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Abstract

Though ubiquitous in research and practice, mean-based “value-added” measures
may not fully inform policy or welfare considerations when policies have heterogeneous
effects, impact multiple outcomes, or seek to advance distributional objectives. In this
paper we formalize the importance of heterogeneity for calculating social welfare and
quantify it in an enormous public service provision problem: the allocation of teachers
to elementary school classes. Using data from the San Diego Unified School District
we estimate heterogeneity in teacher value-added over the lagged student test score
distribution. Because a majority of teachers have significant comparative advantage
across student types, allocations that use a heterogeneous estimate of value-added can
raise scores by 34-97% relative to those using only standard value-added estimates.
These gains are even larger if the social planner has heterogeneous preferences over
groups. Because reallocations benefit students on average at the expense of teachers’
revealed preferences, we also consider a simple teacher compensation policy, finding
that the marginal value of public funds would be infinite for bonuses of up to 14% of
baseline pay. These results, while specific to the teacher assignment problem, suggest
more broadly that using information about effect heterogeneity might improve a broad
range of public programs—both on grounds of average impacts and distributional goals.
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1. Introduction

When evaluating policies, programs, and institutions researchers often rely on mean im-

pacts. While means are powerful summary measures, they can also mask economically

important information. This paper seeks to understand how measuring heterogeneity can

more fully inform welfare measures and better optimize policy choices. We ask two main

questions. (1) Theoretically, when does heterogeneity (in effects, outcomes, and social pref-

erences) matter for maximizing a social objective? (2) Empirically, how large are the welfare

gains from using heterogeneous rather than average estimates of impacts to evaluate and

refine public policy?

Although these questions have many applications, we explore them in the context of value-

added scores for elementary school teachers. Many have used value-added scores (regression

adjusted means) to measure the effects of teachers and schools (see reviews in Angrist et al.,

2022; Bacher-Hicks and Koedel, 2022); doctors, hospitals, and nursing homes (Chandra

et al., 2016; Doyle et al., 2019; Hull, 2020; Einav et al., 2022; Chan et al., 2022); and

even judges, prosecutors, and defense attorneys (Abrams and Yoon, 2007; Norris, 2019;

Harrington and Shaffer, 2023). We choose the elementary school setting because of mounting

empirical evidence that value-added scores are both multidimensional and heterogeneous in

the education context. For example, teachers affect student outcomes in multiple dimensions

such as math and reading scores (Condie et al., 2014), attendance and suspensions (Jackson,

2018), and work ethic and learning skills (Petek and Pope, forthcoming). Furthermore,

teachers also have heterogeneous effects on different types of students defined by factors such

as race and gender (e.g., Dee, 2005; Delhommer, 2019; Delgado, 2022) and socioeconomic

status (Bates et al., 2022). Similar patterns have been found in health-related value-added

(e.g. Hull, 2020).

This paper applies and extends insights from theoretical welfare economics to overcome

the limitations that arise from multidimensionality and heterogeneity, allowing us to empir-

ically evaluate the optimal allocation of teachers to classes based on this information. The

critical issue from a social welfare perspective is that in the presence of multidimensionality

and heterogeneity, value-added measures only partially order the welfare of an allocation

of teachers to students. Intuitively, this is because of ambiguity about whether the defi-

nition of a “better” teacher should prioritize gains in math versus reading scores or gains

for high-achieving versus low-achieving students (See the impossibility-like results in Condie

et al., 2014). Fortunately, whereas research in value-added has identified these problems,

research in public finance has a long history of using welfare functions to aggregate over the

heterogeneous effects of policies. We extend such insights from welfare economics for two
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purposes. First, we characterize the shortcomings of relying on mean-oriented measures of

policy effects such as standard value-added to make welfare considerations in general. Then

the bulk of the paper evaluates the optimal allocation of teachers to classes using measures

of heterogeneous value-added that produce scalar, welfare-relevant statistics.

Our theoretical results show two ways that ignoring effect heterogeneity can lead to

inaccurate inference about both policy counterfactuals and how policy can be improved.

First, bias arises when mean effects are not externally valid to match effects from the policy.

For example, imagine a medical treatment that did not have serious side effects in the

population in general. If we are considering a policy that would target this treatment to

new high-risk patients, it is not clear whether the impact will be the same. Second, bias

also arises from the covariance across the target population of the heterogeneous effects

of a policy and an individual’s welfare weights. For example, consider a tax reform that

raises post-tax incomes by $3000 to the richest 50% of households but reduces incomes by

$1000 for the poorest 50% of households. Policymakers may consider this reform undesirable

for equity reasons even though it increases average incomes. These biases can both be

reduced or eliminated by estimating conditional average treatment effects along appropriate

observable dimensions and allowing for heterogeneous welfare weights. When optimizing

policy, correcting this bias can lead to significant gains through comparative advantage and

allow policymakers to direct interventions towards people with the highest marginal welfare

benefit.

These theoretical results highlight an interesting contribution of our paper. As empiri-

cal policy evaluations become increasingly common, our theoretical results characterize the

trade-offs implicit in relying on mean impacts. For example, using mean effects to predict

the welfare of an allocation is biased in general because welfare depends not just on pro-

gram impacts and welfare weights but the covariance of the two. Interestingly, this insight

is reminiscent of similar results in optimal corrective taxation of heterogeneous consumption

externalities (like alcohol). Griffith et al. (2019) show that the optimal corrective tax is the

average consumption externality plus the covariance between individual contributions to the

externality (the effect) and demand elasticities (the weight). Furthermore, in the externality

context, conditioning (in this case tax differentiation by product) also reduces the bias, as it

can in our setting.1 The importance of heterogeneity and conditioning in these theoretical

settings raises questions about whether using average “sufficient statistics” is appropriate

when heterogeneous estimates could inform differentiated policies like corrective taxation

of heterogeneous production externalities (Hollingsworth and Rudik, 2019; Fell et al., 2021;

1The second insight is technically a generalization of the first, which was originally suggested in Diamond
(1973).
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Sexton et al., 2021). Crucially, we speak to these trade-offs by showing how both biases can

be reduced by estimating conditional average treatment effects along observable dimensions

to allow for heterogeneity in impacts.

Motivated by the importance of heterogeneity in general, we estimate heterogeneity in

teacher value-added along the achievement distribution in the San Diego Unified School Dis-

trict, the second largest district in California. We find large gains from using heterogeneity

to more optimally allocate teachers to students. In particular, we use the methods pioneered

by Delgado (2022) to estimate the value-added of all third- through fifth-grade teachers on

student math and English language arts (ELA) scores allowing for heterogeneous effects

on students who had above- and below-median scores the previous year. Although these

measures of value-added are correlated with standard (i.e. homogeneous value-added) mea-

sures, we find substantial heterogeneity. For example, the average within-teacher difference

in value-added across groups (i.e. comparative advantage) is as large as 53% (48%) of a

standard deviation in mean value-added for ELA (math). We use these estimates to con-

sider welfare gains from two sets of possible policies: reallocating teachers to classes without

changing school assignment or allowing for school reassignment.2 There are enormous gains

from reallocation. Over the course of third to fifth grade, using heterogeneous measures of

value-added to improve district-wide teacher assignments could raise student math scores

by 0.17 student standard deviations on average and ELA scores by 0.12. For context, both

changes are roughly equivalent to an intervention improving all teachers’ value-added by

30% of the (teacher) standard deviation in the relevant subject.

In this process, our paper makes three innovative contributions to the literatures on value-

added and teacher value-added. First, we demonstrate how important achievement is as a

dimension of effect heterogeneity in our education context. Whereas many papers have found

evidence of “match effects” between students and teachers sharing observable characteristics

like gender or race (Dee, 2005; Delhommer, 2019), other results reveal that these match

effects only explain part of the heterogeneity in teacher effects on the same dimensions

(Delgado, 2022). Our results suggest that focusing on demographic match is incomplete

because it overlooks how instructional differentiation along the achievement distribution

(well documented in the education literature) interacts with these characteristics. This

insight reflects other evidence from health economics that in general lagged outcomes are

one of the most important dimensions for match effect heterogeneity (as in Dahlstrand,

2022).

Second, our results highlight how combining information from multiple outcomes sub-

2In all reallocations the assignment of students to classes is held constant, as is the grade in which the
teacher teaches.
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stantially improves the welfare gains from reallocations. Although it is not obvious ex ante

how to address this multidimensionality, our theory suggests combining outcomes based on

how they affect long-term outcomes of interest. To this end, we aggregate teacher effects

using estimates of the differential impact of elementary school gains in math and ELA on

lifetime earnings from Chetty et al. (2014b). Back of the envelope calculations suggest that

over three years the allocation of teachers that maximizes present-valued lifetime earnings

would generate over $4000 in present valued earnings per student or over $83.7 million in to-

tal.3 Whereas interventions in the education literature have often focused on math scores for

a variety of reasons (Chetty et al., 2014a; Delgado, 2022; Bates et al., 2022; Ricks, 2022), our

contribution is accounting for the separate marginal effects of math and reading outcomes,

which generates 34% larger wage impacts (value-added of $21 million) relative to focusing

only on math.

Third, these results have implications for the discussion of using value-added in teacher

(and doctor and hospital) compensation and extend our understanding of the welfare im-

plications of such policies. Motivated by the large earnings gains from reallocations, we

explore the welfare implications of using lump-sum transfers to compensate teachers for the

possibility of being reallocated. We consider varying sizes of bonus payments to all teachers

and find enormous gains measured in the marginal value of public funds (or MVPF (Hen-

dren and Sprung-Keyser, 2020)). The MVPF of bonuses in the district-wide reallocation

is infinite for up to $8300 per teacher (roughly 14% of salary for SDUSD teacher with 10

years of experience). For within-school-grade reallocations—which have smaller gains but

which should be all but costless to teachers—we find that the MVPF is infinite for bonuses

of up to $2200. These ideas combine insights from two literatures on teacher labor mar-

kets: one focusing on dismissal (Hanushek et al., 2009; Staiger and Rockoff, 2010; Chetty

et al., 2014a), but sometimes ignoring teacher supply decisions (as pointed out in Rothstein,

2010) and the other characterizing teacher demand (Johnson, 2021) but sometimes ignoring

teacher impacts on students (as addressed in Bates et al., 2022, where both are combined).

Our contribution is characterizing the welfare effects of policies that use teacher value-added

but compensate teachers for the possible disutility of the resulting allocation.

Taken together, our results highlight the first-order importance of considering hetero-

geneity in empirical welfare analysis. In our theory we show how the gains possible from

allocations based on heterogeneous effects may be much larger than those based on means

only. We document this empirically in our setting where considering just one dimension of

heterogeneity increases test score gains by 34-97% relative to only using the standard value-

3Here present valuation is discounted at 3% following back to age 10 following Krueger (1999) and Chetty
et al. (2014b).
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added measure. While the critical role of comparative advantage has been acknowledged for

centuries, our contribution to welfare theory is in connecting treatment effect heterogeneity,

comparative advantage, and social preferences. These connections capture and formalize

the growing understanding that heterogeneity is a key consideration for allocating scarce

resources according to a social objective by means of targeting. This has been explored

theoretically (Kitagawa and Tetenov, 2018; Athey and Wager, 2021) and is reflected in a

recent explosion of empirical inquiry about targeting treatments as varied as social safety

programs (Alatas et al., 2016; Finkelstein and Notowidigdo, 2019), costly energy efficiency

interventions (Ito et al., 2021; Ida et al., 2022), promoting entrepreneurship in developing

countries (Hussam et al., 2022), and even resources to reduce gun violence (Bhatt et al.,

2023). Our results suggest that in these settings and others ignoring heterogeneity may

have serious welfare ramifications and that considering heterogeneity in effects and social

preferences presents a clear path forward for future welfare analyses.

This paper is organized into 6 sections. Section 2 introduces our framework for welfare

and value-added with the implications of heterogeneity. Section 3 contains our estimation

procedure and a description of value-added in the San Diego Unified School District. Section

4 leverages our welfare theory to explore the reallocation of teachers to classes and measures

the welfare gains from using information about heterogeneity. Finally, Section 5 draws the

pieces together to explore the implications for welfare and Section 6 concludes.

2. A Welfare Theory of value-added

This section formalizes the implications of estimating mean-oriented statistics for use in

welfare analyses and the benefits of estimating heterogeneous impacts. We begin by showing

how a welfare-theoretical framework can allow a social planner to aggregate over multidi-

mensional policy impacts on a heterogeneous population. Second, we show how relying on

average effects and average welfare weights can lead to biased welfare estimates. This bias

has two sources: average treatment effects have imperfect external validity in different allo-

cations (for example assigning teachers to classes with different compositions), and average

welfare weights ignore heterogeneous gains to groups with different welfare weights (for ex-

ample, differential valuation of an identical test-score increase for struggling versus advanced

students). Third, we show how measuring heterogeneity along key dimensions can minimize

the bias. Finally, we show graphically how correcting this bias leads to better policy opti-

mization through comparative advantage and targeting interventions towards the recipients

with the highest marginal benefit.
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2.1 Welfare with Heterogeneity and Multidimensionality

Consider a social planner selecting a policy p ∈ P . This policy could be assigning teachers

to classes (our application), defining an eligibility threshold for a means-tested program like

health insurance, or choosing between various public works projects. The welfare under

policy p is a function of the lifetime utilities Up
i and welfare weights φpi of each person i

under each policy p. With a population of size n welfare is

Wp =
n∑
i=1

φpiU
p
i

If the policy p has heterogeneous effects on utility for different people, using welfare weights

φpi is a long-standing method to allow the social planner to aggregate over individuals and

recover a scalar measure of welfare.

In practice neither policymakers nor economists observe lifetime utility directly. Instead,

they usually rely on observable outcomes Y like earnings, health outcomes, or test scores as

proxies. We let the social planner evaluate policies using a “score function” Spi = s(Y p
i ,Xi)

which produces an individual-level score for the policy based on observable outcomes and

characteristics. Note that while this score could represent any social objective, identifying

the expected lifetime utility or earnings would be particularly useful in many cases (see the

related work on surrogate indices by Athey et al., 2019). Just as the welfare weights allow

the social planner to aggregate over the heterogeneous effects of the policy, the score function

allows the social planner to aggregate over the multidimensional effects of the policy.

Under this setup, a policymaker can evaluate each policy p based on observable out-

comes. Assuming an individuals’ outcomes Y p
i only impact their own utility and weights,

the expected change in welfare from the status quo (p = 0) to policy p is

∆
∼
Wp ≡

n∑
i=1

γi(S
p
i , S

0
i )∆S

p
i (1)

where γi(S
p
i , S

0
i ) is a new welfare weight and ∆Spi is the effect of policy p on individual i’s

score. The weight γpi reflects the average welfare gain from marginal score changes over

[S0
i , S

p
i ], incorporating the change in expected utility and the relevant welfare weights, φpi .

A detailed explanation of this derivation can be found in Appendix B.1.

Unfortunately, estimating this welfare metric has a major complication: The effects of the

policy ∆Spi and the proper weights γpi are both individual specific. The impact of the policy

on the score, ∆Spi , and the impact of the score on lifetime utility, γpi , may both vary from

student to student. Even though these individual-level measures provide a more accurate

7



theoretical framework, using individual welfare weights and individual outcomes to assess

policy is typically not feasible. Because of this limitation, policies are often evaluated with

aggregate measures. We now characterize the bias that this aggregation produces and how

estimating heterogeneous effects can reduce that bias.

2.2 Bias from Ignoring Match Effects or Individual Welfare Weights

Empirical analyses often simplify the weights and treatment effects to means in order to

measure welfare. This approach multiplies an estimate of the average treatment effect of a

policy ÂTE
p

with the average welfare weight for the impacted population (see intuition in

Hendren and Sprung-Keyser, 2020). Assuming the average welfare weight is known E[γp] =
1
n

∑n
i=1 γi(S

p
i , S

0
i ), this approach allows for two sources of bias.4 First, because the true

ATEp is rarely known (and never known ex ante), other estimates such as rules-of-thumb

and estimates from different times or populations are used. For example, in the value-added

setting a teacher’s average impact on a different class in the past is often used to infer their

impact on another class in the future, introducing bias. Second, as shown in Appendix

B.2, the welfare weights that convert a true ATEp into welfare are a function of the joint

distribution of the individual-level treatment effects and individual welfare weights. By

instead using the simple population mean E[γp], more bias is introduced. In general, these

simplifications lead to a biased measure of welfare:

Theorem 1. If welfare is estimated using the product of an average outcome from a different

population ÂTE and an average welfare weight E[γp], then the estimate will contain the

following bias relative to the more general benchmark in Equation 1:

Average BiasATE =
∆

∼
Wp

n
− E[γp]ÂTE

= E[γp]
(
E[∆Sp]− ÂTE

)
+ Cov(γp,∆Sp)

Proof in Appendix B.3

With the equation for the bias in hand, we see that these common simplifications lead to

two sources of bias. First, one source of bias comes from the difference in the expected change

in our outcome of interest, and the ÂTE estimate used. While these statistics could differ

for any reason relating to the external or internal validity of our estimate, our paper is most

interested in a specific concern with external validity: Whether averages of heterogeneous

4In practice the average welfare weight needs to be estimated as well, which could introduce a third source
of bias, so we assume that policymakers have prior knowledge about the average welfare weight.

8



effects apply in different populations. For example, if teachers have heterogeneous impacts

on students, then estimating the average treatment effect on their current class will not

give an unbiased estimate of their average impact on a class of very different students. If,

for example, we change the class composition to better match the teacher’s comparative

advantage, their average impact will increase. A more formal explanation of this impact can

be seen in Appendix B.4.

Second, using the population average welfare weight ignores any covariance between

welfare weights and treatment. While not the case in general, there are some situations

where the covariance would be zero. For example, when the effects of a policy are uniform

(or random) there can be no covariance. Perhaps more relevant to policy the covariance will

also be zero when there is no variation in welfare weights among the impacted population.

This may approximately hold, for example, for targeted programs like SNAP, Medicaid, and

TANF. The covariance is likely to matter in many other settings. For example, in our setting

teacher reassignment has the potential to disproportionately help low-performing students.

If low-performing students have higher welfare weights, the covariance term in the bias would

be positive and means would understate the value of the reallocation.

2.3 The Case for Estimating Heterogeneity

Measuring heterogeneous impacts along key dimensions can lower the bias outlined above.

By choosing features that explain the most variation in welfare weights and policy impacts,

we may be able to lower the bias significantly. In practice, this method requires estimates

of the conditional average treatment effect and welfare weights by subgroup ( ̂CATE(x) and

E[γp|x]) rather than using average treatment effects and weights. Incorporating this, the

bias can be characterized in the following way:

Theorem 2. If mean welfare is estimated using the weighted mean of a conditional average

treatment effect ̂CATE(x) and a conditional average welfare weight E[γp|x] weighted by the

fraction of the population with characteristic x, Px, the mean welfare estimate will contain

the following bias:

Average BiasCATE =
∆

∼
Wp

n
−
∑
X

PxE[γp|x] ̂CATE(x)

=
∑
x

Px

(
Cov(γp,∆Sp|x) + E[γp|x]

(
E[∆Sp|x]− ̂CATE(x)

))

If the features in x are chosen carefully, both portions of the bias can be lowered while still
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being identifiable. To be more precise, we will again consider the two bias terms separately

and compare them to the unconditional counterpart in Theorem 1.

First, consider the covariance terms. The covariance term in Theorem 1 has been replaced

by the weighted sum of conditional covariance terms. Using the law of total covariance, we

can see that this portion of the bias will be smaller after conditioning, when

∣∣∣∣∣∣
∑
X

PxCov(γp,∆Sp|x)

∣∣∣∣∣∣ <
∣∣∣∣∣∣
∑
X

PxCov(γp,∆Sp|x) + Cov(E[γp|x],E[∆Sp|x])

∣∣∣∣∣∣ =
∣∣Cov(γp,∆Sp)

∣∣
(2)

This means that when the average within group covariance between γp and ∆Sp is smaller

than the total covariance, the bias will be reduced. The middle term breaks up the total

covariance into two parts. The first term is the within group covariance, and the second

is the covariance of the group means. To better connect these terms to applications, it is

helpful to think through cases. First, if both of these terms are the same sign, the condition

will be met. Consider a case where we condition on pre-test scores, like our paper, but

race also impacts γ and is not conditioned on. If the gains from a teacher allocation are

positively (or negatively) correlated with both the welfare weights on both pre-test scores

and race, the condition is met. Now suppose they are opposite signs. That is, the gains are

positively associated with test score and negatively associated with the welfare weights on

race or visa-versa. In this case, the inequality may or may not be satisfied. It will still be

satisfied when

2 ∗

∣∣∣∣∣∣
∑
X

PxCov(γp,∆Sp|x)

∣∣∣∣∣∣ < ∣∣Cov(E[γp|x],E[∆Sp|x])
∣∣ (3)

Put simply, this holds when the within group covariance is small relative to the group

mean covariance. In keeping with our example, the within group covariance would be small

if the unconditioned feature, race, either does not impact γp very much after conditioning on

pretest scores, has little association with ∆Sp after conditioning on pretest scores, or their

relationship happens to be randomly distributed after conditioning on pre-test scores. The

group mean covariance will be large if the conditioned factor, pre-test-scores, plays a large

role in the relationship between γp and ∆Sp. For example, suppose pre-test groups with

large welfare weights also see large test score gains because teachers are sorted according to

their comparative advantage along the pre-test dimension.

Now to consider the second term. As before, this could come from any external or internal

validity issue with ̂CATE(x), but we focus on the bias from population changes interacted
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with heterogeneous treatment effects. If a teacher has different impacts on different types of

students, for example, and the class composition changes, their average impact will change.

By conditioning on the observable, x, we can adjust for compositional and treatment effect

differences over X. The new estimator takes a teacher’s average impact on group x and

weights that impact by the composition of their new class. The remaining bias, then, would

need to come from differences in treatment effects along other dimensions and variation in

composition within a group x across classes. Pulling out the terms, this will be smaller when

the following holds.

∑
x

PxE[γp|x]
(
E[∆Sp|x]− ̂CATE(x)

)
< E[γp]

(
E[∆Sp]− ÂTE

)
(4)

A more formal treatment can be seen in Appendix B.5.

Putting these ideas together, there are two special cases that are helpful to think through.

first, the case where welfare weights really only depend on x. For example, if x is pretest

scores and the policymakers want to treat every student with the same pre-test score equally.

In this case, the first term goes to zero since there is no covariance within test score groups.

There could still, however, be differences in treatment effects and class composition within

a test score group x. For example, if teachers have differential impact by race (Delgado,

2022). This would lead to a non-zero value for the second term. If there is no heterogeneity

within x, either because the treatment effects are the same or the class compositions are

the same within x, the second term would also be zero and we would have a completely

unbiased estimator. These special cases help to highlight how the first term is driven by

the policymaker’s re-distributive preferences while the second is driven by the heterogeneous

treatment effects and compositional differences between sup-populations.

Given these differences, it is worth noting that there is no reason one could not condition

the welfare weights and the estimates on different subsets of X. for example, E[γp|x1]
̂CATE(X2). It might be the case that a variable is not meaningful in the welfare weight,

but is a factor in estimating an accurate treatment effect. While this could be done, we focus

on the case where the same variable, pre-test scores, is being considered for both.

2.4 Graphical Intuition of the Welfare-Relevant Components

Having illustrated how to reduce bias for welfare estimates of a given policy intervention,

this section considers the welfare gains from decreased bias when comparing different policies.

We present a simple example with two groups to show how heterogeneous estimates allow

welfare improvements relative to evaluations based on means. For simplicity of exposition,

we assume that all effect heterogeneity and heterogeneity in social preference relates to these
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two groups. This highlights three channels for gains from reallocations—some of which are

only possible by estimating heterogeneity.

We illustrate these three channels for improving welfare in Figure 1. The two axes of

Figure 1 depict the average change in the score function for two groups. In our example it

would depict the average change in math scores for lower- and higher-scoring students. Con-

necting these two axes are two production possibility frontiers (PPFs—depicted as curves).

Allocations between the origin and “PPF: ATE” are possible by using information about

mean effects that capture absolute advantage—such as a teacher’s average test-score value-

added on students.5 In our setting this would mean assigning teachers with higher overall

value-added to larger classes, and teachers with lower value-added to smaller classes. Al-

locations within the “PPF: CATE” are possible by using information about heterogeneous

effects that capture both absolute and comparative advantage. In our setting this would

mean also assigning teachers to classes with larger shares of the group they have a compar-

ative advantage in teaching. This PPF is at least weakly dominant because it allows for

additional gains from matching teachers to classes in ways that leverage their heterogeneous

value-added across student groups.

Now consider a policymaker with indifference curves corresponding to the dotted lines.

The slope of these indifference curves indicates the relative preferences given to one group

versus the other. In this example, the slope is higher than -1, indicating that the policymaker

places greater weight on group 1. Figure 1 presents the status quo and three possible

reallocations (a white box and colored circles) and their corresponding welfare (indicated

with dashed indifference curves).

First, a policymaker trying to maximize test scores (despite having re-distributive goals)

using standard value-added measures can experience welfare gains from the absolute advan-

tage of teachers. Figure 1 represents this reallocation as a movement from the white box to

the yellow circle on PPF: ATE with welfare gains corresponding to a move from
∼
W0 to

∼
W1

6.

This movement reflects the gains from making allocations based on absolute advantage.

Second, a policymaker maximizing test scores with heterogeneous estimates of teacher

value-added (but still ignoring their re-distributive preferences) can experience further gains

from the comparative advantage of teachers. With heterogeneous estimates, the policy mak-

ers can assess how a teacher would impact students in each group in addition to students

5Technically, a valid value-added estimator is only a consistent estimate for this parameter as the set of
students a teacher teaches approaches a representative sample.

6Note that, in our case, for these gains to be non-zero, two things must be true: it must be the case that
(1) some classes have different sizes, and that (2) some teachers have different value-added scores. If these
conditions are met a policymaker would expect to increase the scores for students in both groups by assigning
higher-value-added teachers to the larger classes. Such reallocations can lead to meaningful impacts in the
real world setting we use, where class size averages about 27 with a standard deviation of about 6.
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Figure 1: Absolute Advantage, Comparative Advantage, and Social Preferences Contribute
to Welfare
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Note: This figure illustrates the welfare gains allocations using heterogeneous effects and welfare weights.
The two axes present the outcome score of interest, S, for individuals of two types. The graph contains
two production possibility frontiers and some indifference curves. The interior production possibility fron-
tier is attained by allocations made with the constant-effects model, like traditional value-added measures.
These mean estimates could enable welfare gains from allocations based on the absolute advantage (possibly
weighted by social preferences). The second, dominant frontier is attained by allocations using information
about effect heterogeneity and, thus, comparative advantage. The indifference curves show the welfare value
of four allocations: (1) the status quo, (2) the average-score maximizing allocation using mean effects, (3) the
average-score maximizing allocation using heterogeneous effects, and (4) the welfare maximizing allocation
using heterogeneous effects.
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on average. This knowledge would allow them to reallocate teachers based on absolute and

comparative advantage, indicated as a movement from the white box to the orange circle on

PPF: CATE with welfare gains corresponding to a move from
∼
W0 to

∼
W2.

7 Compared to the

allocation on PPF: ATE, the gains from
∼
W1 to

∼
W2 reflect the additional gains from making

allocations based on comparative advantage.

Finally, a policymaker can produce further welfare gains by directly considering their

distributional goals. In our example, the policymaker wants to focus on lower-scoring stu-

dents for educational remediation (although a focus on higher-scoring students, perhaps for

prestige, is also possible). If this is the case, both score-maximizing allocations are sub-

optimal. This loss is visualized in Figure 1 where the indifference curves at
∼
W1 and

∼
W2

are not tangent to either PPF. As such, the policymaker can increase welfare by trading off

the possible test-score gains for one group against gains to the other groups. The optimal

consideration moves them to the red point, with the largest welfare of
∼
W3.

Although each of these pieces could generate large welfare gains in theory, whether there

are meaningful gains from estimating heterogeneity in practice remains an empirical question.

For example, if teacher effects are homogeneous or highly correlated there would be no gains

from making allocations based on comparative advantage. Furthermore, even if there are

differences or distributional objectives, if the status-quo allocation already takes them into

account, there would be no gains from reallocations since the welfare gains have already

been captured. The remaining sections of the paper measure the amount of heterogeneity

in teacher impacts and describe the welfare effects of possible reallocations.

3. Estimating Heterogeneous value-added for Teachers in San Diego Unified

Having established how measuring effect heterogeneity could be useful for informing

welfare and policy, this section sets the groundwork for determining to what extent hetero-

geneity in teacher value-added matters in practice for the allocations of teachers to classes

in elementary school. To that end, we describe the data from the San Diego Unified School

District, present our estimation strategy for value-added, and summarize patterns in value-

added—including the extent of comparative advantage and how it is at play in the status

quo allocation of teachers to classes.

7Note that, in our case, for these gains to be larger than the gains from absolute advantage, two more
things must be true: it must be the case that (1) some classes have different compositions of student types,
and (2) that some teachers have different value-added on each type of student. If these conditions are met
a policymaker would expect to further increase the scores for students in both groups by assigning better
matched teachers to classes.
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3.1 Background and Administrative Data

To consider socially optimal allocations of teachers to classes, we use administrative

data on the universe of students attending schools in the San Diego Unified School District

(SDUSD). For our main analyses we focus on 1,816 teachers who are the main instructors

in third, fourth, or fifth grade classes in the 2002-03 through 2012-13 school years.8 We link

all teachers to their students each year and we restrict our attention to students with test

scores in both English Language Arts (ELA) and math for two consecutive years. This leaves

us with 196,452 student-year observations in 10,447 class-year groups. The administrative

data also contain relevant information about student demographics and academics as well

as long-term outcomes. We provide more descriptive statistics and information about the

current allocation of teachers to classes in Section 3.4.

3.2 Estimation Overview

We use the data from San Diego Unified to evaluate the importance of estimating het-

erogeneity in optimally assigning teachers to classes. While there are many dimensions over

which we could estimate heterogeneous effects, we focus on lagged student scores. Specifi-

cally, we estimate the value-added of each teacher on the Math and ELA scores of students

with below-median scores (lower-scoring students) and students with above-median scores

(higher-scoring students). Our theory suggests that to be welfare improving the dimension

we choose should capture a lot of the variance in impacts and be relevant to the social plan-

ner. We estimate heterogeneity along the achievement distribution because it meets these

criteria.

First, measuring heterogeneity in teachers’ effects on lower- and higher-scoring students

captures the most salient dimension of instructional heterogeneity. This intuition is not just

based on anecdotes; indeed, the large education literature about instructional differentiation

suggests that teaching lower- and higher-scoring students requires very distinct skills. See for

instance the large literature on differentiated instruction (see Betts, 2011; Duflo et al., 2011;

Tomlinson, 2017, for review and examples). Furthermore, while many papers have found

evidence of “match effects” between students and teachers sharing observable characteristics

like gender or race (Dee, 2005; Delhommer, 2019), results from Delgado (2022) shows that

these match effects only explain part of the heterogeneity in teacher effects on students

of different genders and races. This suggests that focusing on demographic match may

be overlooking something key. We suggest that the most relevant dimension is related to

differentiation along the test-score distribution.

8We limit to these years because the state-mandated tests were stable and comparable over these years.
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Second, policymakers often expressly identify achievement as a dimension over which

they have heterogeneous valuations of gains. For example, quintessential US policies like the

federal No Child Left Behind Act of 2001 directly focused on accountability for and profi-

ciency among lower-scoring students. The stated goal was to focus on raising the lower bound

of student test scores, calling for corrective action based on whether the lowest performing

groups met state standards.9 At the same time, many national, state, and local policies

promote gains to lower-scoring students while expressing nondiscriminatory, identical pref-

erences for students of different genders, races, and socioeconomic statuses conditional on

their achievement.

3.2.1 Standard value-added

For our traditional value-added estimates we follow the approach in Chetty et al. (2014a)

and implement it with associated Stata package (Stepner, 2013). The details are presented

in Appendix C, but the general approach has three steps. First, we estimate the effects of

student i’s characteristics in year t, Xi,t, on test scores in subject s, Si,s,t, in a regression of

the form:

Si,s,t = βsXi,t + ui,s,t

Second, we obtain the average of the residuals implied by βs by class and year:

Āj,ts =
1

nj,t

∑
i:J (i,t)=j

[
Si,s,t − β̂sXi,t

]

Finally, we estimate leave-year-out (jackknife) measures of teacher impact by predicting Āj,t

with the residuals in all other years.

τ̂ j,ts = ψ̂sĀ
j,−t
s (5)

The main assumption necessary to interpret these estimates as causal effects is that class-

level shocks and idiosyncratic student-level variation are conditionally independent and a

stationary process (given the controls, Xi,t). It must also be the case that the variance in

teacher value-added is stationary (as outlined in Chetty et al., 2014a, —again formal details

are in Appendix C).

To the end of establishing this conditional independence, we follow the controls of Chetty

et al. (2014a), documented to have unbiased estimates of teacher effects. In our setting Xi,t

9The fact that these policy objectives often find broad cross-partisan support could lead one to conclude
that all policymakers have somewhat egalitarian preferences and that disagreements are not questions of
direction but only magnitude.
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includes cubic polynomials in prior year test scores in math and ELA, those polynomials

interacted with student grade level, as well as controls for ethnicity, gender, age, the lagged

percentage of days absent, indicators for past special education and English language learner

status, cubic polynomials in class and school-grade means of prior test scores in both subjects

(also interacted with student grade level), class and school means of all the other covariates,

class size, and grade and year indicators.10

3.2.2 Heterogeneous value-added

For our estimates of heterogeneous value-added, we follow the approach pioneered in

Delgado (2022) and applied in Bates et al. (2022), implemented with extensions we made

to the Stepner (2013) Stata package. The details are also presented in Appendix C, but

the general approach also has three steps. The first step is identical, with the addition of

indicators for group g to Xi,t We then obtain the average of the residuals implied by βs by

class, type, and year:

Āj,tg,s =
1

nj,t,g

∑
i:J (i,t)=j,gi=g

[
Si,s,t − β̂sXi,t

]
Finally, we estimate leave-year-out (jackknife) measures of teacher impact by predicting Āj,t

with the residuals in all other years using the observed auto-covariance.

τ̂ j,tg,s = ψ̂g,sĀ
j,−t
s (6)

Here the main assumption necessary to interpret these estimates as causal effects is

that, class-type-level and student-level variation are conditionally independent and stationary

processes (as derrived in Delgado, 2022, —again formal details are in Appendix C). Note that

we differ from Delgado (2022) in one way: We impose a zero-covariance assumption about

the idiosyncratic teacher value-added components across groups, similar to the assumptions

implicit in the measurement of value-added across subjects in both Chetty et al. (2014a) and

Delgado (2022) for internal consistency.

3.3 Heterogeneity Highlights the Importance of Comparative Advantage

We use these techniques to estimate the heterogeneous effects of 1,816 teachers on 109,125

lower-and higher- scoring students from 127 elementary schools in SDUSD. These teachers

10The only notable difference from the controls in Chetty et al. (2014a) is their inclusion of information
about free and reduced price lunch, which we omit in our research because of restrictions that SDUSD imposes
on researchers’ use of this information due to their perception of federal regulations on use of student level
subsidy information.
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taught grades 3-5 in the 2002-03 to the 2012-13 school years. In this section, the mean

value-added is normed to zero for each group, reflecting both the economic intuition that

for the average student the “outside option” for the teacher she or he has is the average

teacher and the econometric identification argument in Chetty et al. (2014a) implicit in our

identifying assumptions.

We depict the main value-added results in Figure 2. This Figure reports two scatter

plots—one for ELA and one for math—where each point represents one teacher. The teachers

value-added on higher-scoring students is plotted on the y-axis over their value-added on

lower-scoring students on the x-axis. Each plot also presents the correlation coefficient

between the value-added on the two student groups as well as a slope coefficient for the line

of best fit between the two.

Figure 2: value-added Varies Significantly within and across Teachers
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Note: This figure shows our heterogeneous estimates of teacher value-added on both English Language Arts
(ELA) and Math test scores. Each dot represents one teacher-year estimate of value-added on high- and
low-scoring students. The correlation coefficients is for the entire population stacked by year. The dashed
line shows the line of best fit with the slope reported. For reference a line with slope one is plotted in the
background.

Visual inspection of Figure 2 illustrates the differences within and across teachers, sug-

gesting we should reject the standard “constant effects” model of value in favor of one with

appreciable comparative advantage. Differences across teachers, or absolute advantage, can

be seen by comparing teachers along the gray 45-degree line. Teachers above and to the

right generate larger testing gains compared to teachers below and to the left. Comparative

advantage can also be seen visually. Teachers with dots above the gray 45-degree line have

a comparative advantage in teaching higher-scoring students, and teachers with dots below
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that line have a comparative advantage in teaching lower-scoring students. The size of the

average comparative advantage is large: 53% the size of the cross-teacher standard deviation

in standard teacher value-added for ELA and 48% for math.

The differences within and between teachers are what will generate gains for the reallo-

cation exercises. We estimate that teacher value-added to higher- and lower-scoring students

is correlated at 0.7 for ELA and 0.8 for Math. The fact that this correlation is less than

one allows for gains from allocating teachers by comparative advantage. Even though the

correlations are high, there are still significant margins for gains. For comparison, our cross-

group correlations are lower than those by socioeconomic status (0.9 for math in Bates et al.,

2022) but larger than those by race (0.7 for math and 0.4 for ELA in Delgado, 2022). Fur-

thermore, our theoretical framework suggests there is value in combining information from

multiple outcomes. In that light, it is also worth noting that the cross-subject correlations

are lower. For example, Figure A.1 shows that the cross-subject, cross-group correlations

are both around 0.6, suggesting even larger gains from cross-subject comparative advantage.

It is also interesting to note that Figure 2 reveals that value-added to math is much

more dispersed than value-added to ELA. This is consistent with evidence from similar

value-added papers (e.g., Chetty et al., 2014a). Our results further show that teachers’

value-added is more highly correlated across achievement groups for Math than for ELA.

This is also consistent with absolute advantage being more important and variable with

Math teaching than with ELA teaching.

3.3.1 Validation and Robustness

Although these results suggest striking patterns of comparative advantage, our reallo-

cation exercises and welfare estimates would be meaningless if these estimates reflected id-

iosyncratic noise rather than persistent heterogeneity within and across teachers. Although

the use of shrinkage assuages these concerns, we also perform three additional exercises

demonstrating the stability and credibility of our heterogeneous estimates. Each result re-

inforces our confidence that the value-added scores are fitting systematic patterns in causal

differences and not just idiosyncratic noise.

First, Appendix Figure D.6 reports patterns of persistence over time. For example, over

40% of teachers have a comparative advantage for teaching one group of students in all

years, and the year-to-year correlation is between 0.78-0.90 for all estimates. Additionally,

Appendix Figure D.7 leverages the longitudinal nature of our data to show that heteroge-

neous value-added estimates carry the same information about long term outcomes as tradi-

tional value-added estimates (Chetty et al., 2014b). These results show striking similarities

between the effects of our estimates and traditional value-added. Furthermore, estimates
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for each student group are no less precise suggesting that the variance is loading on the

dimension of heterogeneity we specified.

3.4 The Status-Quo Allocation of Teachers and Students

This section shows how teachers are allocated to classes in the status quo, whether this

allocation is efficient or equitable, and presents descriptive evidence that there may be gains

from reallocation. Figure 3 presents a binned scatter plot of value-added for each subject

over the share of lower-scoring students for that subject. Absolute advantage is reported as

the average of teacher value-added on lower- and higher-scoring students, and comparative

advantage is reported as the difference.

Figure 3: Teacher value-added Only Varies Somewhat with Class Composition
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Note: This figure shows how our heterogeneous estimates of teacher value-added on both English Language
Arts (ELA) and Math test scores relate to class composition. The panel on the left shows teacher absolute
advantage (average of value-added on lower- and higher-scoring students) and the panel on the right shows
the comparative advantage (difference of value-added on lower-scoring students minus value-added on higher-
scoring students). both panels plot the ventiles of value-added (measured in teacher standard deviations in
absolute advantage) over the share of students who are lower-scoring (i.e. have below-median lagged test
scores).

These patterns suggest that classes with larger shares of lower-scoring students do not

tend to have teachers with substantially different absolute or comparative advantage. Overall

teachers with a higher average value-added are somewhat more likely to sort into classes with

higher average test scores at baseline. This suggests the current allocation is inequitable,

but the effects are small: the slope only predicts that students in a class with an additional

lower-scoring student in one subject will experience 0.001σ smaller gains in that subject on
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average. Interestingly, there is some evidence that this slightly inequitable sorting may be

according to absolute advantage. Appendix Figure A.2 shows analogous results by class

size revealing that better teachers teach in slightly larger classes, suggesting some allocative

efficiency from sorting better teachers in bigger classes, but again the differences are small.

These two patterns are likely connected as larger classes tend to be in more affluent schools

with higher average test scores.

There is also no clear evidence of sorting on comparative advantage. Figure 3 also

depicts the difference in value-added to lower- and higher-scoring students along the class test

score distribution. In math, teachers who are comparatively better at teaching lower-scoring

students are sorting into classes with slightly larger shares of lower-scoring students, but the

opposite is true in ELA. Neither of these patterns is economically large. The differences by

class size are similarly signed but even smaller (see Appendix Figure A.2). The combination

of heterogeneity in teacher effects and the absence of significant sorting in the status quo

suggest large gains from reallocation.

The current allocation of students to classes also suggests that there will be gains from

reallocations. Variance in class size and class composition will both increase the gains from

reallocation. Appendix Table A.1 reports the standard deviations of class size and the

share of higher-scoring students in math and ELA at a district-wide level and within schools

(controlling for variation by grade and year), revealing ample variation even within school.

This suggests that although reallocating teachers across schools necessarily allows for bigger

test-score gains, much of the potential gains may be achievable by reallocating teachers

within their current school and grade.

4. Efficiently Allocating Teachers to Classes

Although our general theoretical framework could be applied in many settings, with

estimates of the heterogeneous teacher effects we now use our theory to consider the public

service provision problem of allocating teachers to classes. This section defines the allocation

problem, presents the gains possible under the optimal allocations, and compares the gains

obtained from using our estimates relative to using standard value-added measures.

We parameterize the social objective
∼
W using higher- and lower- scoring students to

compare different allocations and find the relevant optima. Let J : (i, t)→ j be an allocation

function, telling us which teachers teach each student in each year. We define the following

optimization problem for weighted test score gains in a given subject (s subject subscripts
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suppressed):

max
J∈J

∼
W(J ;ω) = max

J∈J

1

Ni,t

∑
(i,t)

ωL Li,t τ̂
J (i,t)
L + (1− ωL) (1− Li,t) τ̂J (i,t)

H (7)

where ωL ∈ [0.0, 1.0] represents the weight on lower-scoring students in the social objective,

Li,t is an indicator for whether student i is lower-scoring, and τ̂ jH and τ̂ jL are our estimates of

heterogeneous value-added. The set J is the social planner’s choice set made up of feasible

allocations. In our setting, we focus only on reallocating teachers to existing classes in the

grade they actually taught without changing the composition of those classes in any way.

We do this to avoid introducing peer-effect biases into our welfare estimates. The single-ω

parameterization of welfare imposes linear indifference curves that trade off performance

for lower- and higher-scoring students where the weight on each group reflects the degree

to which the social planner wishes to target gains to one group of students relative to the

other. It also assumes that the social planner only values gains to students in the given

subject—something we will relax in Section 5.

This allocation problem captures three distinct trade-offs that have been mentioned in the

value-added literature but never fully addressed together. First, the optimal allocation must

account for the comparative advantage of teachers because of differences in class composition

(as pointed out in Delgado, 2022). Second, the optimal allocation must also account for the

absolute advantage of teachers because of differences in class size. This crucial detail has been

accounted for at the school level (see Bates et al., 2022), but class size and class composition

vary both across and within schools. Because of these differences, we are interested in both

within-school and district-wide reallocation exercises. Finally, the optimal allocation must

account for possible heterogeneity in the social value of gains to different types of students—

something unique to our paper.

We solve this allocation problem for two sets of possible reallocations: within-school and

district-wide. For both, we restrict J so that every year the students in each class and the

grade assignments of each teacher do not change. We leave class composition fixed so that

changes in within-class peer effects do not contaminate the outcomes in predicted counter-

factual allocations. For the within-school reallocation we further require that teachers do not

change schools. Whereas this within-school problem can be solved easily by iterating over

school-grade(-year) cells, the district-wide reallocation problem has over 3 × 101830 alloca-

tions to search over. Because the optimal policy depends on both absolute and comparative

advantage when both class sizes and class compositions vary, this problem cannot be solved

by simply assigning teachers to classes with large shares of students they have a comparative

advantage in teaching or simply assigning the best teachers to the largest classes. The social
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planner problem in equation 7 can be re-characterized as a mixed-integer linear programming

problem and solved using the COIN-OR Branch and Cut solver implemented by the Python

package Pulp (see, for example, DeNegre and Ralphs, 2009).

4.1 Allocations Incorporating Heterogeneous Impacts Increase Test Scores

We create a production-possibility frontier (PPF) for the gains to each group from the

within-school and district-wide reallocations. To do this, we solve the optimization problem

in Equation 7 for 101 different values of the social weights ωL ranging from 0.0 to 1.0. We

then recover the average value-added received by lower- and higher-scoring students and

calculate the gain beyond the status quo. By comparing the optimal gains attained under

different weights, this analysis characterizes how reallocation gains to lower-scoring students

trade off with those to higher-scoring students, creating the PPFs.

We depict these production-possibility frontiers in Figure 4. We plot the PPF for change

in ELA scores on the left and Math scores on the right. Each point presents the average one-

year change in lower-scoring students’ test scores in the optimal allocations (on the y-axis)

over average change for higher-scoring students (on the x-axis), all relative to the status quo

(noted with the square marker). Allocations that would reduce a group’s scores relative to

the status quo are denoted with negative numbers. Allocations above and/or to the right of

the status quo are preferred by the social planner. The lighter (blue) PPF denotes the within-

school reallocations and the darker (red) PPF the district-wide reallocations. Unsurprisingly,

the district-wide reallocations produce gains that are further out in both dimensions.

Figure 4 reveals three striking patterns. First, there are large gains possible from both

reallocations. For example, in the district-wide reallocation a social planner seeking to raise

average scores (i.e., a utilitarian planner with ωL = ωH = 0.5) could increase both lower- and

higher-scoring students’ scores by 0.04 student standard deviations. Gains from math are

even larger: 0.04 for lower-scoring students and 0.07 for higher. Similarly, the simpler within-

school reallocation could raise ELA and Math scores for both groups by more than 0.01

standard deviations. Recalling that these represent one-year gains, a policy that optimally

allocated teachers could increase average math scores by 0.12σ in ELA and 0.17σ in math.11

These are large gains—almost identical to the gains that would result from improving the

value-added of every teacher in the district by one teacher standard deviation (but retaining

status quo assignments) for one year, and triple the gains from proposed teacher screening

programs that “deselect” (i.e., fire) teachers with the lowest 5% standard value-added (as

considered in Hanushek et al., 2009; Hanushek, 2011; Chetty et al., 2014b).

11Where the annual means and standard deviations scores are normalized by those in the entire state of
California.
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Figure 4: Optimal Allocations Can Create Large Gains to High- and Low-scoring Students
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Note: This figure shows the test score gains from optimal allocations relative to the status quo. Two
production possibility frontiers are presented, one for reallocating teachers within school-grade cells and
one reallocating teachers across schools (still within grade). Each PPF is constructed by finding the optimal
allocation given relative weights on lower- and higher-scoring students [0.0,1.0] by solving the optimal mixed-
integer linear programming problem. Gains are reported as average changes in scores measured in student
standard deviations per school year that the reallocation is performed.

The second pattern visible in Figure 4 is that the curvature of the PPFs demonstrates

the value in explicitly considering the distributional goals of a policymaker. These gains are

dependent on the extent to which distributional goals deviate from the mean scores objective

but are large for more extreme distributional goals.

We compare the total welfare achieved under an optimal allocation for a given set of

welfare weights (the optimal point on a PPF in Figure 4 for a given indifference curve) to

the test-score maximizing allocation (the black diamond mark on the relevant PPF). To

normalize these welfare gains, we construct an “Atkinson index” type measure such that

the social planner would be indifferent between the optimal allocation and an allocation

where every student experienced a given test score gain. Figure 5 shows the difference in

this Atkinson index for each allocation on the comparative advantage frontier compared to

the test-score maximizing allocation. As expected, the gains are small for similar weights

and grow as the social planner favors one group more or less. At the tail ends, where the

policymaker favors one group almost exclusively, the gains for the district-wide (within-

school) reallocations are 85% (20%) larger in math and 50% (35%) larger in ELA. Of course,

the true weights for policymakers may not be near these tails, but Figure 5 demonstrates

significant potential for gains in the right setting. These potential welfare gains highlight the
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fact that choosing the allocation that maximizes average scores isn’t necessarily a neutral

choice. For example, in math it benefits higher-scoring students more.

Figure 5: Welfare Gains from Considering Distributional Objectives
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Note: This figure shows the differences in welfare attained under the score maximizing allocation and the
optimal allocation using heterogeneous value-added. The unit is an Atkinson Index indifference, i.e., how
much would test scores have to increase for all students to generate equivalent welfare gains. We report
differences for both within-school and district-wide reallocations.

Estimating these gains highlights three interesting implications for our understanding

of teacher allocations. First, the gains to math scores are larger than the gains to ELA

scores. This is because the variance in teacher value-added on math is larger as shown in

Figure 2 and in prior work (e.g., Chetty et al., 2014a). This suggests that for one-subject

reallocations like Bates et al. (2022), it is indeed better to focus on math in order to raise

average scores. Second, the allocations that optimize math scores and ELA scores are dis-

tinct. This is because the teachers that are the best at teaching each group of students math

are not always the best at teaching those students in ELA. As such, the gains highlighted

in papers that do reallocations using one subject at a time like Delgado (2022) and Bates

et al. (2022) only give a lower bound to the gains from using information on both outcomes

simultaneously. This will motivate our analyses in Section 5 where we aggregate gains over

multidimensional outcomes. Finally, note that the largest possible gains to each group are

different. This asymmetry highlights the welfare implications of structural features of the

education system such as the fact that higher-scoring students tend to be in larger classes

compared to lower-scoring students. This class-size dimension becomes particularly impor-

tant when comparing these allocations to those made using only information about absolute
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advantage from traditional value-added estimates.

Before proceeding, we want to note three caveats in considering these reallocations. First,

note that because we do not change class composition, these gains could be significantly larger

in a district that employs class-level tracking because of greater variance in class composition.

Second, the district-wide reallocations might be infeasible. For example, in SDUSD the union

contract gives teachers with seniority higher priority in hiring. Furthermore, teachers have

strong preferences over locations (Boyd et al., 2005a) and schools (Bates et al., 2022) that

could impede some allocations from being incentive compatible. Finally, the new allocations

must be interpreted in the light of partial equilibrium, barring families re-sorting to classes

(via requests), schools (via school choice), or districts (via in- or out-mobility).

4.2 What Value Does Estimating Heterogeneity Add?

The previous subsection quantified large gains from teacher reallocations, but how much

of these gains would be possible without knowing the heterogeneous effects? If all of these

gains simply come from moving better teachers to larger classes, there is no need to estimate

heterogeneous effects. To evaluate the importance of estimating heterogeneity, we compare

the best allocations using heterogeneous estimates with those possible using only standard

estimates of value-added. This allows us to decompose the welfare gains from the best allo-

cations into the absolute advantage, comparative advantage, and redistribution components.

To find the optimal allocations with the standard value-added we use the same set of social

objective functions and same solution concept, but we replace the estimates of each teacher’s

value-added on both higher- and lower-scoring students with the standard estimates:

max
J∈J

∼
WV A(J ;ω) = max

J∈J

1

Ni,t

∑
(i,t)

ωL Li,t τ̂
J (i,t)
V A + (1− ωL) (1− Li,t) τ̂J (i,t)

V A (8)

where τ̂ jV A is the standard value estimate described in section 3.2.1 and where we again

solve the problem for 101 different values of the social weights ωL ranging from 0.0 to 1.0.

Intuitively, the gains from using absolute advantage as captured in the standard measures

come from putting the higher value-added teachers in larger classes to maximize average

scores—or using ωL-weighted class size when the social planner has heterogeneous preferences

over groups’ gains. The gains attained and reported at each point are calculated using our

heterogeneous estimates to avoid compromising the external validity of our score predictions

that would occur if using standard estimates to predict the effect of sending teachers to very

different classes.
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4.2.1 Estimating Heterogeneity Increases Average Test Scores

As illustrated in Figure 1, using heterogeneous value-added could increase average scores

beyond what is possible using standard value-added via comparative advantage. This sub-

section explores the extent to which information about comparative advantages can raise

average scores in practice. We document large gains beyond what can be accomplished us-

ing the information about absolute advantage that standard value-added measures provide.

To approach this question, we depict and compare the production-possibility frontiers

for average achievement gains to each group using heterogeneous and standard value-added

in Figure 6. Here again each point presents the average change in lower-scoring students’

test scores in the optimal allocations (on the y-axis) over average change for higher-scoring

students (on the x-axis). relative to the status quo (noted with the square marker). Panel

(a) presents the results from the district-wide reallocation, Panel (b) presents those from the

within-school reallocation. These figures also mark the allocations that maximize test scores

with a black diamond for reference—which is obtained by placing the highest value-added

teachers in the largest classes.

Note that the empirical results in Figure 6 are analogous to the theoretical depiction in

Figure 1. For each panel the outer PPF presents the changes in test scores possible by using

information about both absolute and comparative advantage based on the heterogeneous

teacher effects whereas the interior PPF presents the changes in test scores possible by using

only the information about absolute advantage contained in standard value-added estimates.

Again, the current allocation is denoted with a square.

Comparing the optimal allocations reveals that using information about comparative

advantage can as much as double the achievement gains from reallocations. In the district-

wide reallocation, allocations using comparative advantage generate 97.3% higher ELA scores

and 66.4% higher Math scores than allocations using only absolute advantage. These are

large gains: an average gain of 0.020σ in ELA or 0.023σ in Math for students in the district

would be an impressive policy victory, especially considering this policy could be implemented

year-over-year for compounding gains. Gains to the within-school reallocations are smaller

in absolute terms, but comparative advantage is still critical. Using heterogeneous effects

boosts average ELA scores by 34.1% and math scores by 50.3% (both about 0.0045σ).

Interestingly, even for a social planner trying to maximize average scores the choice

between standard and heterogeneous value-added measures has striking distributional im-

plications in the district-wide allocations. On one hand, the average-score gains from re-

allocations using only information about absolute advantage (from standard value-added)

are concentrated among higher-scoring students. For example, the higher-scoring students’

gains of 0.03σ in ELA and 0.05σ in Math are almost exactly three times larger than the cor-
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Figure 6: Using Heterogeneous Estimates Produces Larger Gains from Reallocation

-0.06

-0.03

0.00

0.03

0.06

0.09

0.12

G
ai

ns
 t

o 
Lo

w
 A

ch
ie

vi
ng

 S
tu

de
nt

s
 

-0.06 -0.03 0.00 0.03 0.06 0.09 0.12
 

Gains to High Achieving Students

Heterogeneous VA Standard VA
Score-Maximizing Actual Allocation

ELA Scores

-0.06

-0.03

0.00

0.03

0.06

0.09

0.12

G
ai

ns
 t

o 
Lo

w
 A

ch
ie

vi
ng

 S
tu

de
nt

s
 

-0.06 -0.03 0.00 0.03 0.06 0.09 0.12
 

Gains to High Achieving Students

Heterogeneous VA Standard VA
Score-Maximizing Actual Allocation

Math Scores

(a) District-Wide Reallocation
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(b) Within-School Reallocation

Note: This figure shows the test score gains from optimal allocations relative to the status quo. In each
panel two production possibility frontiers are presented, one for reallocating teachers based on our estimates
of value-added (absolute and comparative advantage) and one reallocating teachers only based on traditional
value-added (absolute advantage). Panel (a) displays the result for reallocating teachers across schools and
panel (b) the results for reallocating teachers within schools (both always keep teacher in the same grade).
Each PPF is constructed by finding the optimal allocation given relative weights on low- and high-scoring
students [0.0,1.0] by solving the optimal mixed-integer linear programming problem. Gains are reported as
average changes in scores measured in student standard deviations per school year that the reallocation is
performed.
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responding gains to lower-scoring students. On the other hand, the large gains from using

comparative advantage in the district-wide reallocations accrue disproportionately to lower-

scoring students. For example, the 0.02σ ELA gain is split almost 0.03σ to lower-scoring

students and just over 0.01σ to higher-scoring students. Figure 6 depicts these observa-

tions visibly: Whereas the expansion path from the status quo through the two PPFs is

almost linear for the within-school reallocations in Panel (b), it is extremely non-linear for

the district-wide reallocations Panel (a). These asymmetries motivate a direct focus on the

equity implications of using heterogeneity.

4.2.2 The Interaction of Distributional Goals and Comparative Advantage

The above section shows that when the goal is to maximize average scores, using het-

erogeneous value-added leads to significant gains. We also know from section 4.1 that when

policymakers favor one group over another, considering their distributional goals leads to

significant welfare gains. Putting these together, we now address how different distribu-

tional objectives impact the gains from comparative advantage, and using heterogeneous

value-added.

Using Figure 6 as a reference, we now compare the welfare from the optimal points on

the inner PPF relying on mean effects and the outer PPF using heterogeneity for a given

distributional goal. Reporting the difference in the Atkinson index between the optimal al-

locations reveals the welfare gains from using heterogeneous value-added estimates for each

distributional goal. Figure 7 reports the results. In Appendix Figure A.3, we present a sim-

pler measure: the true (unweighted) difference in average scores for each pair of allocations.

These analyses reveal that using heterogeneous value-added matters most when the social

planner has slightly egalitarian preferences. This is visible in Figure 7 where for the district-

wide reallocation the highest points on each upside-down U shape are slightly to the right

of utilitarian preferences denoted with the gray line (at ωL = ωH = 0.5). Although the

maxima, where using heterogeneous value-added is most useful, are at ωL =0.54 for ELA

and 0.55 for math, the entire region between ωL ∈ [0.30, 0.70] show gains equivalent to over

0.015σ of gains to all students.

The comparative advantage gains from estimating heterogeneous value-added are only

large if the social planner cares about both groups. For example, if the social planner

only cares about lower- or higher-scoring students (ωL ∈ {0.0, 1.0}), there are essentially no

gains from comparative advantage using heterogeneous value-added. This is because lower-

and higher-scoring value-added are positively correlated, so a policy that puts the highest

absolute advantage teachers in the class with the most lower-scoring students will have a very

similar effect on lower-scoring students to a policy that puts the teachers with the highest
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Figure 7: Welfare Gains from Comparative Advantage Along Distributional Objectives

0.000

0.005

0.010

0.015

0.020

0.025

0.030

0.035

W
el

fa
re

 G
ai

n 
fr

om
 H

et
er

og
en

ei
ty

(A
tk

in
so

n 
In

de
x)

 

0 10 20 30 40 50 60 70 80 90 100
 

Weight on Below Average Students (%)

District-Wide Within School

ELA Scores

0.000

0.005

0.010

0.015

0.020

0.025

0.030

0.035

W
el

fa
re

 G
ai

n 
fr

om
 H

et
er

og
en

ei
ty

(A
tk

in
so

n 
In

de
x)

 

0 10 20 30 40 50 60 70 80 90 100
 

Weight on Below Average Students (%)

District-Wide Within School

Math Scores

Note: This figure compares the welfare attained at the optimal allocations based on our measures of value-
added with those attained at allocations based on standard value-added measures. The unit is an Atkinson
Index indifference, i.e., how much would test scores have to increase for all students to generate equivalent
welfare gains. We report differences for both within-school and district-wide reallocations.

lower-scoring value-added in the same classes. This is visible in how close the frontiers are

in Figure 6 and in the upside-down U-shape in the gains reported in Figure 7.

The key driver of these differences are the relative shapes of the PPFs and how they

affect scores. As seen in Figure 6, the best attainable allocations using standard value-added

create a much flatter frontier than those using information about heterogeneity. As a result,

the “price” of an additional score increase to one group is much more expensive if the social

planner relies only on information from standard value-added measures. This has direct

implications for average test scores, as seen in Appendix Figure A.3. Here we depict the

change in average scores generated from moving from the optimal allocation attained using

standard value-added to the optimal allocation attained using our heterogeneous estimates.

Rather than being U-shaped like the welfare gains, these suggest an M-shape where the score

gains are biggest when on these flat regions of the interior PPF, but away from the center

where average scores (and thus class sizes) are all that matter.

In summary, comparative advantage and distributional goals are both potentially impor-

tant to consider, but how each effect interacts with a policymaker’s welfare weights means

one effect may play a much bigger role for a given policymaker. Redistribution is important

when the social planner has very strong preferences for gains to one group relative to another;

however, the standard measures of value-added are able to capture most of these gains be-
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cause value-added heterogeneity is positively correlated within teachers. There is little scope

for welfare gains from comparative advantage. Conversely, when a policymaker values gains

to each group roughly equally, there is little scope for distributional gains to matter, but

significant scope for welfare gains from comparative advantage. Since policy suggests some

social objectives may be more nuanced, we also turn our attention to the implications of our

reallocations for achievement gaps and the creation of winners and losers.

4.3 Other Equity Implications from Reallocations

Having described the optimal reallocations and decomposed the welfare gains from them,

our final task is to explore other equity implications that the proposed reallocations would

have. Specifically, we study how our reallocations affect overall achievement gaps and racial

achievement gaps, and we describe how certain allocations that generate gains on average

still create significant heterogeneity for winners and losers masked by that average.

4.3.1 Shrinking Achievement Gaps

Many education policies—including those that motivated our welfare theory—propose

interventions that will lower the achievement gaps between lower- and higher-scoring stu-

dents. To consider this we plot out the change in two policy-relevant achievement gaps in

Figure 8. First, in Panel (a) we show how the optimal within-school and district-wide real-

locations for each ωL would change the achievement gap between students who performed

above and below median in the previous year. We also report similar changes in the racial

achievement gap in Panel (b). We define this gap as the difference in average scores between

Black and Hispanic students versus White and Asian students. Interestingly, we show that

our completely race-blind policies can reduce average racial test score gaps just as much as

the race focused reallocations in Delgado (2022).

The main takeaway from these analyses is that a social planner who cares about gaps can

partially control the size of the gaps by making allocations that are on the efficiency frontier

based on comparative advantage. For example, the baseline gap between students who scored

above and below the median last year is 1.27σ in ELA and 1.19σ in Math. A social planner

focused on raising lower-scoring students’ scores without, on average, hurting higher-scoring

students could shrink those gaps by 4.4 and 7.6% every year. The gap between Black and

Hispanic students versus white and Asian students are smaller: at 0.72σ in ELA and 0.63σ

in Math, and these gains could be reduced by 6.5% and 9.7% per year. These changes are

strikingly similar to those in Delgado (2022) where allocations are made to explicitly shrink

racial gaps in math scores subject to not lowering average scores. Delgado (2022) finds a
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Figure 8: Reallocations Can Shrink Persistent Gaps in Student Performance
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(a) Achievement Gaps

-0.15

-0.12

-0.09

-0.06

-0.03

0.00

0.03

0.06

0.09

0.12

0.15

C
ha

ng
e 

in
 R

ac
ia

l-A
ch

ie
ve

m
en

t 
G

ap
 

0 10 20 30 40 50 60 70 80 90 100
 

Weight on Below Average Students (%)

District-Wide Within School

ELA Scores

-0.15

-0.12

-0.09

-0.06

-0.03

0.00

0.03

0.06

0.09

0.12

0.15

C
ha

ng
e 

in
 R

ac
ia

l-A
ch

ie
ve

m
en

t 
G

ap
 

0 10 20 30 40 50 60 70 80 90 100
 

Weight on Below Average Students (%)

District-Wide Within School

Math Scores

(b) Racial-Achievement Gap

Note: This figure shows how optimal reallocations would change achievement gaps between students. Each
panel plots the change in the gaps of interest over the relative weights on higher- and lower-scoring students.
Panel (a) displays the change in the average difference in test scores between students who scored below
versus above the median in the previous year (relative to about 1.2σ), and Panel (b) displays the change in
the average difference in test scores between Black and Hispanic students versus white and Asian students
(relative to about 0.7σ). Both gaps are measured in student standard deviations.
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0.068σ reduction in the racial gap with no change in average scores, but using a race blind

policy our district-wide reallocations would shrink the gap by 0.064 and raise average test

scores by 0.032σ.12

There are three additional points we want to highlight from this figure with implica-

tions for which gaps are effected. First, whereas both the within-school and district-wide

reallocations could change the achievement gap, only the district-wide reallocations could

meaningfully affect the racial achievement gap. This makes sense because there is more

variance in racial composition across schools than within.

Second, it is interesting to note that the welfare weights that hold gaps constant vary

a lot across allocations. For the within-school reallocations attaining similar gaps requires

a weight on lower-scoring students between 40-43% for ELA and 52-53% for Math. On

the other hand, the district-wide reallocations require much larger weights on lower-scoring

students. For example, it takes 55% and 61% to shrink the achievement gaps in ELA and

math, and even more to shrink the racial gaps: 64% and 72%. For context, this means that

to control the racial-achievement gap in math, a social planner would have to forego 0.007σ

in average gains.

Finally, although average-test-score maximizing reallocations (ωL = ωH = 0.5) within

school tend to not affect either gap significantly,13 district-wide reallocations to maximize test

scores will actually expand both the achievement and racial achievement gaps. Intuitively

this is because of cross-school co-variation in achievement (or race) and class size as discussed

above.

4.3.2 Reallocation winners and losers

As noted above, because there are so many students, no reallocation—even one creating

large average gains—is a Pareto gain in the sense that it helps, or leaves unaffected, all

students. Despite the net gains from matching teachers to their comparative advantages

and putting stronger teachers in larger classes, reallocations will assign some students to less

effective teachers or to teachers who are a worse match for them (despite the teacher being

a better match for their class).

Before communicating these results, we want to highlight the fact that any allocation of

teachers to students will assign some students better teachers than others. In that sense the

“harms” presented here should be benchmarked by the fact that in the status quo roughly

12Note that in our context larger reductions in gains are obviously possible if the social planner is willing
to choose allocations that actually reduce the average scores of certain groups while staying on the frontier.
While it is likely that there are interior allocations in which gaps could be further reduced, we restrict our
focus to allocations that are on the frontier of gains to higher- and lower-scoring students.

13In fact, if anything they would slightly shrink the achievement gap.

33



one third of students are assigned to a teacher with below-median value each year (among

teachers teaching the relevant grade in the student’s school), and for these students, the

average “loss” (relative to the expectation) is about 0.10 student standard deviations in

their scores on tests of each subject.

With that context in mind, Appendix Figure A.4 shows that just as some students experi-

ence lower test score growth because of the year-to-year allocations of teachers in the status

quo, some also receive lower value-added teachers in our reallocations. For example, the

optimal within-school reallocations assign between 35-38% of students to lower value-added

teachers, with 39-47% for the district-wide reallocations. Unsurprisingly, more egalitarian

allocations reduce the achievement gains of higher-scoring students relative to the status

quo whereas more elitist allocations reduce the gains to lower-scoring students. Appendix

Figure A.4 also reports the average achievement loss among students who are harmed. In

the optimal district-wide (within-school) allocations, students who receive lower value-added

teachers than they would in the status quo experience 0.104-0.120σ (0.085-0.099σ) smaller

ELA testing gains on average and 0.173-0.204σ (0.140-0.165σ) smaller math gains on av-

erage, per year. While these figures sound large in terms of educational interventions, it’s

important to remember that they are relatively similar to the “losses” that are occurring in

the status quo. Our reallocations change which students receive teachers with lower absolute

advantage or poorly matched comparative advantage, but on average these changes are more

than offset by even larger average gains to other observably similar students.

One implication of this depiction of winners and losers is that our reallocative policies

have a strong redistributive component. For a social planner who only cares about higher-

versus lower-scoring students this consideration is irrelevant, but in practice districts may

want to preserve some horizontal equity.14 For example, because our reallocations tend to

put teachers with higher absolute advantage in larger classes and because larger classes tend

to be in schools with more higher-scoring students, our optimal reallocations will tend to

benefit lower-scoring students in these schools slightly more than lower-scoring students in

schools with lower average achievement. As discussed in Section 2, this may be troubling

if the policymaker has preferences over multiple dimensions of student characteristics. For

example, this could be problematic if the policymaker is most concerned about lower-scoring

students in schools with lower achievement.

The fact that there are indeed winners and losers among students, in addition to the

observation that teachers, administrators, and teachers’ unions—by revealed preference—

14At least relative to the status quo. In an obvious sense, the opportunity cost of the current allocation is
that it harming (or at least not benefiting) many students that a different allocation could be making better
off.
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weakly prefer the status quo to any reallocation raises the question of welfare implications

from these reallocation policies. Can schools reallocate teachers in ways that matter for

welfare? How could they make such reallocations incentive compatible for families and

teachers? What would be the cost of smoothing such incentive compatibility constraints?

And would the reallocation still be worth doing? These are questions we consider in the

following section.

5. From value-added to Welfare Added

We have provided a welfare theory, estimated the relevant parameters, and demonstrated

the test score gains from reallocations along a single subject. Our empirical findings so far

can be interpreted as statements about a popular outcome of interest, test scores. With some

assumptions, however, our findings on test score gains can be interpreted as an unbiased, or

less biased than the mean, welfare estimate using our welfare theory.

First, we need to make an assumption about family preferences and their behavior in light

of our policy change. We assume that families—the main decision-makers for students—value

the average achievement of the school they enroll in. This means that students will not re-

sort to new schools after we have rearranged teachers within a school. This is obviously

restrictive as parents may value many aspects of education, some idiosyncratic, like having

a teacher an older sibling took classes, and others more systematic, like sociability and

non-cognitive value-added (e.g., Jacob and Lefgren, 2007; Petek and Pope, forthcoming;

Beuermann et al., 2023). Nevertheless, the vast majority of families do not request specific

teachers, and even when they do, not all requests are honored. This assumption is analogous

to the “no spillovers” condition assumed in Section 2. Given extensive evidence that families

do not respond to information about value-added in school choice (Abdulkadiroğlu et al.,

2020) or housing markets (Imberman and Lovenheim, 2016), we think this assumption is

not too restrictive. Readers critical of this assumption should consider all welfare gains in

partial equilibrium terms.

Second, we need to consider the bias terms from Theorem 2. First, consider the covariance

term. It is important to remember that this term is dependent on the policymaker’s welfare

weights. As mentioned above, the covariance terms would be zero if our policymaker truly

cared about only average lower- and higher-scoring students. If this is not the case, for a

completely unbiased estimate, we need the conditional covariance of the true welfare weights

(that consider all factors important to the policymaker) and student gains to be uncorrelated.

We know that different allocations impact racial test score gaps and that gains from some

reallocations accrue to lower-scoring students primarily in higher-scoring schools. While the
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estimates may not be unbiased in this case, satisfying Equation 2 would still ensure they are

better than simple means. Conditioning on additional factors like race and school average

scores could further assuage these concerns, but for tractability, we stick to conditioning on

test scores.

Next, we consider the estimation bias between our estimated conditional average treat-

ment effect and the truth. While we know teacher impacts differ along different dimensions

(Delgado, 2022), we believe conditioning on test scores captures much of the variation with-

out over-fitting. While race also plays a role, finding common support for all teachers can be

practically challenging. Gender may play a role in teacher impacts as well; however, gender

composition does not change significantly between most classes, limiting the bias introduced

by teacher heterogeneity.

There are still two significant shortcomings that we address in the following section.

First, these teachers teach both ELA and Math, and so an optimal reallocation policy would

consider the impact on both simultaneously. To combine both of these subjects into a

single score function, we map achievement gains to lifetime earnings, which we do using

the subject-specific estimates from Chetty et al. (2014a) of how value-added affects lifetime

earnings.

The second shortcoming to address is the impact of reallocations on teachers. We need

to consider the welfare component attributable to teachers’ disutility from the reallocations.

We treat teacher’s preferences as an incentive compatibility constraint and assume they will

need to be compensated enough to willingly switch classes. Using a revealed preference

argument, if teachers willingly move, they will have been made better off. Assuming all

teachers must be compensated for changing assignments will likely overstate the cost to

teachers because at least some may prefer their new assignments,15 the main challenge is

how to price this disutility. Some papers have attempted to price the disutility to teachers

from various policies (e.g., Rothstein, 2015; Bates et al., 2022), but highly structured wages

in teacher labor markets often make this difficult in practice. We will focus on the marginal

value of public funds (MVPF, Hendren and Sprung-Keyser, 2020) for a hypothetical universal

bonus program.

Note that by restricting our focus on families and teachers in this way, we implicitly as-

sume that other considerations like union concerns or the administrative costs of performing

the reallocations are negligible. While these considerations are likely important, we argue

that welfare gains of a large enough magnitude could allow transfers or interventions to

alleviate these concerns or pay these costs.

15For example, some teachers will be sent to schools they would like to teach at but cannot because of
opening and union tenure requirement.
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5.1 Students: Earnings Implications of Reallocations

We begin with the welfare implications for students under the assumptions outlined

above. These results are most closely tied to our previous analyses focused on student gains.

This subsection demonstrates our approach for finding the optimal achievement gains for

students’ lifetime earnings and performing allocations that maximize those income gains.

5.1.1 Choosing an Income-Optimal Score Function

Because there are numerous allocations, all of which would generate different earnings

outcomes, our first objective is choosing a welfare “score” function to maximize income. To

do so we use the subject-specific estimates of the effects of value-added in Math or ELA on

student earnings from Chetty et al. (2014a). They estimate that a one standard deviation

increase in ELA scores in elementary school generates an additional $1,524 in earnings in

early adulthood and that the corresponding gains in Math are $650.

Because of the fundamental trade-off between the facts that our reallocations generate

larger gains in math, but gains to ELA matter more for earnings, we take a principled ap-

proach to defining the income-optimal allocation. We consider the following set of utilitarian

score functions that take into account value-added in two subjects, s, ELA and Math.16

∼
W(J ;ω) =

1

Ni,t

∑
(i,t)

∑
s

ωs

[
Li,s,t τ̂

J (i,t)
L,s + (1− Li,s,t) τ̂J (i,t)

H,s

]
(9)

where ωs represent the weight on each subject and
∑

s ωs = 1. And now Li,s,t indicates

whether the student is low scoring in that particular subject.

Solving the optimization problem for a range of ωELA ∈ [0.0, 1.0] generates a production

possibility frontier similar to those in the reallocation exercises in Section 4. Whereas the

previous PPF plotted the trade-offs of possible gains between higher- and lower-scoring

students, the PPF in Panel (a) of Figure 9 presents the trade-offs between gains to average

Math and average ELA scores. For example, an allocation focused entirely on Math scores

could raise average math scores by 0.058σ (0.016σ within schools). Because Math and ELA

value-added are somewhat correlated, this allocation would also raise ELA scores by 0.019σ

(0.005σ within schools). The focus on math scores only, however, forgoes large ELA gains.

This could be particularly problematic as ELA gains are nearly 2.5 times more important

for earnings.

We combine the information on possible gains with the estimates of the subject-specific

income effects of those gains to calculate the weight each subject that maximizes income

16We will soon relax the assumption about a utilitarian social planner.
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gains. The estimates from Chetty et al. (2014a) create relative “prices” of gains to scores in

each subject measured in earnings. As such, the income-maximizing weight sets the marginal

rate of substitution between ELA and math scores equal to the relative price. We illustrate

this graphically in Panel (a) of Figure 9 using a dashed line with a slope of the relative

price. This line is tangent to the within-school PPF at ωELA = 0.71 and to the district-wide

PPF at ωELA = 0.70. These values favor ELA gains, but do not focus exclusively on ELA

value-added because the value of marginal gains to ELA scores from increasing ωELA beyond

0.71 are smaller than the value of the larger gains to increasing math scores.

The combination of gains from both subjects significantly increases the income gains

from students. The facts that math value-added scores have higher variance and result in

larger achievement gains from reallocations might motivate a social planner to focus only

on math scores in their objective function. In fact, this intuition plays out in the policy

experiments considered in Delgado (2022) and Bates et al. (2022) which both focus only on

math. Surprisingly, our results overturn this intuition. We will discuss the details of how

we obtain these numbers below, but we find that a district-wide allocation that focuses only

on math scores increases average present-valued earnings by $1030. The insight that we can

incorporating information about both math and ELA optimally generates gains of $1390 per

student. This $360 (34%) gain is large and is costless once one allows the social planner to

optimally weight value-added to both test scores.

5.1.2 Characterizing Possible Income Gains

With information about the income-optimal score function in hand, we return to the

question of optimal policy with heterogeneous social preferences. Combining all of the pieces

we define a new social welfare function to optimize

∼
W(J ;ω) =

1

Ni,t

∑
(i,t)

ωL

[
ωELA Li,ELA,t τ̂

J (i,t)
L,ELA + (1− ωELA)Li,Math,t τ̂

J (i,t)
L,Math

]
+(1− ωL)

[
ωELA (1− Li,ELA,t) τ̂J (i,t)

H,ELA + (1− ωELA) (1− Li,Math,t) τ̂
J (i,t)
H,Math

]
where now we explicitly sum test score gains over both subjects and both student types with

their respective weights. Because this formulation exponentially increases the dimensionality

of ω, we use our evidence about income-optimal weights to choose ωELA = 0.75 and ωMath =

0.25 in this section. To the extent to which the optimal ω∗ELA varies over ωL, our results

provide a lower bound on the true earnings gains.17

17Note that because not all students are low scoring in Math and ELA the achievement weight ωL may
not apply uniformly to each student. In practice this means that there are four implicit weights generated by
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Figure 9: Reallocations Can Shrink Persistent Gaps in Student Performance
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After calculating the efficient allocations for each ω, we use the process in Chetty et al.

(2014a) to map the test score improvements into the present value of lifetime earnings. We

outline our approach as follows. First, we assume that individuals may choose to work

between the ages 20 and 65. We also assume that the average income gains implied from

test scores apply to all of these earning. Finally, we assume that families discount these

earnings gains at a 3% (i.e., with a 5 percent discount rate partially offset by 2 percent wage

growth) back to age 10, the average age of students in our sample. Empirically this implies

a multiplier of 15.5 on the baseline gains implied from test scores.

The results, depicted in Panel (b) of Figure 9 show that optimally reallocating teachers

could create millions of dollars of gains per year. Based on our calculation, the income-

maximizing district-wide allocation would generate over $1140 in present valued earnings

for low scoring students and over $1630 for high-scoring students. Since there are 10,150

students of each type each year (on average), this implies the value of the reallocation across

all students is $27.9 million. While smaller, the gains from the within school reallocations

are not insignificant: over $400 for lower-scoring students and over $300 for high-scoring

students, implying $7.4 million across the district.

Policy makers concerned about inequality can also create large redistributive gains. For

example in the district-wide reallocation, a social planner could increase the present value of

lower-scoring students’ earnings by $1990 without hurting high scoring students on average.

A similar comparison reveals gains of $600 from within school reallocations. Compounded

year-over year gains like these could be powerful tools at reducing not only achievement,

but also earnings inequality among students coming out of the district. In Appendix Figure

A.5, we compare these results to those of a social planner with continuous CES preferences

across students rather than discrete preferences across groups and show similar patterns.

Taken together the gains from this policy are enormous. Even if the 27.9 million dollar

gain is infeasible because of teacher or union preferences, the within-school reallocation is an

essentially costless program generating nearly quarter of those gains. This underscores the

power of using information about comparative advantage to improve policy. Furthermore, if

there are ways to make the 27.9 million dollar gains attainable, a discussion of how to do so

is of first-order importance. The following subsection provides that discussion.

this welfare function. One conceptually simple way to think of this function is treating each student’s score
as a different student and then weighting the welfare from gains to that “student” by both their achievement
and which test it is.
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5.2 Teachers: Welfare Value of a Teacher Bonus Program

We now turn to the welfare implications for teachers. Rather than trying to price teacher

disutility, we focus on a teacher bonus thought experiment. One advantage of considering

this experiment is that it allows us to separately consider welfare and incentive compatibility.

Our estimates reflect the welfare attainable for each policy and would allow policymakers

to choose the optimal one based on their understanding of the incentive constraints (e.g.,

teacher supply, wages, amenities, seniority, unions, etc.).

Imagine a policy that paid all teachers a certain bonus for participating in a reallocation.

Teachers would be paid this bonus whether or not their school or class assignment changed.

If the bonus was sufficient to ensure incentive compatibility, then one way to characterize the

welfare under the resulting allocation would be the marginal value of public funds (MVPF,

Hendren and Sprung-Keyser, 2020). This characterizes a lower bound on an envelope of

possible incentive programs that could be improved by targeting bonuses the teachers with

the highest impacts from reallocation or by relaxing the requirement to participate in the

reallocation (for example, for teachers with very strong preferences to their current assign-

ment.

The MVPF is a “bang-for-the-buck” measure of the bonus program, calculated as the

present value of the total program benefits divided by the net cost of implementing it.

Specifically, for a bonus of size b the MVPF of allocation j is

MV PF j(b) =

∑
i(1− t)∆S

p
i )

Njb− t∆Sp)
(10)

where (1− t)∆Spi are the after-tax present-value monetary gains to each student from alloca-

tion j (given tax rate t), Nj is the number of teachers and t∆Spi is the present-value of gains

recouped as tax revenue. The key assumption required for this statistic to be meaningful in

this policy thought experiment is internalizing the fiscal externality of the district’s policy.

For example, this could be interpreted as the national value of the district administering

the reallocation policy. Although it is possible to compare national and local MVPFs (e.g.,

see Agrawal et al., 2023), we focus on this simplified case as in other work (Hendren and

Sprung-Keyser, 2020).(Hendren and Sprung-Keyser, 2020).18

We combine our estimates of present-value monetary gains with data from the Oppor-

tunity Atlas (Chetty et al., 2018) to calculate these MVPF empirically. For the changes in

earnings, we focus on the utilitarian, earnings-maximizing, within-school and district-wide

reallocations as described in the previous subsection. To compute the tax rate, we note that

18Note that the two could be equivalent if the state and federal governments were to transfer the marginal
tax revenue generated by the policy back to the SDUSD.
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for children growing up in San Diego county, the median income at age 35 is $43,000. Because

the majority of these individuals are unmarried (56%) and still living in the same commuting

zone (68%), we apply the marginal tax rates from the United States and California for single

filers, 0.22 and 0.06, implying t = 0.28 for in equation 10.

We present the results in Figure 10. Figure 10 plots the Marginal Value of Public Funds

over a broad support of possible bonus sizes (using a log scale on the x-axis). The two series

represent the MVPF of a bonus program of a given size for the district-wide or within-school

reallocations. The curve showing the value of bonuses for the within-school reallocations is

lower because those reallocations produce smaller gains. For each point, the MVPF can be

interpreted as dollars of social benefit produced for each dollar spend on the teacher bonus

program. Values of the MVPF above 5 are reported at the same height on the y-axis.

Figure 10: Compensating Teachers for Reallocations Could Have Enormous Welfare Impacts
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which the MVPF is infinite is indicated with arrows, and the x-axis shown on a log scale.

The main takeaway from Figure 10 is that for a broad range of bonus sizes the policy of

reallocations and bonuses has an infinite MVPF. An infinite MVPF occurs when the net cost

of the program is negative and the benefits are positive. in other words, the district would

be making money by paying to reassign teachers—and would be increasing student earnings

in the process. For the district-wide reallocation, the MVPF is infinite for a bonus of up to

$8,300, and it is infinite for bonuses up to $2,200 for the within-school reallocation. This

second number is particularly striking because despite being noninvasive the within-school

reallocation is still generating substantial gains.
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A second important insight from Figure 10 is that even when the MVPF is not infinite

it is still large even for very costly bonus programs. For example, for the district-wide

reallocation, a bonus program of paying every teacher in the district $20,000 to participate

in the reallocation would still have an MVPF of roughly 2. In other words, it would generate

$2 of present valued earnings gains for every dollar spent on bonuses. This is a marked

pay increase – equivalent to a one-third salary increase for a teacher in the 2010-11 school

year with 10 years of teaching experience and the middle tier of education in the district’s

collective bargaining agreement.

Note that some of these bonus policies may not be incentive compatible, but other re-

search suggests that reallocations with large and even infinite gains could be attainable.

For example, while $20,000 may sounds enormous, it amount was shown to be more than

enough inducing teachers to move to very low performing schools in a large randomized

controlled trial (Glazerman et al., 2013). On the other hand, it’s likely that almost all of the

within-school reallocations are incentive compatible for most bonuses. First this is because

teachers seem to care much more about which school they teach at than which class they

teach—in large part because of commuting (Bates et al., 2022)—and this is not affected in

the within-school reallocation. Furthermore, in the within-school reallocation most teachers

do not even switch classes, suggesting that the utility impact of the reallocation would be

particularly small.

Taken together the teacher bonus thought experiment suggests that the large gains from

reallocations are more than an impossibility. Although some teachers would be worse off

because of certain reallocations, generating structures that appropriately compensate them

for teaching to their comparative advantage could generate tremendous gains. In fact, many

of the policies we explore generate large enough earnings gains to students to justify lavish

teacher bonuses on the grounds of added tax revenue alone.

6. Conclusion and Implications for Policy

This paper set out to answer two questions: When does heterogeneity matter for maxi-

mizing a social objective in general? And how large are the welfare gains from using hetero-

geneous estimates for refining education policy in particular? We employed and extended

tools from public finance to think about aggregating teacher effects on multidimensional

outcomes and heterogeneous student types into welfare relevant statistics and implemented

them in the context of a large urban school district. In reallocation exercises, using informa-

tion about both multidimensionality and heterogeneity produce up to double the gains for

test scores or for later-life outcomes relative to using standard measures that assume teachers
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have homogeneous impacts on students, and which focuses on one student outcome rather

than two. This highlights the importance of incorporating such information into welfare

considerations and policy.

We conclude by exploring three policy trade-offs that our results highlight and discussing

possible directions for continued inquiry.

In the specific context of education value-added, our results highlight the power of com-

parative advantage relative to other policy proposals. Historically researchers have bench-

marked the importance of teacher value-added with the a policy “deselecting” (i.e., firing)

low-performing teachers (see Hanushek et al., 2009; Hanushek, 2011; Chetty et al., 2014b;

Delgado, 2022). Although deselecting 5% of teachers with the lowest value-added could pro-

duce large gains, there are concerns about the ethics of mistakes (Staiger and Rockoff, 2010)

and the implications for teacher labor markets (Rothstein, 2015), in the sense that it is not

obvious who the replacement teachers will be, and their own teaching effectiveness. An in-

teresting implication of our results, however, is that by relaxing the traditional assumptions

of constant effects and equal class sizes we can reallocate rather than release teachers. In our

setting a district-wide reallocation would produce gains more than three times larger than

the gains from deselecting 5% of teachers. Furthermore, because deselection using standard

value-added penalizes teachers who happen to be allocated to worse-matched classes, reallo-

cations prevent incorrect dismissals—16-19% of those targeted. A reallocation-based policy

would be less costly to teachers and more beneficial. A within-school reallocation would be

even less costly and would still generate 50% of the gains from deselection. In other words,

our results suggest that in some, and perhaps many, cases, teachers in the bottom 5-10%

need not be deselected, but rather provided an assignment that better matches their com-

parative advantage. In other cases, where absolute advantage is extremely low, deselection

could still be an option.

A second, more general, policy-insight is that our theory can show policymakers how

mean evaluations of existing policies may (or may not) apply to new policy considerations.

For example, we show that mean-based welfare estimates can be biased when based on esti-

mates that are not externally valid, or when there is a covariance between welfare weights and

treatment effects. While our results clearly indicate the value of considering heterogeneity,

even without information beyond the means, policymakers can use these conditions to assess

the severity of the bias. For example, using estimates from an expansion of Medicaid to ben-

eficiaries similar to those who are eligible in another state may be very reasonable, whereas

assuming that both welfare weights and the elasticity of taxable income are homogeneous

along the income distribution may not be. Furthermore, policy can be further improved by

conditioning on the relevant dimensions of heterogeneity. Admittedly, using characteristics
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to condition the estimates often reduces precision—although this type of tradeoff between

bias and variability is hardly unique to our setting.

A final policy consideration can be taken from our results at large. Since value-added

and other mean evaluations are useful in so many contexts, we hope many practitioners

will extend the use of heterogeneous estimates. As they do our research can provide a

framework for the gains from adding heterogeneity and which dimensions of heterogeneity

and multidimensionality to add and which to ignore. While our results highlight striking

patterns in how value-added heterogeneity specifically may affect the long-term outcomes of

students, we note that assessing the optimality of reallocation policies in the long run will

depend on heterogeneity in the long-term effects. We think an important next step in this

literature is directly assessing the effect of multi-dimensional measures of teacher quality

on various life-long outcomes and particular the heterogeneity in these relationships across

groups.

Taking a step back, our results also highlight the value of testing for and estimating

heterogeneous estimates of teacher impacts, and of causal effects more broadly. Whether it

is allocating teachers to classes, assessing racial health disparities in care, comparing possible

social services, or measuring the effects of firms on earnings growth, the mean is rarely enough

to characterize the full question of interest. Although estimating and implementing these

evaluations can be costly, researchers have their own comparative advantage in such analyses,

and our results suggest enormous gains from finding ways to leverage that knowledge to

improve allocation in public programs of many types.
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A. Additional Tables and Figures

Figure A.1: Cross-Subject and Cross-Type value-added Is Much Less Correlated
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ρ=0.57
β=0.32
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Note: This figure shows our heterogeneous estimates of teacher value-added on both English Language Arts
(ELA) and Math test scores. Note that in this Figure Math and ELA scores are plotted against each other.
Each dot represents one teacher-year estimate of value-added on higher- and lower-scoring students. The
correlation coefficients is for the entire population stacked by year. The dotted line shows the line of best fit
with the slope reported. For reference a line with slope one is plotted in the background.

Table A.1: The Standard Deviation of Class Size and the Share of Students in the Class
Who Are High-Scoring in ELA and Math

Note: This figure shows the within year-grade standard deviations in class size and composition at a district-

wide level and a within-school level.
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Figure A.2: value-added Only Varies Somewhat Across Class Sizes
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βELA=0.07
βMath=-0.12
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Note: This figure shows how our heterogeneous estimates of teacher value-added on both English Language
Arts (ELA) and Math test scores relate to class composition. The panel on the left shows teacher absolute
advantage (average of value-added on higher- and lower-scoring students) and the panel on the right shows the
comparative advantage (difference of value-added on below-median students minus value-added on higher-
scoring students). both panels plot the ventiles of value-added (measured in teacher standard deviations in
absolute advantage) over the share of number of students in each class. Both β report the change from a
25-student change in class size.

Figure A.3: Test-Score Gains from Using Heterogeneity
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Note: This figure shows the test scores gains from using our measures of heterogeneous value-added to make
allocations relative to standard measures over various social preferences.
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Figure A.4: While Reallocations Help Many Students, They Will Harm Others

0.20

0.30

0.40

0.50

0.60

0.70

Sh
ar

e 
of

 S
tu

de
nt

s 
W

ho
 E

xp
er

ie
nc

e 
Lo

ss
es

 

0 10 20 30 40 50 60 70 80 90 100
 

Weight on Below Average Students (%)

Below Average (District-Wide) Above Average (District-Wide)
Below Average (Within School) Above Average (Within School)

ELA Scores

0.20

0.30

0.40

0.50

0.60

0.70

Sh
ar

e 
of

 S
tu

de
nt

s 
W

ho
 E

xp
er

ie
nc

e 
Lo

ss
es

 
0 10 20 30 40 50 60 70 80 90 100

 
Weight on Below Average Students (%)

Below Average (District-Wide) Above Average (District-Wide)
Below Average (Within School) Above Average (Within School)

Math Scores

(a) Share of Students Harmed
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(b) Mean Score Change among Harmed Students

Note: This figure shows information about which students are made worse off by the reallocations. Panel
(a) reports the share of students whose scores would be lowered by each reallocation and Panel (b) reports
the average change in scores among those harmed.
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Figure A.5: Comparing to a CES Benchmark

-1000

-500

0

500

1000

1500

2000

2500
P

re
se

nt
 V

al
ue

 C
ha

ng
e 

in
 E

ar
ni

ng
s 

 

0 1 2 3 4 5
 

γ: CES Redistributive Preference

Lower Achieving Students: District Wide High Achieving Students: District Wide
Lower Achieving Students: Within School High Achieving Students: Within School

Note: This figure shows the present-value earnings gains from optimal reallocations based off of continu-
ous CES preferences over student types rather than discrete preferences between higher- and lower-scoring
students.

B. Theory Appendix

B.1 From Test Scores to Welfare Details

Below is a more detailed version of definition 1

Proof. If a change in an individual’s outcomes Yi only impacts the utility and welfare weights

of that individual i, then for a given score function S, the expected change in welfare ∆
∼
Wj

from the status quo policy (j = 0) to policy j is

∆
∼
Wj ≡ E[Wj|Sj]− E[W0|S0]

=
n∑
i=1

E[ψjiU
j
i |S

j
i ]− E[ψ0

iU
0
i |S0

i ]

=
n∑
i=1

E[ψjiU
j
i |S

j
i ]− E[ψ0

iU
0
i |S0

i ]

∆Spi
∆Spi

≡
n∑
i=1

γi(S
j
i , S

0
i )∆S

p
i

The last line is simply redefining the first term as a test score welfare weight γi(S
j
i , S

0
i ).

Sj is the vector of test scores for every student under policy j. This means the expectations

on the first line are conditional on the entire vector of test scores. This means the relationship
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between test scores and utility is fully flexible, and each student’s utility can be uniquely

impacted by a given test score change. Note that γi is an average over test score points for a

given student, not an average across students. To understand this term, it is helpful to think

through a simple example. Suppose E[ψjiU
j
i |S

j
i ] = Sit for all students. That is, expected

welfare is linear in test scores. In this case, γi(S
j
i , S

0
i ) = 1 because all students gain 1 util

per score over the entire range of scores, and test scores are equivalent to welfare. Although

welfare weights are often based off of earnings or earnings ability, the implication of definition

1 is that we can theoretically apply weights to a short term outcomes like test scores, rather

than utility, and still have an unbiased estimate of welfare. Of course, in practice, getting

individual weights is likely impossible. The later theory sections address the best way to

overcome this problem with conditional aggregation, but definition 1 provides a ground

truth reference that incorporates a large amount of of potential heterogeneity, individual

differences.

B.2 Welfare Weighting the ATE

Using a similar approach to Hendren and Sprung-Keyser (2020), the following equation

shows how it is possible to estimate welfare from an average treatment effect if the proper

weight is applied

∆Wj (11)

=

∫ 1

0

γi(S
j
i , S

0
i )∆S

p
i di (12)

=

∫ 1

0
γi(S

j
i , S

0
i )∆S

p
i di∫ 1

0
∆Spi di

∫ 1

0

∆Spi di (13)

= γ̃jATEj (14)

The trouble is that the first term, γ̃j depends, not just on the test score welfare weights γi,

but also on the joint distribution of those weights with the changes in test scores for policy j.

It is a complex object that involves a deep understanding of the distribution of heterogeneous

impacts resulting from policy j. If a policymaker already has this deep knowledge, it is not

clear how much giving them the average treatment effect will help.
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B.3 Theorem 1 proof

Proof.

Average BiasATE =
∆

∼
Wj

n
− E[γp]ÂTE

=
1

n

n∑
i=1

γi(S
j
i , S

0
i )∆S

p
i − E[γp]ÂTE

= E[γp∆Sp]− E[γp]ÂTE

= E[γp]E[∆Sp] + Cov(γp,∆Sp)− E[γp]ÂTE

= Cov(γp,∆Sp) + E[γp]
(
E[∆Sp]− ÂTE

)
The first line is how we are defining bias. It is the benchmark with individual heterogeneity

minus our common estimator of the mean welfare weight and the average treatment effect.

The second line comes from definition 1. The third line comes from recognizing that the

first term in line two is the population average, or expectation, of γp∆Sp. The fourth line

uses the general definition of covariance, that is Cov(X, Y ) = E[XY ] − E[X]E[y]. The last

line just rearanges the terms.

B.4 Averate Treatment Effect Bias Explained

The specific source of average treatment effect bias we are consider can be a concern for

any policy j that involves assigning specific sub-treatments d (teachers) to subsets of the

population of size Kj
d (classes). First note that the average treatment effect is the following

weighted average of sub-treatment effects ATEj
d

ATEj =
1

n

∑
d

Kj
dATE

j
d

The bias comes in from incorrect estimates of the average sub-treatment effect (teacher

impact) ATEj
d characterized by the following

ATEj
d − ÂTE

j

d =
1

Kj
d

Kj
d∑

i=1

∆Sdi −
1

K0
d

K0
d∑

l=1

∆Sdl

Here we can see the bias comes from different individual impacts between the existing

class and the class in the policy counterfactual. It is helpful to think through the two cases

where this difference goes to zero. First, if there is no treatment effect heterogeneity. For
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example, a teacher impacts all students equally on average and so ∆Sdi = ∆Sdl ∀ i, l.

Second, even if there is treatment effect heterogeneity, if the classes have similar character-

istics the means may still be the same. For example, a teacher may be very bad at teaching

English language learners (ELA). However, if both classes have the same fraction of ELA

students, the teacher’s mean impact will be the same.

B.5 Conditional Average Treatment Effect Bias Explained

The bias in the second term will be lower after conditioning when

E[∆Sp]− ÂTE >
∑
x

Px

(
E[∆Sp|x]− ̂CATE(X)

)
(15)

As in the previous section, we can zero in on a specific teacher or sub-treatment and see

that, for a given teacher, conditioning reduces bias when

ATEj
d − ÂTE

j

d (16)

=
1

Kj
d

Kj
d∑

i=1

∆Sdi −
1

K0
d

K0
d∑

l=1

∆Sdl (17)

>
∑
X

P j
dx

 1

Kj
dx

Kj
dx∑

i=1

∆Sdi −
1

K0
dx

K0
dx∑

l=1

∆Sdl

 (18)

∑
X

P j
dx

(
ÂTE

j

dx − ÂTE
0

dx

)
(19)

The left side is the difference in mean treatment effects between the baseline class and the

counterfactual class, as described above. The right hand side is the difference in the mean

treatment effects for a given x, weighted by the portion of students in the counterfactual

class in group x. Bias in this case comes from differences within a group x between the

baseline and counterfactual treatment effects. There is no longer any bias from differences

in the fraction of students with characteristics x. If a teacher is worse at teaching struggling

students, for example, and their new class has many more struggling students, the left hand

side will overestimate their impact on the new class. The right hand side will only be biased

if there is variation within performance groups in both the teachers impact and the student

compositions. For example, teachers may have different impacts on students based on race,

even within a pretest group, and racial composition could differ across class (Delgado, 2022).
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C. value-added Estimation Details

The above discussion shows the theoretical importance of measuring test score hetero-

geneity, but of course, measuring heterogeneity increases the variance of estimates. Weather

or not it can be effectively measured to improve policy analysis is a practical empirical ques-

tion. Below we cover two different methods for measuring test score heterogeneity, but first,

a quick review of our benchmark traditional value-added estimation.

C.1 Estimators

C.1.1 Standard value-added

In order to reference our estimates against an up to date and rigorously tested value-added

approach, we follow the baseline practices used in Chetty et al. (2014a) and implement it

using the associated Stata package (Stepner, 2013). The general approach of these authors

is as follows. First regress test scores Si,t on controls Xi,t which gives test score residuals

Ait. This is obtained from a regression on test scores of the form

Si,s,t = αj(i,s,t) + βsXi,t + εi,s,t (20)

Where Xi,t includes cubic polynomials in prior year test scores in math and ELA, those

polynomials interacted with student grade level, ethnicity, gender, age, lagged suspensions

and absences, indicators for special education and English language learner status, cubic

polynomials in class and school-grade means of prior test scores in both subjects each in-

teracted with grade, class and school means of all the other covariates, class size and type

indicators, and grade and year dummies19. j(i, t) is the index for the teacher who has student

i in her class at time t, so αj(i,t) are year-specific teacher fixed effects.

Next, we average the residuals within each class year to get

Ājt =
1

n

∑
i∈i:j(i,t)=j

Ait (21)

The last step is to use the average residuals in every year but year t, denoted A−tj , to

predict Ājt. Specifically, we choose coefficients ψ = (ψi, ..., ψt−1) to “minimize the mean

squared error of the forecast test scores (Chetty et al., 2014a)”

19The covariates match those used in (Chetty et al., 2014a) closely. Means and standard deviations of the
underlying variables appear in Appendix Table ??.

57



ψ = arg min
ψ

∑
j

(
Ājt −

t−1∑
s=1

ψsĀjs
)2

(22)

This then gives the estimate for teacher j’s value-added in year t of

µ̂jt = ψ′A−tj (23)

C.1.2 Binned Estimator

A simple way to add heterogeneity into this model is to include an indicator for each

student’s type and estimate teacher affects separately for each type. This gives each teacher

an estimate for each student type. We separate students into above and below median prior

year test score bins. All of the above math works out essentially the same except we now

have twice as many parameters to estimate. We now estimate residuals from the equation

Si,t = αj(i,b,t) + βXi,t (24)

where j(i, b, t) indicates if student i is assigned to teacher j in bin b at time t. Next we

group residuals for teacher, year, bin,

ĀjBt =
1

n

∑
i∈i:j(i,B,t)=j

Ait (25)

and we do the leave-one-out estimator with teacher bin estimates across years

ψ = arg min
ψ

∑
j

(
ĀjBt −

t−1∑
s=1

ψsĀjBs
)2

(26)

This then gives the estimate for teacher j’s bin B value-added in year t of

µ̂jBt = ψ′A−tjB (27)

We also apply statistical shrinkage, using the variance within each bin so that if the

variance of one bin is higher it does not get shrunk more relative to the other bins.

C.2 Aggregating Estimates

The above method gives multiple estimates for each teacher’s impact on the different

types of students. For specific policy interventions, like teacher reassignment, these can be

combined by summing up the conditional expected treatment with the conditional average
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welfare weight such as the weights described in theorem 2.

However, in some cases, value-added is also used for general teacher ranking and assess-

ment. If teacher heterogeneity is significant, is there still a way to objectively rank teachers

according to a particular set of heterogeneous welfare weights? There is not a perfect single

solution since their impact depends on the class or policy environment. However, one solu-

tion that puts teachers on an even playing field is to rank teachers on the expected welfare

impact they would have on an average representative class, rather than on the average im-

pact on test scores for the class they have, which may depend on class composition, which

is outside of the teacher’s control and does not reflect their welfare impact.

In the discrete setting, let ω̄k and γk be the average proportion of students in group k and

the welfare weight for group k respectively. Let αj,k be teacher j’s group specific value-added

for group k. Than we can aggregate their group specific test scores as

V Aj =
∑
k

γkω̄kαj,k (28)

This gives the welfare benefit a teacher would have on an average class. This is the

same as Aj from definition ??. Now, choosing the average class composition for every

teacher may or may not be the right normative choice. Suppose that a teacher has a big

comparative advantage with high scoring students in a district with, on average, very high

scoring students, but their class is primarily low scoring. What is the right way to assess

their performance? They may not be bad relative to their well matched peers, which the

above metric could tease out, but they may still in fact be doing a poor job helping the

students they have, which the above metric ignores. This emphasizes that in a world of

heterogeneity, no metric will be perfect. However, equation 28 does help to rank teachers

based on what is under their control.

D. Validation and Robustness of Heterogeneous Estimates

In addition to these standard exercises we leverage the longitudinal nature of our data

to show that our heterogeneous estimates capture the same correlations with long term

outcomes as do standard value-added does—despite being identified off of only half of the

students. In the spirit of Chetty et al. (2014b), we focus on five main outcomes: high school

graduation, college enrollment in the year after twelfth grade (two-year, four-year, and any),

and completion of a bachelors degree within six years of (anticipated) high school graduation.

If our heterogeneous estimates corresponds to future outcomes in a similar way to standard

value-added, then the predictive power has not been diminished and the estimated effects
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Figure D.6: Measures of Comparative Advantage Persistent
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are fitting on true value-added rather than idiosyncratic noise.

To test the predictive power of value-added, we regress each outcomes teacher value-

added and the controls from equation ?? in a student-subject-grade level regression. For the

binned estimates, we include terms for the high- and low-bin value-added interacted with an

indicator for whether the student is a high scoring:

yi,j,s,t = τV Aγ̂
V A
j,s,t1(ki = g) + β2Xi + νi,j,s,t (29)

yi,j,s,t =
∑
g=H,L

τgγ̂
g
j,s,t1(ki = g) + β3Xi + νi,j,st

This is analogous to treating the each teacher-subject-bins as a separate class where the

coefficients on value-added indicate the predictive power of high-bin value-added in each

subject on high-scoring students’ outcomes and low-bin value-added on low-scoring students’

outcomes.

Figure D.7 reports the results from the regression in equation 29 on each outcome variable.

Our results show striking similarities between traditional value-added and our estimates,

despite the fact that we split our sample to estimate above- and below median effects.

Surprisingly, none of the measures are predictive of high school graduation. One explanation

for this might be that SDUSD has an unusually high graduation rate, averaging 90 percent

for our sample, creating ceiling effects. While not statically significant, standard value-added

and both of our binned estimates track closely with an increase in any college, primarily from
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four year college with potentially a drop in two year college, and an increase in a bachelor’s

degree within 6 years. We can also see that the standard errors for each student group are

not actually much bigger than for the mean as a whole suggesting that the variance is loading

on this achievement dimension. On a whole these effects are similar with those in Chetty

et al. (2014b) and ? for traditional value-added.

Figure D.7: Our Estimates Predict Long Term Effects as Well as Standard VA
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Note: This figure compares the effect of different measures of teacher value-added on long-term outcomes. All
regressions follow equation 29 and include all controls from the value-added estimation. For the outcomes,
High School Grad is an indicator for whether the student graduated from high school, Two Year College
is an indicator for whether the student enrolled in a two-year college within a year following high school
graduation, Four-Year College is an indicator for whether the student enrolled in a four-year college within
a year following high school graduation, and Any College is an indicator for either Two Year College or
Four-Year College. Finally, we model an indicator for whether the student obtained a Bachelor’s degree
within six years of high school graduation.

Although imprecise, these effects point to patterns in college enrollment that are inde-

pendently interesting beyond this validation exercise. For example, the effect on two-year

college enrollment is higher for below-median students, which makes sense if they are more

likely to be on the margin of not going to any college. On the other hand, for high-scoring

students, well matched value-added may decrease the probability of two-year college enroll-

ment and increase in the probability of four-year college enrollment. These patterns are

consistent with well-matched teachers increasing the quality of post-secondary education,

moving students on one margin from no college to two-year colleges and on another margin

from two-year colleges to four-year colleges.
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