for passive institutions before
active institutions, which is in contrast to the baseline procedure as described in Section 6.1. Specif-
ically, we consider three scenarios in which we “shut off” green demand for all passive institutions
(column (2)), all institutions (column (3)), and all investors including the household sector (column
(4)). After obtaining counterfactual valuations, we re-estimate the valuation regression as shown in
Equation (1). We present results for both the full sample as well as the 2018-2021 subsample. (Signifi-
cance Level: + p<.10, * p<.05, ** p<.01)
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Table A7: Stock Characteristics and Investment Universe Coverage

Investment Universe Coverage

(1) (2)
Equal-Weighted AUM-Weighted

E-Score Residual 0.00971∗∗ 0.00331
[6.164] [1.687]

Log GHG1 Intensity -0.000324 -0.00155
[-0.187] [-0.788]

Green Patent / Asset 0.000919 -0.000244
[0.522] [-0.136]

Log Book Equity 0.109∗∗ 0.0794∗∗
[38.18] [33.82]

Profit / Asset 0.0258∗∗ 0.0263∗∗
[16.28] [17.32]

Asset Growth 0.00556∗∗ 0.00499∗∗
[5.262] [5.440]

Dividend / Book Equity 0.0319∗∗ 0.0146∗∗
[12.99] [6.570]

CAPM Beta 0.00131 0.00212
[1.001] [1.204]

Non-Green Patent / Asset 0.0150∗∗ 0.0108∗∗
[8.604] [6.097]

Time FE ✓ ✓
Dep. Var. Mean .196 .679
Within R2 .659 .412
Observations 64184 64184

This table summarizes the results from regressing investment universe coverage on stock
characteristics. For column (1), the equal-weighted investment universe coverage for a
stock is the fraction of investors by number that have the stock in their investment uni-
verses. For column (2), the AUM-weighted investment universe coverage for a stock is the
fraction of investors by AUM that have the stock in their investment universes. (Signifi-
cance Level: + p<.10, * p<.05, ** p<.01)
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Table A8: Valuation Regression with Alternative Environment Scores

Dependent Variable: Log Market-to-Book

(1) (2) (3) (4) (5) (6)
Full Sample Full Sample 2013-2017 2013-2017 2018-2021 2018-2021

Alternative E-Score (1) 0.170∗∗ 0.141∗∗ 0.212∗∗
[11.94] [10.79] [11.43]

Alternative E-Score (2) 0.124∗∗ 0.114∗∗ 0.139∗∗
[9.308] [8.236] [7.452]

Emission Intensity -0.0133 0.0159 -0.0646∗∗ -0.0138 0.0152 -0.0641∗∗
[-1.005] [1.279] [-4.458] [-1.016] [1.202] [-4.303]

Green Patent -0.00608 0.0000154 -0.0156 -0.0113 -0.00230 -0.0262
[-0.420] [0.000947] [-0.851] [-0.782] [-0.142] [-1.428]

Year-Quarter FE ✓ ✓ ✓ ✓ ✓ ✓
Within R2 .411 .39 .452 .397 .382 .431
Observations 64184 37933 26251 64184 37933 26251

This table presents the valuation regression results based on two alternative measures of
environmental scores defined in Appendix B.2. Both non-sustainable and sustainable char-
acteristics are included in the regression, but the coefficients for sustainable characteristics
are presented to save space. (Significance Level: + p<.10, * p<.05, ** p<.01)

A18



Table A9: Counterfactual Exercise: Demand vs. AUM Shifts

Data CF Simulations

(1) (2) (3)
Simulation 1 Simulation 2

Environment Score 0.115∗∗ 0.119∗∗ 0.118∗∗

[6.767] [6.725] [7.164]

Emissions Intensity -0.0645∗∗ -0.0124 0.00715
[-4.261] [-0.793] [0.476]

Green Patents -0.0115 0.0706∗∗ 0.0607∗∗

[-0.603] [3.584] [3.059]

Time FE ✓ ✓ ✓

Controls ✓ ✓ ✓

Observations 26251 26251 26251

This table presents the results from valuation regressions in counterfactual
described in Appendix B.3, which is designed to juxtapose the relative im-
portance of demand shifts within investors against the AUM shift across in-
vestors. In the first scenario, we shut off the within-investor change of all
green demand coefficients by setting each investor’s green demand coeffi-
cients to their values in the investor’s first quarter. In the second scenario,
we first shut off the within-investor demand change in the same way as
above and then further shut off the AUM shift across investors by reallocat-
ing AUM across investors based on their AUM in 2013Q1. After obtaining
counterfactual valuations, we re-estimate the valuation regression as shown
in Equation (1). (Significance Level: + p<.10, * p<.05, ** p<.01)
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Figure A1: Average Price Inelasticity Over Time
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This figure summarizes the time trends in the AUM-weighted average price in-
elasticity coefficient (β0,i,t) across all investors.

A20



Figure A2: Distribution of Environmental Scores for Oil & Gas and Banking Stocks
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(b) MSCI Environmental Pillar Weight: wE
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(c) Raw Environmental Score Following Pástor et al. (2022): gt(n)
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This figure illustrates the distribution of MSCI environmental pillar scores, MSCI
environmental pillar weights, and the raw environmental scores across stock-
quarters from oil & gas and banking industries. We use the 48-industry classifi-
cations from Ken French’s website to select observations for each industry.
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Figure A3: Demand Coefficients for Environmental Score: Alternative Environment Score
Constructions
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This figure plots the average demand coefficient for environmental score by broad in-
vestor types (passive institutions, active institutions, and the household sector) based
on different definitions of environmental score. The alternative scores are defined in
Appendix B.2. The investor classifications are the same as in the main paper.

A22



Figure A4: Demand Coefficients for Emission Intensity: Alternative Environment Score
Constructions
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This figure plots the average demand coefficient for emission intensity by broad in-
vestor types (passive institutions, active institutions, and the household sector) based
on different definitions of environmental score. The alternative scores are defined in
Appendix B.2. The investor classifications are the same as in the main paper.
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Figure A5: Counterfactual: Demand vs. AUM Shifts
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This figure plots the time-series of the quarterly valuation regression coefficients
on emissions intensity in the data in the counterfactual described in Appendix
B.3, which is designed to juxtapose the relative importance of demand shifts
within investors against the AUM shift across investors..
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