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Abstract
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1 Introduction

In inelastic asset markets, prices are highly responsive to flows. In many frictionless asset pricing

models, investor demand curves are virtually flat, implying high demand elasticities, or equivalently,

low price impacts.1 Models featuring elastic demand fail to generate many salient asset pricing

facts such as the price impact of fund flows and retail trades, excess volatility puzzle, etc. To

generate price impacts that are not entirely absorbed by the rest of the market, these models must

include additional assumptions such as frictions, hedging incentives, or biases.2 In sharp contrast

to the high elasticity values from theories, estimated demand curves are surprisingly inelastic.3

How can we account for the significant disparity between the elasticities in standard models and

the empirical estimates? Considering the fundamental role of asset demand in determining market

outcomes, it is crucial to understand what influences demand elasticities in financial markets.

In this paper, we show that inelastic demand estimates are not puzzling. We focus on a mean-

variance investor, not because of its realism, but to illustrate how a mean-variance investor can

exhibit relatively inelastic demand without the need for added frictions or behavioral biases in the

model. To elucidate the key drivers of inelastic demand, we present a novel decomposition of

demand elasticity into two components: First, the extent to which prices predict returns, which we

call “price pass-through”, and second, how well an asset is perceived to be spanned by all other

assets, which is an asset pricing “unspanned return”. Low price pass-throughs and high unspanned

returns observed in the data translate into inelastic demand. From our decomposition, we explain

1For example, Petajisto (2009) and Gabaix and Koĳen (2021) argue that standard asset pricing models have demand
elasticities in the range of 5,000 or higher, corresponding to price impacts of only 2 basis point for flows equal to 1%
drop in shares supplied.

2For example, Kozak, Nagel, and Santosh (2018) use leverage constraints to create inelastic demand paired with
sentiment-driven investors to show how sentiment can drive the cross-section of returns. Hong and Stein (1999) argue
that contrarian strategies that lessen the momentum trader effects in their model are unlikely given payoffs to contrarian
strategies, thus pairing inelastic demand with their news watcher and trend-chasing strategies to deliver price impacts.

3Demand elasticities in the stock market are as low as 0.3, implying price impacts of 3.3% for a 1% change in
supply (Koĳen and Yogo, 2019; Gabaix and Koĳen, 2021).
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that many theoretical models imply highly elastic demand because they assume high pass-throughs

and low perceived unspanned returns. We show that our results extend to CRRA and Epstein-Zin

utility demands, but our primary focus is on a mean-variance demand function.

Our decomposition is intuitive. If price pass-throughs are low, i.e., price fluctuations are not

strong predictors of expected returns, investors are less motivated to trade against these price

movements. Moreover, if an asset is mostly spanned by other assets in investors’ consideration set

(so the “perceived unspanned return” is low), it has (almost) perfect substitutes, resulting in high

demand elasticity. Conversely, a poorly spanned asset, characterized by high unspanned return

relative to other assets and a lack of sufficiently close substitutes, will therefore exhibit inelastic

demand.

To be clear, we are not providing an upper bound on the elasticity of demand for all investors

in all scenarios. As we show, the elasticity of demand is highly conditional for each investor,

each asset, and in each time period. It is not a stable structural parameter. Indeed, it’s easy to

find instances where certain investors exhibit highly elastic demand for particular assets during

specific periods. We consider a mean-variance investor with an information set consisting of

some exogenous observables and the price, and show that this investor is relatively inelastic to

price changes, holding fixed these exogenous observables. This inelasticity comes from the low

price pass-through and high unspanned return channels above, and can ultimately provide elasticity

values approximately in line with demand estimates. We are not attempting to uncover all sources of

inelastic demand, but give a novel decomposition and show how far these basic rational mechanisms

can go in delivering inelastic demand.

Figure 1 summarizes our elasticity decomposition, illustrating how we explain the significant

gap between the high elasticity in classic models and estimated values in the literature. Standard

asset pricing models, which assume a perfect pass-through, imply an elasticity of approximately

2



≈ 7000: standard
model elasticity

≈ 600: add low
pass-throughs

≈ 12: add high
unspanned returns

≈ 2: add demand
functional form

1

100

10000

El
as

tic
ity

Figure 1. Elasticity decomposition
This figure shows how we explain the gap between high elasticity values in standard asset pricing models and inelastic
empirical estimates. The leftmost bar illustrates elasticity estimates for the standard asset pricing models with perfect
pass-through as discussed by Petajisto (2009) (≈ 7,000). Taking into account a price pass-through of 0.06 instead of 1,
reduces elasticity by a factor of 12 (as shown by the second bar from left) to approximately 600. If we take into account
high perceived unspanned returns of 0.7%, we arrive at elasticity estimates of around 12, further reducing elasticity by
a factor of 50, as shown by the third bar from left. Finally, incorporating exponential-linear demand as in KY, gets the
elasticity down by a factor of 6 (the rightmost bar) to about 2, in line with the empirical estimates. The 𝑦-axis is in log
scale.

7,000, as shown in our calibration below and as discussed by Petajisto (2009) and Gabaix and Koĳen

(2021). This is illustrated in the leftmost bar. Taking into account an estimated price pass-through

of 0.06, instead of 1, reduces elasticity by an order of magnitude to approximately 600. If we

take into account high perceived unspanned returns of 0.7%, we arrive at elasticity estimates of

around 12, further reducing elasticity by a factor of 50. Finally, as we discuss later, incorporating

near-isoelastic demand as in Koĳen and Yogo (2019) (KY hereafter) locks the unspanned return

and price pass-through together. This demand functional form further reduces the elasticity to

about 2, approximately in line with the empirical estimates.

In line with the literature, we define the demand elasticity of an investor as the percent increase
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in the number of shares they hold when prices decline by 1% (Koĳen and Yogo, 2019; Gabaix and

Koĳen, 2021). When prices change, next-period expected returns may adjust, given that they are

functions of prices. We decompose the elasticity into one plus the product of two terms: first, the

change in the investor’s (log) portfolio weight in stock 𝑖, 𝑤𝑖, in response to changes in the investor’s

subjective expected return, 𝜇̃𝑖, and second the change in expected returns in response to movements

in the (log) price, 𝑃𝑖:

𝜂𝑖 = 1 +

weight responsiveness︷          ︸︸          ︷
𝜕 log(𝑤𝑖)
𝜕𝜇̃𝑖︸      ︷︷      ︸

=((1−𝜔𝑖,𝑡 ) 𝜇̃𝑖,𝑡 )−1

×

price pass-through︷           ︸︸           ︷(
− 𝜕𝜇̃𝑖

𝜕 log(𝑃𝑖)

)
(1)

We refer to the first term as (portfolio) “weight responsiveness” to beliefs about expected returns,

and label the second term as the “price pass-through” to expected returns. Furthermore, we show

that weight responsiveness of stock 𝑖 is inversely related to how well its expected return is spanned

by all other assets, i.e., the perceived “unspanned (expected excess) return” of an asset 𝑖 with respect

to all other assets. The variable 𝜔𝑖 is the fraction of the return that is perceived to be spanned by the

rest of the assets. We emphasize that the perceived unspanned return measures the distinctiveness

of an asset. Thus, the weight responsiveness is the inverse of the asset’s distinctness, measuring

how substitutable it is relative to other assets in the investor’s universe.

Our main contribution is to identify low pass-throughs and large unspanned returns as the

primary sources of the inelastic demand puzzle in the stock market. Furthermore, we test whether

other residual components of demand (e.g., volatility or consumption hedging) would be important

components of the elasticity of an optimizing investor, and find that indeed it is the first order effects

in our decomposition above that matter for demand elasticity.

In computing demand elasticity, it is crucial to consider the sources of price movements. From

the Campbell and Shiller decomposition, price changes are associated with changes in future
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dividends, changes in future discount rates, or a combination of both. Moreover, price movements

due to changes in discount rates can be related to short-term or long-term expected returns or a

combination of the two. Given these facts, we then consider two definitions of demand elasticity

associated with different sources of price movements. In the first definition of elasticity, which we

label D1, we consider price changes only due to the next-period discount rate movements, holding

everything else constant. A price drop due only to the next-period discount rates implies a one-for-

one pass-through to expected returns. Therefore, D1 essentially assumes the price pass-through

in the definition of elasticity in Equation (1) is close to one, and only measures (one plus) weight

responsiveness.

The assumption of perfect pass-throughs next period, creates very high-return low-risk

investment opportunities if the price impact is large. Therefore, we arrive at our second definition

of elasticity, D2, which considers responses to price movements that are not entirely driven by

the next-period discount rates. Depending on the sign and magnitude of the pass-through term in

Equation (1), D2 elasticity can take a wide range: upward-sloping demand if it is negative, perfectly

inelastic if it is zero, and D1 if it is equal to one.

As we show later, almost all empirical estimates measure D2 elasticity while most theoretical

models only study the response of portfolio weights to changes in the discount rates, i.e., they

assume perfect pass-throughs, essentially estimating D1.4 Directly estimating D1 elasticity in

the stock market is challenging: it requires an instrument that both identifies price movements

associated with one-for-one price pass-throughs within a single period (e.g., monthly, quarterly,

4A notable exception is the model in Gabaix and Koĳen (2021) where it considers price movements that do not
revert back next period. Consistent with these definitions, Petajisto (2009) measures very high D1 demand elasticity of
more than 6,000 in his calibration. This number is almost three orders of magnitude larger than the empirical estimates
that measure D2.
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etc.) and is within the investor’s information set. Consistent with our decomposition, literature

estimates of elasticity are high in the bond market where price pass-throughs are high.5

We show empirically that D2 elasticity seems to justify the low elasticity estimates from the

literature. Furthermore, we provide empirical evidence that the instrument proposed by KY aligns

more closely with a D2 elasticity instrument rather than a D1 elasticity instrument. This is not a

critique of KY, and if anything we argue that KY represents a demand system that is very useful

for counterfactual experiments.

To estimate price pass-throughs and unspanned returns, we first construct a model of portfolio

choice where the expected returns and the covariance matrix are expressed as linear functions of

stock characteristics. We then proceed to estimate this model using maximum likelihood. We

find low pass-throughs and high perceived unspanned returns estimates, leading to elasticity value

that are two orders of magnitude smaller than models with perfect pass-throughs. Following KY,

we calculate the elasticity only for portfolio positions with strictly positive weights. We further

exclude stocks with very low portfolio-weights, as these have negligible unspanned returns and

nearly infinite elasticity. Furthermore, we show that a large perceived unspanned return alone

does not explain the large elasticity gap: low pass-throughs and large unspanned returns are both

important to deliver inelastic demand.

We next study the elasticity of strategies where the covariance matrix is not based on asset

characteristics, but rather use a standard covariance matrix shrinkage method to estimate the

covariance matrix at the stock-level (Ledoit and Wolf, 2004). We show that high levels of shrinkage

are not necessary to achieve inelastic demand. Keeping the pass-through constant, we show that

even with low levels of shrinkage, the unspanned returns are high enough to ensure relatively

5In Appendix E, we discuss elasticity estimates in the bond market.
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inelastic demand. These results indicate that stock returns are not adequately spanned by returns

from other stocks.

To further narrow the gap between elasticity values, we consider a model where, following

KY and consistent with the evidence from investors’ portfolios, demand is exponential-linear.

Furthermore, the (nearly) isoelastic demand helps alleviate concerns that the previous results might

only apply to positive weights, be sensitive to filters based on the size of portfolio weights, and

fail to align with investor holdings data. The in-sample Sharpe ratio is 1.2, which helps alleviate

any concerns about expected returns or unspanned returns being too high. This model leads to

elasticity estimates roughly in line with existing estimates of micro demand elasticity (Gabaix and

Koĳen, 2021). We use our decomposition to show why exponential-linear demand theoretically

provides low demand elasticity values and potentially fits the holdings data better than a linear

model. Therefore, the functional form of the demand function significantly influences the elasticity

estimates (Davis, 2023).

Given low pass-throughs, it is important to understand whether pass-throughs are small enough

and unspanned returns are large enough to deliver low estimated elasticities comparable to estimates

from the literature and whether the residual component of demand is small. To answer both of

these questions, we estimate the components of a classic portfolio choice problem with Epstein-Zin

preferences from Campbell, Chan, and Viceira (2003). We decompose the residual components of

elasticity into a covariance component, a variance component, and a consumption-to-wealth ratio

hedging component. We find that these components are relatively small, meaning that the entire

residual component is relatively small.
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Related literature

Our paper is about stock market micro elasticity which examines the change in the relative

price of two stocks if one buys $1 of one and sells $1 of the other (e.g., Shleifer, 1986; Harris and

Gurel, 1986).6 There is a range methodologies to estimate demand elasticities at the individual

stock level: index exclusion (Chang, Hong, and Liskovich, 2015; Pavlova and Sikorskaya, 2023),

dividend payments (Schmickler, 2020), mutual fund flows (Lou, 2012), and trade-level price impacts

(Frazzini, Israel, and Moskowitz, 2018; Bouchaud, Bonart, Donier, and Gould, 2018). There are

also structural approaches using asset demand systems (Koĳen and Yogo, 2019; Haddad, Huebner,

and Loualiche, 2022). The estimates of micro price multipliers (inverse of micro elasticities) range

from 0.3 to 15, much higher than what existing models predict.7 So, demand curves are much more

inelastic compared to existing theories. In this paper, we provide a microfoundation for inelastic

demand based on investor beliefs about discount rates and cash flows.

Our finding that most stock prices movements exhibit small or sometimes even negative price

pass-throughs is consistent with extant findings in the cross-section of stock returns. Stock returns

typically exhibit reversals within a month (Jegadeesh, 1990), momentum over quarterly to annual

frequency (Jegadeesh and Titman, 1993), and reversals over multiple years (De Bondt and Thaler,

1985). These effects are much less than one-for-one pass-throughs and consistent with our estimates.

The innovation of our paper is not in estimating these pass-throughs, but rather showing their critical

6This is in contrast with the literature on macro elasticity that studies how the aggregate stock market’s value
changes if one buys $1 worth of stocks by selling $1 worth of bonds (e.g., Johnson, 2006; Deuskar and Johnson,
2011; Da, Larrain, Sialm, and Tessada, 2018; Gabaix and Koĳen, 2021; Li, Pearson, and Zhang, 2020; Hartzmark and
Solomon, 2022). A more recent literature studies factor-level multipliers which is the price impact if an investor buys a
fraction of the outstanding shares of a cross-sectional pricing factor such as size or value (e.g., Peng and Wang, 2021;
Li, 2021). The evidence in the literature suggests that the micro elasticity is much larger than the aggregate elasticity
given that different stocks are closer substitutes than the stock and bond market indices (Gabaix and Koĳen, 2021).

7See Table 1 and Figure 2 of Gabaix and Koĳen (2021) for more details.
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role in demand elasticity. In our framework, weak price pass-throughs leads to a low demand

elasticity.

Our estimated low pass-throughs are consistent with the literature that explores discount rate

and cash flow variation (e.g., Vuolteenaho, 2002; Cochrane, 2008). High perceived unspanned

returns are consistent with the asset pricing literature, which finds that assets returns are poorly

spanned by systematic risk factors (e.g., Lopez-Lira and Roussanov, 2023) or a range of factor

models (e.g., Baba Yara, Boyer, and Davis, 2021). This low degree of spanning and abundance

of “anomaly” alphas has been justified by a high degree of complexity (Martin and Nagel, 2022),

among other explanations. We contribute to the literature by showing that high unspanned returns

are a significant factor in determining asset demand elasticity. Additionally, we provide empirical

estimates for the degree to which an asset is spanned by other assets, rather than just a variety of

factors.

2 Basic Decomposition and Calibration of Demand Elasticity

We first present a calibration of demand elasticity, which aims to show that classic models

deliver a very high demand elasticity (of about 6,000), as argued by both Petajisto (2009) and Gabaix

and Koĳen (2021). Our calibration differs from Petajisto (2009), whose calibration requires an

equilibrium model of asset pricing. The elasticity of demand just measures how a demand function

reacts to off-equilibrium price changes. In other words, demand elasticity is calculated before

equilibrium, and measures the slope of the demand function alone. Our calibration simply relies

on the demand function.

Consider an investor who holds𝑄𝑖,𝑡 shares of stock 𝑖 at time 𝑡. The elasticity, 𝜂𝑖,𝑡 , of the investor
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is defined as:

𝜂𝑖,𝑡 ≡ −𝜕 log(𝑄𝑖,𝑡)
𝜕 log(𝑃𝑖,𝑡)

, (2)

where 𝑃𝑖,𝑡 represents the share price of the stock. This is a quantity calculated before equilibrium.

Then, we can write 𝑄𝑖,𝑡 = 𝐴𝑡𝑤𝑖,𝑡/𝑃𝑖,𝑡 , where 𝐴𝑡 is the assets under management or investor’s

wealth, and 𝑤𝑖,𝑡 represents the portfolio weights of the investor. Plugging this into Equation (2) and

assuming that 𝐴𝑡 is exogenous (Koĳen and Yogo, 2019), we have:8

𝜂𝑖,𝑡 = 1 − 𝜕 log(𝑤𝑖,𝑡)
𝜕 log(𝑃𝑖,𝑡)

. (3)

In classic asset pricing models, a change in prices affects the expected return of the asset, but the

covariance structure of assets and other inputs to the demand function are assumed to be exogenous.

Under this assumption, we can use the chain rule to calculate:

𝜂𝑖,𝑡 = 1 + 𝜕 log(𝑤𝑖,𝑡)
𝜕𝜇̃𝑖,𝑡

(
− 𝜕𝜇̃𝑖,𝑡

𝜕 log(𝑃𝑖,𝑡)

)
, (4)

where 𝜇̃𝑖,𝑡 is the investor’s subjective beliefs about the expected excess return of the asset.9

Equation (4) is important and worthy of discussion. The “one” in Equation (4) is included

because the elasticity is defined in terms of shares outstanding instead of portfolio weights or

dollars demanded to be invested. This can be easily illustrated with a passive investor who holds

the market. A passive indexer has 𝜕 log(𝑤𝑖,𝑡 )
𝜕 log(𝑃𝑖,𝑡 ) = 1, meaning that a 1% increase in prices causes a 1%

increase in portfolio weights and dollars invested in the asset. Thus the elasticity is zero (= 1 − 1),

which aligns with the very idea of passively holding the market since, by design, it means that

8We discuss the assumption of exogenous assets under management more below.
9We use tildes throughout the paper to denote that the quantities are calculated under the investor’s subjective

expectations, which may or may not correspond to rational expectations.
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prices fluctuations do not require selling or purchasing shares. The term 𝜕 log(𝑤𝑖,𝑡 )
𝜕𝜇̃𝑖,𝑡

describe how

responsive the investor’s portfolio weights are to their beliefs about its expected returns. We refer

to this term as the “weight responsiveness”. The final term, − 𝜕𝜇̃𝑖,𝑡
𝜕 log(𝑃𝑖,𝑡 ) , is the pass-through of prices

to expected returns. We refer to this term as the “price pass-through”. If prices increase 1% and

this increase is expected to decrease next-period excess returns by 0.4% ceteris paribus, then this

pass-through would be 0.4. These last two terms are largely the focus of this paper, and we define

the following variables to simplify notation:

𝜃𝑖,𝑡 ≡
𝜕 log(𝑤𝑖,𝑡)
𝜕𝜇̃𝑖,𝑡

and 𝜓𝑖,𝑡 ≡ − 𝜕𝜇̃𝑖,𝑡

𝜕 log(𝑃𝑖,𝑡)
, ⇒ 𝜂𝑖,𝑡 = 1 + 𝜃𝑖,𝑡𝜓𝑖,𝑡 . (5)

This decomposition is intuitive: the elasticity is one plus the product of the weight responsiveness

and the price pass-through.

2.1 Two definitions of demand elasticity

In computing demand elasticity, it is critical to note that we cannot simply use Equation (5),

because there are various types of price changes. From Campbell and Shiller (1988), a price

change is either associated with future dividends, future discount rates, or some combination of

both. Furthermore, price movements due to changes in discount rates can be related to short-

term or long-term expected returns, or a combination of both. In other words, price changes

associated with discount rate movements may affect various parts of the term structure of equities

(Campbell and Viceira, 2005; van Binsbergen and Koĳen, 2017). Given these facts, we consider

different definitions of the price elasticity of demand, each associated with different types of price

movements.

Before providing our first definition of elasticity, it is important to point out that a demand
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function is defined by holding beliefs constant while observing how it responds to a price change,

all else being equal (ceteris paribus). However, within the context of asset demand markets, a

price change must imply changes in beliefs about discount rates or cash flows. It is unreasonable

to consider changing the price of the asset without also altering beliefs about discount rates, cash

flows, or both. In classic information-based models such as Hellwig (1980), investors deduce from

price changes that expected cash flows have shifted. As a result, we examine various definitions of

demand elasticity when different beliefs are held constant. However, we never do so when all beliefs

concerning discount rates and cash flows remain fixed, as a price change without a corresponding

change in beliefs would be nonsensical.

We begin by introducing a simple model that enables us to clearly present our two definitions

of elasticity. Following Gabaix and Koĳen (2021) and consistent with investor holdings data, we

assume an investor 𝑗’s portfolio weight in stock 𝑖 is exponential-linear:

𝑃𝑖,𝑡𝑄𝑖,𝑡

𝐴𝑡
= 𝑒𝜃𝑖,𝑡 𝜇̃𝑖,𝑡+𝜈𝑖,𝑡 , (6)

where, as before, 𝑄𝑖,𝑡 is the number of shares of stock 𝑖, 𝑃𝑖,𝑡 is the stock price, 𝐴𝑡 is the AUM

or wealth of the investor, and 𝜈𝑖 represents additional demand shocks. As discussed above, we

represent the sensitivity of investor’s portfolio weight to expected returns by parameter 𝜃𝑖,𝑡 . When

𝜃𝑖,𝑡 > 0, the investor allocates more to stock 𝑖 when she believes it has higher expected excess

returns. If we linearize Equation (6), we have

Δ𝑞𝑖,𝑡 = −Δ𝑝𝑖,𝑡 + 𝜃𝑖,𝑡 Δ𝜇̃𝑖,𝑡 + Δ𝜈𝑖,𝑡 , (7)

where Δ𝑞𝑖,𝑡 and Δ𝑝𝑖,𝑡 are percent changes in the quantity and price of stock 𝑖, respectively, Δ𝜇̃𝑖,𝑡 is

the percent change in investor’s subjective expected excess return of the asset, and Δ𝜈𝑖,𝑡 represent
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the change in other demand shocks. If we linearize Δ𝜇̃𝑖𝑡 and plug into (7), we have:

Δ𝑞𝑖,𝑡 = −
[
1 + 𝜃𝑖,𝑡 (1 + 𝜌)

]
Δ𝑝𝑖,𝑡 + 𝜃𝑖,𝑡

(
𝜌ΔẼ𝑡 [𝐷𝑖,𝑡+1] + ΔẼ𝑡 [𝑃𝑖,𝑡+1]

)
+ Δ𝜈𝑖,𝑡 , (8)

where Ẽ𝑡 [𝐷𝑖,𝑡+1] is the expected next period dividend, Ẽ𝑡 [𝑃𝑖,𝑡+1] is the expected next period price,

and 𝜌 is the average dividend-price ratio.10

We further assume that changes in the next period expected cash flow and price have the

following forms:

ΔẼ𝑡 [𝐷𝑖,𝑡+1] = 𝛼𝑑Δ𝑝𝑖,𝑡 + 𝛼𝛿𝛿𝑖,𝑡 + 𝛼𝑠𝑠 𝑗𝑖,𝑡 , (9)

ΔẼ𝑡 [𝑃𝑖,𝑡+1] = 𝛼𝑝Δ𝑝𝑖,𝑡 + 𝜖𝑖,𝑡 , (10)

where 𝛿𝑖,𝑡 and 𝑠 𝑗
𝑖,𝑡

denote public and investor 𝑗’s private signals about future cash flows, respectively,

and 𝜖𝑖,𝑡 represents shocks to future price expectations.11 Finally, plugging in (9) and (10) into (8),

we obtain:

Δ𝑞𝑖,𝑡 = −
[
1 + 𝜃𝑖,𝑡 (1 + 𝜌(1 − 𝛼𝑑) − 𝛼𝑝)

]
Δ𝑝𝑖,𝑡

+ 𝜌𝜃𝑖,𝑡
(
𝛼𝛿𝛿𝑖,𝑡 + 𝛼𝑠𝑠 𝑗𝑖,𝑡

)
+ 𝜃𝑖,𝑡𝜖𝑖,𝑡 + Δ𝜈𝑖,𝑡 . (11)

The expression within square brackets in the first line of Equation (11) represents the price elasticity

of demand. The second line of Equation (11) denotes demand shifters that are unrelated to price

changes.

In this model, as in standard asset pricing models, the investor has an information set. This

10See Appendix C of Chaudhry (2023) for the derivation.
11Note that the subjective expectations and private signals are specific to each investor, and should include the

subscript 𝑗 . For simplicity, this is omitted in our notation.
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information set has two subsets: an exogenous information set that is not a function of prices, and

the price. The exogenous information set includes exogenous observables.

The first definition of the elasticity is from movements in demand associated only with short

term discount rates changes:

Definition 1 (D1). This is the elasticity 𝜂𝑖,𝑡 in Equation (2) ceteris paribus. In particular, we

consider a price movement such that future expectations of cash flows and prices do not change,

i.e.,
𝜕ΔẼ𝑡 [𝐷𝑖,𝑡+1]

𝜕Δ𝑝𝑖,𝑡
= 0, and

𝜕ΔẼ𝑡 [𝑃𝑖,𝑡+1]
𝜕Δ𝑝𝑖,𝑡

= 0,

as well as holding fixed a set of exogenous information set of the investor (including observables).

From Equation (11), D1 assumes 𝛼𝑑 = 𝛼𝑝 = 0, and thus the demand elasticity is

𝜂𝑖,𝑡 = 1 + 𝜃𝑖,𝑡 (1 + 𝜌) ≈ 1 + 𝜃𝑖,𝑡 .

In other words, under D1, the price pass-through is approximately one, given that the average

dividend yield in the data is 𝜌 ≈ 0.04.

In this definition of elasticity, future expectations of payouts are fixed, and the risk is assumed

to be constant as well. Definition 1 corresponds to the calibration in Petajisto (2009) discussed

above, where future payments and the variance-covariance structures are assumed to be exogenous.

Fundamentally, in the definition of demand elasticity in D1, we consider a price change associated

with only a short-term (i.e., the next period) discount rate change.
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We can write the investor’s subjective expected return as:

𝜇̃𝑖,𝑡 =
Ẽ𝑡 [𝑃𝑖,𝑡+1] + Ẽ𝑡 [𝐷𝑖,𝑡+1]

𝑃𝑖,𝑡
− 𝑅 𝑓 ,𝑡

=
(
Ẽ𝑡 [𝑃𝑖,𝑡+1] + Ẽ𝑡 [𝐷𝑖,𝑡+1]

)
× exp

(
− log(𝑃𝑖,𝑡)

)
− 𝑅 𝑓 ,𝑡 (12)

Under D1, we can write the price pass-through as:

𝜓𝑖,𝑡 = − 𝜕𝜇̃𝑖,𝑡

𝜕 log(𝑃𝑖,𝑡)
=

(
Ẽ𝑡 [𝑃𝑖,𝑡+1] + Ẽ𝑡 [𝐷𝑖,𝑡+1]

)
× exp

(
− log(𝑃𝑖,𝑡)

)
=
Ẽ𝑡 [𝑃𝑖,𝑡+1] + Ẽ𝑡 [𝐷𝑖,𝑡+1]

𝑃𝑖,𝑡

= 𝑅 𝑓 ,𝑡 + 𝜇̃𝑖,𝑡 . (13)

This means that the demand elasticity is:

𝜂𝑖,𝑡 = 1 + 𝜃𝑖,𝑡𝜓𝑖,𝑡 = 1 + 𝜕 log(𝑤𝑖,𝑡)
𝜕𝜇̃𝑖,𝑡

(
𝑅 𝑓 ,𝑡 + 𝜇̃𝑖,𝑡

)
= 1 + 1

𝑤𝑖,𝑡

𝜕𝑤𝑖,𝑡

𝜕𝜇̃𝑖,𝑡

(
𝑅 𝑓 ,𝑡 + 𝜇̃𝑖,𝑡

)
(14)

Thus under Definition 1, the price pass-through is close to one (slightly larger than one assuming

a positive expected return on the asset). Thus if we use a price pass-through of𝜓𝑖,𝑡 ≈ 1, the elasticity

will be 𝜂𝑖,𝑡 ≈ 1 + 𝜃𝑖,𝑡 .

Now we turn to consider a standard CARA utility model, with multivariate normally distributed

returns, which helps us pin down the weight responsiveness 𝜃𝑖,𝑡 . Although the CARA utility model

possesses some less desirable characteristics, we explore a broader Epstein-Zin utility in Section 5.

Our findings suggest that a CARA utility model is adequately capable of capturing the primary

factors influencing elasticity. While more general utility functions can capture wealth effects
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and dynamic hedging demand, neither of these factors are primary drivers of the microeconomic

demand elasticity of individual assets.

Consider an investor with CARA utility who maximizes:

Ẽ𝑡
[
− exp{−𝛾𝐴𝑡

(
𝑤′
𝑡𝑟𝑡+1 + 𝑅 𝑓 ,𝑡

)
}
]
, (15)

where 𝛾 is the absolute risk aversion parameter, 𝑤𝑡 is an 𝑁 dimensional vector of portfolio weights,

𝑟𝑡 is an 𝑁 dimensional vector of excess returns, and 𝜄 is an 𝑁 dimensional vector of ones. The FOC

is:

𝑤𝑡 =
1
𝛾𝐴𝑡

Σ̃−1
𝑡 𝜇̃𝑡 , (16)

where Σ̃𝑡 is the subjective beliefs about the covariance matrix. Thus we can write:

𝜕𝑤𝑖,𝑡

𝜕𝜇̃𝑖,𝑡
=
𝜏𝑖,𝑡

𝛾𝐴𝑡
, (17)

where 𝜏𝑖,𝑡 is the 𝑖𝑡ℎ term along the diagonal of the precision matrix Σ̃−1
𝑡 .

We consider a calibration of 𝜃𝑖,𝑡 , and thus the elasticity. To simplify the calibration, we assume

all 𝑁 assets have the same expected returns, standard deviations, and correlations. We set the

expected excess return at 0.06, the average correlation at 0.3, and the volatility at 0.3.12 We

consider 𝑁 = 1,000 assets. We set the CARA risk aversion coefficient times wealth, 𝛾𝐴𝑡 , to be

2.2 because this allows portfolio weights to sum to one, implying a zero-net supply (demand)

of the risk-free asset. Note that because 𝜃𝑖,𝑡 is in terms of log changes, the value of 𝛾𝐴𝑡 is

irrelevant. We set the risk-free rate to zero, a conservative choice since a larger risk-free rate

would result in a higher elasticity. This yields 𝜏𝑖 ≈ 7.2. To calculate the demand elasticity, we

12Pollet and Wilson (2010) report average daily correlations to be 0.237, and longer-horizon correlations are higher
due to autocorrelations across days. Thus, we use 0.3 as a reasonable parameter value.
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use the average portfolio weight of 1/𝑁 .13 Inserting these values into Equation (14) results in

an elasticity of approximately 7,000. Naturally, this elasticity fluctuates as the parameter values

change, particularly when considering assets with higher and lower weights. Experimenting with a

range of parameter values typically produces an average elasticity across assets that is at least three

orders of magnitude above unity. It is important to note that the average elasticity tends to increase

with the inclusion of more assets. This is due to the increased substitutability created by a greater

number of assets, which in turn leads to higher elasticity values.

2.1.1 Discussion of price pass-through and an alternative definition of demand elasticity

Estimating D1 in the stock market is challenging, because it is difficult to obtain an instrument

that predicts price movements with one-for-one pass-throughs that is in a standard investor’s

information set. We would expect investors to use such instruments to aggressively trade against

such price movements, potentially eroding the ability of the instrument to generate one-for-one

price pass-throughs in the first place. Thus there are good economic reason to indicate that D1

may be difficult, if not impossible, to estimate. Not only is it difficult to estimate, but in most

counterfactual experiments in which a demand system is useful, a one-to-one pass-through is likely

not a realistic belief that investors have. Thus we argue that the following definition of elasticity is

both more easily estimated and useful for most counterfactual experiments.

Definition 2 (D2). This is the elasticity 𝜂𝑖,𝑡 in Equation (2), holding the investor’s exogenous

information set including a set of exogenous observables (observed by the investor) other than

price fixed.

Definition D2 assumes that the demand shifters in the second line of Equation (11) remain

13It is important to note that this does not imply that we are only considering an equal-weighted portfolio; rather,
we are calculating the elasticity for an asset with average weights.
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constant. This implies that the demand elasticity can be expressed as:

𝜂𝑖,𝑡 = 1 + 𝜃𝑖,𝑡 (1 + 𝜌(1 − 𝛼𝑑) − 𝛼𝑝).

Then from Equation (4), the price pass-through 𝜓𝑖,𝑡 is represented by the expression in the

parentheses. It should also be noted that D1 is just a special case of D2, where the price pas-

through is approximately equal to one.

Calibrating demand elasticity according to Definition 2 is more complicated and requires a

calibration of the subjective expectation of the price pass-through. In Section 4, we estimate the

price pass-through in a standard model where, consistent with the extensive literature in asset

pricing, expected returns and factor loadings are assumed to be linear functions of observable stock

characteristics. We find empirically much less than one-to-one price pass-throughs.

We note that Definition 2 is defined conditional on the information set, making it an inherently

conditional object. As shown in Proposition 1 below, the elasticity of demand for an asset likely

varies among investors, across different assets, and changes over time and with market conditions.

Therefore, the elasticity of demand is not a stable structural parameter.

Price pass-throughs of less than one are economically intuitive, and we offer two motivations for

this. First, Gabaix and Koĳen (2021) consider a model where there are investment flows with both

permanent and mean-reverting components. An investor may observe a price shift and rationally

infer that this it predominantly results from permanent investment flows. As these flows are largely

permanent, the price impact is also primarily permanent, constituting a less than one-for-one pass-

through.14 The underlying concept is that the exogenous information set is held fixed, but investors

rationally deduce that a shift in prices does not translate one-for-one into expected returns.

14The price pass-through from a permanent flow is approximately the average dividend-price ratio. To see this, from
the model in Section 2.1, we can approximate the expected return as 𝜇̃𝑖,𝑡 ≈ −(1 + 𝜌)Δ𝑝𝑖,𝑡 + 𝜌ΔẼ[𝐷𝑖,𝑡+1] +ΔẼ[𝑃𝑖,𝑡+1].
Thus, with a permanent price impact, the pass-through is approximately equal to 𝜌 < 1.
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Our second motivation for less than one-for-one pass-throughs comes from a heterogeneous

private-information model, detailed in Appendix A. In this model, there are well-informed and

uninformed investors, along with noise traders. If the noise traders make up only a small segment

of the market and the well-informed investors have precise signals, then uninformed investors

rationally perceive that price changes are driven by private information and do no translate into

higher expected returns. This concept echoes the Milgrom and Stokey’s no-trade theorem, which

shows that if the market is dominated by private information, uninformed investors rationally do not

trade against price shifts. Similarly, the exogenous information set of the investor does not change,

but a price shift translates into much less than one-for-one pass-throughs to expected returns.

Critically, we show below that both the pass-through and the unspanned returns are key

components of the elasticity of demand for assets. Various price instruments within demand-

system models are proposed in the literature (e.g., Koĳen and Yogo, 2019; van der Beck, 2022).

Our results show that different instruments lead to different pass-through estimates and, therefore,

different estimates of demand elasticity. In essence, our results both decompose demand elasticity

into understandable components, and also bridge the gap between different demand-system models.

Before delving into this empirical analysis, in Section 2.2, we first decompose the weight

responsiveness, 𝜃𝑖,𝑡 , into a term that that is easily measurable and understandable.

2.2 Decomposition of weight responsiveness

In this section, we derive expressions for weight responsiveness and elasticity, and then discuss

the intuition and economic insights. First we provide some definitions. Define 𝛽−𝑖,𝑡 = Σ̃′
−𝑖,𝑡 Σ̃

−1
−𝑖,−𝑖,𝑡

be (𝑁 − 1) row vector of betas of asset 𝑖 on all other assets in the set, where Σ̃−𝑖,𝑡 is the 𝑖𝑡ℎ column

vector excluding the 𝑖𝑡ℎ row term, and Σ̃−𝑖,−𝑖,𝑡 is the (𝑁 − 1) × (𝑁 − 1) covariance matrix excluding

the terms associated with asset 𝑖. Let 𝜇̃−𝑖,𝑡 be the (𝑁 − 1) column vector of subjective expected
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excess returns excluding the 𝑖𝑡ℎ asset. Then we can define the following scalar:

𝛼̃−𝑖,𝑡 ≡ 𝜇̃𝑖,𝑡 − 𝛽−𝑖,𝑡 𝜇̃−𝑖,𝑡 , (18)

which is a measure of how well the asset is spanned by the rest of the assets in the portfolio.

Proposition 1 shows that the weight responsiveness for asset 𝑖 is equal to the inverse 𝛼̃−𝑖,𝑡 .15 To

avoid confusion with the standard asset pricing alpha, we write 𝛼̃−𝑖,𝑡 as the unspanned return:

𝛼̃−𝑖,𝑡 = (1 − 𝜔𝑖,𝑡) 𝜇̃𝑖,𝑡 where 𝜔𝑖,𝑡 ≡
𝛽−𝑖,𝑡 𝜇̃−𝑖,𝑡
𝜇̃𝑖,𝑡

. (19)

𝛼̃−𝑖,𝑡 is the fraction of the asset’s return that is perceived to be unspanned by the rest of the assets

and 𝜔𝑖,𝑡 is the fraction of the return that is spanned by other assets.

Proposition 1. If portfolio weights take the form of 𝑤𝑖,𝑡 = 1
𝛾𝐴𝑡

Σ̃−1
𝑡 𝜇̃𝑡 , then for positive weights

𝑤𝑖,𝑡 > 0, we have:

𝜃𝑖,𝑡 =
1

(1 − 𝜔𝑖,𝑡) 𝜇̃𝑖,𝑡
. (20)

Thus, it follows that the elasticity takes the following form:

𝜂𝑖,𝑡 = 1 + 𝜓𝑖,𝑡

(1 − 𝜔𝑖,𝑡) 𝜇̃𝑖,𝑡
. (21)

We can write the demand elasticity as:

𝜂𝑖,𝑡 = 1 + 1
𝑤𝑖,𝑡

(
− 𝜕𝑤𝑖,𝑡

𝜕 log(𝑃𝑖,𝑡)

)
, (22)

15Although 𝛼̃−𝑖,𝑡 may appear to be a standard asset pricing alpha, it is not. There are many right-hand side factors
(all 𝑁 − 1 other assets), and the right-hand side factors naturally change for every asset.
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and separately decompose these two terms as:

1
𝑤𝑖,𝑡

=
𝛾𝐴𝑡𝜏

−1
𝑖,𝑡

(1 − 𝜔𝑖,𝑡) 𝜇̃𝑖,𝑡
, and − 𝜕𝑤𝑖,𝑡

𝜕 log(𝑃𝑖,𝑡)
=

𝜓𝑖,𝑡

𝛾𝐴𝑡𝜏
−1
𝑖,𝑡

, (23)

where 𝜏𝑖,𝑡 is the 𝑖𝑡ℎ term along the diagonal of the precision matrix Σ̃−1
𝑡 .

Proof. See Appendix B.

Equation (21) follows immediately from Equations (5) and (20). In words, Equation (21) shows

that the extent to which investors trade based on expected returns is inversely proportional to their

perception of the asset’s unspanned return compared to others. If investors believe the asset has a

large unspanned return, they will be relatively inelastic. Conversely, if they anticipate a relatively

small unspanned return, they will be more elastic.

This result may seem counter-intuitive. For example, Haddad et al. (2022) consider the elasticity

of demand to be a measure of how aggressive investors are at trading in the market. However, a

large perceived unspanned return compared to other assets decreases the elasticity of demand. But

why is that the case?

An intuitive way to understand (1 − 𝜔𝑖,𝑡) 𝜇̃𝑖,𝑡 is as the perceived uniqueness, or how difficult it

is to substitute or replicate asset 𝑖. When 𝜔𝑖,𝑡 = 1, the asset is essentially a duplicate, completely

spanned by all other assets. If (1 −𝜔𝑖,𝑡) 𝜇̃𝑖,𝑡 is positive and large, it indicates that there are no close

substitutes for this asset among the other assets (or any combination of them). The elasticity of

an asset or good is high if there is a good substitute available. Conversely, when (1 − 𝜔𝑖,𝑡) 𝜇̃𝑖,𝑡 is

near zero, it means there is almost a perfect substitute available among the other assets, resulting

in nearly infinite elasticity.

In our calibration of the CARA model above, 𝜃𝑖,𝑡 ≈ 7, 000, indicating that (1 − 𝜔𝑖,𝑡) 𝜇̃𝑖,𝑡 ≈

0.00014. In other words, the unspanned return is merely 1.4 basis point. Given that the asset is
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perceived as having near perfect substitutes, it exhibits a high elasticity. Note that in Petajisto’s

calibration, price pass-throughs are one-for-one and the unspanned return of individual assets is

quite low. As a result, the demand in his calibration is highly elastic.

The decomposition in Equation (21) reveals that demand becomes inelastic when price pass-

throughs are low and perceived unspanned returns are high. However, it also shows that when

individual asset unspanned return is very low and price pass-throughs are very high, then elasticity

values are quite large. In other words, in these settings, the price impacts from flows should be

essentially zero.

One may wonder why idiosyncratic volatility does not directly enter the elasticity expression

in Equation (21). Idiosyncratic volatility largely drops out of the elasticity decomposition in

Proposition 1, as it is primarily a level term in demand. We delve into this in greater detail in

Appendix D.

3 Data

We use the standard CRSP-Compustat merged dataset for returns and asset characteristics.

We follow KY in calculating profitability, book-to-market ratios, investment, dividend-to-book

ratios, and beta. We acquire data at both monthly and daily frequencies. To form returns for the

quarterly and annual frequencies, we cumulate returns from the monthly stock data. To form weekly

frequency stock data, we cumulate returns from the daily frequency.

We use Treasury bill rates from Ken French’s website as the risk-free rate for monthly, weekly,

and daily frequencies. For the quarterly and annual frequencies, we use the 3-month and 1-year

Treasury bill rates from the Federal Reserve Economic Data (FRED), identified by their respective

codes TB3MS and GS1. We also obtain daily, weekly, and monthly Fama and French (2015)
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5-factor and momentum returns from Ken French’s website. We cumulate these returns to obtain

quarterly and annual factor returns.

We use the quarterly log consumption-to-wealth deviations, defined in Lettau and Ludvigson

(2001), from Martin Lettau’s website. Finally, we obtain quarterly 13F institutional holdings data

from Thomson Reuters when replicating the price instrument in KY.

4 The Data Support Inelastic Demand

4.1 Characteristics-based portfolios

In this section, we estimate a structural model of asset returns. The primary focus is on

determining whether the model can account for both low pass-throughs and high asset uniqueness,

thereby justifying inelastic demand. We use monthly stock return data, where excess returns are

calculated as the stock returns minus the return on the one-month T-bill rate.

This model follows the KY functional form for the mean and covariance matrix of returns:

𝜇̃𝑡 = 𝑍
𝜇
𝑡 𝜋, Σ̃𝑡 = Γ𝑡Γ

′
𝑡 + 𝜁 𝐼, and, Γ𝑡 = 𝑍

Γ
𝑡 𝜉, (24)

where 𝑍 𝜇𝑡 and 𝑍Γ
𝑡 are matrices of characteristics, including functions of prices, with 𝑁 rows and

the number of columns corresponding to the number of characteristics in each matrix.16 𝜋 and 𝜉

are column vectors of parameters, 𝜁 > 0 is a scalar that controls the variance and ensures that the

covariance matrix is positive definite, and 𝐼 is the identity matrix. Let 𝑍 𝜇
𝑖, 𝑗 ,𝑡

and 𝑍Γ
𝑖, 𝑗 ,𝑡

denote the

term in the 𝑖𝑡ℎ row and 𝑗 𝑡ℎ column of 𝑍 𝜇𝑡 and 𝑍Γ
𝑡 respectively. Then we can calculate the price

16We follow Kelly, Pruitt, and Su (2019) and many others in modeling expected returns and factor loadings as linear
functions of the observable asset characteristics.
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pass-through as:

𝜓𝑖,𝑡 = − 𝜕𝜇̃𝑖,𝑡

𝜕 log(𝑃𝑖,𝑡)
= −

∑︁
𝑗

𝜕𝑍
𝜇

𝑖, 𝑗 ,𝑡

𝜕 log(𝑃𝑖,𝑡)
𝜋 𝑗 . (25)

For the matrix of data that controls the mean, 𝑍 𝜇𝑡 , we use a similar set of covariates as in

KY. As covariates, we use the most recent log price change, Δ𝑝𝑖,𝑡 = 𝑝𝑖,𝑡 − 𝑝𝑖,𝑡−1, the log book-to-

market ratio 𝑏𝑖,𝑡 − 𝑝𝑖,𝑡 , the log of market capitalization, cross-sectionally normalized every period,

(𝑝𝑖,𝑡 − 𝜇̄𝑝𝑡 )/𝜎̄
𝑝
𝑡 , as well as other regressors that are not functions of prices, including profitability,

investment, dividend-to-book ratio, and market beta. We follow KY by assuming these latter

variables, as well as shares outstanding, are exogenous to prices. These variables are calculated

the same as in KY, with the only additions being the reversals variable Δ𝑝𝑖,𝑡 and size variable

(𝑝𝑖,𝑡 − 𝜇̄𝑝𝑡 )/𝜎̄
𝑝
𝑡 . We also add a columns of ones to 𝑍 𝜇𝑡 and 𝑍Γ

𝑡 as an intercept term. Let 𝜋𝑟𝑒𝑣, 𝜋𝑏𝑝,

and 𝜋𝑠𝑖𝑧𝑒 denote the elements of 𝜋 corresponding the reversals variable, book to market ratio, and

size variable respectively. The pass-through is then:

𝜓𝑖,𝑡 = −𝜋𝑟𝑒𝑣 + 𝜋𝑏𝑝 −
𝜋𝑠𝑖𝑧𝑒

𝜎
𝑝
𝑡

. (26)

It is worth noting that this price pass-through is distinct from reversals, commonly discussed in

asset pricing. Reversal is essentially just the coefficient on the reversal term 𝜋𝑟𝑒𝑣.

It is important to note that we do not need an instrument to estimate the price pass-through.

KY outline two reasons why an instrument is required to estimate demand: the price impact of

an investor and the existence of demand shocks that are correlated across investors. In both cases,

these two sources of endogeneity, if not addressed, could lead to biased estimates of demand

elasticity. Crucially, we are not estimating demand here. The hypothetical mean-variance strategy

clearly has no market impact and no demand shocks. We are simply interested in measuring the

mean-variance optimal weights and the sensitivity of these weights to price changes, while holding
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fixed our set of exogenous control variables. These variables constitute the exogenous component

of the hypothetical investor’s information set.

In the matrix that controls the covariance terms, we only incorporate exogenous variables.

Including price terms makes little difference, so for simplicity, we consider an exogenous matrix

here. We then explicitly model the covariance matrix as a function of prices and discover that the

mean terms are indeed first order. Consequently, we omit the reversal and book-to-market ratio

variables from 𝑍Γ
𝑡 and substitute the size variable with (𝑏𝑖,𝑡 − 𝜇̄𝑏𝑡 )/𝜎̄𝑏𝑡 , which represents the log

book equity, normalized in the cross-section every period.

We estimate the parameters, 𝜋, 𝜉, and 𝜁 using maximum likelihood, assuming that returns are

multivariate normally distributed. The parameter estimates are presented in Table 1. Using these

parameters, we can calculate the pass-through, 𝜓𝑖,𝑡 , and the unspanned return, (1 − 𝜔𝑖,𝑡) 𝜇̃𝑖,𝑡 . This

allows us to determine the elasticity for each asset under optimal demand, i.e., 𝑤𝑡 = 1
𝛾𝐴𝑡

Σ̃−1
𝑡 𝜇̃𝑡 .17

We follow KY and calculate the elasticity only for portfolio positions with strictly positive

weights, since these are the only elasticity values that are well-defined. For consistency, all terms

reported in the table are those with strictly positive portfolio weights. We show the average of these

terms in Table 2 across stocks and months, where the standard errors are double clustered by stock

and month. Note that in many cases, (1 − 𝜔𝑖,𝑡) 𝜇̃𝑖,𝑡 is very close to zero, and thus the elasticity is

almost infinite. Thus, we further condition on averages of stocks with the largest portfolio weights,

dropping those with very low portfolio-weights. Recall that low portfolio weights is equivalent to

low values of unspanned returns. For example, a filter of 99.9% in the third row indicates that we

take the subsample of stocks that combined account for 99.9% of the value invested (in terms of

portfolio weights), dropping the smallest stocks first. We consider a range of these filters, shown in

the second column.

17As mentioned earlier, the value of 𝛾𝐴𝑡 is irrelevant for elasticity calculations, so we do not need to specify a
particular value for 𝛾𝐴𝑡 .
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We also present the median elasticity in the first row of Table 2, along with the portfolio-weighted

average of the elasticity values in the last row, which eliminates the divide-by-nearly-zero issue. The

standard error for the median value is bootstrapped by selecting random months with replacement,

followed by selecting random stocks with replacement, and then computing the median value in this

bootstrapped sample. This procedure is repeated 10,000 times, and the resulting standard deviation

of the calculated median values is reported as the standard error. Concerns about conditioning

on positive portfolios weights, or conditioning further on these subsamples, are addressed later in

Section 4.3, where we discuss isoleastic demand.

It should be noted that extremely large elasticity values may be reasonable in cases where

portfolio weights are very close to zero (which occurs when the unspanned return is close to zero).

This is due to the fact that an increase in the portfolio weight could represent a very large percentage

change, and elasticity values are of course in percentage changes.

The median elasticity value is approximately 12, while the weighted average elasticity is around

10. The average elasticity for stocks with a positive portfolio weight is about 80. However, we

emphasize that this number is sensitive to stocks with very small portfolio weights. Specifically,

there are stocks with unspanned returns that are essentially zero or extremely close to it, which are

included because we consider all stocks with a positive portfolio weight. Once we apply the 99.9%

value filter, the average elasticity drops to approximately 19, as shown in the third row of Table 2.

As we progressively take more restrictive subsamples, this figure drops to around 10, aligning with

the weighted average elasticity. While this is still higher than the typical estimates in the literature,

which are generally below 5 (see Gabaix and Koĳen, 2021), it does substantially narrow the gap

between 7,000 and the low estimates from the literature, as shown in Figure 1.

It is important to note that this model does not include trading costs, short-selling constraints,

information asymmetry, behavioral biases, or other frictions that could further decrease elasticity.
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Our objective is not to close the entire gap between an elasticity calibrations of 7,000 and estimates

found in the literature. Instead, we aim to present a novel decomposition of the elasticity into its

key economic components, and show that a significant portion of this gap can be explained by the

first-order price pass-through and unspanned return terms.

The price pass-through for this model is about 0.06, significantly lower than a one-for-one

pass-through. So, a 1% increase in prices only predicts a 6 basis point drop in expected returns

the next month. According to Equation (21), this low pass-through yields a considerably lower

demand elasticity. Intuitively, trading against price changes becomes less profitable when these

fluctuations are weak predictors of future returns. Ultimately, it is the risk and returns that matter

most to investors.

However, the combination of the pass-through of 0.06 and unspanned return of 0.0001 from the

earlier calibration still results in a high elasticity of about 600 (= 1 + 0.06/0.0001). This implies

that the pass-through term alone is unable to bring down elasticity to the median of 12 from Table 2.

The average unspanned return is 0.007, or 70 basis points, from this estimation. It is important

to note that these estimates only consider terms with positive portfolio weights, which effectively

means we are only including stock-by-month observations with a strictly positive unspanned return.

Consequently, an asset with a pass-through and unspanned return close to the average would have

an elasticity of around 10 (= 1 + 0.062/0.007), much closer to the median elasticity.

Why is the unspanned return so large? To put it another way, the average expected excess return

on these assets is about 1.3% per month, yet only 0.5% of this return, on average, is accounted for

by the portion spanned by other assets. The in-sample Sharpe ratio for this model is 1.45, with a

standard error of 0.059. While this value is relatively high, for an in-sample exercise that maximizes

the Sharpe ratio, it is quite moderate compared to modern asset pricing factor models (Gu, Kelly,

and Xiu, 2021). Thus, the model obtains inelastic demand alongside relatively moderate returns.

27



Davis (2023) calculates the elasticity of 13 portfolio choice models from the literature, and

finds a similar elasticity values. All models deliver strikingly inelastic demand, particularly when

compared to the literature’s estimates of 7,000. While Davis (2023) does not separately decompose

the pass-through and unspanned return channel, it is clear that a wide range of empirical methods

deliver inelastic demand.

A large perceived unspanned return alone does not fully explain the large elasticity gap either.

With a price pass-through of one but an unspanned return of 0.7%, the elasticity is still about 150.

Therefore, both components play a crucial role.

In Table 2, both the expected and unspanned returns are relatively high. We consider another

exercise below, which also delivers high expected and unspanned returns for the assets where we can

measure the elasticity—namely, the stocks with positive portfolio weights. It is important to note

that these estimates are calculated based on the assets with positive unspanned returns, equivalently

those with positive portfolio weights, which tends to select on assets with high expected returns.

The average unspanned return across all assets is close to zero, but the spread of unspanned returns

is high enough to induce inelastic demand for the portfolio positions we can calculate the elasticity

for, i.e., the long positions. One might worry that a demand function that only allows long positions

may produce very elastic demand. However, as we show later, the exponential-leaner demand

function (as in KY) which mandates long-only positions, generates even more inelastic demand.

4.2 Shrinkage portfolios

The results in Section 4.1 focus on characteristic-based portfolios. In this section, we study the

elasticity of strategies where the covariance matrix is not based on asset characteristics, but rather

use a standard stock-level method to estimate the covariance matrix. While the previous exercise is

completely in-sample, this one is out-of-sample.
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In this exercise, we follow to the methodology in Lopez-Lira and Roussanov (2023) wherever

possible. Similarly to them, we estimate the stock-level covariance matrix on a rolling one-year

basis using daily data. Unlike Lopez-Lira and Roussanov (2023), who do not require a full-rank

covariance matrix, we need one to construct the mean-variance optimal portfolio. We use a

standard covariance matrix shrinkage method, similar to Ledoit and Wolf (2004). In particular, we

use Σ = (1 − ℎ)Σ̂ + ℎΣ, where Σ̂ is the ill-conditioned empirical estimate of the covariance matrix,

Σ is the shrinkage target, and ℎ is the scalar shrinkage weight. For the shrinkage target, we use a

simple matrix with the average variance of Σ̂ along the diagonal and the average covariance on the

off-diagonal.

Like Lopez-Lira and Roussanov (2023), we consider assets expected excess returns that are a

function of characteristics based on the same rolling year, using monthly data. Note that while

we can avoid using characteristics for the covariance matrix, we still need to use characteristics

to model the expected excess returns. This is because we need to know how a 1% price change

predicts changes in expected returns to calculate the elasticity of the strategy. To accomplish this,

we simply regress excess returns on asset characteristics.

We find that over many periods, this strategy has upward sloping demand and negative elasticity

values, much like an investor in style of Stein (2009). Including these negative elasticity values

certainly strengthens our case, suggesting that these optimal portfolio strategies create inelastic

demand. However, our goal is to specifically determine the demand elasticity of a mean-variance

investor attributable solely to the pass-through and substitutability channels, excluding the investor

channel described in Stein (2009). Thus we estimate portfolio means with a constrained least
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squares regression, where, similar to KY, we constrain the coefficients to have a positive price

pass-through.18

Every month, starting in January 1971 and ending in July of 2019, we form mean-variance

optimal portfolios, using the covariance matrix from the previous twelve months, as well as the

predicted excess returns from the characteristics and regression coefficients estimated over the

previous year. We calculate statistics similar to those presented in Table 2.

Table 3 presents the results of this exercise. We consider a large range of shrinkage weights,

ℎ ∈ {0.05, 0.25, 0.50, 0.75, 0.85, 0.95}.19 The weighted average elasticity is about 9.2 for low

levels of covariance shrinkage, and decreases to about 7.5 for ℎ = 0.95. The median elasticity has

a similar trend. The out-of-sample Sharpe ratios range from just below 1 to below 1.3, depending

on the shrinkage weight.

These results offer important insights into the factors that drive the high unspanned returns, a

key component in delivering inelastic demand, which we emphasize. Notably, increased portfolio

shrinkage appears to both enhance out-of-sample Sharpe ratio and reduce elasticity due to the

higher unspanned returns. It is important to note that in this analysis, the pass-throughs remain

constant across different levels of shrinkage. The only variable changing is the shrinkage weight

in these portfolios. However, even with low levels of shrinkage, the unspanned returns are high

enough to ensure relatively inelastic demand. Thus, high levels of shrinkage are not necessary to

achieve inelastic demand.

This is a novel and significant finding, distinct from its relevance to demand elasticity. The

results indicate that asset returns are not adequately spanned by returns from other assets. While

18Specifically, we constrain the coefficient on price reversals, Δ𝑝𝑡 , minus the coefficient on book to market, 𝑏𝑡 − 𝑝𝑡 ,
to be less than or equal to zero. Moreover, given that the size variable, (𝑝𝑡 − 𝜇𝑝

𝑡 )/𝜎
𝑝
𝑡 , has a slightly time-varying

derivative, it is easier to exclude this variable from the set of characteristics. It is important to note that including
the size variable has minimal impact on the elasticity results. Otherwise, we use the same characteristics mentioned
earlier.

19We present the full results for ℎ = 0.05, 0.10, . . . , 0.95 in Table A.1 in the appendix.
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Lopez-Lira and Roussanov (2023) show that systematic risk factors do not fully span asset returns,

and Baba Yara et al. (2021) reveals that classic asset pricing models also fail in this regard, our

findings suggest that all other assets are insufficient to span many asset returns effectively. There are

certainly unspanned returns that are close to zero, yet the average unspanned return is considerably

large for assets with positive portfolio weights. In summary, the presence of high unspanned returns

leads to inelastic demand across various models and data specifications.

4.3 Isoelastic Demand

Given the skewed size distribution of firms, investor portfolio weights in the 13F data exhibit

fat tails with a lognormal distribution. As a result, KY consider an exponential-linear demand

function instead of the linear demand shown above. In this subsection, we present evidence that the

functional form of the demand function matters. In particular, we show that an exponential-linear

functional form appears to yield even lower demand elasticity.

The KY demand function is nearly isoelastic, meaning that the quantitative difference between an

isoelastic demand function and theirs in terms of the elasticity is quite small.20 To be clear, this near-

isoelastic demand function can be derived as a mean-variance demand function without additional

constraints (see Koĳen, Richmond, and Yogo, 2020), which implies that our decomposition in

Proposition 1 holds with this isoelastic demand function.

In this section, we use Proposition 1 to show why isoelastic demand yield even more inelastic

demand than shown in the previous section. We also investigate the reasons isoelastic demand may

more accurately fit the data compared to the linear model illustrated earlier, and conclude with an

empirical exercise confirming that isoelastic demand indeed results in a lower elasticity.

20KY have an additional adding up constraint, which multiplies by isoelastic 𝜕 log(𝑤𝑖,𝑡 )/𝜕 log(𝑃𝑖,𝑡 ) by a (1−𝑤𝑖,𝑡 )
term. Since portfolio weights tend to be small, this term is close to one, and this additional (1− 𝑤𝑖,𝑡 ) factor affects the
demand elasticity very little.
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An observant reader may express concern that the previous results are conditional only on

positive weights, are sensitive to filters regarding the size of portfolio weights, and that linear

mean-variance weights may be inconsistent with investor holdings data. These important concerns

are addressed by employing isoelastic demand which ensures only long positions. KY and Koĳen

et al. (2020) argue that this approach fits the holdings data better. Crucially, by resolving these

issues, we produce an even more inelastic demand, which aligns more closely with the observed

data.

Isoelastic assets demand has the following functional form:

𝑤𝑖,𝑡 = exp(−𝛽𝑖,𝑡 log(𝑃𝑖,𝑡) + 𝜐𝑖,𝑡) = 𝑒𝜐𝑖,𝑡𝑃−𝛽𝑖,𝑡
𝑖,𝑡

, (27)

where 𝛽𝑖,𝑡 and 𝜐𝑖,𝑡 are exogenous constants. Taking derivatives with respect to the log price, we

have:

− 𝜕𝑤𝑖,𝑡

𝜕 log(𝑃𝑖,𝑡)
= 𝛽𝑖,𝑡𝑤𝑖,𝑡 . (28)

Using Equations (22) and (23), we have:

(1 − 𝜔𝑖,𝑡) 𝜇̃𝑖,𝑡 = 𝑤𝑖,𝑡𝛾𝐴𝑡𝜏−1
𝑖,𝑡 and 𝜓𝑖,𝑡 = 𝛽𝑖,𝑡𝑤𝑖,𝑡𝛾𝐴𝑡𝜏

−1
𝑖,𝑡 . (29)

This is the key theoretical insight of this section: the pass-through and unspanned return differ

only by a factor of 𝛽𝑖,𝑡 , which is the log-price coefficient in Equation (27). Isoelastic demand

locks together these two terms in a way that does not occur with the linear demand function above.

Plugging in the terms in Equation (29) into the key decomposition of the paper, Equation (21), we
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have a simple expression for the demand elasticity:

𝛽𝑖,𝑡 = 1 + 𝜓𝑖,𝑡

(1 − 𝜔𝑖,𝑡) 𝜇̃𝑖,𝑡
= 1 + 𝛽𝑖,𝑡 . (30)

The log-price coefficient, 𝛽𝑖,𝑡 , not only controls the elasticity but also determines the difference,

in terms of ratios, between the unspanned return and the pass-through. It should be noted that in

the KY model, each investor has the same 𝛽𝑖,𝑡 across assets, allowing us to write 𝛽𝑖,𝑡 = 𝛽𝑡 in their

model.

In the previous section, the high elasticity values result largely from the relatively small

unspanned returns compared to pass-throughs. Given the strong link between pass-throughs and

unspanned returns in an isoleastic demand model as shown in (29), the ratio of the pass-through to

the unspanned return is unlikely to be so large. Therefore, drawing from this basic theory, we would

reasonably anticipate that an isoelastic demand function would deliver more inelastic demand, as

empirically shown below.

Isoelastic demand may appear overly restrictive, as the parameter 𝛽𝑖,𝑡 controls both the elasticity

and the link between unspanned returns and pass-throughs. However, we first briefly describe issues

with linear demand that are addressed by adopting isoelastic demand functions.

As shown earlier, linear demand functions produce very elastic demand for stocks with small

portfolio weights. If the entire market is estimated with linear demand functions, and the variation

across stocks in price pass-throughs is relatively low (which is the case in our structural model

above), then the smallest stocks in terms of market equity would have the highest elasticity. In

fact, Davis (2023) estimates a linear demand system for the entire market using 13F data, and finds

an average price elasticity close to 12, similar to the data above, which is driven mostly by small

market portfolio weight stocks. Davis (2023) does this exercise as a comparison to standard linear
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portfolio choice models, in order to provide a fair comparison. With a linear demand system, the

smallest, and likely the most illiquid stocks, have the smallest price impacts from flows. While this

may be true to some extent (see e.g., Haddad et al., 2022), these large differences from linear models

seem extreme. Isoelastic demand functions resolves this issue, since both the price pass-through

and unspanned returns are scaled by the portfolio weight, as shown in Equation (29), and thus

cancel each other out as shown in Equation (30). In summary, isoelastic demand resolves issues

about the sensitivity of elasticity values to small portfolio weights, does not require us to ignore

short positions since only long positions are produced, and perhaps produce more realistic portfolio

weights according to KY.

In the linear model described above, the covariance matrix, mean, and the impact of prices on

the mean of returns are all explicitly modeled. After fitting the parameters, we calculate the optimal

demand and corresponding elasticity values. This optimal demand, derived from the structural

model, is linear with in asset characteristics (Koĳen and Yogo, 2019). In this section, we utilize

a methodology similar to Brandt, Santa-Clara, and Valkanov (2009), in which portfolio weights

are specified as a function of the data and parameters. We then select parameters to maximize a

certain quantity, e.g., the Sharpe ratio. After fitting these parameters, we can estimate elasticity

values based on the demand. Unlike the previous approach, we can no longer decompose the

demand elasticity into pass-through and unspanned return components, because the value 𝜏𝑖,𝑡 is not

explicitly modeled.

Following KY, we assume demand is exponential-linear:

𝛿𝑖,𝑡 ≡ exp

(∑︁
𝑗

𝑍
𝜇

𝑖, 𝑗 ,𝑡
𝑏 𝑗

)
and 𝑤𝑖,𝑡 =

𝛿𝑖,𝑡∑
𝑘 𝛿𝑘,𝑡

. (31)

Note that since the weights add up to one, the intercept term cannot be identified; therefore, we
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omit it. The elasticity is easily calculated as:

𝜂𝑖,𝑡 = 1 − (1 − 𝑤𝑖,𝑡)
(∑︁
𝑗

𝜕𝑍
𝜇

𝑖, 𝑗 ,𝑡

𝜕 log(𝑃𝑖,𝑡)
𝑏 𝑗

)
(32)

Brandt et al. (2009) discuss various optimization functions, including choosing portfolio weights

to maximize the Sharpe ratio. Since mean-variance demand also corresponds to choosing portfolio

weights to maximize the Sharpe ratio, this objective function is appropriate for this exercise in

terms of comparability with the above results.

Table 4 shows the parameter estimates from this optimization. Standard errors are calculated

using the usual formula for extremum estimators (Newey and McFadden, 1994). The average

elasticity in the last column is calculated according to Equation (32) above. Note that when

averaged across time and assets, the average elasticity simply becomes a linear combination of the

parameters. The average value of (1 − 𝑤𝑖,𝑡)
𝜕𝑍

𝜇

𝑖, 𝑗,𝑡

𝜕 log(𝑃𝑖,𝑡 ) serves as the multiplier for 𝑏 𝑗 . Therefore, we

employ the delta method to calculate the standard error of the average elasticity.

The average elasticity value is 2.6. Note that the reversal, book-to-price, and size variables are

all important determinants of the elasticity. Interestingly, the coefficient on the book-to-price ratio

is negative, implying that this ratio actually reduces elasticity. The coefficient for reversals and

size are also negative; however, considering their derivatives, it indicates that these factors are the

primary sources of elasticity. The elasticity of 2.6 is much lower than the elasticity derived from the

linear structural model in Table 2. Davis (2023) discusses the inherent differences in reactions to

prices between linear and exponential-linear demand functions. This elasticity aligns closely with

literature estimates for micro asset demand elasticity, as discussed in Gabaix and Koĳen (2021).

The in-sample Sharpe ratio is 1.2 for this model, with a standard error of 0.054. This suggests
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that this low elasticity is achieved with relatively realistic returns, particularly considering that this

is an in-sample exercise.

In summary, the functional form of the demand function plays an important role in determining

elasticity values. As shown above, we summarize our elasticity decomposition in Figure 1,

demonstrating our approach to reconciling the discrepancy between the high elasticity values

found in standard asset pricing models and the more inelastic empirical estimates.

4.4 Price pass-through with the Koĳen and Yogo (2019) instrument

Given that one of the most frequently discussed demand elasticity estimate comes from KY,

we examine the price pass-throughs associated with their instrument.21 We estimate the following

panel regression for multiple horizons ℎ:

𝑟𝑖,𝑡+1→𝑡+ℎ = 𝛽0 + 𝛽1 log
(
𝑀𝑡

𝐵𝑡

)
+ (𝑋𝑐𝑡 )′𝛽 + 𝜖𝑖,𝑡+1, (33)

where the main independent variable, log market-to-book ratio, log
(
𝑀𝑡

𝐵𝑡

)
, is instrumented using

log
(
𝑀𝑡

𝐵𝑡

)
, where 𝑀𝑡 is the holdings-based instrument in KY. The coefficient estimate of (−𝛽1) can

be directly interpreted as the key theoretical quantity
(
− 𝜕𝜇̃

𝜕 log(𝑃)

)
. We also follow KY to control for

the same vector of stock characteristics 𝑋𝑐𝑡 . To focus on cross-sectional results, we add time-fixed

effects. We calculate Driscoll-Kraay standard errors (Driscoll and Kraay, 1998) with 8 lags which

control for both time-series and cross-sectional correlations.

The results are reported in Table 5. The first four columns report equal-weighted results for

forecasting returns for the subsequent one, two, four, and eight quarters. We find pass-through

coefficients of 0.131 and 0.352, respectively, at the quarterly and annual frequencies, which are

21Recently, alternative instruments based on flow-induced demand shocks have been proposed in the demand-based
asset pricing literature. See, e.g., van der Beck (2022) for stocks and Li, Fu, and Chaudhary (2022) for corporate bonds.
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statistically significant but also much lower than the − 𝜕𝜇̃

𝜕 log(𝑃) = 1 benchmark in frictionless models.

More importantly, this predictability is significantly weaker in larger stocks. To obtain more

economically relevant results from the perspective of large institutions, columns (5) to (8) estimate

value-weighted regressions. To account for the fact that market size has grown dramatically over

time, we normalize the sum of weights in each period to one. The results are now only statistically

significant at the 5% level but not the 1% level, and the degrees of reversions are much smaller,

with − 𝜕𝜇̃

log(𝑃) only 0.018 and 0.062 at the quarterly and annual frequencies.

In summary, while there is evidence of positive price pass-throughs associated with the KY

instrument, the pass-throughs are quite weak, especially when considering large-cap stocks that

institutions more heavily hold. This finding is consistent with the low institutional demand

elasticities estimated in KY. In other words, KY estimated demand seems much more consistent

with the D2 definition than the D1 definition.

These results do not assert that the KY system is invalid, nor do they constitute a critique of

their model. While we highlight that the KY demand curves appear to align more closely with

a D2 definition than with a D1 definition, we argue that for many counterfactual experiments,

a D2 demand system is a more useful model than a D1 demand system. For example, Davis

(2023) considers counterfactual experiments with literature-based statistical arbitrageurs, and it

is unreasonable to assume that the rest of the market would think that price movements due to

these arbitrageurs would completely revert after a single period. In fact, these price movements

do not revert in this setting, because the arbitrageur strategies persist through time. Thus, for this

setting, KY style demand functions are a better model for demand curves than a D1 elasticity type

model. A D1 demand system is useful for price changes where investors believe that the prices will

immediately pass-through to returns in the next period, which is an unusual occurrence in stock
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markets. In conclusion, the KY demand system is more consistent with a D2 type demand system,

which is often more useful for counterfactual experiments than a D1 type demand system.

5 Robustness: Other Sources of Elasticity

In this section, we explore other sources of demand elasticity and conduct several robustness

checks. We first consider a more general demand function. Consider portfolio weights defined as

𝑤𝑖,𝑡 = 𝑔𝑖,𝑡 ( 𝜇̃𝑖,𝑡 , 𝜈̃𝑖,𝑡), (34)

where 𝑔𝑖,𝑡 (·) represents a general function and 𝜈̃𝑖,𝑡 consists of the residual determinants of portfolio

weights other than subjective expected returns, which could potentially be a function of prices,

specifically risk.

Assuming differentiability and positive demand, we can write the demand elasticity as:

𝜂𝑖,𝑡 ≡ − 𝜕 log(𝑆𝑖,𝑡)
𝜕 log(𝑃𝑖,𝑡)

= 1 − 𝜕 log(𝑤𝑖,𝑡)
𝜕𝜇̃𝑖,𝑡

𝜕𝜇̃𝑖,𝑡

𝜕 log(𝑃𝑖,𝑡)︸                            ︷︷                            ︸
mean component

−𝜕 log(𝑤𝑖,𝑡)
𝜕𝜈̃𝑖,𝑡

𝜕𝜈̃𝑖,𝑡

𝜕 log(𝑃𝑖,𝑡)︸                        ︷︷                        ︸
residual component

− 𝜕 log(𝐴𝑡)
𝜕 log(𝑃𝑖,𝑡)︸         ︷︷         ︸
wealth effect

. (35)

KY assume investor wealth, 𝐴𝑡 , is exogenous or not a function of prices. In a broader

macroeconomic context, this assumption might seem unrealistic. However, when considering

a large number of assets (𝑁) in a diversified portfolio where each asset has a relatively small

weight, a 1% movement in price will result in a significantly smaller change in the portfolio value,

often less than 1%. Therefore, quantitatively, in a microeconomic framework, the impact of price

changes on wealth can be considered negligible. We adopt a similar perspective by treating investor

wealth as exogenous, essentially disregarding these wealth effects when calculating elasticity. In
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reality, 𝜕𝐴𝑡/𝜕 log(𝑃𝑖,𝑡) is typically small, positive, and much less than one, making the demand even

more inelastic. Our findings show that we can explain the observed inelastic demand empirically

without relying on these wealth effects.

5.1 Residual component of demand

In this section, we investigate the residual demand component in Equation (35) using a

more general model than the CARA model previously discussed. Our main finding is that the

CARA model and decomposition discussed above are the first-order components in a more general

frictionless model.

First, we consider the case of Epstein-Zin multivariate demand for assets discussed in Campbell

et al. (2003). They show, after log-lineariztion, portfolio weights are given by:

𝑤𝑡 =
1
𝛾
Σ−1
𝑡

[
E𝑡 [𝑦𝑡+1] +

1
2
𝜎2
𝑡 −

𝜗

𝜍
𝜎𝑐−𝑤,𝑡

]
, (36)

where 𝑦𝑡 is an 𝑁 dimensional vector of log returns minus the log risk-free rate, Σ𝑡 is the 𝑁 × 𝑁

conditional covariance matrix of 𝑦𝑡+1, 𝜎2
𝑡 is the 𝑁 dimensional vector containing the diagonal

elements ofΣ𝑡 ,𝜎𝑐−𝑤,𝑡 is the 𝑁 dimensional vector of conditional covariance of the log consumption-

to-wealth ratio (the cay variable from Lettau and Ludvigson, 2001) and 𝑦𝑡+1, 𝛾 > 0 is the relative risk

aversion coefficient, 𝜍 > 0 is the elasticity of intertemporal substitution, and𝜗 ≡ (1−𝛾)/(1−𝜍−1).22

In this section, we primarily consider quarterly data, since cay data is available at the quarterly

frequency.

We need to model the conditional expectation of 𝑦𝑡 as a function of prices, as well as the

22See equation (20) of Campbell et al. (2003). Note that their equation includes additional terms because they also
consider 𝑦𝑡 to be log return of the asset minus a benchmark with potential covariance terms. In our case, we only
consider the risk-free rate, which removes some of these extra terms.
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conditional covariance of 𝑦𝑡 itself and with the log consumption-to-wealth ratio as a function of

prices. We do this by running predictive regressions for the relevant terms, as we describe below.

Instead of a unified estimation above, we are forced to break this more complicated model into

components and estimate each one separately.

5.2 Conditional expectation model

To model the conditional mean, we regress log excess returns on the same variables contained in

𝑍
𝜇
𝑡 from above: reversals (Δ𝑝𝑖,𝑡), log book to price ratio (𝑏𝑖,𝑡−𝑝𝑖,𝑡), size ((𝑝𝑖,𝑡− 𝜇̄𝑡)/𝜎̄𝑡), profitability,

investment, dividend-to-book ratio, and market beta. We stack these latter four exogenous control

variables into a column vector of controls, 𝑋𝑐𝑡 . The regression is written as follows:

log(𝑅𝑖,𝑡+1) = 𝛽0 + 𝛽1Δ𝑝𝑖,𝑡 + 𝛽2(𝑏𝑖,𝑡 − 𝑝𝑖,𝑡) + 𝛽3
𝑝𝑖,𝑡 − 𝜇̄𝑡
𝜎̄𝑡

+ (𝑋𝑐𝑡 )′𝛽 + 𝜖𝑖,𝑡+1, (37)

where 𝜷 is a vector of regression coefficients. Thus the average estimated price derivative is:

𝜕𝐸̃𝑡 [𝑦𝑡+1]
𝜕𝑝𝑡

≡ Mean
(
𝜕𝐸̃𝑡 [𝑦𝑖,𝑡+1]
𝜕𝑝𝑖,𝑡

)
= 𝛽1 − 𝛽2 + 𝛽3 × Mean (1/𝜎̄𝑡) , (38)

where 𝑦𝑡 is the excess log returns. We refer to this as the cross-sectional model, as it employs

a standard set of cross-sectional variables to predict variations in expected returns. This is very

similar to the previous model above, except here log returns are used and the model is fitted using

standard OLS regression rather than maximum likelihood.

We present the regression results in Table 6. Our primary focus is on the price pass-throughs at

the quarterly horizon, but we also include results for daily, weekly, monthly, quarterly, and annual

horizons. From the 𝑝-values for the estimates of price pass-through, 𝜓𝑖,𝑡 , we can see that price

variations do not statistically significantly predict future returns at annual, quarterly, and monthly
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horizons. However, at the weekly and daily horizons, a 1% price increase predicts predicts a

decrease in returns of 5 and 13.6 bps, respectively, over the next period. This decline is attributed

almost entirely to the reversals component, Δ𝑝𝑡 , rather than the book-to-market, 𝑏𝑡 − 𝑝𝑡 , or size,

(𝑝𝑖,𝑡 − 𝜇̄𝑡)/𝜎̄𝑡 , components.

We consider a greatly expanded information set, where stock fixed effects are added to the

regression in (37). We refer to this as the fixed effects model. The regression equation remains

the same, except that 𝛽0 is now changed to 𝛽𝑖,0 to represent a stock-specific fixed effect. This

specification corresponds to a greatly expanded information set, where an investor has a stock-

specific estimate of each asset’s valuation and return, rather than relying on cross-sectional

relationships. In other words, the regression in Equation (37) corresponds to an investor who

makes forecasts based on rational expectations by utilizing all returns projected onto the space

of asset characteristics. This means a high price predicts a low return when other assets with

similar characteristics have a similarly high price/low return relationship. If one does not find this

relationship in the cross-section, then the investor does not believe there is a strong price/return

relationship.

In a regression with stock fixed effects, the investor knows whether the price of any given asset

is high or low. They do not rely on the cross-section and can estimate the price is high or low in the

time series of the asset’s own returns. This corresponds to a relatively extensive information set.

The regression results for the fixed effects model are shown in Table 7. In terms of point

estimates, the pass-through, 𝜓𝑖,𝑡 , is negative across all investment horizons. The annual, weekly,

and daily horizons all have statistically significant estimates. A 1% price increase corresponds to

anywhere between a 2 to 14 bps decrease in the next period expected returns, depending on the
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horizon.23 Thus across annual, quarterly, monthly, weekly, and daily investment horizons, price

predictability are much weaker than a one-for-one pass-through.

The marginal price effect is calculated for each stock in each period, and the average effect

across stocks and periods is shown in the second column of Table 8. Note that with the simple

model, the marginal effect is identical across stocks and time. Standard errors are shown below the

estimates, which are double clustered by quarter and stock. Note that both the simple and cross-

sectional models have positive average marginal effects, indicating potentially rational upward

sloping demand if the elasticity is determined solely by the mean effects. The fixed effects average

marginal effect is negative, but only −0.035, which means a 1% price increase decreases expected

returns by only 3.5 basis points (bps). This is far from a one-for-one pass-through.

5.3 Conditional covariance terms model

We consider a standard factor structure for the covariance matrix:

Σ𝑡 = 𝛽𝑡Ω𝛽
′
𝑡 + 𝜁 𝐼, (39)

where Ω is the 𝐹 × 𝐹 matrix of factor returns, 𝛽𝑡 is a 𝑁 × 𝐹 vector of factor loadings, and 𝜁 > 0 is

a scalar that dictates the size of the idiosyncratic variance. For our analysis, we utilize six factors:

the Fama-French five and momentum, thus 𝐹 = 6. Although this model is much less parsimonious

than the structural model previously discussed, it offers a more flexible approach to modeling

the covariance matrix. We estimate Ω as the empirical covariance matrix of factor returns. If

we estimate 𝛽𝑡 with rolling regressions of historical returns, the covariance matrix mechanically

becomes independent of price movements. Similarly, if we estimate the 𝜎𝑐−𝑤,𝑡 component from

23This range widens when considering confidence intervals.
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Equation (36) in the same manner, the residual component of demand would mechanically be zero.

We consider an alternative specification that allows the residual component of demand elasticity

to be non-zero. This approach involves running predictive regressions of the “realized” covariance

terms on (log) prices and other variables in order to determine how well price fluctuations predict

these covariance terms.

We parameterize factor loadings 𝛽𝑡 as

𝛽𝑡 =

[
𝜎1,𝑡 𝜎2,𝑡 . . . 𝜎𝐹,𝑡

]
Ω−1, (40)

where 𝜎𝑗 ,𝑡 is the 𝑁 dimensional column vector of conditional covariance terms of 𝑦𝑡+1 and factor

return 𝑓 𝑗 ,𝑡 . We parameterize 𝜎𝑗 ,𝑡 as linear in characteristics 𝑋𝑡 , i.e., 𝜎𝑗 ,𝑡 = 𝑋𝑡𝛽
𝑓

𝑗
, where 𝛽 𝑓

𝑗
is a

vector of regression parameters. We fit these coefficients by running the following regression:

( 𝑓 𝑗 ,𝑡+1 − 𝜇 𝑓𝑗 )𝜖𝑡+1 = 𝑋𝑡𝛽
𝑓

𝑗
+ 𝜈 𝑗 ,𝑡+1, (41)

where 𝜇 𝑓
𝑗

is the average return for the 𝑗 𝑡ℎ factor. Note that the left-hand side variable is essentially

the “realized covariance,” meaning that the conditional expectation of this variable is the conditional

covariance as long as the model for the conditional mean is correct. Since we have two different

models of the mean above, as shown in Tables 6 and 7, we plug in two different regression residuals

𝜖𝑡+1 into the regression above, and obtain similar results in terms of the size of the residual elasticity

term. We run this regression separately for each factor 𝑓 = 1, . . . , 𝐹. If we define the 𝐾 × 𝐹 matrix

Γ =

(
𝛽
𝑓

1 , 𝛽
𝑓

2 , ..., 𝛽
𝑓

𝐹

)
, then we can write:

𝛽𝑡 = 𝑋𝑡ΓΩ
−1. (42)
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Thus conditional betas are functions of characteristics, some of which include prices. This

characterization allows the covariance matrix Σ𝑡 to be a function of characteristics 𝑋𝑡 , potentially

allowing price to affect demand through channels beyond just the expected return channel—i.e.,

the residual elasticity channel in Equation (35) discussed above. Notice that this characterization

follows both Pástor and Stambaugh (2003) and Kelly et al. (2019), settings the beta of the assets to

be a linear function of asset characteristics. This specification implies that the covariance matrix

of individual asset’s log excess returns is:

Σ𝑡 = 𝛽𝑡Ω𝛽
′
𝑡 + 𝜁 𝐼 = 𝑋𝑡ΓΩ−1Γ′𝑋′

𝑡 + 𝜁 𝐼. (43)

We estimate 𝜁 as the variance (across assets and time) of 𝑦𝑡+1 − 𝛽𝑡 𝑓𝑡+1.

We follow a similar approach to obtain an estimate of 𝜎𝑐−𝑤,𝑡 . We fit the following regression:

cay𝑡+1 · 𝜖𝑡+1 = 𝑋𝑡𝛽𝑐−𝑤 + 𝜈𝑡+1, (44)

where cay𝑡+1 is the deviation of the log consumption to wealth ratio from the average from Lettau

and Ludvigson (2001), obtained from Martin Lettau’s website.

5.3.1 Results

With these parameterizations, we can rewrite Equation (36) as:

𝑤𝑡 =
1
𝛾
(𝑋𝑡ΓΩ−1Γ′𝑋 ′

𝑡 + 𝜁 𝐼)−1
[
𝑋𝑡 𝛽 +

1
2

Diag
(
𝑋𝑡ΓΩ

−1Γ′𝑋 ′
𝑡 + 𝜁 𝐼

)
− 𝜗

𝜍
𝑋𝑡 𝛽𝑐−𝑤

]
=

1
𝛾𝜁

(
𝐼 − 𝑋𝑡Γ(𝜁Ω + Γ′𝑋 ′

𝑡 𝑋𝑡Γ)−1Γ′𝑋 ′
𝑡︸                               ︷︷                               ︸

covariance

) [
𝑋𝑡 𝛽︸︷︷︸
mean

+ 1
2

Diag(𝑋𝑡ΓΩ−1Γ′𝑋 ′
𝑡 + 𝜁 𝐼)︸                             ︷︷                             ︸

variance

− 𝜗
𝜍
𝑋𝑡 𝛽𝑐−𝑤︸      ︷︷      ︸

cay

]
, (45)
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where Diag(·) is the function that has a square matrix as an argument and outputs a column vector

containing the diagonal of the matrix.

In Equation (45), we highlight four different components or channels through which price

changes can affect demand: (1) the mean component, (2) the covariance component, (3) the

variance component, and (4) the consumption-to-wealth component labeled cay. Note that with

this demand specification, components (2), (3), and (4) together account for the residual component

discussed above in Equation (35).

The purpose of the exercise in this section is to determine if the overall optimal Epstein-Zin

demand yields inelastic demand and how important the four components of the residual elasticity

are for the overall demand elasticity. In order to do this, we show the decomposition of demand

elasticity into these five components. Let 𝐴𝑡 be an 𝑁 × 𝐽 matrix with elements 𝑌𝑖, 𝑗 ,𝑡 and let 𝑝𝑡 be

the 𝑁 × 1 vector of log prices. Assume that each element of 𝐴𝑖, 𝑗 ,𝑡 is a differentiable function of 𝑝𝑖,𝑡 .

Define the following:

∇𝑝𝑡 𝐴𝑡 =



𝜕𝐴1,1,𝑡
𝜕𝑝1,𝑡

𝜕𝐴1,2,𝑡
𝜕𝑝1,𝑡

. . .
𝜕𝐴1,𝐽 ,𝑡
𝜕𝑝1,𝑡

𝜕𝐴2,1,𝑡
𝜕𝑝2,𝑡

𝜕𝐴2,2,𝑡
𝜕𝑝2,𝑡

. . .
𝜕𝐴2,𝐽 ,𝑡
𝜕𝑝2,𝑡

...
...

. . .
...

𝜕𝐴𝑁,1,𝑡
𝜕𝑝𝑁,𝑡

𝜕𝐴𝑁,2,𝑡
𝜕𝑝𝑁,𝑡

. . .
𝜕𝐴𝑁,𝐽,𝑡

𝜕𝑝𝑁,𝑡


. (46)

Then as shown above, we can write:

∇𝑝𝑡 𝑋𝑡 =



0 1 −1 1/𝜎̄𝑡 0 . . . 0

0 1 −1 1/𝜎̄𝑡 0 . . . 0
...
...

...
...

...
. . .

...

0 1 −1 1/𝜎̄𝑡 0 . . . 0


, (47)

where elements in the first column are zero because of the intercept, elements in the second
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column are one because this is the reversals column, elements in the third column are −1 because

this corresponds to the log book-to-market ratio, elements in the fourth column are 1/𝜎̄𝑡 because

this corresponds to the size column. The rest of columns are zero because their corresponding

characteristics are not functions of price (investment, profitability, dividend-to-book, and market

beta). Using this notation, we can define the elasticity, following KY for only assets with positive

weights, as:

𝜂𝑡 = 𝜂
𝑚
𝑡 + 𝜂𝑐𝑡 + 𝜂𝑣𝑡 + 𝜂

cay
𝑡 , (48)

where 𝜂𝑚𝑡 , 𝜂𝑐𝑡 , 𝜂𝑣𝑡 , and 𝜂cay
𝑡 correspond to the elasticity components from mean, covariance, variance,

and cay in Equation (45), respectively. These components are defined as:

𝜂𝑚𝑡 = ®1 − 1
𝛾𝜁

diag(𝑤𝑡)−1((®1 − Diag(𝑋𝑡ΓΛ𝑡Γ′𝑋′
𝑡 )) ◦ ((∇𝑝𝑡 𝑋𝑡)𝛽)), (49)

𝜂𝑐𝑡 =
1
𝛾𝜁

diag(𝑤𝑡)−1((∇𝑝𝑡 𝑋𝑡)ΓΛ𝑡Γ′𝑋′
𝑡 𝜇𝑡

− 1
𝛾𝜁

diag(𝑤𝑡)−1(Diag(𝑋𝑡ΓΛ𝑡 ((∇𝑝𝑡 𝑋𝑡)Γ)′) ◦ (𝑋𝑡ΓΛ𝑡Γ′𝑋′
𝑡 𝜇𝑡))

− 1
𝛾𝜁

diag(𝑤𝑡)−1(Diag(𝑋𝑡ΓΛ𝑡Γ′𝑋′
𝑡 ) ◦ (((∇𝑝𝑡 𝑋𝑡)Γ)Λ𝑡Γ′𝑋′

𝑡 𝜇𝑡))

+ 1
𝛾𝜁

diag(𝑤𝑡)−1(Diag(𝑋𝑡ΓΛ𝑡 ((∇𝑝𝑡 𝑋𝑡)Γ)′) ◦ 𝜇𝑡), (50)

𝜂𝑣𝑡 = − 1
𝛾𝜁

diag(𝑤𝑡)−1((®1 − Diag(𝑋𝑡ΓΛ𝑡Γ′𝑋′
𝑡 )) ◦ (((𝑋𝑡ΓΩ−1Γ′) ◦ (∇𝑝𝑡 𝑋𝑡))®1)), (51)

𝜂
cay
𝑡 =

𝜗

𝜍

1
𝛾𝜁

diag(𝑤𝑡)−1((®1 − Diag(𝑋𝑡ΓΛ𝑡Γ′𝑋′
𝑡 )) ◦ ((∇𝑝𝑡 𝑋𝑡)𝛽𝑐−𝑤)), (52)

where Λ𝑡 = (𝜁Ω+Γ′𝑋′
𝑡 𝑋𝑡Γ)−1, 𝜇𝑡 = 𝑋𝑡𝛽+ 1

2Diag(𝑋𝑡ΓΩ−1Γ′𝑋′
𝑡 + 𝜁 𝐼) − 𝜗

𝜍
𝑋𝑡𝛽𝑐−𝑤, ◦ is the Hadamard

product (element-wise), and ®1 is a vector of ones.

In Table 8, we present the mean elasticity component, 𝜂𝑚, in column (1) for the three models

for the conditional expectation discussed above. We then decompose 𝜂𝑚 into two parts: first, the
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change in expected returns in response to (log) price movements in column (2), and second, the

change in the (log) portfolio weight in response to the changes in the discount rate in column (3).

We find that for all three cases, the pass-through component in column (2) is much smaller than the

impact of discount rates on the portfolio weight, leading to low demand elasticities. For the fixed

effects model in the third row, the pass-through component in negative, i.e., there is momentum at

the quarterly horizon.

Note that because the weights have a 1/𝛾 term, then diag(𝑤𝑡)−1/𝛾 is only a function of gamma

due to the cay component. In other words, for the elasticity, 𝛾 only matters for the component 𝜗/𝜍

term that multiplies the cay component, and does not enter the elasticity through any other way.

We need to pick reasonable Epstein-Zin values of 𝛾 and 𝜓 in order to estimate the size of this cay

component. To do this, we pick the largest possible value for |𝜗/𝜍 | with a reasonable range for

𝛾 and 𝜓. We consider 𝛾 ≤ 10 and 𝜓 ∈ [1.5, 2]. These values of 𝛾 and 𝜓 imply preference for

the early resolution of uncertainty and have been used extensively in the asset pricing literature

to address a number of asset pricing puzzles (e.g., Bansal and Yaron, 2004; Hansen, Heaton, and

Li, 2008). An EIS value greater than one implies a decline in asset prices when the effective risk

aversion in the economy increases. Given this range, the largest possible |𝜗/𝜍 | is 18, with 𝛾 = 10

and 𝜓 = 1.5. Using a smaller value of |𝜗/𝜍 | shrinks the already small cay elasticity term further

toward zero.

In Table 9, we decompose the demand elasticity in column (1) into mean and residual

components in columns (2) and (3). From Equation (48), the residual component in column (3) is

the sum of covariance, variance, and cay components in columns (4), (5), and (6). We find that the

elasticity is primarily determined by the mean component.

These results justify using Equation (1) as an approximation for the demand elasticity in

Equation (35), where the elasticity is primarily set by the expected return due to a price change.
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From hereon, we focus on this mean effect. Note that classic portfolio choice models take the

covariance structure as exogenous to prices; thus, we find this a reasonable approximation. Indeed,

after accounting for the mean effects, price changes predict the covariance terms only weakly,

consistent with the elasticity of demand being primarily determined by the mean component. If the

mean effects are relatively weak, then demand is inelastic.

While the model above is just one exercise in computing demand elasticity, one may wonder

whether other models estimated with reasonable pass-throughs and high unspanned returns deliver

much larger elasticity values. Davis (2023) estimates the demand elasticity of twelve quantitative

portfolio choice models and shows that demand is either inelastic. Thus across a wide variety of

models, demanded derived from optimal portfolio choice models is inelastic.

6 Conclusion

In this paper, we identify low price pass-throughs and large perceived unspanned returns as the

source of the inelastic demand puzzle in the stock market. We first decompose demand elasticity

into three parts: the mean, residual, and wealth effect components. In a standard portfolio choice

model, we then show the mean component primarily determines demand elasticity.

We further decompose the mean component of elasticity into the product of two parts: the extent

to which prices predict returns (price pass-through), and second, how well an asset is perceived

to be spanned by all other assets, which is a perceived unspanned expected excess returns. Given

the Campbell and Shiller decomposition, we then consider two definitions of demand elasticity

associated with different sources of price movements. In the first definition of elasticity, D1, we

consider price changes only due to the next-period discount rate movements, holding everything

else constant, i.e., when we assume complete price pass-throughs. Given that estimating D1 in the
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stock market is highly challenging and creates near arbitrage opportunities, we introduce the second

definition, D2, which considers price movements not entirely driven by next-period discount rates.

We highlight that almost all empirical estimates measure D2 elasticity while most theoretical

models only study D1. We empirically estimate D1 for investment-grade bonds where it is arguably

more plausible to do so, and, consistent with theory, we find high demand elasticities. As discussed

above and consistent with prior literature, we find low D2 elasticity at different horizons driven by

low pass-throughs.

There is a common distinction between shifting the demand curve versus moving along the

demand curve. A movement along the demand curve is usually defined as a price change where

all other demand inputs remain the same. Shifts in other demand inputs represent movements

of the demand curve itself. However, in asset markets, if we think of expected discount rates

and cash flows as demand inputs, then price movements must necessarily affect either discount

rates, cash flows, or some combination of the two. Sometimes, price changes affect beliefs which

influence quantities demanded, which are often described in the literature as having an effect on

the slope of the demand curve (Stein, 2009; Becker, 1991). Our D1 and D2 elasticity definitions

constitute similar definitions of demand elasticities. Just as there are price movements associated

with discount rates or cash flows, there are multiple types of demand curves which can be used to

model various kinds of reactions to these different price changes.

In this paper, we present a novel decomposition of demand elasticity. When an asset is perceived

as having low price pass-throughs to returns and high unspanned returns relative to other assets,

then demand will be relatively inelastic. We show that both these attributes of stock returns are

supported in the data, thus rationalizing inelastic demand.
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Table 1. Maximum Likelihood Estimation. In this table we show the parameter estimates of 𝜋, 𝜉, and 𝜁 in
Equation (24). The estimates of 𝜋 are shown in the first row labeled “Mean”. The estimates of 𝜉 and the scalar 𝜁 are
shown in the next row labeled “Covariance”. The parameter estimates are labeled by their respective covariates in 𝑍𝜇

𝑡

and 𝑍Γ
𝑡 above the estimates. We estimate the model using maximum likelihood, assuming returns in each period have

a multivariate normal distribution. Standard errors are shown in parentheses.

intercept Δ𝑝𝑡 𝑏𝑡 − 𝑝𝑡
𝑝𝑡 − 𝜇𝑝𝑡
𝜎
𝑝
𝑡

profit. invest. div.-to-book beta

Mean 0.008∗∗∗ −0.060∗∗ 0.001 −0.002∗∗∗ 0.011∗∗∗ −0.019∗∗∗ −0.003 0.007
(0.001) (0.036) (0.003) (0.000) (0.003) (0.000) (0.040) (0.281)

intercept
𝑏𝑡 − 𝜇𝑏𝑡
𝜎𝑏𝑡

profit. invest. div.-to-book beta 𝜁

Covariance 0.036 −0.006 −0.020 0.003 −0.168 2.174 0.027∗∗∗
(0.598) (0.036) (0.241) (0.034) (3.975) (3.979) (0.003)

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Table 2. Maximum Likelihood Elasticity Results. With the estimated parameters values shown in Table 1 from the
structural model in Equation (24), the elasticity, price pass-through (𝜓𝑖,𝑡 ), unspanned return ((1 − 𝜔𝑖,𝑡 ) 𝜇̃𝑖,𝑡 ), expected
return (𝜇̃𝑖,𝑡 ), and the component of the return spanned by all other assets (𝜔𝑖,𝑡 𝜇̃𝑖,𝑡 ) are calculated for every stock in
the sample in every period where the optimal portfolio weight is positive. Optimal portfolio weights are calculated
as 𝑤𝑡 =

1
𝛾𝐴𝑡

Σ̃−1
𝑡 𝜇̃𝑡 . This table shows various statistics of these values taken across months and assets. The first row

shows the median values. The next row shows the mean. The (1−𝜔𝑖,𝑡 ) 𝜇̃𝑖,𝑡 term is sometimes very close to zero, which
creates near infinite elasticity values (see Equation 21). Thus, we consider various cuts of the data that exclude some of
these near-zero unspanned return values which lead to very high elasticity values. The “Top Percent of Value Invested”
column, if not empty, indicates that a subsample of the positive weight observations were considered when calculating
the averages. For example, a 99.9% filter takes the top 99.9% of stocks in terms of value invested (positive portfolio
weights), dropping the assets with the smallest portfolio weights first. The last row shows the weighted average by
portfolio weights. Standard errors are shown below the estimates in parentheses. For the averages in columns (2)–(6),
these standard errors are double clustered by stock and month. For the median in column (1), standard error, the
standard error is calculated via bootstrap as described in the text. The in-sample Sharpe ratio for this model is 1.45,
with a standard error of 0.059.

Top Percent of Unspanned Expected Spanned
Statistic Value Invested Elasticity Pass-Through Return Return Return Observations

𝜂𝑖,𝑡 𝜓𝑖,𝑡 (1 − 𝜔𝑖,𝑡) 𝜇̃𝑖,𝑡 𝜇̃𝑖,𝑡 𝜔𝑖,𝑡 𝜇̃𝑖,𝑡

Median 11.784∗∗∗ 0.062∗∗∗ 0.006∗∗∗ 0.011∗∗∗ 0.005∗∗∗ 1,344,642
(0.014) (0.000) (0.000) (0.000) (0.000)

Average 81.423∗∗∗ 0.062∗∗∗ 0.007∗∗∗ 0.013∗∗∗ 0.005∗∗∗ 1,344,642
(10.484) (0.000) (0.000) (0.000) (0.000)

Average 99.9% 19.145∗∗∗ 0.062∗∗∗ 0.008∗∗∗ 0.013∗∗∗ 0.005∗∗∗ 1,299,830
(0.173) (0.000) (0.000) (0.000) (0.000)

Average 99.0% 13.939∗∗∗ 0.062∗∗∗ 0.008∗∗∗ 0.013∗∗∗ 0.005∗∗∗ 1,200,188
(0.114) (0.000) (0.000) (0.000) (0.000)

Average 97.5% 11.973∗∗∗ 0.062∗∗∗ 0.009∗∗∗ 0.014∗∗∗ 0.005∗∗∗ 1,113,961
(0.093) (0.000) (0.000) (0.000) (0.000)

Average 95.0% 10.518∗∗∗ 0.062∗∗∗ 0.009∗∗∗ 0.015∗∗∗ 0.005∗∗∗ 1,015,555
(0.078) (0.000) (0.000) (0.000) (0.000)

Weighted Avg. 10.100∗∗∗ 0.062∗∗∗ 0.013∗∗∗ 0.019∗∗∗ 0.006∗∗∗ 1,344,642
(0.080) (0.000) (0.000) (0.000) (0.000)

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Table 3. Shrinkage Portfolios Results. This table shows the out-of-sample shrinkage portfolio results from Section 4.2.
Each column represents a different portfolio with different shrinkage weights—the larger weights overweight the
shrinkage target and underweight the empirical covariance matrix. The Sharpe ratio is shown, along with the expected
return, unspanned return, median elasticity, average elasticity, and weighted (by portfolio weights) average elasticity for
the assets with positive weights. The average elasticity values are also shown for subsamples of assets with the largest
portfolio weights. For example, the top 99.9% subsample labeled below represents the assets that compose 99.9% of
the value invested (in terms of portfolio weights), dropping the smallest weights first. Table A.1 shows results for the
entire set of shrinkage portfolios, with shrinkage weights in the set {0.05, 0.1, 0.15, ..., 0.95}.

Shrinkage Weight: 0.05 0.25 0.50 0.75 0.85 0.95

Sharpe ratio 0.957 1.017 1.106 1.219 1.267 1.268

Expected Return 0.015 0.016 0.016 0.016 0.017 0.017

Unspanned Return 0.006 0.006 0.006 0.006 0.007 0.007

Median Elasticity 8.331 8.369 8.408 8.328 8.147 7.567

Avg. Elasticity (all pos. weights) 93.580∗∗∗ 196.684∗ 68.124∗∗∗ 68.808∗∗∗ 71.234∗∗∗ 74.132∗∗∗
(23.721) (101.356) (3.977) (4.628) (7.180) (7.815)

Avg. Elasticity (top 99.9%) 18.792∗∗∗ 18.782∗∗∗ 18.740∗∗∗ 17.932∗∗∗ 17.131∗∗∗ 15.241∗∗∗
(0.673) (0.670) (0.664) (0.610) (0.562) (0.468)

Avg. Elasticity (top 99%) 13.185∗∗∗ 13.228∗∗∗ 13.162∗∗∗ 12.664∗∗∗ 12.121∗∗∗ 10.834∗∗∗
(0.460) (0.462) (0.455) (0.421) (0.388) (0.324)

Avg. Elasticity (top 97.5%) 11.130∗∗∗ 11.166∗∗∗ 11.104∗∗∗ 10.718∗∗∗ 10.257∗∗∗ 9.194∗∗∗
(0.383) (0.384) (0.378) (0.352) (0.324) (0.270)

Avg. Elasticity (top 95%) 9.632∗∗∗ 9.659∗∗∗ 9.610∗∗∗ 9.295∗∗∗ 8.901∗∗∗ 7.999∗∗∗
(0.326) (0.327) (0.323) (0.300) (0.276) (0.230)

Weighted Avg. Elasticity 9.208∗∗∗ 9.223∗∗∗ 9.149∗∗∗ 8.775∗∗∗ 8.384∗∗∗ 7.518∗∗∗
(0.323) (0.322) (0.314) (0.286) (0.262) (0.218)

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Table 4. Exponential Brandt et al. (2009) Estimation. In this table, we show the parameters estimates (𝑏 𝑗

parameters) associated with the Brandt et al. (2009) style optimizer with portfolio weights that are exponential linear in
characteristics, as show in Equation (31). These parameters are calculated to maximize the Sharpe ratio, as discussed
in the paper. Standard errors, calculated via the usual extremum estimator formula, are shown in parentheses. The
average elasticity across stocks and time is shown in the last column. The standard error for this average elasticity is
calculated via the delta method. The in-sample Sharpe ratio is 1.2, with a standard error of 0.054.

Coefficients Elasticity

Δ𝑝𝑡 𝑏𝑡 − 𝑝𝑡
𝑝𝑡 − 𝜇𝑝𝑡
𝜎
𝑝
𝑡

profit. invest. div.-to-book beta 𝜂

Estimates −0.535∗∗∗ −0.349∗∗∗ −2.878∗∗∗ 1.590∗∗∗ −0.557∗∗∗ 8.392∗∗∗ −82.361∗∗∗ 2.590∗∗∗
(0.002) (0.000) (0.001) (0.001) (0.001) (0.010) (0.250) (0.001)

Obs. 2,217,863 2,217,863 2,217,863 2,217,863 2,217,863 2,217,863 2,217,863 2,217,863

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

Table 5. Predicting Price Pass-throughs with the KY instrument. This table presents estimated coefficients from
the regression in Equation (33). The main independent variable log(𝑀𝑡/𝐵𝑡 ), is instrumented using log(𝑀𝑡/𝐵𝑡 ) where
𝑀𝑡 is computed using the KY instrument. We follow KY to control for a number of other characteristics that are
cross-sectionally transformed to be uniformly distributed between 0 and 1. All regressions control for time fixed effects,
and we compute Driscoll-Kraay standard errors with 8 lags, which controls for both time-series and cross-sectional
correlations. Horizon ℎ over which the returns are calculated is shown in different columns. Columns (1) to (4)
estimate equal-weighted forecasting regressions. Columns (5) to (8) estimate value-weighted regressions where, to
account for the fact that total market size went up over time, we standardized the sum of weights in each period to unity.

Dependent variable: 𝑟𝑡+1→𝑡+ℎ

Equal-weighted Value-weighted

(1) (2) (3) (4) (5) (6) (7) (8)
ℎ = 1 2 4 8 ℎ = 1 2 4 8

log(𝑀𝑡/𝐵𝑡) −0.131∗∗∗ −0.224∗∗∗ −0.352∗∗∗ −0.537∗∗∗ −0.018∗∗ −0.033∗∗ −0.062∗∗ −0.114∗∗
(0.010) (0.015) (0.027) (0.061) (0.008) (0.014) (0.025) (0.049)

beta 0.035∗∗∗ 0.059∗∗∗ 0.088∗∗∗ 0.127∗∗∗ 0.000 −0.001 −0.004 −0.013
(0.008) (0.015) (0.027) (0.047) (0.004) (0.007) (0.012) (0.021)

investment 0.000 0.001 0.004 0.017 −0.002 −0.003 −0.005 0.001
(0.002) (0.004) (0.007) (0.010) (0.003) (0.005) (0.007) (0.012)

profitability 0.077∗∗∗ 0.133∗∗∗ 0.218∗∗∗ 0.346∗∗∗ 0.024∗∗ 0.043∗∗∗ 0.076∗∗ 0.132∗∗
(0.007) (0.013) (0.024) (0.052) (0.009) (0.016) (0.031) (0.063)

div/book 0.007 0.009 0.003 −0.026 −0.013∗∗ −0.023∗∗ −0.032∗∗ −0.053∗
(0.005) (0.008) (0.014) (0.023) (0.005) (0.009) (0.016) (0.032)

Time FE Yes Yes Yes Yes Yes Yes Yes Yes
Obs. 602,377 590,955 562,106 506,480 602,377 590,955 562,106 506,480
𝑅2 0.011 0.021 0.031 0.041 0.001 0.011 0.011 0.021
Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Table 6. Main Price Pass-through Regressions. This table presents estimated coefficients from the regression
in Equation (37). This specification corresponds to an information set which includes the log book to price ratio,
𝑏𝑖,𝑡 − 𝑝𝑖,𝑡 , as well as the log of market capitalization, cross-sectionally normalized, (𝑝𝑖,𝑡 − 𝜇̄𝑡 )/𝜎̄𝑡 . We also include
other regressors that are not functions of prices: profitability, investment, dividend to book ratio, and market beta,
stacked into a column vector 𝑋𝑡 . Standard errors are double clustered at the asset and time period levels.

Dependent variable: 𝑟𝑡+1

(1) (2) (3) (4) (5)
Annual Quarterly Monthly Weekly Daily

Δ𝑝𝑡 0.097∗∗ 0.038∗∗ 0.007 −0.050∗∗∗ −0.136∗∗∗
(0.040) (0.019) (0.011) (0.005) (0.003)

𝑏𝑡 − 𝑝𝑡 0.065∗∗∗ 0.013∗∗∗ 0.003∗∗∗ 0.001∗∗ 0.000∗∗∗
(0.011) (0.004) (0.001) (0.000) (0.000)

(𝑝𝑡 − 𝜇𝑡)/𝜎𝑡 0.043∗∗∗ 0.012∗∗∗ 0.004∗∗∗ 0.001∗∗∗ 0.000∗∗∗
(0.010) (0.003) (0.001) (0.000) (0.000)

profitability 0.219∗∗∗ 0.080∗∗∗ 0.030∗∗∗ 0.008∗∗∗ 0.002∗∗∗
(0.029) (0.009) (0.003) (0.001) (0.000)

investment −0.226∗∗∗ −0.063∗∗∗ −0.022∗∗∗ −0.005∗∗∗ −0.001∗∗∗
(0.036) (0.012) (0.004) (0.001) (0.000)

dividend to book 0.539 0.072 0.018 0.003 0.001
(0.399) (0.104) (0.029) (0.006) (0.001)

beta −4.288∗∗ −0.590 −0.152 −0.034 −0.007
(2.109) (0.557) (0.166) (0.033) (0.006)

𝜓𝑖,𝑡 −0.053 −0.031 −0.006 0.05 0.136
𝜒2 Test Statistic 2.06 2.806 0.255 93.695 2030.941
Joint Test 𝑝-value 0.151 0.094 0.614 0 0

Obs. 186,986 740,624 2,217,863 9,633,930 46,520,654
𝑅2 0.044 0.014 0.005 0.003 0.014

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Table 7. Price Pass-through Regressions with Stock Fixed Effects. This table presents estimated coefficients a
greatly expanded information set, where stock fixed effects are added to the regression in (37). The regression equation
is the same, except 𝛽0 is now changed to 𝛽𝑖,0—a stock fixed effect. This specification corresponds to a greatly expanded
information set, where an investor has a stock-specific estimate of the valuation and return of each asset instead of
relying on cross-sectional relationships. Standard errors are double clustered at the asset and time period levels.

Dependent variable: 𝑟𝑡+1

(1) (2) (3) (4) (5)
Annual Quarterly Monthly Weekly Daily

Δ𝑝𝑡 0.042 0.007 −0.006 −0.053∗∗∗ −0.136∗∗∗
(0.037) (0.019) (0.011) (0.005) (0.003)

𝑏𝑡 − 𝑝𝑡 0.100∗∗∗ 0.025∗∗∗ 0.007∗∗∗ 0.001∗∗ 0.000∗∗∗
(0.020) (0.007) (0.002) (0.001) (0.000)

(𝑝𝑡 − 𝜇𝑡)/𝜎𝑡 −0.170∗∗∗ −0.034∗∗∗ −0.013∗∗∗ −0.004∗∗∗ −0.001∗∗∗
(0.042) (0.010) (0.003) (0.001) (0.000)

profitability 0.140∗∗∗ 0.060∗∗∗ 0.023∗∗∗ 0.006∗∗∗ 0.001∗∗∗
(0.026) (0.008) (0.002) (0.000) (0.000)

investment −0.144∗∗∗ −0.049∗∗∗ −0.016∗∗∗ −0.004∗∗∗ −0.001∗∗∗
(0.034) (0.012) (0.004) (0.001) (0.000)

dividend to book −0.114 −0.056 −0.031 −0.010 −0.001
(0.309) (0.091) (0.028) (0.006) (0.001)

beta −4.427 −0.288 −0.022 −0.005 −0.002
(3.019) (0.703) (0.221) (0.045) (0.008)

𝜓𝑖,𝑡 0.141 0.034 0.02 0.056 0.137
𝜒2 Test Statistic 15.397 3.46 3.147 118.936 2070.72
Joint Test 𝑝-value 0 0.063 0.076 0 0

Obs. 186,986 740,624 2,217,863 9,633,930 46,520,654
𝑅2 0.037 0.008 0.003 0.003 0.014

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

Table 8. Mean Elasticity Decomposition. In this table we decompose the mean component of demand elasticity, 𝜂𝑚,
in column (1) into the pass-through component in column (2) and the response of portfolio weights to discount rate
changes in column (3). As shown above, 𝜂𝑚 = 1 + 𝜃𝑖,𝑡 × 𝜓𝑖,𝑡 .

(1) (2) (3)
𝜂𝑚 𝜓𝑖,𝑡 𝜃𝑖,𝑡

Cross Sectional Model 0.095∗∗∗ −0.031∗∗∗ 29.230∗∗∗
(0.012) (0.000) (0.381)

Fixed Effects Model 2.581∗∗∗ 0.035∗∗∗ 45.878∗∗∗
(0.021) (0.000) (0.627)

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Table 9. Elasticity Decomposition. In this table, we decompose demand elasticity into mean and residual components.
The elasticity in column (1) is the sum of the mean and residual components in columns (2) from Table 8 and (3).
From Equation (48), the residual component in column (3) is the sum of covariance, variance, and cay components in
columns (4), (5), and (6).

(1) (2) (3) (4) (5) (6)
Elasticity Mean Residual Covariance Variance cay

Cross Sectional Model −0.058∗∗∗ 0.095∗∗∗ −0.153∗∗∗ < 10−5 < 10−5 −0.153∗∗∗
(0.014) (0.012) (0.002) (0.000) (0.000) (0.002)

Fixed Effects Model 2.434∗∗∗ 2.581∗∗∗ −0.147∗∗∗ < 10−5 < 10−5 −0.147∗∗∗
(0.019) (0.021) (0.002) (0.000) (0.000) (0.002)

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Appendix

A A Noisy Rational Expectations Model

A.1 Homogeneous private signals

This model is based on Hellwig (1980). This setting is slightly different from Grossman and
Stiglitz (1980) in that each agent observes a different signal and tries to back out the signals of
other agents from the price. Let 𝑑 ∼ N(𝜇, 𝑣𝑑) denote public information that all investors observe.
Suppose an asset has a payoff 𝛿 that, conditional on the public information, is normally distributed
with mean 𝑑 and variance 𝑣𝛿: 𝛿 | 𝑑 ∼ N (𝑑, 𝑣𝛿). Thus, it must be the case that the unconditional
distribution of 𝛿 can be written as 𝛿 ∼ N(𝜇, 𝑣𝑑 + 𝑣𝛿).

Assume each agent 𝑖 observes 𝛿 + 𝜖𝑖, where 𝜖’s are iid normal with mean zero and variance
𝑣𝜖 , and 𝜖𝑖 | 𝑑 ∼ N(0, 𝑣𝜖 ). There are 𝑁 informed agents each having CARA utility with risk
aversion parameter 𝛾. The noisy supply is denoted by 𝑍 , with normally-distributed per capita
supply 𝑧 ≡ 𝑍/𝑁: 𝑧 | 𝑑 ∼ N (𝜇𝑧, 𝑣𝑧).

Each agent’s demand is:

𝑋𝑖 =
E (𝛿 | 𝛿 + 𝜖𝑖, 𝑃, 𝑑) − 𝑃
𝛾Var (𝛿 | 𝛿 + 𝜖𝑖, 𝑃, 𝑑)

.

The conditional expectation in the numerator can be written as:

E (𝛿 | 𝛿 + 𝜖𝑖, 𝑃, 𝑑) = 𝑎0 + 𝑎𝛿 (𝛿 + 𝜖𝑖) + 𝑎𝑃𝑃.

Denote the conditional variance in the denominator, Var (𝛿 | 𝛿 + 𝜖𝑖, 𝑃, 𝑑), as 𝑣. Conjecture that the
price 𝑃 can be written as:

𝑃 = 𝑘0 + 𝑘𝛿
∑
𝑖 (𝛿 + 𝜖𝑖)
𝑁

+ 𝑘𝑧
(
𝑍

𝑁

)
.

We can write the market clearing condition as:∑︁
𝑖

𝑎0 + 𝑎𝛿 (𝛿 + 𝜖𝑖) + 𝑎𝑃𝑃 − 𝑃
𝛾𝑣

= 𝑍.
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Solving for price we get:

𝑃 =
𝑎0

1 − 𝑎𝑃
+ 𝑎𝛿

1 − 𝑎𝑃

(
𝛿 + 1

𝑁

∑︁
𝑖

𝜖𝑖

)
− 𝛾𝑣

1 − 𝑎𝑃
𝑍

𝑁
,

which implies
𝑘0 =

𝑎0
1 − 𝑎𝑃

, 𝑘𝛿 =
𝑎𝛿

1 − 𝑎𝑃
, and 𝑘𝑧 = − 𝛾𝑣

1 − 𝑎𝑃
. (A.1)

Since 𝜖𝑖’s are iid and have zero mean, by the law of large numbers in a large market (as 𝑁 → ∞),
we have:1

1
𝑁

∑︁
𝑖

𝜖𝑖 = 0. (A.2)

Explicitly calculating the conditional expectation to get 𝑎0, 𝑎𝛿, and 𝑎𝑃 and substituting in (A.1),
we have

𝑘0 =
𝛾𝑣𝜖 (𝑑𝛾𝑣𝑧𝑣𝜖 + 𝑣𝛿𝜇𝑧)

𝛾2𝑣𝑧𝑣
2
𝜖 + 𝑣𝛿

(
1 + 𝛾2𝑣𝑧𝑣𝜖

) ,
𝑘𝛿 =

𝑣𝛿
(
1 + 𝛾2𝑣𝑧𝑣𝜖

)
𝛾2𝑣𝑧𝑣

2
𝜖 + 𝑣𝛿

(
1 + 𝛾2𝑣𝑧𝑣𝜖

) ,
𝑘𝑧 = −

𝛾𝑣𝛿𝑣𝜖
(
1 + 𝛾2𝑣𝑧𝑣𝜖

)
𝛾2𝑣𝑧𝑣

2
𝜖 + 𝑣𝛿

(
1 + 𝛾2𝑣𝑧𝑣𝜖

) . (A.3)

We can then calculate 𝑎0, 𝑎𝛿, and 𝑎𝑃 by substituting in Equation (A.1).
The price is 𝑃 = 𝑘0 + 𝑘𝛿𝛿 + 𝑘𝑧𝑧, which completes the solution of the equilibrium. The 𝑋𝑖’s can

be backed out given 𝑎0, 𝑎𝛿, and 𝑎𝑃, 𝑣, and 𝑃.

Demand elasticity. To derive the demand elasticity, we take the derivative of the demand with
respect to the equilibrium price:

𝜕𝑋𝑖

𝜕𝑃
= −1 − 𝑎𝑃

𝛾𝑣
=

1
𝑘𝑧
.

From Equation (A.3),
𝜕𝑋𝑖

𝜕𝑃
= − 1

𝛾𝑣𝜖
− 𝛾𝑣𝑧𝑣𝜖

𝑣𝛿 + 𝛾2𝑣𝑧𝑣𝛿𝑣𝜖
.

1Alternatively, one can assume instead that there is a unit mass of investors and replace 1
𝑁

∑
𝑖 𝜖𝑖 ≈ 0 with

∫
𝑖
𝜖𝑖 = 0

(e.g., Van Nieuwerburgh and Veldkamp, 2010).
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If we assume the variance of per capita noisy supply, 𝑣𝑧, is small, we get

𝜕𝑋𝑖

𝜕𝑃
≈ − 1

𝛾𝑣𝜖
. (A.4)

Thus the demand in this case is more inelastic when the variance of signals is high.
How would this case compare to a model without private or public information? In that case,

agent 𝑖 demand would be:

𝑋𝑖 =
E[𝛿] − 𝑃
𝛾Var(𝛿) =

𝜇 − 𝑃
𝛾𝑣𝛿

.

So the elasticity can be written as:2
𝜕𝑋𝑖

𝜕𝑃
= − 1

𝛾𝑣𝛿
.

Therefore, aggregate demand is more inelastic (approximately) if 𝑣𝜖 > 𝑣𝛿 .
The partial derivative in the elasticity term, 𝜕𝑋𝑖/𝜕𝑃, captures the change in demand holding all

other terms fixed, in particular, public information. However, empirically, we might be interested
in how a change in prices predicts changes in demand unconditionally. In other words, we might
consider:

𝜂 ≡ −Cov(𝑋𝑖, 𝑃)
Var(𝑃) , (A.5)

which has the interpretation of a regression slope coefficient. The difference between −𝜕𝑋𝑖/𝜕𝑃
and 𝜂 is that the former describes how much a unit change in price affects demand holding all other
terms fixed, while 𝜂 describes how much a unit change in price affects demand without holding
other terms fixed.

To calculate 𝜂, note that after plugging in the equilibrium price, demand is:

𝑋𝑖 =
𝜖𝑖

𝛾𝑣𝜖
+ 𝑍

𝑁
. (A.6)

2The elasticity is defined as: − 𝜕 log(𝑋𝑖 )
𝜕 log(𝑃) = − 𝑃

𝑋𝑖

𝜕𝑋𝑖

𝜕𝑃
, but we ignore the 𝑃/𝑋𝑖 term to simplify the exposition in this

section. Clearly, if 𝜕𝑋𝑖

𝜕𝑃
≈ 0, then 𝜕 log(𝑋𝑖 )

𝜕 log(𝑃) ≈ 0.
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The variance of price in the denominator of (A.5) is:

Var(𝑃) = 𝑣𝑑 +
𝑣2
𝛿

(
1 + 𝛾2𝑣𝑧𝑣𝜖

) 2 (
𝑣𝛿 + 𝛾2𝑣𝑧𝑣

2
𝜖

)(
𝛾2𝑣𝑧𝑣

2
𝜖 + 𝑣𝛿

(
1 + 𝛾2𝑣𝑧𝑣𝜖

) ) 2︸                                   ︷︷                                   ︸
≡𝑉

= 𝑣𝑑 +𝑉.

Thus from (A.5), we have:3
𝜂 = − 𝑘𝑧𝑣𝑧

𝑣𝑑 +𝑉
. (A.7)

Importantly, if the variance of public information is large (i.e., as 𝑣𝑑 → ∞), we can show that 𝜂
approaches zero, indicating inelastic demand. This means that economically, if public information
is very volatile but not controlled for appropriately in an elasticity regression estimation, demand
will appear quite inelastic.

We emphasize that although prices change with public information 𝑑, from Equation (A.6),
investors do not adjust their demand as public information arrives. Thus when prices move in
response to public information, demand will appear very inelastic. As shown in Figure A.1,
consistent with the model, demand becomes more elastic as the public information becomes more
precise, moving from the solid to the dashed line.

Again consider the case where 𝑣𝑧 is small. In this case, we can show that

lim
𝑣𝑧→0

𝜂 = 0, (A.8)

that is, if per capita noisy supply term is small, then total variation in prices does not predict
changes in demand at all. In other words, this naive approach to elasticity estimation would
uncover a perfectly inelastic demand.

This section, with only one type of informed agent, nicely illustrates how private information
can generate inelastic demand in aggregate. However, the heterogeneity in demand elasticities is
partly driven by varying degrees of asymmetric information among agents. In the next section,
we show that a model of heterogeneous signal quality can generate a dispersion of elasticity terms
across investors.

In Figure A.1, we show the impact of private and public information on demand elasticity. As
mentioned above, demand becomes more elastic as the public signal becomes more precise, moving

3In Internet Appendix IA.1, we write out the general expression for 𝜂 and calculate the two limits discussed below.
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Figure A.1. Information and demand elasticity. This figure qualitatively shows that demand becomes more elastic
as the public signal becomes more precise. Moreover, given the precision of the public signal, demand becomes less
elastic as investors become less informed.

from the solid to the dashed line. Moreover, given the precision of the public signal (on the solid
or dashed lines) demand becomes less elastic as investors become less privately informed, which
we show in the next section.

A.2 Heterogeneous quality of information

In this section, we introduce heterogeneity in the degree of private signal quality, which creates
investors that are more/less informed. We argue that less informed investors have a lower price
elasticity. We show that, with certain parameter values, demand of fully uninformed investors
can be perfectly inelastic. Thus theoretically, heterogeneity in information quality can rationalize
both aggregate demand being relatively inelastic and the heterogeneity in demand elasticity across
investors.

The intuition for why uninformed investors have lower demand elasticity is straightforward.
These investors know that other investors receive helpful signals, while they receive relatively only
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uninformative information. Knowing this disadvantage makes uninformed investors reluctant to
trade against or with price movements.

To make this point concrete, consider an uninformed fund, Fund A.4 Suppose the fund observes
the price of Stock 1 move from $100 to $110. It could sell some of Stock 1 because of this price
increase. However, Fund A realizes that the price movement was likely driven by other investors
receiving a positive signal about Stock 1. So, it is rationally reluctant to trade against other informed
investors and will not sell any of Stock 1. Fund A could buy some shares of Stock 1, believing
that the price increase was due to other funds’ favorable private information about the asset. This
would mean that Fund A has upward-sloping demand for Stock 1. However, in the model, Fund A
rationally realizes that the market has appropriately priced Stock 1, setting the price such that the
expected return on the asset is the same as before the good news is received. Since the expected
return is the same, there is no reason for Fund A to buy more of Stock 1. So, the uninformed Fund A
does not change its holding in Stock 1 in response to the price increase, implying a perfectly inelastic
demand for the stock.

Now consider an informed fund, Fund B. Suppose it receives a noisy signal that Stock 1 has
more promising future cash flows than realized by the market and is thus undervalued at the price
of $100. Fund B, along with other informed funds, trades on this positive news, pushing the price
up to, say $110. Suppose that if the price moves up further (to say, $115), Fund B believes, given its
signal, that Stock 1 will be overvalued and sell all of its holdings. Thus a 4.5% price increase leads
to a 100% decrease in Fund B’s position, implying an elasticity of 22.2 (= 100/4.5). Therefore,
more informed Fund B is relatively more elastic than the uninformed Fund A.

In summary, relatively uninformed funds are more price inelastic because they are reluctant to
trade against or with informed investors. However, more informed funds rationally believe their
signals and trade aggressively against price movements, resulting in higher demand elasticities.
Below, we formally show that uninformed investors are more price inelastic.5

This insight is closely related to the no-trade theorem in Milgrom and Stokey (1982). As we
show below, uninformed investors are unwilling to trade no matter the price when all noise trades
are eliminated from the model. In other words, they behave perfectly inelastically. However, in
practice, some noise remains. This means, from the perspective of an uninformed trader, that some

4Fund A may be uninformed for several reasons. It could be because it focuses on providing low fees, or it may be
have other objectives such as marketing, environmental investing, etc.

5Mathematically, this model is very similar to the one in Section A.1, and thus most details are left in Internet
Appendix IA.2.
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of the price movements are driven by noise and not better informed traders. Price movements
driven by noise can be profitably traded on. Our VAR model below quantifies how much of the
variation in prices can be profitably traded on for a rational uninformed investor.

In this model, the signal has the form 𝑠𝑖 = 𝛿 + 𝜆𝑖𝜖𝑖, where 𝜆𝑖 determines agent 𝑖’s signal
quality. The agent knows his signal quality 𝜆𝑖, but 𝜖𝑖 ∼ N(0, 𝑣𝜖 ) are iid across investors. Now
Var(𝑠𝑖) = 𝑣𝛿 + 𝜆2

𝑖
𝑣𝜖 . Thus if 𝜆𝑖 → ∞, investor 𝑖 is essentially uninformed. We will consider this

case carefully below.
Like the model in Section A.1, we conjecture that an equilibrium exists such that the price has

the form:
𝑃 = 𝑘0 + 𝑘𝛿𝛿 + 𝑘𝑧

𝑍

𝑁
.

In Appendix IA.2, we verify this conjecture and provide closed-form expressions for 𝑘0, 𝑘𝛿, and
𝑘𝑧. We assume that the signals, asset’s payoff, and price have the following multivariate normal
distribution, consistent with this conjecture:


𝛿

𝑠𝑖

𝑃

 ∼ N
©­­«


𝜇

𝜇

𝑘0 + 𝑘𝛿𝜇 + 𝑘𝑧𝜇𝑧

 ,

𝑣𝛿 𝑣𝛿 𝑘𝛿𝑣𝛿

𝑣𝛿 𝑣𝛿 + 𝜆2
𝑖
𝑣𝜖 𝑘𝛿𝑣𝛿

𝑘𝛿𝑣𝛿 𝑘𝛿𝑣𝛿 𝑘2
𝛿
𝑣𝛿 + 𝑘2

𝑧𝑣𝑧


ª®®¬ .

As shown in Internet Appendix IA.2, CARA utility demand is

𝑋𝑖 =
E [𝛿 | 𝑠𝑖, 𝑃] − 𝑃
𝛾Var(𝛿 | 𝑠𝑖, 𝑃)

=
1
𝛾

[
𝑃

(
− (−1 + 𝑘𝛿) 𝑘𝛿

𝑘2
𝑧𝑣𝑧

− 1
𝑣𝛿

− 1
𝜆2
𝑖
𝑣𝜖

)
+ 𝛿 + 𝜖𝑖
𝜆2
𝑖
𝑣𝜖

+
(
− 𝑘0𝑘𝛿

𝑘2
𝑧𝑣𝑧

+ 𝜇

𝑣𝛿
− 𝑘𝛿𝜇𝑧

𝑘𝑧𝑣𝑧

)]
.

Now consider agents with heterogeneous signal qualities. Let 𝑁𝐿 investors have 𝜆𝑖 = 𝜆𝐿 signals,
which are relatively low and precise. Let 𝑁𝐻 = 𝑁 − 𝑁𝐿 investors have 𝜆𝑖 = 𝜆𝐻 signals, which
are relatively high and imprecise. The investors with 𝜆𝑖 = 𝜆𝐻 are relatively uninformed. Let
𝑛𝐿 = 𝑁𝐿/𝑁 and 𝑛𝐻 = 𝑁𝐻/𝑁 . Let 𝐻 and 𝐿 be the sets of investors that have 𝜆𝑖 = 𝜆𝐻 and 𝜆𝑖 = 𝜆𝐿
respectively.

As is common in signaling models, we assume that epsilons averages to zero across investors:

1
𝑁𝐿

∑︁
𝑖∈𝐿

𝜖𝑖 =
1
𝑁𝐻

∑︁
𝑖∈𝐻

𝜖𝑖 = 0.
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From the market-clearing condition, we have:

1
𝑁

(∑︁
𝑖∈𝐿

𝑋𝑖 +
∑︁
𝑖∈𝐻

𝑋𝑖

)
=
𝑍

𝑁
.

We now turn to examine the elasticity of investors in this model. As shown in Internet
Appendix IA.2,

𝜕𝑋𝑖

𝜕𝑃
= −𝛾−1

(
(−1 + 𝑘𝛿) 𝑘𝛿

𝑘2
𝑧𝑣𝑧

+ 1
𝑣𝛿

+ 1
𝜆2
𝑖
𝑣𝜖

)
= −

𝑛2
𝐻
𝑣𝛿𝜆

2
𝐿
+ 𝑛𝐻𝑛𝐿𝑣𝛿

(
𝜆2
𝐻
+ 𝜆2

𝐿

)
+ 𝜆2

𝐻

(
𝑛2
𝐿
𝑣𝛿 + 𝛾2𝑣𝑧𝑣𝜖

(
𝑣𝛿 + 𝜆2

𝑖
𝑣𝜖

)
𝜆2
𝐿

)
𝛾𝜆2

𝑖
𝑣𝛿𝑣𝜖

(
𝑛2
𝐻
𝜆2
𝐿
+ 𝑛𝐻𝑛𝐿

(
𝜆2
𝐻
+ 𝜆2

𝐿

)
+ 𝜆2

𝐻

(
𝑛2
𝐿
+ 𝛾2𝑣𝑧𝑣𝜖𝜆

2
𝐿

) ) . (A.9)

Similar to the model in Section A.1, if the variance of the per capita noisy supply, 𝑣𝑧, is low,
we immediately get:

lim
𝑣𝑧→0

𝜕𝑋𝑖

𝜕𝑃
= − 1

𝛾𝜆2
𝑖
𝑣𝜖
. (A.10)

Thus, if we consider a relatively less informed investor with 𝜆𝑖 = 𝜆𝐻 , and 𝜆𝐻 is very large (i.e., the
investor is essentially uninformed), then

𝜕𝑋𝑖

𝜕𝑃
≈ 0.

This confirms the intuition given above that uninformed investors are relatively inelastic. We focus
in particular on the elasticity of uninformed investors in our empirical section. It is not necessary
to assume 𝑣𝑧 ≈ 0 to get this result. We can show that

lim
𝜆𝐻→∞

𝜕𝑋𝐻

𝜕𝑃
= −

𝛾𝑣𝑧𝑣𝜖𝜆
2
𝐿

𝑣𝛿
(
𝑛𝐻𝑛𝐿 + 𝑛2

𝐿
+ 𝛾2𝑣𝑧𝑣𝜖𝜆

2
𝐿

) . (A.11)

Thus if either 𝑣𝑧, 𝑣𝜖 , or 𝜆𝐿 are close to zero, then 𝜕𝑋𝑖
𝜕𝑃

≈ 0.
If 𝑣𝜖 or 𝜆𝐿 are zero, this means that the informed investors are perfectly informed. Thus for

the uninformed investors, trading against these price movements means trading against perfectly
informed investors. The uninformed investors realize that this is a losing gambit and rationally
become perfectly inelastic.
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Likewise, when 𝑣𝑧 is close to zero, this means that all price movements from the uninformed
investors’ point of view do not change expected returns. In other words, if 𝑣𝑧 is large, this means
that much of the price variation is driven by noise and can be profitably traded on. When 𝑣𝑧 is
close to zero, all price variation is driven by informed investors and thus uninformed investors are
reluctant to trade against price movements.

One of the fundamental insights from asset pricing is that price movements must either predict
changes in expected returns or cash flows (Campbell and Shiller, 1988; Cochrane, 2008). As we
discussed above, from the perspective of an uninformed investor in this inelastic equilibrium, price
movements fail to predict changes in next period expected returns. Using an identity very similar to
the classic Campbell-Shiller decomposition, we elucidate the relationship between dividend growth
and expected returns fluctuations predicted by changes in today’s price from the point of view of
an uninformed investor.

In the next section, we estimate the demand elasticity for an uninformed investor in a VAR using
the characteristic-based demand system of KY.

B Proof of Proposition 1

In this proof, we drop the 𝑡 subscripts and tildes for notational simplicity. Recall that for positive
portfolio weights, 𝑤𝑖 > 0, we have:

𝜃𝑖 ≡
𝜕 log(𝑤𝑖)
𝜕𝜇𝑖

=
𝜏𝑖

𝜄′
𝑖
Σ−1𝜇

(B.1)

where 𝜏𝑖 is the 𝑖𝑡ℎ term along the diagonal of the precision matrix (inverse of the covariance matrix).
Without loss of generality, just consider the last asset, asset 𝑁 . Subdivide the matrix into blocks

Σ =

[
Σ−𝑁,−𝑁 Σ−𝑁

Σ′
−𝑁 𝜎2

𝑁

]
(B.2)

Using the block diagonal matrix formula, note that:

Σ−1 =

[
. . . . . .

−𝜏𝑁Σ′
−𝑁Σ

−1
−𝑁,−𝑁 𝜏𝑁

]
(B.3)
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where we fill in “. . .” above because these terms are ultimately not used below. In other words, we
care only about this single row of the precision matrix. Then, calculating 𝜃𝑁 we have:

𝜃𝑁 =
𝜏𝑁

−𝜏𝑁Σ′
−𝑁Σ

−1
−𝑁,−𝑁𝜇−𝑁 + 𝜏𝑁𝜇𝑁

(B.4)

=
1

𝜇𝑁 − Σ′
−𝑁Σ

−1
−𝑁,−𝑁𝜇−𝑁

(B.5)

Recall that 𝛽𝑁,−𝑁 = Σ′
−𝑁Σ

−1
−𝑁,−𝑁 , which is the beta of asset 𝑁 with all other assets as factors. Also

recall that the corresponding alpha is defined as:

𝛼𝑁,−𝑁 ≡ 𝜇𝑁 − 𝛽𝑁,−𝑁𝜇−𝑁 (B.6)

Thus
𝜃𝑖 = 𝛼

−1
𝑖 . (B.7)

Notice that this formula goes back to using 𝑖, since the proof above is without loss of generality.
In words, this formula shows that how much investors trade on expected returns is just the

inverse of how big they think the alpha is of that asset compared to all others. If they think the
assets has fairly large alpha, then they will be relatively inelastic. If the investors think that alpha
will be quite small, the elasticity will be quite large.

C Demand Elasticity in a Standard Asset Pricing Model

To fix ideas, consider a static partial equilibrium model.6 Suppose there are 𝑁 assets, indexed
by 𝑛, each with supply 𝑢𝑛. Assume the risk-free rate is constant, normalized to 0. Dividends for
stock 𝑛 is assumed to have the following form:

𝐷𝑛 = 𝑎𝑛 + 𝑏𝑛𝐹 + 𝑒𝑛,

where 𝐹 ∼ N
(
0, 𝜎2

𝑚

)
is the common factor and 𝑒𝑛 ∼ N

(
0, 𝜎2

𝑒

)
represents the idiosyncratic risk.

6This simple model and its standard calibration is from Section II.A. of Petajisto (2009). It was also discussed
during the Workshop on Demand System Asset Pricing organized by Ralph Koĳen and Motohiro Yogo in May, 2022.
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There is a representative investor with constant absolute risk aversion (CARA) preferences, with
wealth 𝑊 and risk aversion 𝛾 who chooses portfolio weights for stocks 𝑛 = 1, . . . , 𝑁 to maximize
her utility subject to the budget constraint:

max
𝛼1,...,𝛼𝑁

E [− exp(−𝛾𝑊)] ,

subject to 𝑊 = 𝑊0 +
𝑁∑︁
𝑛=1

𝛼𝑛 (𝐷𝑛 − 𝑃𝑛) ,

where 𝑃𝑛 is the price of stock 𝑛. From the first-order condition for stock 𝑛 and market-clearing, we
have:

𝑃𝑛 = 𝑎𝑛 − 𝛾
[
𝜎2
𝑚

(∑︁
𝑚≠𝑛

𝑢𝑚𝑏𝑚

)
𝑏𝑛 +

(
𝜎2
𝑚𝑏

2
𝑛 + 𝜎2

𝑒

)
𝑢𝑛

]
Consider the following calibration. Suppose there are 𝑁 = 1000 stocks, each with unit supply

𝑢𝑛 = 1. Also let 𝑎𝑛 = 105, 𝑏𝑛 = 100, 𝜎2
𝑚 = 0.04, 𝜎2

𝑒 = 900, and 𝛾 = 1.25×10−5. These parameters
imply a market risk premium of 5%, all stocks having a price of 100, a market beta of 1, and a
standard deviation of idiosyncratic return of 30%.

Consider a supply shock of −10% (𝑢𝑛 = 0.9) for one stock. This leads to a price increase of
only 0.1621 bps. Part of this increase is due to the reduction in the aggregate market risk premium
(there is less aggregate risk and all stocks increase by 0.05 bps.) So the differential impact is only
0.11 bps, meaning the demand curve is virtually flat. In this setting, the micro price elasticity of
demand is very large:7

−Δ𝑄/𝑄
Δ𝑃/𝑃 =

0.10
1.621𝑒 − 5

≈ 6168,

implying a negligible micro multiplier (the inverse of micro demand elasticity). Thus, in standard
asset pricing models demand curves are virtually flat.

Macro multipliers implied from frictionless asset pricing models are usually quite small as
well.8 As discussed in Gabaix and Koĳen (2021), “in traditional, elastic asset pricing models the
macro elasticity is around 10 to 20.”9

7In a general equilibrium setting, Johnson (2006) perturbs the risky asset supply and finds finite macro elasticity
even in the frictionless Lucas economy.

8One notable exception is the general equilibrium model in Johnson (2006). He studies the equilibrium price
change in response to a perturbation in the risky asset supply, allowing for the interest rate to vary when stock prices
change.

9Appendix F.4 in Gabaix and Koĳen (2021) provides a detailed discussion.
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Empirically, demand curves are surprisingly inelastic compared to standard models both at the
micro (Koĳen and Yogo, 2019) and macro (Gabaix and Koĳen, 2021) levels.10 As mentioned
above, estimates of micro and macro demand elasticities, around 1 and 0.2 respectively, are much
lower than what standard frictionless theories suggest.

D Idiosyncratic Volatility and Elasticity

One may wonder why idiosyncratic volatility does not directly enter the elasticity formula given
in Equation (21). This might initially initially seem surprising, so we discuss this further here.

To explain this, we consider a simple thought-experiment. Assume there are three types of
assets: assets A, asset B, and other assets, and all assets have the same pass-through. For simplicity
assume the pass-throughs are all equal one, i.e., 𝜓𝐴 = 𝜓𝐵 = 𝜓other = 1. Assume there is a single
factor for returns, so that the covariance matrix is just:

Σ = 𝛽Ω𝛽′ + Σ𝜖 , (D.1)

where 𝛽 is just a vector of single-factor loadings, Ω is the variance of the factor, and Σ𝜖 is a diagonal
matrix of idiosyncratic variance terms. For simplicity, we set the betas equal to 1 for all assets, and
the volatility of the factor to 20%. Assume asset A has an idiosyncratic volatility of 100%, asset B
has an idiosyncratic volatility of just 1%, and the other assets all have idiosyncratic volatility terms
of 20%. For simplicity, we set the risk-free rate to zero.

Critically, we assume that the unspanned expected excess returns of all assets are set to 1%.
Thus, by Proposition 1, since the unspanned returns and price pass-throughs are equal, the elasticity
of the investor would be identical for all assets, regardless of the large differences in idiosyncratic
volatility. Why is this?

First, we note that assuming identical unspanned expected excess returns across assets and this
covariance matrix pins down the expected excess returns. Solving for these expected excess returns,
we find that the asset A’s excess return must be higher than B’s to maintain identical elasticity terms.
Therefore, the different idiosyncratic volatility terms do not matter for the elasticity. These terms
affect the beta and spanning. In Figure A.2, we plot the return of asset A minus the return of asset

10Li and Lin (2022) show that prices are more inelastic when demand is less diversifiable.
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Figure A.2. Expected Returns Under Idiosyncratic Volatility Thought-Experiment
This figures show the return of asset A minus the return on asset B, as a function of the number of assets. Note that
there is only ever one asset A and one asset B, and changing the number of assets just changes the number of “other
assets.”

B, as a function of the number of assets. Changing the number of assets just changes the number
of “other” assets, since there is only one asset A and one asset B.

However, this plot shows that while the return of asset A must be higher than the return of asset
B in order to maintain this identical elasticity, this difference becomes smaller as we increase the
number of assets. Is it the case that idiosyncratic volatility does not matter as much with increased
opportunities to diversify?

It turns out that idiosyncratic volatility still matters, even with many assets. In Figure A.3, we
plot the ratio of the optimal portfolio weight for asset A divided by the optimal portfolio weight for
asset B, as a function of the number of assets. Because of the higher idiosyncratic volatility of asset
A, we should expect asset A to have a smaller portfolio weight to maintain the higher elasticity
across assets. This plot shows that this is indeed the case, and in fact this divergence in optimal
portfolio weights get stronger as the number of assets increases. In other words, the fraction of
these portfolio weights gets decreases as the number of assets increases. What is happening here?
As the ability to diversify increases, asset A becomes even less appealing, and while the difference
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Figure A.3. Ratio of Portfolio Weights Under Idiosyncratic Volatility Thought-Experiment
This figures the optimal portfolio weight of asset A divided by the optimal portfolio weight of asset B, as a function of
the number of assets. Note that there is only ever one asset A and one asset B, and changing the number of assets just
changes the number of “other assets.”

in means above becomes smaller, the divergence in portfolio weights must become larger to still
account for identical demand elasticity values.

It is important to realize that the risk-aversion drops out of the demand function because elasticity
values are in terms of percentage changes, and the idiosyncratic volatility term is similar. A higher
risk-aversion makes investors less willing to invest in risky assets, but in terms of percentage
changes, it does not affect the elasticity. A 1% change in the price creates smaller demand
differences in levels with higher risk aversion values, but does not affect the elasticity because
these are percentage changes. The idiosyncratic volatility term is similar. It obviously matters for
demand, but idiosyncratic volatility term is largely a level term, like risk aversion, that drops out
when taking logs. However, it should be noted that the idiosyncratic term does affect spanning
of other assets, and so the idiosyncratic term does still matter as opposed to the risk-aversion
coefficient, which is strictly a level term and really does just drop out of the elasticity.

In summary, idiosyncratic volatility does of course matter. Idiosyncratic volatility largely drops
out of the elasticity decomposition in Proposition 1, since idiosyncratic volatility is largely a level
term in demand. However, this thought experiment shows that with an assumed covariance structure
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but identical elasticity values, the expected returns still must be different in order to justify these
identical elasticity terms. Also, the weight divergence is also required to maintain the identical
elasticity terms.

E Elasticity Estimates in Bond Markets

As discussed earlier, it is very challenging to assume perfect pass-through and estimate D1 in
the stock market, but there are existing estimates that we would argue are close to estimating D1 in
the bond market. Recall that estimating D1 requires price shocks that are sure to revert in the short
term, i.e., 𝜓 ≈ 1. This condition is only satisfied by bonds with high credit quality and very short
maturity.11 For instance, consider U.S. Treasury bills that will mature within a year. Because U.S.
Treasuries are considered risk-free, any price dislocations must revert by the time of maturity.

Similar logic can also apply, to a large extent, to very highly rated corporate bonds with short
maturity. Sufficiently highly rated bonds have a close-to-zero chance of defaulting within a few
months. For instance, S&P’s 2021 Annual Global Corporate Default And Rating Transition Study
shows that, while bonds rated at A- may default in the long run, the probability that they default
within a year is only 0.07%. Bonds rated higher have even lower default probabilities.12Since 1980,
no corporate bond rated AA+ or AAA has ever defaulted within a year. Therefore, it is reasonable to
think that investors would largely recognize price movements in these bonds as reflecting short-term
discount rate changes that are sure to revert quickly. The same, of course, is not true for lower-rated
bonds for which price movements may be associated with higher default probabilities.

As we discussed above, D1 elasticity can be large. Taking the reciprocal of that, price multipliers
in these securities should be very small. Extant estimates are consistent with this and we summarize
them briefly below.

1. Short-term U.S. Treasury bonds. Lou, Yan, and Zhang (2013) document that yields of
two-, five-, and ten-year U.S. Treasury bonds rise temporarily around U.S. Treasury bond
auctions. The price impacts in their study imply demand elasticities in the range of 10 to 30.
However, they do not find measurable price impacts for shorter-term Treasuries, indicating
that demand elasticities in those securities are much higher than 30.

11The pass-throughs for Treasury and liquid investment-grade bonds are propositional to the bonds’ duration,
consistent with results in Li et al. (2022).

12See Table 9 in 2021 Annual Global Corporate Default And Rating Transition Study, available here.
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2. Short-term developed country government bonds. Koĳen and Yogo (2020) examine
cross-country demand for stocks and government bonds using a structural framework. For
short-term government bond debt, they estimate demand elasticities of 42.

3. Highly rated short-term corporate bonds. Using mutual fund flow-induced trading as
instruments, Li et al. (2022) find close to zero price impact of trading in short-term investment
grade bonds, which is consistent with a very high D1.

Overall, existing results indicate that in settings closer to truly estimating D1, the results all
indicate significantly larger demand elasticities than that estimated in KY. However, it’s important
to approach this comparison with caution, as these estimates do not pertain to the stock market.

We now turn back to the stock market, and proceed to fit a structural model of returns in the
cross-section, and show that a structural model captures both low pass-throughs and high asset
inimitability, delivering relatively low elasticity values even in a friction-free environment. While
trading costs, information asymmetry, and other frictions can reduce the demand elasticity further,
we show that the low pass-throughs and high unspanned returns are first order to the explanation
of inelastic demand. Before describing the structural model and estimation results, we describe the
data.

F Shrinkage Portfolios: Full Results

Table A.1 presents the full results of the exercise in Section 4.2. We consider a large range
of shrinkage weights, ℎ = 0.05, 0.1, ..., 0.95. The weighted average elasticity is about 9.2 for low
levels of covariance shrinkage, and decreases to about 7.5 for ℎ = 0.95. The median elasticity has
a similar trend. The out-of-sample Sharpe ratios range from just below 1 to below 1.3, depending
on the shrinkage weight.
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Table A.1. Shrinkage Portfolios Results. This table is similar to similar to Table 3, but shows results for a larger
range of shrinkage weights.

Shrinkage Weight: 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50

Sharpe ratio 0.957 0.971 0.986 1.001 1.017 1.033 1.050 1.068 1.087 1.106
Expected Return 0.015 0.015 0.015 0.015 0.016 0.016 0.016 0.016 0.016 0.016
Unspanned Return 0.006 0.006 0.006 0.006 0.006 0.006 0.006 0.006 0.006 0.006
Median Elasticity 8.331 8.341 8.350 8.359 8.369 8.379 8.388 8.394 8.403 8.408
Avg. Elasticity (all pos. weights) 93.580∗∗∗ 73.382∗∗∗ 84.846∗∗∗ 127.410∗∗∗ 196.684∗ 130.717∗∗ 104.621∗∗∗ 83.858∗∗∗ 404.489 68.124∗∗∗

(23.721) (7.587) (11.246) (36.950) (101.356) (53.660) (33.545) (10.539) (337.335) (3.977)
Avg. Elasticity (top 99.9%) 18.792∗∗∗ 18.816∗∗∗ 18.791∗∗∗ 18.782∗∗∗ 18.782∗∗∗ 18.800∗∗∗ 18.792∗∗∗ 18.770∗∗∗ 18.775∗∗∗ 18.740∗∗∗

(0.673) (0.674) (0.671) (0.671) (0.670) (0.671) (0.670) (0.668) (0.668) (0.664)
Avg. Elasticity (top 99%) 13.185∗∗∗ 13.201∗∗∗ 13.209∗∗∗ 13.218∗∗∗ 13.228∗∗∗ 13.235∗∗∗ 13.232∗∗∗ 13.216∗∗∗ 13.193∗∗∗ 13.162∗∗∗

(0.460) (0.461) (0.461) (0.462) (0.462) (0.462) (0.461) (0.460) (0.458) (0.455)
Avg. Elasticity (top 97.5%) 11.130∗∗∗ 11.140∗∗∗ 11.152∗∗∗ 11.160∗∗∗ 11.166∗∗∗ 11.166∗∗∗ 11.160∗∗∗ 11.148∗∗∗ 11.131∗∗∗ 11.104∗∗∗

(0.383) (0.383) (0.384) (0.384) (0.384) (0.384) (0.383) (0.382) (0.381) (0.378)
Avg. Elasticity (top 95%) 9.632∗∗∗ 9.642∗∗∗ 9.650∗∗∗ 9.656∗∗∗ 9.659∗∗∗ 9.659∗∗∗ 9.654∗∗∗ 9.645∗∗∗ 9.632∗∗∗ 9.610∗∗∗

(0.326) (0.327) (0.327) (0.327) (0.327) (0.327) (0.327) (0.326) (0.325) (0.323)
Weighted Avg. Elasticity 9.208∗∗∗ 9.216∗∗∗ 9.218∗∗∗ 9.222∗∗∗ 9.223∗∗∗ 9.220∗∗∗ 9.211∗∗∗ 9.196∗∗∗ 9.176∗∗∗ 9.149∗∗∗

(0.323) (0.323) (0.323) (0.323) (0.322) (0.322) (0.320) (0.318) (0.316) (0.314)

Shrinkage Weight: 0.55 0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.95

Sharpe ratio 1.127 1.148 1.171 1.195 1.219 1.244 1.267 1.282 1.268
Expected Return 0.016 0.016 0.016 0.016 0.016 0.017 0.017 0.017 0.017
Unspanned Return 0.006 0.006 0.006 0.006 0.006 0.007 0.007 0.007 0.007
Median Elasticity 8.407 8.400 8.388 8.367 8.328 8.258 8.147 7.949 7.567
Avg. Elasticity (all pos. weights) 116.051∗∗∗ 74.290∗∗∗ 111.002∗∗∗ 174.518∗∗ 68.808∗∗∗ 98.231∗∗∗ 71.234∗∗∗ 71.066∗∗∗ 74.132∗∗∗

(30.678) (7.487) (24.855) (84.989) (4.628) (25.917) (7.180) (8.204) (7.815)
Avg. Elasticity (top 99.9%) 18.649∗∗∗ 18.529∗∗∗ 18.364∗∗∗ 18.183∗∗∗ 17.932∗∗∗ 17.622∗∗∗ 17.131∗∗∗ 16.432∗∗∗ 15.241∗∗∗

(0.657) (0.649) (0.637) (0.626) (0.610) (0.591) (0.562) (0.526) (0.468)
Avg. Elasticity (top 99%) 13.109∗∗∗ 13.041∗∗∗ 12.950∗∗∗ 12.832∗∗∗ 12.664∗∗∗ 12.433∗∗∗ 12.121∗∗∗ 11.641∗∗∗ 10.834∗∗∗

(0.451) (0.446) (0.439) (0.432) (0.421) (0.407) (0.388) (0.362) (0.324)
Avg. Elasticity (top 97.5%) 11.068∗∗∗ 11.018∗∗∗ 10.951∗∗∗ 10.855∗∗∗ 10.718∗∗∗ 10.525∗∗∗ 10.257∗∗∗ 9.855∗∗∗ 9.194∗∗∗

(0.375) (0.372) (0.367) (0.360) (0.352) (0.339) (0.324) (0.302) (0.270)
Avg. Elasticity (top 95%) 9.581∗∗∗ 9.540∗∗∗ 9.486∗∗∗ 9.407∗∗∗ 9.295∗∗∗ 9.133∗∗∗ 8.901∗∗∗ 8.558∗∗∗ 7.999∗∗∗

(0.320) (0.317) (0.313) (0.308) (0.300) (0.290) (0.276) (0.257) (0.230)
Weighted Avg. Elasticity 9.108∗∗∗ 9.053∗∗∗ 8.985∗∗∗ 8.895∗∗∗ 8.775∗∗∗ 8.610∗∗∗ 8.384∗∗∗ 8.051∗∗∗ 7.518∗∗∗

(0.310) (0.306) (0.301) (0.294) (0.286) (0.275) (0.262) (0.244) (0.218)

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Internet Appendix

IA.1 Homogeneous Signal Quality Model with Public Informa-
tion

To reiterate the main text, there is a signal 𝑠𝑖 = 𝛿 + 𝜖𝑖. The agent knows his signal quality 𝜆𝑖,
but 𝜖𝑖 ∼ N(0, 𝑣𝜖 ) are iid across investors.

We conjecture that price is linear in fundamental and per-capita noisy supply:

𝑃 = 𝑘0 + 𝑘𝛿𝛿 + 𝑘𝑧
𝑍

𝑁
.

Define 
𝛿

𝑠𝑖

𝑃

 ∼ N
©­­«


𝑑

𝑑

𝑘0 + 𝑘𝛿𝑑 + 𝑘𝑧𝜇𝑧

 ,

𝑣𝛿 𝑣𝛿 𝑘𝛿𝑣𝛿

𝑣𝛿 𝑣𝛿 + 𝑣𝜖 𝑘𝛿𝑣𝛿

𝑘𝛿𝑣𝛿 𝑘𝛿𝑣𝛿 𝑘2
𝛿
𝑣𝛿 + 𝑘2

𝑧𝑣𝑧


ª®®¬

Thus

E[𝛿 | 𝑠𝑖, 𝑃] = 𝑑 +
[
𝑣𝛿 𝑘𝛿𝑣𝛿

] [
𝑣𝛿 + 𝑣𝜖 𝑘𝛿𝑣𝛿

𝑘𝛿𝑣𝛿 𝑘2
𝛿
𝑣𝛿 + 𝑘2

𝑧𝑣𝑧

]−1 [
𝛿 + 𝜖𝑖 − 𝑑

𝑃 − 𝑘0 − 𝑘𝛿𝑑 − 𝑘𝑧𝜇𝑧

]
=

(𝑝 − 𝑘0) 𝑘𝛿𝑣𝛿𝑣𝜖 + 𝑘2
𝑧𝑣𝑧 ((𝛿 + 𝜖𝑖)𝑣𝛿 + 𝑑𝑣𝜖 ) − 𝑘𝑧𝑘𝛿𝑣𝛿𝑣𝜖𝜇𝑧

𝑘2
𝛿
𝑣𝛿𝑣𝜖 + 𝑘2

𝑧𝑣𝑧 (𝑣𝛿 + 𝑣𝜖 )

Var(𝛿 | 𝑠𝑖, 𝑃) = 𝑣𝛿 −
[
𝑣𝛿 𝑘𝛿𝑣𝛿

] [
𝑣𝛿 + 𝑣𝜖 𝑘𝛿𝑣𝛿

𝑘𝛿𝑣𝛿 𝑘2
𝛿
𝑣𝛿 + 𝑘2

𝑧𝑣𝑧

]−1 [
𝑣𝛿

𝑘𝛿𝑣𝛿

]
=

𝑘2
𝑧𝑣𝑧𝑣𝛿𝑣𝜖

𝑘2
𝛿
𝑣𝛿𝑣𝜖 + 𝑘2

𝑧𝑣𝑧 (𝑣𝛿 + 𝑣𝜖 )

So
𝛿 | 𝑠𝑖, 𝑃 ∼ N (E [𝛿 | 𝑠𝑖, 𝑃] ,Var(𝛿 | 𝑠𝑖, 𝑃))
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The CARA demand is:

𝑋𝑖 =
E[𝛿 | 𝑠𝑖, 𝑃] − 𝑃
𝛾Var(𝛿 | 𝑠𝑖, 𝑃)

=

𝑃

(
− (−1+𝑘 𝛿)𝑘 𝛿

𝑘2
𝑧𝑣𝑧

− 1
𝑣 𝛿

− 1
𝑣 𝜖

)
𝛾

+ 𝛿

𝛾𝑣𝜖
+ 𝜖𝑖

𝛾𝑣𝜖
+
− 𝑘0𝑘 𝛿
𝑘2
𝑧𝑣𝑧

+ 𝑑
𝑣 𝛿

− 𝑘 𝛿𝜇𝑧
𝑘𝑧𝑣𝑧

𝛾
.

We can write average demand as

1
𝑁

∑︁
𝑖

𝑋𝑖 = 𝑏0 + 𝑏𝑝𝑝 + 𝑏𝛿𝛿

where

𝑏0 =

− 𝑘0𝑘 𝛿
𝑘2
𝑧𝑣𝑧

+ 𝑑
𝑣 𝛿

− 𝑘 𝛿𝜇𝑧
𝑘𝑧𝑣𝑧

𝛾

𝑏𝑝 =

(
− (−1+𝑘 𝛿)𝑘 𝛿

𝑘2
𝑧𝑣𝑧

− 1
𝑣 𝛿

− 1
𝑣 𝜖

)
𝛾

𝑏𝛿 =
1
𝛾𝑣𝜖

To solve the model completely, we must solve the following equations:

𝑘0 = − 𝑏0
𝑏𝑝

𝑘𝛿 = − 𝑏𝛿
𝑏𝑝

𝑘𝑧 =
1
𝑏𝑝

2



Solving this system of equations yields

𝑘0 =
𝛾𝑣𝜖 (𝑑𝛾𝑣𝑧𝑣𝜖 + 𝑣𝛿𝜇𝑧)

𝛾2𝑣𝑧𝑣
2
𝜖 + 𝑣𝛿

(
1 + 𝛾2𝑣𝑧𝑣𝜖

) ,
𝑘𝛿 =

𝑣𝛿
(
1 + 𝛾2𝑣𝑧𝑣𝜖

)
𝛾2𝑣𝑧𝑣

2
𝜖 + 𝑣𝛿

(
1 + 𝛾2𝑣𝑧𝑣𝜖

) ,
𝑘𝑧 = −

𝛾𝑣𝛿𝑣𝜖
(
1 + 𝛾2𝑣𝑧𝑣𝜖

)
𝛾2𝑣𝑧𝑣

2
𝜖 + 𝑣𝛿

(
1 + 𝛾2𝑣𝑧𝑣𝜖

) . (IA.1.1)

We can calculate 𝜂 as shown in the text. If we calculate it out fully, we have, once we plug in
all the constants:

𝜂 =
𝛾𝑣𝑧𝑣𝛿𝑣𝜖

(
1 + 𝛾2𝑣𝑧𝑣𝜖

) (
𝛾2𝑣𝑧𝑣

2
𝜖 + 𝑣𝛿

(
1 + 𝛾2𝑣𝑧𝑣𝜖

) )
𝑣2
𝛿

(
1 + 𝛾2𝑣𝑧𝑣𝜖

) 2 (
𝑣𝛿 + 𝛾2𝑣𝑧𝑣

2
𝜖

)
+ 𝑣𝑑

(
𝛾2𝑣𝑧𝑣

2
𝜖 + 𝑣𝛿

(
1 + 𝛾2𝑣𝑧𝑣𝜖

) ) 2
(IA.1.2)

thus it’s clear that
lim
𝑣𝑑→∞

𝜂 = 0 and lim
𝑣𝑧→0

𝜂 = 0. (IA.1.3)

IA.2 Heterogeneous Signal Quality

To reiterate the main text, there is a signal 𝑠𝑖 = 𝛿 + 𝜆𝑖𝜖𝑖. The agent knows his signal quality 𝜆𝑖,
but 𝜖𝑖 ∼ N(0, 𝑣𝜖 ) are iid across investors. Now Var(𝑠𝑖) = 𝑣𝛿 + 𝜆2

𝑖
𝑣𝜖 . Thus if 𝜆𝑖 is quite large, then

investor 𝑖 is essentially uninformed.
We conjecture that price is linear in fundamental and per-capita noisy supply:

𝑃 = 𝑘0 + 𝑘𝛿𝛿 + 𝑘𝑧
𝑍

𝑁
.

Define 
𝛿

𝑠𝑖

𝑃

 ∼ N
©­­«


𝜇

𝜇

𝑘0 + 𝑘𝛿𝜇 + 𝑘𝑧𝜇𝑧

 ,

𝑣𝛿 𝑣𝛿 𝑘𝛿𝑣𝛿

𝑣𝛿 𝑣𝛿 + 𝜆2
𝑖
𝑣𝜖 𝑘𝛿𝑣𝛿

𝑘𝛿𝑣𝛿 𝑘𝛿𝑣𝛿 𝑘2
𝛿
𝑣𝛿 + 𝑘2

𝑧𝑣𝑧


ª®®¬
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Thus

E[𝛿 | 𝑠𝑖, 𝑃] = 𝜇 +
[
𝑣𝛿 𝑘𝛿𝑣𝛿

] [
𝑣𝛿 + 𝜆2

𝑖
𝑣𝜖 𝑘𝛿𝑣𝛿

𝑘𝛿𝑣𝛿 𝑘2
𝛿
𝑣𝛿 + 𝑘2

𝑧𝑣𝑧

]−1 [
𝛿 + 𝜆𝑖𝜖𝑖 − 𝜇

𝑃 − 𝑘0 − 𝑘𝛿𝜇 − 𝑘𝑧𝜇𝑧

]
=
𝜆2
𝑖
(𝑝 − 𝑘0) 𝑘𝛿𝑣𝛿𝑣𝜖 + 𝑘2

𝑧𝑣𝑧
(
(𝛿 + 𝜖𝑖)𝑣𝛿 + 𝜆2

𝑖
𝜇𝑣𝜖

)
− 𝜆2

𝑖
𝑘𝑧𝑘𝛿𝑣𝛿𝑣𝜖𝜇𝑧

𝜆2
𝑖
𝑘2
𝛿
𝑣𝛿𝑣𝜖 + 𝑘2

𝑧𝑣𝑧
(
𝑣𝛿 + 𝜆2

𝑖
𝑣𝜖

)
Var(𝛿 | 𝑠𝑖, 𝑃) = 𝑣𝛿 −

[
𝑣𝛿 𝑘𝛿𝑣𝛿

] [
𝑣𝛿 + 𝜆2

𝑖
𝑣𝜖 𝑘𝛿𝑣𝛿

𝑘𝛿𝑣𝛿 𝑘2
𝛿
𝑣𝛿 + 𝑘2

𝑧𝑣𝑧

]−1 [
𝑣𝛿

𝑘𝛿𝑣𝛿

]
=

𝜆2
𝑖
𝑘2
𝑧𝑣𝑧𝑣𝛿𝑣𝜖

𝜆2
𝑖
𝑘2
𝛿
𝑣𝛿𝑣𝜖 + 𝑘2

𝑧𝑣𝑧
(
𝑣𝛿 + 𝜆2

𝑖
𝑣𝜖

)
So

𝛿 | 𝑠𝑖, 𝑃 ∼ N (E [𝛿 | 𝑠𝑖, 𝑃] ,Var(𝛿 | 𝑠𝑖, 𝑃))

The CARA demand is:

𝑋𝑖 =
E[𝛿 | 𝑠𝑖, 𝑃] − 𝑃
𝛾Var(𝛿 | 𝑠𝑖, 𝑃)

=

𝑃

(
− (−1+𝑘 𝛿)𝑘 𝛿

𝑘2
𝑧𝑣𝑧

− 1
𝑣 𝛿

− 1
𝜆2
𝑖
𝑣 𝜖

)
𝛾

+ 𝛿

𝛾𝜆2
𝑖
𝑣𝜖

+ 𝜖𝑖

𝛾𝜆2
𝑖
𝑣𝜖

+
− 𝑘0𝑘 𝛿
𝑘2
𝑧𝑣𝑧

+ 𝜇

𝑣 𝛿
− 𝑘 𝛿𝜇𝑧

𝑘𝑧𝑣𝑧

𝛾
.

Again, reiterating the main text, consider heterogeneous signal quality. Let 𝑁𝐿 investors
have 𝜆𝑖 = 𝜆𝐿 signals, which are relatively low and precise. Let 𝑁𝐻 = 𝑁 − 𝑁𝐿 investors have
𝜆𝑖 = 𝜆𝐻 signals, which are relatively high and imprecise. The investors with 𝜆𝑖 = 𝜆𝐻 are relatively
uninformed. Let 𝑛𝐿 = 𝑁𝐿/𝑁 and 𝑛𝐻 = 𝑁𝐻/𝑁 . Let 𝐻 and 𝐿 be the sets of investors that have
𝜆𝑖 = 𝜆𝐻 and 𝜆𝑖 = 𝜆𝐿 respectively.

Then assume both
1
𝑁𝐿

∑︁
𝑖∈𝐿

𝜖𝑖 =
1
𝑁𝐻

∑︁
𝑖∈𝐻

𝜖𝑖 = 0

Equilibrium is of course
1
𝑁

(∑︁
𝑖∈𝐿

𝑋𝑖 +
∑︁
𝑖∈𝐻

𝑋𝑖

)
=
𝑍

𝑁
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We can write demand as
1
𝑁

(∑︁
𝑖∈𝐿

𝑋𝑖 +
∑︁
𝑖∈𝐻

𝑋𝑖

)
= 𝑏0 + 𝑏𝑝𝑝 + 𝑏𝛿𝛿

where

𝑏0 =
(𝑛𝐻 + 𝑛𝐿)

(
𝜇𝑘2

𝑧𝑣𝑧 − 𝑘0𝑘𝛿𝑣𝛿 − 𝑘𝑧𝑘𝛿𝑣𝛿𝜇𝑧
)

𝛾𝑘2
𝑧𝑣𝑧𝑣𝛿

𝑏𝑝 = 𝛾
−1

[
− (−1 + 𝑘𝛿) 𝑘𝛿 (𝑛𝐻 + 𝑛𝐿)

𝑘2
𝑧𝑣𝑧

+ 𝑛𝐻

(
− 1
𝑣𝛿

− 1
𝑣𝜖𝜆

2
𝐻

)
+ 𝑛𝐿

(
− 1
𝑣𝛿

− 1
𝑣𝜖𝜆

2
𝐿

)]
𝑏𝛿 =

𝑛𝐻
𝜆2
𝐻

+ 𝑛𝐿
𝜆2
𝐿

𝛾𝑣𝜖

To solve the model completely, we must solve the following equations:

𝑘0 = − 𝑏0
𝑏𝑝

𝑘𝛿 = − 𝑏𝛿
𝑏𝑝

𝑘𝑧 =
1
𝑏𝑝

The solution to these equations are:

𝑘0 =
𝛾 (𝑛𝐻 + 𝑛𝐿) 𝑣𝜖𝜆2

𝐻
𝜆2
𝐿

(
𝛾𝜇𝑣𝑧𝑣𝜖𝜆

2
𝐻
𝜆2
𝐿
+ 𝑣𝛿

(
𝑛𝐿𝜆

2
𝐻
+ 𝑛𝐻𝜆2

𝐿

)
𝜇𝑧

)
𝜅0

𝑘𝛿 =
𝑣𝛿

(
𝑛𝐿𝜆

2
𝐻
+ 𝑛𝐻𝜆2

𝐿

) (
𝑛2
𝐻
𝜆2
𝐿
+ 𝑛𝐻𝑛𝐿

(
𝜆2
𝐻
+ 𝜆2

𝐿

)
+ 𝜆2

𝐻

(
𝑛2
𝐿
+ 𝛾2𝑣𝑧𝑣𝜖𝜆

2
𝐿

) )
𝜅0

𝑘𝑧 = −
𝛾𝑣𝛿𝑣𝜖𝜆

2
𝐻
𝜆2
𝐿

(
𝑛2
𝐻
𝜆2
𝐿
+ 𝑛𝐻𝑛𝐿

(
𝜆2
𝐻
+ 𝜆2

𝐿

)
+ 𝜆2

𝐻

(
𝑛2
𝐿
+ 𝛾2𝑣𝑧𝑣𝜖𝜆

2
𝐿

) )
𝜅0

,

where

𝜅0 ≡ 𝑛3
𝐻𝑣 𝛿𝜆

4
𝐿 + 𝑛2

𝐻𝑛𝐿𝑣 𝛿𝜆
2
𝐿

(
2𝜆2

𝐻 + 𝜆2
𝐿

)
+ 𝑛𝐻𝜆2

𝐻

(
𝛾2𝑣𝑧𝑣 𝜖

(
𝑣 𝛿 + 𝑣 𝜖 𝜆2

𝐻

)
𝜆4
𝐿 + 𝑛2

𝐿𝑣 𝛿

(
𝜆2
𝐻 + 2𝜆2

𝐿

))
+ 𝑛𝐿𝜆4

𝐻

(
𝑛2
𝐿𝑣 𝛿 + 𝛾2𝑣𝑧𝑣 𝜖 𝜆

2
𝐿

(
𝑣 𝛿 + 𝑣 𝜖 𝜆2

𝐿

))
.
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Now, we can compute demand elasticity of investor 𝑖:

𝜕𝑋𝑖

𝜕𝑃
= −𝛾−1

(
(−1 + 𝑘𝛿) 𝑘𝛿

𝑘2
𝑧𝑣𝑧

+ 1
𝑣𝛿

+ 1
𝜆2
𝑖
𝑣𝜖

)
= −

𝑛2
𝐻
𝑣𝛿𝜆

2
𝐿
+ 𝑛𝐻𝑛𝐿𝑣𝛿

(
𝜆2
𝐻
+ 𝜆2

𝐿

)
+ 𝜆2

𝐻

(
𝑛2
𝐿
𝑣𝛿 + 𝛾2𝑣𝑧𝑣𝜖

(
𝑣𝛿 + 𝜆2

𝑖
𝑣𝜖

)
𝜆2
𝐿

)
𝛾𝜆2

𝑖
𝑣𝛿𝑣𝜖

(
𝑛2
𝐻
𝜆2
𝐿
+ 𝑛𝐻𝑛𝐿

(
𝜆2
𝐻
+ 𝜆2

𝐿

)
+ 𝜆2

𝐻

(
𝑛2
𝐿
+ 𝛾2𝑣𝑧𝑣𝜖𝜆

2
𝐿

) )
Like the model in Section A, we want to consider the case where the variance of the per capital
noisy supply term is low. In that case, one can easily show that:

lim
𝑣𝑧→0

𝜕𝑋𝑖

𝜕𝑃
= − 1

𝛾𝜆2
𝑖
𝑣𝜖

Thus if we consider an investor where 𝜆𝑖 = 𝜆𝐻 , and 𝜆𝐻 is very large (the investor is essentially
uninformed), then

𝜕𝑋𝑖

𝜕𝑃
≈ 0

More generally we can show that

𝜕𝑋𝑖

𝜕𝑃
= −

𝑛2
𝐻
𝑣𝛿𝜆

2
𝐿
+ 𝑛𝐻𝑛𝐿𝑣𝛿

(
𝜆2
𝐻
+ 𝜆2

𝐿

)
+ 𝜆2

𝐻

(
𝑛2
𝐿
𝑣𝛿 + 𝛾2𝑣𝑧𝑣𝜖

(
𝑣𝛿 + 𝑣𝜖𝜆2

𝐻

)
𝜆2
𝐿

)
𝛾𝑣𝛿𝑣𝜖𝜆

2
𝐻

(
𝑛2
𝐻
𝜆2
𝐿
+ 𝑛𝐻𝑛𝐿

(
𝜆2
𝐻
+ 𝜆2

𝐿

)
+ 𝜆2

𝐻

(
𝑛2
𝐿
+ 𝛾2𝑣𝑧𝑣𝜖𝜆

2
𝐿

) )
Then

lim
𝜆𝐻→∞

𝜕𝑋𝑖

𝜕𝑝
= −

𝛾𝑣𝑧𝑣𝜖𝜆
2
𝐿

𝑣𝛿
(
𝑛𝐻𝑛𝐿 + 𝑛2

𝐿
+ 𝛾2𝑣𝑧𝑣𝜖𝜆

2
𝐿

)
Thus if either 𝑣𝑧, 𝑣𝜖 , or 𝜆𝐿 are close to zero, then

𝜕𝑋𝑖

𝜕𝑝
≈ 0.
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