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MACROBIGTECH

Over the past decade, the financial market has seen the arrival of massive new tech-

nologies, raising many debates about their consequences. The two most important ones

are FinTech and BigTech (or TechFin).1 Using the cross-country dataset provided by Cor-

nelli et al. (2023), in Graph (a) of Figure 1, we present the world’s total lending volume

in billion U.S. dollars for both Fintech and BigTech credits. As we can see, both of them

have become increasingly important in our modern financial system. In addition, Graph

(b) shows their relative importance across different countries in 2019. Some countries,

such as the United States, the United Kingdom, and Singapore, have more development

in FinTech; meanwhile, some other countries, including China, Korea, and Japan, have

relatively better BigTech access. Generally speaking, these two new types of financial

intermediaries have emerged at a fast pace across different credit markets around the

world, which, not surprisingly, leads to a fast-growing empirical literature on them (e.g.,

Hau et al., 2018; Tang, 2019).

Figure 1: The Rise of FinTech and BigTech

(a) aggregate time series (b) cross-country difference

In this paper, we attempt to investigate, in theory, the role of BigTech lending in the

1Throughout this paper, FinTech refers to the situation where financial firms adopt new types of tech-
nology, while BigTech means that technology companies provide financial services. Typical examples of
FinTech are these digital platforms facilitating peer-to-peer (P2P) lending and borrowing, while examples of
BigTech include Ant Group, WeBank, and so on. The broad definition of FinTech provided by the Financial
Stability Board is “technologically enabled financial innovation that could result in new business models,
applications, processes, or products with an associated material effect on financial markets and institutions,
and the provision of financial services.”

1

Electronic copy available at: https://ssrn.com/abstract=3965971



MACROBIGTECH

macroeconomy. More specifically, we explain how should we modify the existing the-

ories of financial intermediation and business cycles so as to accommodate the rise of

BigTech. In the existing macro-finance literature, theories of credit are crucial for our un-

derstanding of the macroeconomy (e.g., Buera et al., 2011; He and Krishnamurthy, 2013).

However, these theories are centered on banks and the key characteristic of bank lending

is this collateral-based borrowing constraint. With this financial friction, many studies

find that the aggregate economy has productivity losses in the steady state because the ef-

ficient producers cannot borrow enough (e.g., Moll, 2014). In addition, a financial acceler-

ator mechanism lies behind the macroeconomic fluctuations: small fundamental shocks

can be amplified by financial frictions so that they can generate large and persistent fluc-

tuations in aggregate economic activity (e.g., Kiyotaki and Moore, 1997; Bernanke and

Gertler, 1989; Bernanke et al., 1999). Therefore, when introducing BigTech, we focus on

the following two research questions: first, what is the key difference between banks

and BigTech in terms of their lending behaviors; second, based on the answer to the first

question, how different are those previous macro-finance implications with a new type

of financial intermediation.

To begin with, we argue that the fundamental difference between bank credit and

BigTech credit lies in the specific type of borrowing constraints. When large technology

firms lend to the market, they have less demand for collateral and corporate borrowing

is subject to an earnings-based borrowing constraint. The reason why we use this as-

sumption is related to how BigTech companies reduce asymmetric information or agency

problems in practice. In the traditional banking sector, banks use covenants or collateral

to mitigate agency frictions. However, for BigTech, their technology advantages such as

data, algorithms, and platforms can help reduce these agency frictions. In Section 1, we

present a simple model to show if the costs of state verification can be significantly re-

duced with technology or data advantages, then these firms strongly prefer incomplete-

collateralized contracts to fully-collateralized ones. Besides, there exists some empirical

support for our assumption of earnings-based borrowing constraint on BigTech credit.
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MACROBIGTECH

For instance, Gambacorta et al. (2023) find that BigTech credit does not correlate much

with shocks to local business conditions and house prices when controlling for demand

factors, but it does react strongly to changes in firm-specific characteristics, such as the

transaction volumes and network scores used to calculate firm credit ratings. They argue

that the critical feature of BigTech is allowing firms to borrow without any collateral.

After that, based on this assumption, we introduce both a banking sector and a

BigTech sector into a continuous-time general equilibrium model with heterogeneous

entrepreneurs and defaultable debt. These two financial sectors are identical except for

the types of borrowing constraints faced by entrepreneurs. Entrepreneurs borrowing

from banks are subject to the standard collateral-based borrowing constraints. In con-

trast, technology advantages allow BigTech companies to resolve agency costs and per-

form expected-earnings-based lending. With this macroeconomic framework, we show

that compared to the traditional banking sector, this BigTech sector has two new macro-

finance implications. First, there is an efficiency-instability tradeoff associated with BigTech

development. On one hand, as it allows more productive firms to use more leverage and

grow faster, BigTech credit is more efficient in resource allocation compared to tradi-

tional bank loans. On the other hand, due to the difference between expected and realized

earnings, BigTech credit leads to overlending issues and hence a higher default proba-

bility in the steady state. This efficiency-instability tradeoff implies that BigTech cannot

fully replace the role of traditional banks. Second, as for its impacts on the business

cycles, BigTech can be interpreted as a different financial accelerator. We show that a

transitory micro-uncertainty shock can lead to amplified and persistent effects on al-

location efficiency and aggregate productivity. This new financial accelerator mecha-

nism, associated with a new type of financial intermediation, differs from the classic

one (e.g., Kiyotaki and Moore, 1997; Bernanke and Gertler, 1989) in three aspects: the

second-moment micro-uncertainty instead of the first-moment aggregate productivity is

the primitive shock; financial friction comes from earnings-based borrowing constraints

instead of collateral-based ones; and the feedback loops happen between net worth in-
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MACROBIGTECH

equality, instead of net worth level, and asset prices.

Finally, we extend our baseline model setup to discuss the role of algorithm bias and

optimal BigTech development. In the first extension, we assume that BigTech’s predicted

future earnings have an extrapolative algorithm bias component: they tend to overes-

timate the likelihood of a positive future state when the current news is favorable, and

vice versa when negative. With the presence of algorithm bias, the financial instabil-

ity concern of BigTech becomes severer. In our second model extension, we make the

optimal size of BigTech endogenous. We show that if the government cares about both

resource allocation efficiency and financial stability, our theory indicates that there exists

an optimal degree of BigTech development in the whole economy.

Related literature Our paper is related to four different branches of literature. First,

this paper builds on the extensive literature on financial frictions and business cycles.

Two seminal works in this field are Kiyotaki and Moore (1997) and Bernanke and Gertler

(1989). Examples of further quantitative explorations include Carlstrom and Fuerst (1997),

Bernanke et al. (1999), and many others. Recent studies, especially those done after the

2008-2009 global financial crisis, are mainly focused on analyzing the global dynamics

and nonlinear effects of shocks with continuous-time models. Examples include but are

not limited to Brunnermeier and Sannikov (2014), Di Tella (2017), He and Krishnamurthy

(2013), and Fernandez-Villaverde et al. (2019).2 However, most of these studies are fo-

cused on banks as the financial intermediation and hence the collateral-based borrow-

ing constraint as the financial friction. In contrast, our work introduces BigTech, which

becomes increasingly important in the new economy, and further explores its different

macro-finance implications.

Second, our work closely relates to the growing literature on investigating the dif-

ference between FinTech and the traditional banking sector. As mentioned before, most

2Brunnermeier et al. (2013) provide an excellent and detailed survey on the discrete-time models of
macroeconomics and financial frictions, and Brunnermeier and Sannikov (2017) introduce the fundamental
tools used in this field.
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of these studies are empirical. For instance, by using the US Peer-to-Peer (P2P) lending

data, Tang (2019) finds that FinTech lending works as a complement to bank lending for

small-scale loans. Similarly, Cornelli et al. (2023) find that BigTech lending complements

rather than substitutes other forms of lending with a cross-country panel dataset for 79

countries during 2013-2019. In addition, Hau et al. (2018) show that the existence of

FinTech credit in China improves the credit access condition for firms with lower credit

scores. Liu et al. (2022) empirically show that the essential feature of BigTech lending

comes from serving borrowers’ short-term liquidity rather than their long-term financing

needs. However, FinTech loans are not always found to be complements to bank loans.

For example, Cornaggia et al. (2019) document that different from low-risk loans, high-

risk FinTech lending crowds out bank lending. In terms of theoretical studies, a closely

related paper to ours is Manea et al. (2023), which investigates the different monetary

policy implications between banks and BigTech lending. In their paper, the key differ-

ence between these two financial intermediations is the borrowers’ opportunity cost of

default. If firms default on bank loans, they lose their collateral. However, if firms de-

fault on BigTech loans, they lose future profits as they will be excluded from BigTech’s

e-commerce platform.

Third, this paper connects to the literature on the macroeconomics of earnings-based

borrowing constraints. There have been numerous theoretical papers written about the

factors that determine corporate borrowing. Some of these papers, such as Stiglitz and

Weiss (1981) and Holmstrom and Tirole (1997), suggest that corporate earnings should

determine the debt capacity of corporations. However, others, including Hart and Moore

(1994), Kiyotaki and Moore (1997), and Bernanke and Gertler (1989), argue that corporate

borrowing should be closely tied to the liquidation value of assets. In terms of empiri-

cal evidence, Lian and Ma (2021) find that 80% of the corporate debt value in the US

is closely linked to the firm’s cash flows from their operations instead of the asset liq-

uidation value. Their work intrigues an increasing number of studies that investigate

the role of earnings-based borrowing constraints in aggregate fluctuations. For instance,
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Drechsel (2023) studies macroeconomic fluctuations through the interaction between

earnings-based borrowing constraints and investment shocks. In contrast, Greenwald

(2019) mainly focuses on investigating how the transmission of monetary policy shocks

differs across firms with different types of covenants. Besides, Li (2022) uses the Japanese

firm-level dataset to quantitatively investigate the misallocation implication when corpo-

rate earnings can be pledgeable.

Finally, some of the key elements used in our model are borrowed from the distri-

butional macroeconomics and diagnostic expectation literature. The former refers to

macroeconomic theories where the relevant state variable is a distribution and the Kol-

mogorov Forward equation instead of the Euler equation lies at the heart of the analysis.

For instance, Moll (2014) studies the impacts of wealth-based borrowing constraints on

misallocation and aggregate productivity. Kaplan et al. (2018) investigate monetary pol-

icy transmission mechanism in a Heterogeneous Agent New Keynesian (HANK) frame-

work. In addition, Fernandez-Villaverde et al. (2019) extend the Krusell and Smith (1998)

method and explore the relationship between financial frictions and wealth distributions

with aggregate shocks.3 In terms of the diagnostic expectation literature, some recent

studies have attempted to investigate the new macroeconomics and financial implica-

tions of this behavioral bias under different settings (e.g., Bordalo et al., 2018, 2020, 2021,

2022; L’Huillier et al., 2023). We find that this irrational component also plays an im-

portant role in the economy with expected-earnings-based constraints and defaultable

bonds.

Layout The rest of the paper is organized as follows. Section 1 provides the microfoun-

dation for our key assumption on the fundamental difference between BigTech lending

and bank loans. Based on this assumption, Section 2 introduces a macroeconomic model

to discuss the new macro-finance implications of BigTech compared to the traditional

banking sector. After that, in Section 3, we extend our baseline model to investigate

3For a concrete introduction to the tools used in this literature, please refer to Achdou et al. (2022) for
details.
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MACROBIGTECH

the role of algorithm bias and the optimal Bigtech development level. Finally, Section 4

concludes.

1. BigTech versus Bank: Microfoundation

In this section, we present a simple model to demonstrate the coexistence of two different

types of borrowing constraints, which serves as the microfoundation for the most crucial

assumption used in our subsequent macroeconomic framework. In our model, this coex-

istence could stem from differences in either information technology or data advantages

among lenders or the utilization of intangible capital among borrowers.

On a side note, although Lian and Ma (2021) document the prevalence of earnings-

based borrowing constraints, in Section B in the appendix, we show that the distribution

of borrowing constraints is in fact bimodal in the data. It means that there is no “rep-

resentative” borrowing constraint in the data. Instead, both types coexist in the real

economy.

1.1 Basic setup

Consider an economy where an entrepreneur with a capital stock of k needs to borrow

money b from lenders for a certain investment project. All agents are assumed to be risk-

neutral, and the entrepreneur has a linear consumption preference. Besides, the lender’s

opportunity cost is fixed at r, and the unit liquidation value of capital is set to be l.

There are two potential outcomes for the investment project. The entrepreneur could

earn zGk with a probability of p, or zBk with a probability of 1 − p. Without loss of

generality, we assume that zG > zB > l > 0.

Lenders have the option to choose between two types of lending. The first type is

known as a full-collateralization contract, as defined by Bernanke and Gertler (1989).

This type of contract requires the entrepreneur’s net worth to be sufficiently large such

that they are able to repay the lender even in the worst state. More specifically, it means
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MACROBIGTECH

that in the worst-case scenario, the lender seizes the entrepreneur’s capital and resells it

in the market. Mathematically, it can be shown as follows:

(1 + r) b ≤ lk (1)

One advantage of this full-collateralization lending is that lenders do not need to

verify the entrepreneur’s actual earnings. Instead, they use a contract directly linked

to the liquidation value of the productive capital, which suffers less from issues such

as asymmetric information. As a result, investors impose a standard collateral-based

constraint on borrowers.

The second type of lending involves securing ownership rather than collateral, which

is known as the incomplete-collateralization contract. The features of this type of contract

can be expressed mathematically as follows:

max
{q,cG ,cB,c̃B}

pcG + (1 − p) [qcB + (1 − q) c̃B] (2)

subject to the following constraints

(1 + r) b ≤ p (zGk − cG) + (1 − p) [zBk − q (cB + f )− (1 − q) c̃B] (3)

cG ≥ (1 − q) [(zG − zB) k + cB] (4)

cG, cB, c̃B ≥ 0 (5)

0 ≤ q ≤ 1 (6)

In the equations provided above, cG represents the entrepreneur’s consumption when

they announce the good state. c̃B denotes the entrepreneur’s consumption when he or

she announces the bad state, and the lenders choose not to verify. Meanwhile, cB repre-

sents the entrepreneur’s consumption when announcing the bad state, and the lenders

also choose to verify. The verification action is costly and it is assumed to be f . Equation

(3) represents the participation constraint, and Equation (4) is the incentive constraint.
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Besides, the last two equations above are feasibility constraints. Generally speaking, the

optimal incomplete-collateralization contract, denoted by {p, cG, cB, c̃B}, maximizes the

entrepreneur’s expected consumption in Equation (2) subject to the constraints (3) to (6).

1.2 Information Asymmetry Story

The first result we would like to present is that with a relatively low verification cost

with their technology or data advantages, BigTech lenders prefer cash-flow-based over

asset-based lending. This theoretical implication is based on the following assumption.

Assumption 1 Technology or data advantages allow some lenders such as BigTech firms to re-

duce the cost of state verification f .

Assumption 1 argues that certain lenders may have advantages in monitoring and

predicting the future earnings of firms, while others do not. A great example is BigTech

firms and traditional banks. This argument is also consistent with some recent studies.

For instance, Thakor (2020) highlights that the use of blockchain technology and other

technological advancements in the BigTech sector can significantly reduce the cost of

verification.4 In practice, the Ant Group uses the Alipay system to aid their lending as it

enables them to easily verify and monitor the cash flows of companies at a very low cost.

In other words, the Alipay system allows the Ant Group to have both the data advantage

of traditional banks and the technology advantage of Fintech companies.

With Assumption 1, we can show that lenders with advantages in monitoring and

predicting companies’ future earnings, strictly prefer imposing earnings-based over collateral-

based constraints. We summarize the main result in the following lemma.

Lemma 1 Lenders prefer cash-flow-based over asset-based lending when the cost of state verifi-

cation f is lower than a certain threshold f ∗.

4Other potential changes mentioned in Thakor (2020) include reduced search costs for matching trans-
acting parties, increased economies of scale in gathering and using large data, and cheaper and more secure
information transmission.
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A detailed proof can be found in Appendix A. The intuition can be briefly explained

as follows: from a profit-maximization standpoint, lenders always prefer cash-flow-

based lending. However, due to costs associated with verifying the borrower’s financial

state, collateral can be useful in mitigating agency costs. In other words, if lenders are

able to find ways to decrease the cost of state verification, they will switch from asset-

based to cash-flow-based lending in order to maximize their expected profits.

In addition, Lemma 1 aligns with some empirical evidence in the literature. For ex-

ample, Gambacorta et al. (2023) find that BigTech credit is strongly responsive to changes

in firm-specific characteristics. This evidence suggests that technology can enable firms

to borrow without collateral. Besides, some other studies (e.g., Thakor, 2020; Huang et

al., 2020; Boot et al., 2021) highlight the emergence of a new characteristic of FinTech

where large technology firms are providing lending services to small and medium-sized

entrepreneurs without requiring collateral.

Finally, our cost-of-state-verification perspective differs from existing technology-

related ones such as fast data processing abilities (e.g., Fuster et al., 2019) or new credit-

sorting models (e.g., Gambacorta et al., 2019). More importantly, our interpretation on

the key difference between BigTech and banks can help explain cross-country differences

in BigTech credit accesses (e.g., the U.S. and China). For instance, in order to easily verify

borrowers’ earnings, BigTech’s data advantage should be considerable (e.g., high market

share of the payment system). However, this case does not apply to large technology

firms in the U.S.

1.3 Intangible Capital Story

Another way to interpret the variation in lending practices is to consider the distinction

between intangible and tangible capital. Specifically, we assume that intangible capital

has a relatively low liquidation value.5

5In theory, firms with more intangibles may have lower liquidation values simply because they have se-
vere agency problems. However, in this paper, we do not distinguish between the asset’s actual resalability
and the value damage from agency frictions such as managers’ business stealing behaviors.
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Assumption 2 Intangible capital has a low liquidation value l.

Usually, when a business undergoes bankruptcy, it is liquidated. This process in-

volves a fast sale of physical assets like machinery and facilities, whose value can be

easily determined, as well as intangible assets, whose worth is challenging to determine

from an external perspective. Our assumption here is consistent with the existing litera-

ture, which posits that the cost of liquidation decreases as the tangibility of investments

increases (e.g., Beck et al., 2022).

By utilizing Assumption 2, we can demonstrate that it is advantageous for lenders to

enforce cash-flow-based lending if the asset tangibility falls below a certain threshold.

Lemma 2 In the event that the liquidation value (l) is below a specific threshold (l∗), it becomes

preferable for lenders to adopt cash-flow-based over asset-based lending.

The detailed proof is provided in the appendix. Lemma 2 is based on the intuition

that if the assets have a non-collateralizable nature, then it is more advantageous for

lenders to opt for cash flow-based lending since it yields higher profits. This implica-

tion also has support from the previous literature on the relationship between intangible

capital and cash-flow-based lending. For instance, Haskel and Westlake (2018) find that

financing intangibles have less association with conventional credit restrictions.

To summarize, the coexistence of different types of borrowing constraints can be ex-

plained by either information asymmetry or intangible capital story. Of course, these

two are by no means the only explanations. Other possible reasons for the simultaneous

existence of these constraints can be found in other related studies such as Lian and Ma

(2021) and Huang (2022). However, our focus here is not on the micro-level origins but on

exploring their macro-finance implications.

2. BigTech versus Bank in the Macroeconomy

11

Electronic copy available at: https://ssrn.com/abstract=3965971



MACROBIGTECH

2.1 Model Setup

Our goal in this section is to investigate how different is a macroeconomy with BigTech

lending, compared to the one with traditional bank lending, with a focus on allocation

efficiency, financial instability, and the nature of business cycles. In order to achieve this

goal, we use a standard continuous-time distributional macro model à la Moll (2014) but

with two different financial sectors and endogenous default. More specifically, Consider

an infinite-horizon continuous-time economy that populates S + 1 continua of hetero-

geneous entrepreneurs, L homogeneous workers, and two representative financial in-

termediaries (bank B and BigTech F ). Each worker supplies one efficient unit of labor

inelastically and they are hand-to-mouth consumers. Each entrepreneur interacts with

one and only one of the two financial intermediations, and the only difference between

them is the type of borrowing constraints. Without loss of generality, we normalize the

size of entrepreneurs borrowing from banks as 1. In this way, the parameter S repre-

sents the relative importance of the BigTech sector in the whole economy. In the baseline

model, we set S to be 1 so that both sectors are equivalently important. In Section 3.2,

we allow S to be endogenous and discuss the optimal development level of BigTech.

All entrepreneurs have the same log preference and constant-returns-to-scale (CRS)

production technology. In addition, they each have the option to default and exit the

market permanently. The precise timing of this option is explained in Section 2.1.3. In

order to maintain a constant number of entrepreneurs in each sector, the defaulting en-

trepreneur is being replaced by a newborn in the subsequent period, with average wealth

and productivity levels. In addition, we also assume “costless default”, which means that

all the default costs are repaid by a third party (e.g., the government) so that the cost of

debt is always 1+ r despite a non-zero default probability. We use this setup for two rea-

sons. To begin with, this assumption allows us to avoid pricing the defaultable bond and

hence simply our analysis. Furthermore, the price effect also plays an important role in

determining the de facto tightness of borrowing constraint faced by entrepreneurs. In this
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paper, we exclude the endogenous price effect and focus on the fundamental difference

between these two exogenous borrowing constraints.

For the simplification of notations, we suppress the individual and time subscripts

unless it is necessary.

2.1.1 Preference

All entrepreneurs in this economy share the same additive utility function shown below:

E0

∫ ∞

0
e−ρt log ctdt (7)

c denotes the consumption of final goods and ρ represents the rate of time preference.

Our choice of log utility is aimed at simplifying the optimal consumption decision. How-

ever, it is worth noting that our main conclusions remain unchanged even if employing

alternative constant relative risk aversion (CRRA) utility functions.

2.1.2 Technology

Each entrepreneur possesses a private firm that employs both capital k and labor l to

produce the final consumption goods y, using the same production function depicted

below:

y = f (z, k, l) = zkαl1−α (8)

where z denotes the idiosyncratic productivity. Equation (8) illustrates that the produc-

tion technology takes the standard Cobb-Douglas form with the parameter α ∈ (0, 1).

We assume CRS technology to make borrowing constraints the most crucial role in de-

termining the individual firm size and hence the aggregate outcomes. However, our key

conclusions remain valid even though the production function has a feature of decreas-

ing returns-to-scale.

All entrepreneurs participate in a competitive market to purchase the physical capital
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and hire homogeneous workers, with prices denoted by r + δ and w, respectively. Here,

r represents the risk-free interest rate, δ is the capital depreciation rate, and w is the flat

wage rate.

Following the existing literature (e.g. Moll, 2014; Di Tella, 2017), we assume that the

idiosyncratic productivity is stochastic and follows a standard Ornstein–Uhlenbeck pro-

cess:

dz =
1
θ
(µ̄ − z) dt + σ

√
1
θ

dW (9)

In Equation (9), the parameter µ represents the long-run mean level of the entrepreneur’s

productivity. W denotes the standard exogenous Brownian shock, which is assumed to

be independent and identically distributed (i.i.d.) across various firms. In other words,

under the incomplete market assumption, entrepreneurs are unable to fully hedge their

individual productivity risk, and σ captures the sensitivity of z to the underlying Brow-

nian shock.

2.1.3 Timing and Expectations

To introduce defaultable debt, we assume that the actual individual productivity real-

izes after the entrepreneur has done financing and capital & labor purchases. To elabo-

rate further, entrepreneurs are able to establish their expectations regarding their future

productivity z at the outset of each period, or in the final phase of the preceding period,

utilizing the following functional form:

Ẽ [z] = Ẽ [z̃ + dz] =
1
θ
[µ̄ + (θ − 1) z̃] (10)

z̃ represents the productivity realized in the preceding period. Throughout the rest

of this paper, the notation ∼ and ′ represent the preceding and subsequent period, re-

spectively. In the baseline model, we assume that the expectation has only a rational

expectation component. In the model extension, we allow for additional algorithm bias
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component. We impose this assumption as in reality, BigTech’s advantage lies in using

vast amounts of data instead of collateral to assess individual firm’s creditworthiness.

Although it is often more accurate than banks, still, it cannot perfectly predict any firm’s

actual earnings. It has at least some random error terms and possibly persistent irrational

biases.

Once entrepreneurs have estimated their expected productivity Ẽ [z] and taken into

account their current wealth, they determine the optimal amount of capital to rent k(a, Ẽ [z])

and the number of workers to hire l(a, Ẽ [z]). Subsequently, the actual productivity z is

realized, and entrepreneurs must make a decision on whether or not to default. As men-

tioned before, if they choose to default, they leave the market permanently and are re-

placed by a new-born entrepreneur with an average wealth ā and an initial productivity

of µ̄. If they choose not to default, then the operating profits received during this period

can be expressed as follows:

π (a, z, z̃) = π
(
a, Ẽ [z]

)
≡ zk

(
a, Ẽ [z]

)α l
(
a, Ẽ [z]

)1−α − (r + δ) k
(
a, Ẽ [z]

)
− wl

(
a, Ẽ [z]

)
(11)

At the same time, the budget constraint of any individual entrepreneur during this

period can be written as below:

c + a′ ≤ a (1 + r) + π(a, Ẽ [z]) = a (1 + r) + π(a, z, z̃) (12)

2.1.4 Borrowing constraints

This part outlines the different borrowing constraints faced by entrepreneurs as they

seek loans from different financial institutions. Generally speaking, the banking sec-

tor applies the conventional collateral-based borrowing constraint, as suggested in the

classical macro-finance literature, whereas the BigTech sector adopts the earnings-based

borrowing constraint, as evidenced by some recent empirical studies.
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Banking sector To begin with, we assume that all entrepreneurs face the same collateral-

based borrowing constraint when borrowing from a traditional bank:

k − a ≤ λBk (13)

The difference between operating capital stock k and personal wealth a is by def-

inition the external debt position. The parameter 0 ≤ λB ≤ 1 implies that each en-

trepreneur’s borrowing limit from the traditional banking sector is constrained by their

capital stock, due to factors such as limited enforcement or information asymmetry. As

a result, the magnitude of λB represents the degree of severity of these frictions. To elab-

orate further, if λB is set to be 0 in Equation (13), it implies that entrepreneurs can only

rely on self-financing for their capital purchases. On the other hand, if λB is equal to 1,

it indicates that their entire capital can be externally financed. Of course, these are two

extreme scenarios, and we aim to examine how the value of λB impacts the role of the

banking sector in driving macroeconomic fluctuations.

Rewriting Equation (13) gives us the standard wealth-based borrowing constraint

shown as follows:

k ≤ 1
1 − λB

a (14)

Similarly, Equation (14) captures the common intuition that the amount of capital

available to an entrepreneur is limited by his personal wealth a and again the magnitude

of λB captures the degree of financial development in the banking system. As Equation

(14) is more comparable to the borrowing constraint in the BigTech sector, therefore we

will use this equation throughout the rest of the paper.

BigTech sector In contrast, all entrepreneurs in the BigTech sector face the same earnings-

based borrowing constraint shown as follows:
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k − a ≤ λF Ẽ [π] = λF

[(
(1 − α) (r + δ)

αw

)1−α

Ẽ [z]− r + δ

α

]
k (15)

where Ẽ [π] is the entrepreneur’s expected earnings based on the one-period ahead infor-

mation set. We assume that only a certain fraction of earnings can be externally financed,

i.e., 0 ≤ λF ≤ 1. Similarly, the existence of λF also comes from the limited enforcement

that entrepreneurs might steal a fraction of their companies’ earnings. More specifically,

λF = 0 refers to the situation where entrepreneurs can only self-finance, and λF = 1

means that all earnings can be externally financed. Rewriting this equation can give us

the wealth-based borrowing constraint in the BigTech sector as follows:

k ≤ 1
1 − λF

(
ζẼ [z]− r+δ

α

) a (16)

where ζ ≡
(
(1−α)(r+δ)

αw

)1−α
.

With Equations (14) and (16), we are able to discuss the similarity and differences

between these two types of constraints.

Similarity and difference In the existing literature, some papers argue that these two

types of borrowing constraints are fundamentally different because earning is a concept

of flows while collateral is a stock variable. However, here we argue that if we investigate

the relationship between debt capacity and net worth, then there is some similarity be-

tween these two borrowing constraints. More specifically, based on the previous model

setup, by the time entrepreneurs need to repay their debt at t + dt, earnings at t have

already become part of the net worth at t + dt. Therefore, both borrowing constraints

link debt capacity to verifiable net worth as follows:

debt capacity = ϕ × expected verifiable net worth

Therefore, if entrepreneurs’ net worth can be observed, then these two types of bor-
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rowing constraints are similar in the sense that they impose a requirement that the max-

imum amount of debt entrepreneurs can borrow is a fraction of their net worth. In other

words, the classical financial mechanism (e.g., Kiyotaki and Moore, 1997; Bernanke and

Gertler, 1989) still exists. Whether the arrival of new financial intermediation weakens

the classical financial accelerator mechanism depends on the choice of parameters.

Comparing Equations (14) and (16), we can clearly see that the fundamental differ-

ence between these two types of borrowing constraints lies in their cross-sectional dif-

ference. For the entrepreneurs faced with collateral-based borrowing constraints, given

their wealth, productive firms do not face any additional advantages because the tight-

ness of borrowing constraints is the same for all entrepreneurs. However, as for en-

trepreneurs with earnings-based borrowing constraints, given their wealth, firms that

are expected to be highly productive have additional advantages because the tightness of

constraints is decreasing in expected productivity. As we will see in the following sec-

tions, such a difference is crucial for our understanding of the different macroeconomic

implications of these two borrowing constraints. On one hand, BigTech lending is more

efficient and it relies less on collateral value, which is not related to individual produc-

tivity. On the other hand, as the expectation is not exactly the same as the realization,

BigTech credit could bring more financial instability to the whole economy.

Caveats Two caveats are worth noting. First, here we assume that entrepreneurs can

borrow against their expected future earnings. This setting is different from Lian and Ma

(2021), which assumes that a fraction of the current earnings can be externally financed.

We adopt our modeling approach for mainly two reasons. On one hand, the setup of

borrowing against the future is closer to what happens in reality. On the other hand, it

allows us to further explore how it affects not only allocation efficiency but also financial

instability.

Second, in our framework, we assume that the only difference between the banking

sector and the BigTech sector lies in the type of borrowing constraints. However, it does
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not mean that in reality, this is the only difference between these two sectors. For exam-

ple, with the US loan-level data on mortgage applications and origination, Fuster et al.

(2019) show that FinTech lenders originate mortgages faster and screen borrowers more

effectively compared to other lenders. Philippon (2016) suggest that FinTech can lower

the costs of financial services provided by financial intermediations. Thakor and Merton

(2019) have developed a theory of bank and non-bank lending in which banks have an

endogenous advantage over non-bank lenders when it comes to being trusted to make

good loans because banks possess an advantage in developing investor trust due to their

unique access to low-cost deposit funding. However, the reason why we focus on this

specific difference is that, in the existing macro-finance literature, the type of corporate

borrowing constraint is essential to our macroeconomic analysis of financial frictions.

Therefore, the state of the economy can be summarized by the joint distributions of

wealth and (current and future) productivity ω j (t, a, z, z̃), where j ∈ {B,F}. At period

t, each entrepreneur within sector j ∈ {B,F} is indexed by their current productivity

z, past performance z̃, and personal wealth a. In addition, we assume that the aggre-

gate shocks being investigated are “M.I.T. shocks”, which are unexpected shocks that

occur when the economy is in its steady state and lead to a transition towards a new one.

Specifically, shocks to the parameter µ are interpreted as shocks to aggregate productiv-

ity, and those to σ are considered shocks to the level of micro-level uncertainty.

2.1.5 Definitions

Equilibrium definition A stationary recursive competitive equilibrium consists of prices

{rt, wt}∞
t=0 and resource allocations

{(
lBit , kBit , cBit

)
i∈[0,1] ;

(
lFit , kFit , cFit

)
i∈[0,S ]

}∞

t=0
that satisfy

the following three conditions:
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1. Optimization: given market prices {rt, wt}∞
t=0, resource allocations

{(
lBit , kBit , cBit

)
i∈[0,1]

;
(

lFit , kFit , cFit
)

i∈[0,S ]

}∞

t=0

maximize each entrepreneur’s life-time utility (7) subject to constraints (8), (12),

(14), (16), and initial endowment
{(

aBi0, kBi0, zBi0
)

i∈[0,1] ;
(
aFi0 , kFi0 , zFi0

)
i∈[0,S ]

}
.

2. Market clearance: market prices {rt, wt}∞
t=0 satisfy the following conditions

• labor market clears at any time t

∫∫∫
lB (t, a, z, z̃)ωB (t, a, z, z̃)dadzdz̃+S

∫∫∫
lF (t, a, z, z̃)ωF (t, a, z, z̃)dadzdz̃ = L

(17)

• capital market clears at any time t

∑
j∈{B,F}

S j
∫∫∫

bj (t, a, z, z̃)ω j (t, a, z, z̃)dadzdz̃ = ∑
j∈{B,F}

S j
∫∫∫

aj (t, a, z, z̃)ω j (t, a, z, z̃)dadzdz̃

(18)

where SB = 1 and SF = S .

3. Stationary distribution: the wealth distributions ω j (t, a, z, z̃) obey entrepreneur’s

optimal decision and the exogenous productivity process (9), and they are station-

ary, i.e., ∂ω j(t,a,z,z̃)
∂t = 0.

Aggregate productivity Following the standard literature, aggregate and sectoral pro-

ductivity are defined as follows:

Z ≡ Y
KαL1−α

=
∑j∈{B,F} S j

∫∫∫
yj (t, a, z, z̃)ω j (t, a, z, z̃)dadzdz̃(

∑j∈{B,F} S j
∫∫∫

aj (t, a, z, z̃)ω j (t, a, z, z̃)dadzdz̃
)α

L1−α

Z j ≡ Y j(
K j

)α (Lj
)1−α

=

∫∫∫
yj (t, a, z, z̃)ω j (t, a, z, z̃)dadzdz̃(∫∫∫

kj (t, a, z, z̃)ω j (t, a, z, z̃)dadzdz̃
)α (∫∫∫ l j (t, a, z, z̃)ω j (t, a, z, z̃)dadzdz̃

)1−α
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where j ∈ {B,F}.

Allocation efficiency If there were no financial frictions, in our model framework, only

the most productive firm produces in the equilibrium. We use ZU to denote the upper

bound of the exogenous productivity distribution. Therefore, the aggregate and sectoral

allocation efficiency can be calculated as follows:

E =
Z
ZU , E j =

Z j

ZU

Default probability Aggregate and sectoral default probability can be calculated as

follows:

P ≡ 1
S + 1 ∑

j∈{B,F}
S j

∫∫∫
1V j(t,a,z,z̃)<0ω j (t, a, z, z̃)dadzdz̃

P j ≡
∫∫∫

1V j(t,a,z,z̃)<0ω j (t, a, z, z̃)dadzdz̃

where V represents the value function representation of the individual entrepreneur’s

optimization problem.

2.2 Characterizing Equilibrium

2.2.1 Individual optimal decisions

To begin with, we characterize the optimal policy functions for each individual entrepreneur.

The optimal decisions of capital holdings can be summarized as in Lemma 3.

Lemma 3 Given the market prices r and w, there is the same productivity cutoff for being active z̃

for entrepreneurs in both sectors. More specifically, the optimal capital holdings for entrepreneurs

in the banking sector are
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kB (a, z, z̃) =


a

1−λB
Ẽ [z] ≥ z̃

0 Ẽ [z] < z̃

(19)

Meanwhile, the optimal capital holdings for entrepreneurs in the BigTech sector are

kF (a, z, z̃) =


1

1−λF(ζẼ[z]− r+δ
α )

a Ẽ [z] ≥ z̃

0 Ẽ [z] < z̃

(20)

where z̃ =
( r+δ

α

)α ( w
1−α

)1−α.

Given our assumption on the constant return-to-scale technology and frictionless la-

bor market, the marginal product of capital is always linear in expected productivity

Ẽ [z]. In this case, the optimal capital choice is a corner solution: it is zero for en-

trepreneurs with expected productivity lower than some threshold z̃, and the maximal

amount of borrowing for entrepreneurs with higher expected productivity. At the same

time, these inactive entrepreneurs lend all their wealth to the market so that they can

get a constant return r. The cutoff z̃ is the same for the two sectors simply because we

assume the production technology in these two sectors is the same. In addition, as the

BigTech companies do not have perfect foresight on entrepreneurs’ future earnings, they

can only base their lending behaviors on the expected earnings, instead of the realized

ones.

Another important observation from Lemma 3 is that compared to entrepreneurs in

the traditional banking sector, productive firms in the BigTech sector get to use more

leverage and thus have additional advantages in lending and capital accumulation. As

shown in the following lemma, these advantages eventually reflect on the wealth evolu-

tion dynamics.

Lemma 4 With preference assumption (7), the entrepreneur’s wealth a in both sectors evolves
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according to the following equations:

daB =

{
1Ẽ[z]≥z̃ ×

[
ζz − r+δ

α

1 − λB
+ r − ρ

]
+ 1Ẽ[z]<z̃ × (r − ρ)

}
aBdt ≡ ΓB (z, z̃) aBdt (21)

daF =

{
1Ẽ[z]≥z̃ ×

[
ζz − r+δ

α

1 + λF
( r+δ

α − ζẼ [z]
) + r − ρ

]
+ 1Ẽ[z]<z̃ × (r − ρ)

}
aFdt

=

1Ẽ[z]≥z̃ ×

 ζz − r+δ
α

1 + λF
[

r+δ
α − ζ

( 1
θ − γ

)
µ̄ − ζ(θ−1+θγ)

θ z̃
] + r − ρ

+ 1Ẽ[z]<z̃ × (r − ρ)

 aFdt

≡ ΓF (z, z̃) aFdt (22)

For simplicity, we rewrite them as follows:

daj = Γj (z, z̃) ajdt (23)

where Γ is the wealth growth rate function, and it depends on the entrepreneur’s idiosyncratic

productivity z, z̃ and the sector j ∈ {B,F} he belongs to.

The detailed proof is provided in the appendix. The key messages in Lemma 4 are

threefold. First, the wealth growth rates of firms with relatively low expected productivity

are the same in both sectors. With the assumption of log-utility, the optimal consumption

choice is always a constant ρ fraction of wealth, where ρ represents the time value. For

entrepreneurs with relatively low expected productivity, i.e., Ẽ [z] < z̃, they do not pro-

duce anything on the market. Instead, they lend all their wealth to those with relatively

high expected productivity, i.e., Ẽ [z] ≥ z̃. As a result, their growth rate is always set to be

r − ρ, and this number does not depend on which financial sector they belong to.

Second, the wealth growth rates of highly productive entrepreneurs are different in

these two sectors. As we can see from Equation (21), for any active producer borrowing

from the banking sector, his wealth growth rate is a linear function in the actual pro-

ductivity z. In contrast, the wealth growth rate of any active firm with productivity z

borrowing from the BigTech sector is a function of z and z̃ both. If the individual pro-
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ductivity is highly persistent, then the wealth growth rate for highly productive firms is

convex in (realized and expected) productivity. It means that for the productive firms

in the BigTech sector, their wealth grows faster not only because their productivity is

high, but also because they get to use more leverage with this earnings-based borrowing

constraint. The key implications can be better illustrated in Figure 2, where we plot the

relationship between the wealth growth rate and productivity for both sectors. The de-

gree of convexity is jointly determined by the tightness of the borrowing constraint λF

and the persistence of the productivity shocks θ. As we will see later, the convexity of the

wealth growth rate in the BigTech sector is the underlying reason why uncertainty, i.e.,

the second-moment shocks, matters for the aggregate quantities both in the steady state

and over the business cycles.

Figure 2: Wealth Growth Rate in Banking and BigTech

Third, we can see a clear efficiency-instability tradeoff for the BigTech based on Equa-

tions (21) and (22). The advantage of BigTech credit is that if the productivity persistence

is high or the BigTech does predict the earnings accurately, then more resources can be

efficiently allocated towards productive firms in the BigTech sector. However, if the pro-

ductivity has some random components or the prediction is biased, then BigTech credit
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could lead to severe overlending or underlending problems. As we will see later, this

special feature of BigTech as a new financial intermediation makes the whole economy

relatively more unstable than the traditional economy with banks only.

2.2.2 Dynamics of wealth distributions

After discussing the optimal policy function for any individual entrepreneur, now we

turn to characterize how the wealth and productivity joint distributions in both sectors

evolve over time. With the exogenous productivity process (9) and the endogenous

wealth process (23), the distribution in each sector evolves according to the following

equations:

∂ω j (t, a, z, z̃)
∂t

= −
∂
[
Γj (t, z, z̃) aω j (t, a, z, z̃)

]
∂a

−
∂
[ 1

θ (µ − z)ω j (t, a, z, z̃)
]

∂z
−

∂
[ 1

θ (µ − z̃)ω j (t, a, z, z̃)
]

∂z̃

+
σ2

2θ

∂2 [ω j (t, a, z, z̃)
]

∂z̃2 +
σ2

2θ

∂2 [ω j (t, a, z, z̃)
]

∂z2 where j ∈ {B,F} (24)

Generally speaking, what determines the evolution of wealth distribution in this

economy is a system of high-dimensional partial differential equations (PDEs). Previ-

ous works, including Kiyotaki (1998), Caselli and Gennaioli (2013), and Moll (2014), use

wealth shares to characterize aggregates so that we can save one state variable. How-

ever, this method is not applicable here as we have two different sectors in this economy.

Scaling the wealth by using aggregate capital and getting wealth share cannot reduce

the number of state variables. Therefore, we follow Raissi et al. (2019) and use a Physics-

informed neural network (PINN) approach to numerically solve the dynamics of ω j. This

deep learning method utilizes the advantages of deep neural networks to solve high-

dimensional PDEs and it has significantly reduced time and memory costs compared to

those classical methods such as finite difference and finite element. The advantage comes

from the fact that the algorithm does not require interpolation and coordinate transfor-

mation because it is a universal nonlinear approximator (Bach, 2017) and thus avoids the
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curse of dimensionality. In addition, it can overcome the local optimization problem by

introducing some penalty factors or stochasticity into the loss function.

2.3 Parameterization

Table 1 summarizes the values of different parameters used in our macroeconomic frame-

work. To remain consistent with the previous studies, we choose the rate of time prefer-

ence ρ, capital share α, and labor market size L to be 0.05, 0.33, and 1.0, respectively. The

average capital depreciation rate is computed using the Bureau of Economic Analysis

(BEA) Fixed Assets Tables dataset, resulting in a value of 6%. In the baseline model, the

values for µ, productivity persistence, and idiosyncratic productivity are determined to

be 0, 0.85, and 0.56, respectively, following Asker et al. (2014). These productivity-related

parameter choices align with the actual firm-level TFP measure in the data. With these

parameter values, we are able to explore the macro-finance implications of BigTech.

Table 1: Parameterization

Parameter Description Value Source/Reference

ρ rate of time preference 0.05

α capital share 0.33

L labor market size 1.0

Moll (2014)

δ capital depreciation rate 0.06 BEA-FAT

S size of BigTech 1.0

µ log idiosyncratic productivity mean 0.0

θ autocorrelation e−θ 0.16 (corr = 0.85)

σ log idiosyncratic productivity s.d. 0.56

Asker et al. (2014)

2.4 Implications
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2.4.1 Steady state: efficiency-instability tradeoff

Our first key model implication is that there is an efficiency-instability tradeoff associ-

ated with BigTech development in the steady state. Figure 3 summarizes our main re-

sults on the equilibrium aggregate allocative efficiency and default probability. In these

two graphs, we use the tightness of constraints in the banking sector λB and that in the

BigTech sector λF as proxies for the development of each financial institution, and then

present the corresponding impacts on the aggregate productivity and default probability

defined as in Section 2.1.5. Based on these two graphs, we can clearly see that BigTech

is efficient in resource allocation but also associated with a higher default probability. In

contrast, the traditional banking sector is less efficient but also less risky.

Figure 3: Efficiency-Instability Tradeoff

(a) allocation efficiency w.r.t. constraint tightness (b) default probability w.r.t. constraint tightness

The underlying mechanism is closely related to the different types of borrowing con-

straints associated with these two financial institutions. In the banking sector, the max-

imum debt that can be borrowed is linked to the capital stock, whereas in the BigTech

sector, the upper limit of debt financing is directly related to expected productivity. As

a result, borrowing constraints for highly expected productive firms are looser in the

BigTech sector, resulting in a more concentrated equilibrium wealth towards productive

firms and lower capital misallocation. This result can be shown in Figure 4, where we

plot the equilibrium wealth share distributions of firms with different (realized or expected)
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productivity in both sectors. As we can see, the equilibrium wealth share of right-tail

firms is higher in the BigTech sector. In other words, the development of BigTech is cru-

cial in reducing the wedges between marginal products of capital compared to the devel-

opment of the traditional banking sector. As a result, the aggregate allocative efficiency

increases as the BigTech sector grows.

Figure 4: Wealth Concentrations in Banking and BigTech

However, at the same time, as BigTech lending is linked to expected instead of re-

alized productivity, there could be some overlending issues. Similarly, in Figure 4, we

present the equilibrium wealth share distributions of firms with respect to both expected

and realized productivity. Compared to that of realized productivity, wealth share is more

concentrated in terms of expected productivity in BigTech, especially on the right tail dis-

tribution. It indicates that there exist some severe overlending issues in BigTech, which

contributes to the increasing default probability alongside the BigTech development.

Generally speaking, we observe an efficiency-instability tradeoff associated with this

new financial institution. In addition, this tradeoff is different from what is documented

in the shadow banking system literature. The efficiency-instability tradeoff within the
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banking sector usually comes from risk-taking incentives and/or changes in regulatory

policies. However, the tradeoff in our paper comes from this new type of lending practice

associated with BigTech.

After that, we examine the link between micro-uncertainty and earnings-based bor-

rowing constraints, which turns out to be crucial for exploring the amplification and

propagation mechanism in Section 2.4.2. The two graphs in Figure 5 show that within

the BigTech sector, both aggregate allocative efficiency and default probability increase

as the dispersion of underlying firm-level productivity grows.

Figure 5: Efficiency-Instability Tradeoff: the role of micro-uncertainty

(a) allocation efficiency w.r.t. micro-uncertainty (b) default probability w.r.t. micro-uncertainty

This conclusion may initially seem counter-intuitive, but it can be explained by the

“expected good-firms principle” in Figure 6. The intuition can be explained as follows.

In an economy with greater micro-level uncertainty, there is a wider range of highly un-

productive and productive firms, leading to greater productivity dispersion. However,

unproductive entrepreneurs are not essential for the aggregate economy as they are not

operative and are merely the suppliers of funds. Therefore, it only leads to a larger num-

ber of active and productive entrepreneurs when productivity dispersion is higher. As

previously mentioned, the earnings-based borrowing constraint generates an asymmet-

ric net worth growth rate, with unproductive firms experiencing a wealth growth rate

equal to the market interest rate, while productive firms experience a convexly increasing
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wealth rate in line with their productivity. This feature distinguishes it from the standard

collateral-based borrowing constraint and enables productive firms to rapidly build their

net worth by utilizing more leverage. As a result, an increase in micro-level uncertainty

results in positive outcomes for aggregate productivity and hence the BigTech sector

is sensitive to second-moment shocks. We name this mechanism the “(expected) good

firms principle” in reference to the “good news principle” proposed by Bernanke (1983).

At the same time, as lending is based on expected earnings instead of realized earnings,

the default probability also increases alongside the enhanced allocation efficiency.

Figure 6: Expected Good-Firms Principle

Our theoretical implications in this section have important policy implications, es-

pecially for emerging countries with underdeveloped financial markets, where finan-

cial frictions can hinder capital and wealth accumulation, ultimately slowing economic

growth. In those countries with underdeveloped banking systems, if superstar firms, es-

pecially those tech giants, can offer financial services to other firms, they have the poten-

tial to narrow the income per capita gap with developed economies as the technological

advantage of these superstar firms is better suited to improving aggregate capital alloca-
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tive efficiency than the traditional banking sector. However, at the same time, these tech

giants cannot replace the traditional banking sector as they also bring higher financial

instability. Therefore, as discussed later in Section 3.2, there exists an optimal balance

between these two types of financial institutions.

2.4.2 Business cycles: a different financial accelerator

Now we turn to explore the business cycle implications of BigTech. More specifically,

we examine its impacts by conducting two experiments and then comparing the cor-

responding results to a real business cycle (RBC) benchmark model without financial

frictions. The two experiments are the first-moment productivity level shocks ∆µ̄ and

the second-moment micro-uncertainty shocks ∆σ. For each experiment, we calculate im-

pulse responses from three models: the benchmark RBC model, a model with only the

banking sector, and a model with only the BigTech sector. We set the tightness of bor-

rowing constraints to be λB = λF = 0.2, but our findings do not depend on this specific

choice. We report the behaviors of all variables relative to their steady-state values due

to differing steady-state values across the models.

Figure 7: Interactions with Different Economic Fundamental Shocks

(a) first-moment level shocks (b) second-moment uncertainty shocks

In the first experiment, we investigate the response of the economy to a one-time

shock to the level of productivity. Graph (a) in Figure 7 illustrates the main effects of
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this temporary impact. The benchmark RBC model shows that there are no significant

amplified effects on the aggregate economy, and the impact declines quickly over time.

However, in a model with a collateral-based borrowing constraint, the increase in the

aggregate productivity level is substantial and persistent over time. This result is consis-

tent with the classical financial accelerator literature, which emphasizes the importance

of credit-market frictions as drivers of cyclical economic fluctuations in the presence of

asymmetric information and agency problems in credit markets. As for the model with

BigTech, the patterns are similar to those in the model with banks, but the magnitudes

are smaller and the effects are less persistent with the chosen parameter values.

In the second experiment, we examine the impact of a one-time shock to micro-level

uncertainty, which affects only the dispersion of individual productivity but has no im-

pact on the mean. Graph (b) in Figure 7 shows that a positive shock to micro-level uncer-

tainty has no effect in the benchmark or the economy with only a banking sector, but has

significant impacts and propagation effects when a BigTech sector with earnings-based

borrowing constraint is present.

The underlying mechanism can be explained as follows. As demonstrated in Figure 8,

a positive (or negative) shock to micro-uncertainty produces significant and prolonged

changes in wealth inequality, which drives up (or down) the demand for investment,

leading to a positive (or negative) feedback loop. The slow decay of entrepreneurial net

worth inequality contributes to the persistence of the effects. Our result here implies that

with a new BigTech sector, small changes in micro-level uncertainty could generate sig-

nificant economic fluctuations. In contrast, these features are negligible in the benchmark

RBC economy or in the economy with only a banking sector, as an asymmetric wealth

growth rate is a unique characteristic of BigTech.

Our results here are related to but also different from several papers documenting

the real effects of second-moment shocks (e.g., Bloom, 2009). In the standard uncertainty

literature, there are negative impacts of uncertainty on the real economy, as higher uncer-

tainty causes firms to temporarily pause their investment and hiring, leading to a decline

32

Electronic copy available at: https://ssrn.com/abstract=3965971



MACROBIGTECH

Figure 8: Underlying Mechanism: net worth inequality

in productivity growth. In contrast, in our framework, as the BigTech sector develops,

the economy becomes more sensitive to uncertainty shocks in a positive relationship. The

uncertainty effects in our paper are more related to the growth option literature and the

Oi-Hartman-Abel effects (e.g., Oi, 1961; Hartman, 1972; Abel, 2014). The difference comes

from the fact that the underlying mechanism in this paper comes from the feedback loop

between earnings-based borrowing constraints and micro-level uncertainty, instead of

the existence of (fixed) adjustment costs.

Generally speaking, our main conclusion in this section is that BigTech acts as a new

type of financial accelerator, and it is different from the classical one associated with the

banking industry (e.g., Bernanke and Gertler, 1989; Kiyotaki and Moore, 1997) in three

different ways. First, the primitive shock comes from micro-uncertainty, not aggregate pro-

ductivity. Second, the financial friction arises from earnings-based borrowing constraints,

not collateral-based ones. Third, the feedback loops occur between net worth inequality,

not net worth level, and asset prices. We summarize this new financial accelerator mech-

anism in Figure 9.

Of course, the effectiveness of this new financial accelerator mechanism relies heavily

on the stringency of the borrowing constraint and the persistence of the productivity

process. Figure A5 and A6 in the appendix demonstrate that the significance of this

type of financial accelerator mechanism in propelling economic fluctuations is greater

when the borrowing constraint is less restrictive and the productivity process has greater
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Figure 9: BigTech as a Different Financial Accelerator

Positive micro uncertainty shocks

“Inequality” of net worth and investment increases

Aggregate asset demand increases

Cost of asset increases

Asset price increases

“Inequality” increases

Aggregate asset demand increases

Cost of asset increases

A new financial accelerator mechanism

“Inequality” increases

Aggregate asset demand increases

Cost of asset increases

Date t Date t + 1 Date t + 2

persistence. This conclusion is driven by how these variables affect the wealth share of

the most productive firms in the economy.

3. Extensions

3.1 The Role of Algorithm Bias

In this section, we extend our baseline model to allow for extrapolative belief and inves-

tigate the role of algorithm bias in both bank and BigTech lending. More specifically, in

this extension, the expected future productivity takes the following new functional form:

Ẽ [z] = Ẽ [z̃ + dz] =
1
θ
[µ̄ + (θ − 1) z̃]︸ ︷︷ ︸

rational expectation

+ γ (z̃ − µ̄)︸ ︷︷ ︸
algorithm bias

(25)

The difference is that now the expected future productivity is composed of two differ-

ent parts: rational expectation and algorithm bias. The first part is based on the actual pro-

ductivity diffusion process shown as in (9), meanwhile the latter assumes that BigTech

lending has a tendency to overestimate the likelihood of a positive future state when

current news is favorable, and vice versa when current news is negative. This degree of
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algorithm bias is captured by the parameter γ. More specifically, when γ = 0, the model

reverts to the rational expectations framework, where the machine learning techniques

adopted in large technology companies are unbiased. In contrast, when γ > 0, the ex-

pectations incorporate conditional mean shifts that extrapolate based on recent news.

For instance, after receiving positive news, the algorithm assigns a higher probability

to future positive states and a lower probability to future negative states, compared to

the objective distribution. It is important to note that this distortion of the algorithm is

only on conditional expectations, and unconditional forecasts remain unbiased because

the average innovation z − µ̄ is, by definition, zero. Besides, this modified extrapolative

expectation framework is forward-looking and satisfies the law of iterated expectation.

Generally speaking, our modeling approach here is a slightly modified version of the

standard extrapolative belief literature, as described in some recent studies such as Bor-

dalo et al. (2018).

We introduce this assumption of algorithm bias to explore its potential amplified ef-

fects on the macro outcomes. We choose the parameter value of algorithm bias γ to be

0.4 in order to match the observed default probability of BBB-rated corporate bonds in

the data (i.e., 1.5%).

Our main findings in this section are threefold. First, the introduction of algorithm

bias amplifies the efficiency-instability tradeoff associated with the BigTech sector. As

shown in Graph (a) of Figure 10, after a positive one-time shock to micro-level uncer-

tainty, both banking and BigTech sectors observe a long and persistent boom in aggre-

gate productivity. In addition to the magnitude difference, another crucial difference

between these two sectors is the default probability alongside these output booms. For

entrepreneurs borrowing from BigTech, a temporary increase in the dispersion of indi-

vidual productivity can lead to a substantial and persistent increase in the default prob-

ability. However, these effects on entrepreneurs borrowing from banks are very limited.

Therefore, after a one-time positive shock to micro-level uncertainty, within the BigTech

industry, we can observe the fragile boom phenomenon: the whole economy grows at
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the cost of increasing default probability. In contrast, such an impact is negligible if we

live in an economy with banks only.

Second, we investigate the heterogeneous impacts of a one-time shock to algorithm

bias in three different economies (i.e., RBC benchmark, bank-only, and BigTech only),

and the impacts are similar to the previous micro-uncertainty shocks. The main results

are presented in Graph (b) in Figure 10. As we can see from this graph, the standard RBC

model and the model with banks only are both insensitive to shocks to the algorithm

bias ∆γ. This result is intuitive as the borrowing constraints or the resulting corporate

leverages are not closely related to the bias of individual productivity expectation. As

mentioned before, the distortion of this algorithm bias is only on conditional expecta-

tions. Meanwhile, the unconditional forecasts remain unbiased. Therefore, for collateral-

based borrowing constraints, changes in the degree of algorithm bias only generate some

negligible impacts, as they affect more on the dispersion of expected earnings, not the av-

erage level. At the same time, we can see that a temporary shock to the algorithm bias can

lead to persistent and amplified impacts in an economy with a BigTech sector. The only

difference is that a micro-uncertainty shock alters the realized distribution of individual

productivity, but an algorithm bias shock changes the perceived distribution.

Third, Graph (c) of Figure 10 illustrates the economic mechanism behind this phe-

nomenon. Both figures present the overlending or underlending situations in the econ-

omy. The left and right graphs represent the economy before and after a temporary

micro-uncertainty shock, respectively. If the color is more leaning towards red, then it

means that we have a severer overlending problem. In contrast, if the color is more lean-

ing towards blue, it means that we have more underlending issues. The definitions of

overlending and underlending are the same as before. As we can see from this graph, af-

ter a positive temporary shock to micro-level uncertainty, we have more overlending

problems in the economy due to the earnings-based borrowing constraint associated

with the BigTech companies. As a result, we expect a higher default probability despite

that it can generate an increase in aggregate output and resource allocation efficiency.
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Figure 10: Fragile Boom in BigTech

(a) micro-uncertainty shock (b) algorithm bias shock
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Our findings in this section are consistent with the view that financial markets are

less stable in booms than in recessions. For instance, Minsky (1992)’s financial insta-

bility hypothesis states that economic prosperity encourages borrowers and lenders to

be reckless. As a result, seeds of recessions are sowed in booms. Besides, Greenspan

and Shiller (2016)’s irrational exuberance claims that an overheated economy generates

bubbles. Our theoretical implications on financial stability are consistent with these hy-

potheses. More importantly, our exercise here indicates that the rising BigTech sector

brings more financial instability, especially in the presence of algorithm biases, and the

regulators should pay serious attention to it.
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3.2 Optimal BigTech Development

Finally, we endogenous the value of S to investigate the optimal size of BigTech. As

mentioned before, although the existence of a new BigTech sector increases resource al-

location efficiency, it also decreases financial stability in the whole economy. In order to

explore the optimal size of the BigTech sector, we make the following assumption on the

preference of the central government:

U (S) = Z ι (S)− ηP (S) (26)

where Z and P represent the equilibrium aggregate productivity and default probabil-

ity defined as before. The parameters ι and η represent how much the central govern-

ment cares about resource allocation efficiency and financial stability, respectively. The

functional form U is similar to the mean-variance analysis widely used in the asset pric-

ing literature. Here we use this utility function to capture the efficiency-risk tradeoff

of BigTech and also measure how much financial instability the central government is

willing to take on in exchange for allocation efficiency.

Similarly, both Z and P depend on the relative size of BigTech S . Therefore, we can

plot the relationship between the central government’s utility and the BigTech develop-

ment in Figure 11. As we can see from this figure, the relationship is not monotone.

Instead, for any given values of ι and η, there exists an optimal size S∗ of the BigTech

sector in the economy that maximizes the utility of the regulator. This non-monotonicity

reflects the efficiency-risk tradeoff in our model. Our exercise here implies that although

the technology advantage allows the BigTech companies to perform more efficiently with

earnings-based borrowing constraints, it does not mean that the new BigTech should

fully replace the traditional banking sector, as the former can bring more instability to

the system. Therefore, for a social planner who cares about efficiency and stability both,

there exists an optimal size of this new financial intermediation.
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Figure 11: Optimal BigTech Development

4. Conclusion

This paper investigates the macro-finance implications of BigTech. We introduce both a

banking sector and a BigTech sector into a continuous-time general equilibrium model

with incomplete markets, heterogeneous entrepreneurs, and defaultable debt. The fun-

damental difference between banks and BigTech lies in the types of borrowing con-

straints. Entrepreneurs borrowing from banks are subject to the standard collateral-based

borrowing constraints. In contrast, technology or data advantages allow BigTech to re-

solve agency costs and perform expected-earnings-based lending.

Our baseline model mainly has two macro-finance implications. First, there is an

efficiency-instability tradeoff associated with BigTech development. On one hand, as it

allows more productive firms to use more leverage and grow faster, BigTech credit is

more efficient in resource allocation compared to traditional bank loans. On the other

hand, due to the difference between expected and realized earnings, BigTech credit leads

to overlending issues and hence a higher default probability in the steady state. This

efficiency-instability tradeoff implies that BigTech cannot fully replace the role of tradi-

tional banks. Second, as for its impacts on the business cycles, BigTech can be interpreted

as a different financial accelerator. We show that a transitory micro uncertainty shock can
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lead to amplified and persistent changes in allocation efficiency and aggregate produc-

tivity. This new financial accelerator mechanism, associated with a new type of financial

intermediation, differs from the classic one in three aspects: micro uncertainty instead

of aggregate productivity is the primitive shock; financial friction comes from earnings-

based borrowing constraints instead of collateral-based ones; and the feedback loops

happen between net worth inequality, instead of net worth level, and asset prices.

Finally, we use two model extensions to discuss the role of algorithm bias and opti-

mal BigTech development, respectively. In the first extension exercise, we assume that

BigTech’s predicted future earnings have an extrapolative algorithm bias component:

they tend to overestimate the likelihood of a positive future state when the current news

is favorable, and vice versa when negative. With the presence of algorithm bias, the fi-

nancial instability concern of BigTech becomes severer. In our second model extension,

we endogenous the optimal size of BigTech. We show that if the government cares about

both resource allocation efficiency and financial stability, our theory indicates that there

exists an optimal degree of BigTech development in the whole economy.

Generally speaking, our paper develops the first step for investigating the macro-

finance implications of BigTech. Our focus is on its different borrowing constraints and

the corresponding misallocation and financial instability implications. Potentially, the

arrival of this new financial intermediation could also affect the labor market and firm

dynamics differently, which we leave for future research.
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APPENDIX

A. Proof

Proof of Lemma 1 and 2

To begin with, it can be easily shown that lenders will not verify if an entrepreneur an-

nounces the good state as entrepreneurs have no incentives to announce the good state

when the actual is a bad one.

There are several conditions on this optimal contract. First, the lenders must be break-

even. As shown in Equation (3), the funding cost for investors is (1 + r) b, and the ex-

pected return should be a weighted average of his payoff in the good state and his payoff

in the bad state. Since there is no verification in the good state, the investor’s payoff is

zGk − cG. However, in the bad state, there is a probability of q that investors will verify

entrepreneurs’ earnings, and the cost of verification is assumed to be f . Therefore, his

expected payoff in the bad state is zBk − q (cB + f )− (1 − q) c̃B.

The second condition that an optimal contract needs to satisfy is that the entrepreneurs

have no incentives to lie about the realized outcomes. Of course, entrepreneurs do not

have any incentives to lie when it is a bad state. Entrepreneur’s consumption in the good

state is always cG. If he lies about the state and says it is a bad state. Then his expected

consumption should be (1 − q) [(zG − zB) k + cB].

The third condition that an optimal contract needs to meet is that the executions of

contracts are feasible, which means all of cG, cB, and c̃B should be at least higher than or

equal to zero. More importantly, p is a probability so it must lie between 0 and 1.

In this incomplete-collateralization case, the optimal verification probability is

q =
(1 + r) b − zBk

p (zG − zB) k − (1 − p) f
(A1)

when f is too large, q will be higher than 1 or even negative, which makes this earnings-

based borrowing constraint infeasible. Therefore, in this paper, the micro-foundation for

A1
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these two types of borrowing constraints is from the different earnings verification costs

for banks and BigTech firms. As a result, they choose different ways of lending contracts,

and BigTech leads to specialization-induced fragmentation in the financial services in-

dustry. In the following part of the paper, we will take these two types of borrowings as

given, and investigate their macroeconomic implications.

Therefore, the expected profits of using these two types of lending can be shown as

follows:

π =


(1 + r) [pzGk + (1 − p) zBk − (1 − p) f ] if cash flow-based lending

(1 + r) lk if asset-based lending

(A2)

Therefore, if f < f ∗ = pzG+(1−p)zB−l
1−p k or l < l∗ = pzG + (1 − p) zB − (1 − p) f

k , then

the lenders will strictly prefer cash flow-based lending over asset-based lending.

Proof of Lemma 3

Based on expected productivity Ẽ [z], the first order conditions on the optimal capital-to-

labor ratio satisfies the following condition

l
k
=

(r + δ) (1 − α)

αw
(A3)

Therefore, the firm’s expected profits can be written as

Ẽ [π] =

(
(1 − α) (r + δ)

αw

)1−α

Ẽ [z]− r + δ

α
(A4)

As the profit is a linear function of Ẽ [z], the firm’s optimal choice of capital stock in

the banking sector is a corner solution and meets the following condition

A2
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kB (a, z, z̃) =


a

1−λB
Ẽ [z] ≥ z̃

0 Ẽ [z] < z̃

where z̃ =
( r+δ

α

)α ( w
1−α

)1−α.

At the same time, the firm’s realized profits can be written as

π =

(
(1 − α) (r + δ)

αw

)1−α

z − r + δ

α
(A5)

With the optimal capital holding equation shown as above, the wealth growth for

entrepreneurs in the banking sector as

daB =

{
1Ẽ[z]≥z̃ ×

[
ζz − r+δ

α

1 − λB
+ r − ρ

]
+ 1Ẽ[z]<z̃ × (r − ρ)

}
aBdt ≡ ΓB (z, z̃) aBdt (A6)

Similarly, for BigTech entrepreneurs, we can derive the entrepreneur’s optimal choice

on capital stock as follows:

kF (a, z, z̃) =


1

1+λF( r+δ
α −ζẼ[z])

a Ẽ [z] ≥ z̃

0 Ẽ [z] < z̃

(A7)

The only difference is the borrowing constraint for highly productive entrepreneurs.

Hence, the wealth growth rate for entrepreneurs in the BigTech sector can be shown

below:

daF =

{
1Ẽ[z]≥z̃ ×

[
ζz − r+δ

α

1 + λF
( r+δ

α − ζẼ [z]
) + r − ρ

]
+ 1Ẽ[z]<z̃ × (r − ρ)

}
aFdt (A8)

As Ẽ [z] = Ẽ [z̃ + dz] = 1
θ [µ̄ + (θ − 1) z̃] + γ (z̃ − µ̄), we can rewrite it as follows:

A3
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daF =

1Ẽ[z]≥z̃ ×

 ζz − r+δ
α

1 + λF
[

r+δ
α − ζ

( 1
θ − γ

)
µ̄ − ζ(θ−1+θγ)

θ z̃
] + r − ρ

+ 1Ẽ[z]<z̃ × (r − ρ)

 aFdt

(A9)

Proof of Lemma 4

As shown in the previous lemma, the wealth follows a process of daj =
[
Γj (t, z, z̃) aj − cj

]
dt

for the entrepreneurs in sector j. Therefore, the Bellman equation Vj should satisfy the

following equation

ρV j (t, a, z, z̃) = max
cj

{
log cj +

1
dt

E
[
dVj (t, a, z, z̃)

]}
(A10)

subject to the condition that daj =
[
Γj (t, z, z̃) aj − cj

]
dt.

With the guess and verify approach, we can show that the optimal consumption

choice is cj = ρaj for all entrepreneurs in the economy. Assume that the value function

takes the form of Vj (t, a, z, z̃) = Bjvj (t, z, z̃) + Bj log aj. Then we have

E
[
dVj (t, a, z, z̃)

]
=

Bj

aj
da + BjE

[
dvj (t, z, z̃)

]
(A11)

Combining Equations (A10) and (A11) gives us the following equation:

ρBjvj (t, z, z̃) + ρBj log aj = max
cj

{
log cj +

Bj

aj

[
Γj (t, z, z̃) aj − cj

]
+ Bj

1
dt

E [dv (t, z, z̃)]
}

(A12)

The first-order condition gives us cj =
aj
Bj

. Substituting back in, we have

ρBjvj (t, z, z̃) + ρBjlogaj = log aj − logBj + BjΓj (t, z, z̃)− 1 + Bj
1
dt

E
[
dvj (t, z, z̃)

]

A4
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which is

(
ρBj − 1

)
log aj = −ρBjvj (t, z, z̃)− logBj +BjΓj (t, z, z̃)− 1+Bj

1
dt

E
[
dvj (t, z, z̃)

]
(A13)

Therefore, we can conclude that Bj =
1
ρ for both sectors, and we have

cj = ρaj (A14)

daj =
[
Γj (z, z̃) aj − ρ

]
dt (A15)

Finally, the value function is

Vj (t, a, z, z̃) =
1
ρ

[
vj (t, z, z̃) + log aj

]
(A16)

and vj (t, z) satisfies the following condition:

ρvj (t, z, z̃) = ρ log ρ + Γj (t, z, z̃)− ρ + Bj
1
dt

E
[
dvj (t, z, z̃)

]
(A17)
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B. A Note on Lian and Ma (2021)

Lian and Ma (2021) document the prevalence of cash flow-based lending. They argue

that 20% of debt by value is based on tangible assets, whereas 80% is based predomi-

nantly on cash flows from corporate operations. Here we want to argue that their main

conclusion, especially the dominating use of cash flow-based lending, is not robust. A

better and less controversial way of interpreting the empirical result is the co-existence

of earnings-based and collateral-based borrowing constraints.

Figure A1: Anatomy of Corporate Borrowing Constraints

(a) original plot: large firms only + median (b) all firms + median

(c) large firms + mean (d) all firms + mean

Notes: This figure presents the anatomy of corporate borrowing constraints with different choices

for summarizing the data. The main data source for this figure is obtained directly from the

replication package for Lian and Ma (2021).

A6

Electronic copy available at: https://ssrn.com/abstract=3965971



MACROBIGTECH

Graph (A) in Figure A1 replicates one of their main results in the paper. To be clear,

all the raw data used in this section are directly obtained from Quarterly Journal of Eco-

nomics Dataverse.1 In their paper, Lian and Ma (2021) argue that “Figure I, Panel A,

shows that the median share of asset-based and cash flow–based lending among large

nonfinancial firms is generally less than 20% and slightly over 80%, respectively, in re-

cent years.” The keywords in their original statement are large and median. More specif-

ically, when they prepare the data for this graph, first they classify all the firms in Com-

pustat dataset into five different groups according to their total asset levels. Then they

drop the bottom 20% firms out of the sample. Finally, they compute the median share

of asset-based and cash flow–based lending. As we can see from the replicated result in

Graph (A), the median share of asset-based lending on average is 17.8%, while that of

cash flow–based lending is 77.2%.

To begin with, we want to point out that these numbers are sensitive to the choice of

sub-samples and the use of a median. In Graph (B) of Figure A1, we plot the same results

but without dropping the smallest firms out of the sample. In Graph (C) of Figure A1, we

drop all the firms in the lowest quintile but use mean instead of median. In Graph (D),

we include all the firms and use the mean to calculate the average value. As we can see

from these graphs, whether cash flow-based lending is really prevalent depends on the

specific choice of our empirical measure. For example, in Graph (D), the average use of

cash flow-based lending is 51.7% while the average use of asset-based lending is 41.6%.

In this way, both types of lending are important financial frictions in the real economy.

The subsample selection is not the most problematic issue in their work. In fact, Lian

and Ma (2021) do mention this point. They find that for small firms, asset-based lending

is more common and the median value of asset-based lending among these small firms

is roughly 54%.

The real problem comes from the use of the median because the actual distribution of

the borrowing constraints is a bimodal one. It is true that both the median and mean can

1Replication data and codes for Lian and Ma (2021) can be downloaded from here.
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be interpreted as the “representative” value for the data sample, and sometimes the me-

dian is used as an alternative to the mean. However, if the underlying distribution is a bi-

modal one, both indicators can be misleading, as there is no such representative borrower

in the data. Graphs (A) and (B) in Figure A2 present the distribution of individual firms’

use of asset-based and cash flow-based lending, respectively. As we can see from these

two graphs, when we attempt to describe the use of borrowing constraints by the indi-

vidual firm, there is no such representative firm in this economy because some firms rely

heavily on cash-flow-based lending while other firms use more collateral-based lending.

The detailed breakdown for each year throughout the data sample period can be shown

in Figure A3 and A4. Generally speaking, the less controversial way of describing reality

is the co-existence of two types of borrowing constraints.

Figure A2: Distributions on the types of borrowing constraints

(a) distribution of asset-based lending share
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(b) distribution of cash-flow-based lending share
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Notes: This figure presents the distributions of individual firms’ use of two types of lending.

The main data source for this figure is obtained directly from the replication package for Lian

and Ma (2021). Orange and blue rectangles represent histogram distributions with normalized

probability density. Red lines are the Kernel smoothing function fits.
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Figure A3: Asset-Based Lending Distribution in each year
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Figure A4: Cash Flow-Based Lending Distribution in each year
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C. Additional Figures

Figure A5: Determinants of aggregate allocation efficiency

(a) micro-uncertainty and cash flow-based borrowing constraints

(b) micro-uncertainty and autocorrelation
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Figure A6: Determinants of business cycle fluctuations

(a) various shocks (b) various tightness of constraints

(c) various correlations (d) various shock periods
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D. Physics-Informed Neural Networks Algorithm

The physics-Informed Neural Networks (PINN) algorithm is proposed by Raissi et al.

(2019) and represents a new deep learning framework for solving forward and inverse

problems involving nonlinear partial differential equations. The basic idea of this algo-

rithm can be summarized in the following graph:

 Minimize:

What is a PINN? Physics-Informed Neural Network
We employ two (or more) NNs that share the same parameters

Generally speaking, the idea of PINN is to employ two or more neural networks that

share the same parameters. In addition, the objection function is to minimize the sum

of mean squared errors of the original neural network and those of partial derivatives.

In this way, we can make full use of the synergy between machine learning and classi-

cal computational physics to solve some high-dimensional partial differential equations

without encountering the curse of dimensionality. More importantly, this approach is

feasible because the PINN approximation theorem guarantees that feed-forward neural

nets with a sufficiently large enough number of neural nodes can simultaneously and

uniquely approximate any partial differential equations and their partial derivatives.
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