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Abstract

We evaluate how anticipation and adaptation shape the aggregate and local costs of climate change.
We develop a dynamic spatial model of the U.S. economy and its 3,143 counties that features costly
forward-looking migration and capital investment decisions. Recent methodological advances that
leverage the ‘Master Equation’ representation of the economy make the model tractable. We estimate
the county-level impact of severe storms and heat waves over the 20th century on local income, popu-
lation, and investment. The estimated impact of storms matches that of capital depreciation shocks in
the model, while heat waves resemble combined amenity and productivity shocks. We then estimate
migration and investment elasticities, as well as the structural damage functions, by matching these
reduced-form results in our framework. Our findings show, first, that the impact of climate on capital
depreciation magnifies the U.S. aggregate welfare costs of climate change twofold to nearly 5% in 2023
under a business-as-usual warming scenario. Second, anticipation of future climate damages amplifies
climate-induced worker and investment mobility, as workers and capitalists foresee the slow build-up
of climate change. Third, migration reduces substantially the spatial variance in the welfare impact of
climate change. Although both anticipation and migration are important for local impacts, their effect
on aggregate U.S. losses from climate change is small.
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1 Introduction

The accumulation of CO2 in the atmosphere is affecting the climate of our planet. Some of these effects are

evident today, but many others, including the increased frequency and intensity of storms and heat waves

(IPCC, 2022), are expected over the next century as the Earth’s average temperature increases further.

The fact that humans today can anticipate these future climate effects can have profound implications on

their ability to adapt and reduce their worse consequences. What is the importance of these anticipatory

and adaptive responses in determining the aggregate and local costs of climate change? In this paper, we

answer this question using a general equilibrium dynamic quantitative spatial model of the 3,143 counties

in the U.S. economy. In our framework, agents anticipate the effect of climate change on productivity

and capital depreciation and make forward-looking migration and local capital investment decisions. We

also provide novel empirical estimates of the local impact of storms and heat waves on economic activity,

which we use to quantify the model.

The analysis of anticipatory and adaptation responses to climate change at this level of spatial resolu-

tion has previously been hindered by the dimensionality of the resulting state space. In a dynamic model

with costly forward-looking migration and local capital investment decisions, the whole distribution of

employment and capital are state variables in the dynamic problem of individual workers and local capi-

tal investors. Connecting such a framework with micro-level estimates of the impact of storms and heat

waves requires a fine level of spatial disaggregation. To make progress, we leverage recent methodological

advances developed in Bilal (2021) that allow us to solve for quantitative general equilibrium counterfac-

tuals in heterogeneous agent models with aggregate shocks using analytic first-order perturbations around

the initial deterministic steady-state. With this technique in hand, we develop a framework to evaluate

the impact of climate change on the U.S. economy.

Our starting point is a standard forward-looking dynamic migration model as in Caliendo et al.

(2019). Forward-looking workers decide where to live and work. They earn an equilibrium wage in their

location that they use to consume and lease housing at equilibrium rents. They receive random preference

shocks for locations that motivate them to migrate subject to bilateral migration costs. We enrich this

environment along several dimensions. First, as in Kleinman et al. (2023), we introduce local capitalists

who own the capital stock in the location where they live. They face a dynamic consumption-investment

decision subject to adjustment costs that accounts for the entire future expected path of the economy and

the evolution of its climate. The evolution of the local paths of capital depreciation rates, productivities,

and amenities depends on climate change through its effect on storms and heat waves. Capitalists rent out

their capital stock to developers who use it to produce housing and commercial structures. Local firms

produce consumption goods using labor and commercial structures with productivity that is heterogeneous

across locations and varies with global temperatures.

An essential part of the quantification of this model is our estimation of damage functions that map
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global temperature changes into local changes in capital depreciation rates, productivity, and amenities.

We collect daily data on mean and extreme temperature, precipitation, and windspeed for every county

in the U.S. since 1900. We use these data to construct county-level indicators of 1-in-50-years storms,

and 1-in-20-years heat waves. We document that the probability of storms in coastal counties, and heat

waves in warm (above-median) counties in the U.S. has risen fourfold with the 1°C of global warming the

planet experienced in the last century.

We then estimate the impact of these extreme events on economic activity from the year 2000 onwards

using an event study design. Specifically, we use a distributed lag specification to estimate how income

per capita, population, and investment respond to extreme events conditional on a rich set of controls.

We find that storms reduce income per capita by over 2% and population by 5%, while investment rises

to peak at a 20% increase. These effects are concentrated in coastal counties, precisely where storms are

becoming more frequent. Together, these patterns are consistent with a capital depreciation shock in the

model. Heat waves reduce income per capita and population by 2%, and investment by 4%, in counties

with temperatures above the median where their frequency is rising. These results are consistent with a

combination of negative productivity and amenity shocks in the model.

We use these reduced-form estimates to quantify our framework. We first estimate the migration

and investment elasticities. Given a guess for these elasticities, and a standard calibration of the rest of

the model parameters, we can invert the model in steady-state, and obtain all the local characteristics,

including local productivities, amenities, and the level of local capital investment costs. To estimate the

two elasticities, we leverage a key property of the first-order approximation of changes in our economy

around the steady state, namely, that the relative response of economic outcomes to shocks is independent

of the magnitude of the shock. Hence, we estimate these elasticities by matching the estimated reduced-

form response of population, relative to income per capita and investment, to storms and heat waves. We

leverage the computational efficiency of our solution method to propose global identification guarantees.

We then proceed to estimate the damage functions. We recover the magnitude of the capital depreci-

ation, productivity, and amenity shocks corresponding to a 1-in-50-years storm and a 1-in-20 years heat

wave by matching the level of the cumulative impulse response of investment and population in the model

to the one we estimated in the data over a 10-year period. The final step is to interact damages from a

given event with changes in the empirical probability that a given event materializes for each location in

response to changes in temperature.

Storms and heat waves have large effects on capital depreciation, productivity, and amenities. Through

the lens of our model, storms generate a 17% capital depreciation shock, while heat waves generate a

5.1% productivity shock together with a 6.8% amenity shock. The resulting structural damage functions

imply that the South-Eastern Atlantic coast should expect a 2 to 4 p.p. increase in the annual capital

depreciation rate for every 1°C increase in global mean temperatures because of rising storm activity.

Southern Florida should expect a 5% reduction in productivity, and a 6.6% reduction in amenities, for
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every 1°C increase in global mean temperature.

We use the quantified model to evaluate the social cost of climate change in the U.S. economy. Our

central scenario is a gradual increase of global mean temperature from 1°C to 4°C above pre-industrial

levels by 2100, consistent with the IPCC’s business-as-usual scenario. In our baseline counterfactual, the

consumption-equivalent present discounted welfare of workers falls by 4.9% on average in 2023 ($3,005

per year per worker). Our solution method enables us to construct standard errors efficiently. The 95%

confidence interval for the aggregate worker welfare loss in 2023 ranges from 3.6% to 6.2%, after accounting

for standard errors around our estimated damage functions.

Despite the ability of workers to migrate away from affected areas, there is substantial dispersion

across counties. The spatial standard deviation of welfare losses for workers is 2.4 p.p. Capitalists lose

0.8% on average (with a 95% confident interval between 1% and 0.6%) but face much larger inequality:

a spatial standard deviation of losses of 5.6 p.p in 2023 and of 46.4 p.p. by 2100. Losses to capitalists

are more dispersed because physical capital cannot be moved directly: it is left to depreciate in impacted

areas such as southern Florida and rebuilt in less affected areas such as inland Maine. By 2100, average

welfare losses reach 11.6% for workers ($7,115 per year per worker) and 13.4% for capitalists. These large

welfare losses occur despite sizable population and capital flows. By 2100, the population has changed by

40% on average across all counties due to climate change; the aggregate capital stock of the U.S. economy

has declined by 32%.

Our goal is to gauge the importance of anticipation and adaptation responses in determining these

results. To do so, we perform three distinct exercises in which we shut down particular channels in

the model. First, we shut down the effect of storms on capital depreciation. This allows us to assess

the relevance of incorporating capital in a climate assessment model. The effect of changes in global

temperature on capital depreciation alone accounts for 88% of welfare losses to capitalists, 45% of welfare

losses to workers, and 75% of the aggregate reduction in capital by 2100. The destruction created by

storms through changes in local capital depreciation rates is a novel feature of our analysis, and this

channel turns out to be quantitatively critical to account accurately for expected losses from climate

change.

In a second exercise, we shut down climate change anticipation by workers and capitalists. In this

counterfactual, agents experience the effect of the current and past changes in temperatures but they

believe that in the future temperatures will remain as in the current period. Hence, their actions incor-

porate no anticipation effects. Our results indicate that anticipation plays a crucial role for mobility and

investment. Without anticipation, mobility drops by 32%. There are two main reasons. First, workers

fail to out-migrate enough from locations that will become less attractive as the climate worsens. Second,

capitalists keep investing in these same locations, raising the incentives for workers to stay there. With-

out anticipation, welfare is 13% more dispersed across locations. For example, workers in Florida lose an

additional 0.65% of consumption equivalent welfare. Nevertheless, gains in some locations offset losses in
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others, yielding similar aggregate welfare losses.

In the third and final exercise, we measure the importance of adaptation through migration for the

spatial distribution of county losses from climate change. To do so, we simply prevent people from

moving in response to climate change, while capital can adjust as in the baseline. Without migration,

the distribution of welfare losses for workers spreads out substantially. Across the U.S., the standard

deviation of worker welfare losses in 2023 rises to 8.7 p.p and to 16.3 p.p in 2100. Workers in particularly

adversely affected areas, such as coastal counties in Florida and Louisiana, experience losses of 25% in

2023 instead of 5%, corresponding to an additional loss of $12,267 per year per capita. In contrast, since

capital stocks are not mobile, the lack of mobility of workers insures local capitalists in affected areas.

Hence, the dispersion in capitalist welfare declines more than threefold in 2023 and by half in 2100. Our

results point to a dynamic complementarity between migration and investment decisions that shapes the

spatial distribution of winners and losers of climate change.

Perhaps surprisingly, shutting down migration has only a negligible effect on the average welfare loss of

either workers or capitalists. The gains in some locations compensate for the losses in others. We propose

an exact welfare decomposition that yields two observations. First, at the individual level, the option value

of migration nets out on average due to an envelope argument: the marginal mover is already indifferent

between their preferred and runner-up location prior to climate change. Second, at the aggregate level,

migration provides insurance only if climate shocks reallocate workers toward more desirable locations.

We find that, in the U.S., the correlation between the impact of climate change and current economic

development and welfare is close to zero, implying negligible aggregate benefits from migration.1

The methodology that allows us to reach these conclusions is related to the literature on mean-field

games. Together, the elements of our framework represent a heterogeneous agent environment with

aggregate shocks in which the full distribution of workers and capital stocks across counties matters for

the evolution of the economy. Standard solution methods are not well-suited the dimensionality of this

framework. To make progress, we leverage recent methodological advances developed in Bilal (2021)

that leverage the ‘Master Equation’ representation of the economy, itself introduced in the mathematics

mean field games literature (Cardaliaguet et al., 2019).2 We take analytic first-order perturbations of

the Master Equation in aggregate temperature shocks and in the underlying distribution around the

initial deterministic steady-state to obtain low-dimensional, closed-form standard Bellman equations for

the directional derivatives of individual value functions with respect to the underlying distribution and

aggregate shocks.3

1Desmet and Rossi-Hansberg (2015), Desmet et al. (2021), and Cruz and Rossi-Hansberg (2023) reach different conclusions
on the importance of migration to determine the aggregate losses from climate change in the world since the correlation
between income per capita and the magnitude of negative climate shocks in the world is substantial and positive. The
absence of static and dynamic agglomeration effects in productivity or amenities is also important for positive and negative
local effects to average out.

2The ‘Master Equation’ representation is the recursive representation of the economy, in which the distribution of workers
and capital stocks enters explicitly as an explicit state variable of the individual decision problems.

3The Master Equation approach in Bilal (2021) is also related to the Reiter (2009) method. By taking the perturbation
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Our paper is also related to the literature on dynamic spatial models. Relative to Desmet et al. (2018),

our methodology allows us to introduce forward-looking decisions in migration and capital investments,

although we abstract from agglomeration effects in productivity, and technology innovations, and focus our

analysis on the U.S. Caliendo et al. (2019) introduces forward-looking migration decisions and Kleinman

et al. (2023) adds local capital investments. Both of them also introduce costly trade, which we abstract

from. Relative to these papers our methodology allows us to efficiently compute counterfactuals for a much

larger number of locations (all counties in the U.S. v.s. 50 states). Perhaps more important, the efficient

numerical solution allows us to estimate the two key elasticities, and the climate damage functions, by

precisely matching the model results with the reduced-form local responses that we estimate in the data.

Of course, the main contribution of our paper is to evaluate the economic losses due to the capital

depreciation generated by storms, together with the productivity and amenity losses due to heat waves.

We aim to analyze the role of anticipation and adaptation in determining aggregate and local losses as

well as the resulting migration flows and geography of investments. In doing so, we also contribute to

the reduced-form literature that estimates the impact of storms (Deryugina, 2013, Hsiang and Jina, 2014,

Roth Tran andWilson, 2023, Phan and Schwartzman, 2023) and extreme heat (Deschênes and Greenstone,

2011, Dell et al., 2012, Dell et al., 2014, Leduc and Wilson, 2023) by providing comprehensive county-level

estimates for the U.S. of the effect of storms on coastal counties and heat waves in warm counties.

We incorporate our reduced-form estimates into a general equilibrium dynamic spatial climate assess-

ment model to estimate structural damage functions. A recent literature has proposed related frameworks.

Many of those papers focus on other issues and abstract completely from capital investments or antici-

pations effects (Desmet and Rossi-Hansberg, 2015, Desmet et al., 2021, Cruz and Rossi-Hansberg, 2023,

and Conte et al., 2022). Cruz (2021) and Balboni (2021) study the effect of temperature changes and

flooding, respectively, in models with forward-looking migration but abstract from local capital accumu-

lation.4 Rudik et al. (2022) also incorporates forward-looking migration and trade and calculates the

impact of climate change in the U.S. on productivity and welfare using trade and migration flows, but

also abstract from capital investments and capital depreciation shocks. In contrast, Krusell and Smith

(2022) propose a model of the effect of climate change on local capital investments for the entire world

but abstract from migration or the capital destruction shocks generated by floods and storms.5 Fried

(2021) evaluates the impact of storms in an incomplete credit market model with adaptation across two

regions. Relative to this literature, we are the first to propose a spatially disaggregated dynamic model

with both migration and capital investments to quantify the effect of climate-change-induced storms and

heat waves in the U.S., and use it to gauge the role of anticipation and adaptation in determining the size

analytically rather than numerically, the Master Equation approach is simpler and faster, which is particularly useful for
estimating the parameters of the model.

4We also abstract from local industry specialization, unlike Costinot et al. (2016), Nath (2022), Cruz (2021), and Conte
et al. (2022).

5See also Bakkensen and Barrage (2018) for a study of the impact of storms in a multi-country setting.
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and spatial distribution of these losses.

The rest of this paper is organized as follows. Section 2 lays out the model. Section 3 characterizes

our solution method. Section 4 describes our reduced-form results. Section 5 details our quantification

procedure. Section 6 presents our three main results. Section 7 concludes.

2 A model of location and investment choices in a warming world

This section presents the setup of our dynamic spatial model. We model an economy with many locations

and two types of agents: workers and capitalists. Workers can move subject to mobility costs and earn a

wage that they consume each period. Capitalists are fixed in a location, earn the returns on their capital

investments, and face a dynamic consumption-savings decision. We now proceed to describe each part of

our setup in detail.

2.1 Agents and preferences

There is a unit mass of infinitely-lived workers who choose in which location i ∈ {1, ..., I} to live. Workers

living in location i have CRRA preferences Ait + u(C) = Ait +
C1−γ−1

1−γ over amenities Ait in the loca-

tion where they live at time t and a Cobb-Douglas aggregator C of a freely traded final good, used as

the numeraire, and housing. Namely, C =
(

c
1−β

)1−β (
h
β

)β
, where β denotes the share of housing in

expenditure. Workers discount the future at rate ρ. Workers are allowed to move at rate µ, in which

case they draw extreme-value distributed idiosyncratic preference shocks for potential destinations, with

dispersion parameter ν. If they move, they pay a bilateral moving cost τij . We define the long-run (Ai)

and time-varying (ait) components of amenities in location i as Ait = Ai + ait.

Each location is populated by a unit measure of capitalists. They are immobile and have risk-neutral

preferences ucap(C) = C over the final consumption good. They do not consume housing.

2.2 Technology

Workers in location i are employed by a representative firm that produces the final good using commercial

structures and labor and faces constant returns to scale. Locations are endowed with a local productivity

Zit and a local stock of land Li. A representative firm is endowed with a production function for the

final good given by Yit = ZitS
α
it(N

P
it )

1−α, where Sit denotes local commercial structures and NP
it the local

number of workers employed in final good production. We denote by Nit the total number of workers in

location i at time t. We define the long-run (Zi) and time-varying (χit) components of productivity as

Zit ≡ Zie
χit .

In every location, there is an equilibrium capital stock Kit. Capital can be combined with land

Li and construction labor NB
it to produce buildings Bit according to the production function Bit =
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Lωi (N
B
it )

ϖK1−ω−ϖ
it . BuildingsBit can be costlessly repurposed between residential housing and commercial

structures, so that Bit = Sit+Hit. Denote by rit the common rental rate of buildings to firms and workers.

Capitalists decide how much to invest in every location subject to constant returns to scale investment

costs, convex in I, ci(I/K)K =
c
−1/ζ
i0

1+1/ζ

(
I
K

)1+1/ζ
K. These costs are paid in the final good whose price is

normalized to 1. To finance investment, capitalists borrow or save in a risk-free national bond market

which carries an equilibrium interest rate Rt. Capital is not mobile across locations. We denote by RK,it

the return on a unit of capital. The local capital stock depreciates at rate ∆it. We define the long-run

(∆i) and time-varying (δit) components of capital depreciation rates as ∆it ≡ ∆i + δit.

Capitalists are endowed with non-traded shares of a national mutual fund. This mutual fund owns

the land in the economy. Denote by θit the payment from the mutual fund to capitalists in location i at

time t.

2.3 Climate change

The path of global mean temperatures Tt is exogenous. Going forward, the vast majority of carbon

emissions is expected to stem from developing economies and is thus largely exogenous to U.S. economic

activity. Global mean temperatures relative to pre-industrial levels TP satisfy

Tt − TP = ϵ
(
zt + TDt

)
.

TDt is a deterministic path corresponding to a central climate scenario. zt is a mean-zero shock that

captures natural climate variability. ϵ is a scaling parameter that clarifies notation for our solution

method.6

Local productivity χit, amenities ait, and capital depreciation δit depend on time only through the

path of global mean temperatures. We parameterize these shifters through the following functions:

χit = χi
(
Tt − TP

)
, ait = ai

(
Tt − TP

)
, δit = δi

(
Tt − TP

)
, (1)

where χi(0) = ai(0) = δi(0) = 0. Even though these damages functions take global temperature as an

argument, they capture flexibly the possible dependence of damages on local temperature through their

location index i.7

6We could introduce uncertainty in the long-run path of temperatures by writing Tt−TP = ϵ
(
zt+ z̃tT

D
t

)
for some process

z̃t. Since our solution method relies on a first-order perturbation of the economy, such uncertainty would be immaterial for
our results. Uncertainty matters for higher-order perturbations.

7For instance, they are equivalent to positing that damages are a function of local temperature deviations (e.g. χit =
F (Tit − T i)) and that local temperature is related to global temperature according to Tit = T i + τ i(Tt − TP ).
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2.4 Static equilibrium

The maximization probrem of firms implies that the wage wit in location i satisfies the firm’s first-

order condition wit = (1 − α)Zit(Sit/N
P
it )

α. Similarly, the rental rate for structures satisfies rit =

αZit(Sit/N
P
it )

−(1−α), since depreciation is not covered by the users of buildings.

The optimal choice of labor in building production implies ϖritBit/N
B
it = wit. Furthermore, the local

demand for housing by workers implies that an equilibrium in the housing market satisfies βwitNit =

ritHit.

We determine equilibrium prices and quantities as functions of the local capital stock Kit and local

number of workers Nit. We show that labor is allocated to goods and buildings production in constant

shares: NP
it = xNit and Hit = yBit, where x, y are combinations of parameters described in equation (21),

Appendix A.1.

Using these shares and the production function of buildings, the wage and the rental rate of buildings

become

wit = wi0ZitL
ωα
i (K1−ω−ϖ

it Nϖ−1
it )α , rit = ri0ZitL

−ω(1−α)
i (K1−ω−ϖ

it Nϖ−1
it )−(1−α), (2)

where wi0, ri0 are combinations of parameters and local fundamentals expressed in Appendix A.1.

We solve for the rental rate of capital. It depends on the rental rate of buildings. Profit maximization

by developers implies that it satisfies:

RK,it = R0ie
χitK−ϕ

it N
ψ
it ≡ Ri(χit,Kit, Nit),

where R0i is a location-specific constant that depends on the permanent component of productivity and

available land, and ϕ and ψ are combinations of parameters detailed in Appendix A.1.

We can now solve for consumption given prices. Consumption in location i is equal to the real wage.

It satisfies

Cit =
wit

rβit
= C0ie

(1−β)χit

(
K1−ω−ϖ
it

N1−ϖ
it

)ξ
,

where C0i is a location-specific constant, and ξ a combination of parameters detailed in Appendix A.1.

Finally, flow utility in location i at time t is:

Ait + u

(
wit

rβit

)
= Ai + ait + u

(
C0ie

(1−β)χit

(
K1−ω−ϖ
it

N1−ϖ
it

)ξ)
≡ Ui(ait, χit,Kit, Nit).
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2.5 Migration decisions

Workers solve a forward-looking dynamic migration decision problem. We denote by Vit the value of being

located in i at time t. Vit satisfies the Hamilton-Jacobi-Bellman (HJB) equation:

ρVit = Ui(ait, χit,Kit, Nit) +Mi[V ] +
E[dtVit]
dt

, (3)

where we used standard discrete choice results and denoted

Mi[V ] ≡ µ

1

ν
log

∑
j

eν(Vjt−τij)

− Vit


the continuation value from migration. Finally, the last term in the worker’s HJB equation represents the

continuation value from changes in the aggregate state, where the notation dt denotes the time increment

due to changes in aggregates only and not due to individual migration.

Standard discrete choice results guarantee that migration shares are a function of the vector of values

V , namely,

mij(V ) =
eν(Vj−τij)∑
k e

ν(Vk−τik)
. (4)

The population distribution evolves according to the Kolmogorov Forward (KF) equation

dNit

dt
= µ

(∑
k

mki(Vt)Nkt −Nit

)
≡ µ

((
m∗(Vt)− Id

)
Nt

)
i

(5)

In equation (5), m denotes the matrix of migration shares mij(Vt). m∗ denotes the matrix transpose

of the matrix m. We also denote by M∗(V ) = µ
(
m∗(V ) − Id a matrix that collects migration shares

and the identity matrix, so that (5) becomes, in matrix notation, dNt
dt = M∗(V )Nt. We denote M(V ) =

µ(m(V )− Id)) the transpose of M∗(V ) for future reference.

2.6 Investment decisions

Capitalists solve a forward-looking dynamic investment decision problem. We denote Pit(K, b) the value

of being located in i at time t and holding K units of local capital together with b units of bonds. Pit(K, b)

satisfies the HJB equation:

ρPit(K, b) = max
I,C

C +
(
Rtb+RK,itK + θit − ci(I/K)K − C

)∂Pit
∂b

+
(
I −∆itK

)∂Pit
∂K

+
Et[dtPit]

dt
(6)

The first term in the capitalist HJB is the flow utility from consumption. The second term is the

continuation value from net savings. Net savings are given by returns on bonds and capital, proceeds
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from the land-holding mutual fund, minus expenditures on investment adjustment costs and consumption.

Net savings are valued at the marginal value ∂Pit
∂b . The third term represents the continuation value from

net investment, namely, gross investment minus depreciation multiplied by the marginal value of capital

∂Pit
∂K . The final term in the capitalists’ HJB is the continuation value from changes in the aggregate state.

We show in Appendix A.2 that Pit(K, b) = QitK + b+ Tit, where Tit is the present value of transfers

from the mutual fund, and Qit satisfies

ρQit = Ri(χit,Kit, Nit) +
ci0Q

1+ζ
it

1 + ζ
− δitQit +

Et[∂tQit]
dt

. (7)

The investment policy of capitalists then satisfies I∗it = ci0Q
ζ
itKit. The law of motion of capital in every

location becomes

dKit

dt
= (ci0Q

ζ
it −∆it)Kit. (8)

2.7 Steady-state

In steady-state at baseline temperatures, ϵ = 0. All time derivatives are equal to zero. The HJB equation

of workers (3) becomes:

ρV SS
i = Ui(0, 0,K

SS
i , NSS

i ) +Mi[V
SS ]. (9)

The HJB of capitalists and (7) becomes

ρQSSi = Ri(0,K
SS
i , NSS

i )− ci0(Q
SS
i )1+ζ

1 + ζ
, (10)

and the steady-state population distribution NSS = {NSS
i }i satisfies

0 =M∗(V SS)NSS . (11)

The steady-state capital distribution KSS = {KSS
i }i is such that the capital stock remains stable in every

location, namely,

0 = ci0(Q
SS
i )ζ −∆i. (12)

Appendix C describes a simple algorithm to solve for the steady-state that leverages equations (9)-(12).
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3 The Master Equation, the FAME, and transitional dynamics

3.1 Strategy

Our economy is a dynamic general equilibrium economy in which the distributions of workers Nt = {Nit}i
and capital Kt = {Kit}i are aggregate state variables that determine local prices. The distribution of

workers and capital evolves slowly according to the laws of motions (5) and (8). These laws of motion in

turn depend on the values of workers given by the HJB equations (3) and (7).

Solving for this dynamic fixed point is challenging in our high-dimensional environment with over

3,000 counties. We make progress by leveraging the ‘Master Equation’ representation of the economy

developed in Bilal (2021).

The Master Equation approach is structured in two steps. In the first step, we merge the individual

decision problems with the laws of motion of the population and capital distributions into a single Bellman

equation: the Master Equation. The Master Equation is a state-space representation of the equilibrium.

The second step consists in taking a local perturbation of the Master Equation in the scale parameter

ϵ around a steady-state of the economy. The key insight from the local perturbation is to simplify the

dynamic fixed point to a set of simple and standard Bellman equations that we solve rapidly with entirely

standard techniques. For clarity, we present a self-contained description of our approach that closely

follows the steps in Bilal (2021).

3.2 The Master Equation

We start with the Master Equation for workers. We combine the HJB equation (3) with the laws of

motion (5) and (8) with a simple change of variables. We index value functions by the population and

capital distributions instead of calendar time alone. The core idea is that the population and capital

distributions are no more than large-dimensional state variables from the perspective of any given worker.

Of course, we need to keep calendar time as a separate index because of climate change embedded in

global mean temperatures TDt .

Specifically, we change variables by writing Vit = Vit(zt, Nt,Kt) and Qit = Qit(zt, Nt,Kt), where now

the time subscript t only captures dependence on deterministic temperature.8 Recall that Nt = {Nit}i
denotes the vector of population across locations at time t, and Kt = {Kit}i similarly denotes the capital

distribution.

Using this change of variables, we use the chain rule to express the continuation value from changes

8If the evolution of temperature was determined by current temperature and the evolution of the economy through its
emissions, as in a integrated assessment models of the world economy, we would simply add temperature as a state variable
and eliminate time dependence in the value function altogether.
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in aggregate states as:

Eit
[
dtVit
dt

]
=

∂Vit
∂t︸︷︷︸

change in TD
t

+ Aϵ(z)[Vit]︸ ︷︷ ︸
change in zt:

continuation value

+
∑
j

∂Vit
∂Nj

dNjt

dt︸ ︷︷ ︸
change in Nt:
chain rule

+
∑
j

∂Vit
∂Kj

dKjt

dt︸ ︷︷ ︸
change in Kt:
chain rule

, (13)

where Aϵ(z) is an operator that embeds the continuation value arising from natural climate variability.

For instance, if zt follows a continuous-time AR(1) process dzt = −θzt + σdWt, the operator Aϵ(z) is

given by Aϵ(z)[V ] = −θzϵ∂V∂z + σ2ϵ2

2
∂2V
∂z2

.

The last two components encode how the value of workers changes with the population and capital

distributions across locations. When workers reallocate across locations in equilibrium, or when the

distribution of capital shifts in equilibrium, the distribution of local wages, building rental rates, and

capital rental rates change. These changes in these three distributions of prices affect residents of location

i.

We then use the laws of motion of the population and capital distributions (5) and (8) to express the

time change of population and capital in (13). After this substitution into the continuation value (13)

and into the HJB (3), we obtain the Master Equation for workers:9

ρVit(z,N,K) = Ui

(
ai(ϵ(z + TDt )), χi(ϵ(z + TDt )),Ki, Ni

)
︸ ︷︷ ︸

flow payoff

+ Mi[V ]︸ ︷︷ ︸
continuation value
from own migration

(14)

+
∑
j

∂Vit
∂Nj

(M∗(V )Nt)j +
∑
j

∂Vit
∂Kj

(
cj0Q

ζ
jt −∆j − δj(ϵ(z + TDt ))

)
Kj +Aϵ(z)[Vit] +

∂Vi
∂t

.︸ ︷︷ ︸
continuation values from aggregate changes

Note that the Master Equation for workers depends on the value of capitalists Q because the latter affects

investment, capital accumulation, prices, and, ultimately, worker welfare.

A similar logic delivers the Master Equation for capitalists, which is given by

ρQit(z,N,K) = Ri
(
χi(ϵ(z + TDt )),Ki, Ni

)︸ ︷︷ ︸
flow payoff

+
ci0Q

1+ζ
i

1 + ζ
−
(
∆i + δi(ϵ(z + TDt ))

)
Qit︸ ︷︷ ︸

continuation values from own investment

(15)

+
∑
j

∂Qit
∂Nj

(M∗(V )Nt)j +
∑
j

∂Qit
∂Kj

(
cj0Q

ζ
jt −∆j − δj(ϵ(z + TDt ))

)
Kj +Aϵ(z)[Qit] +

∂Qit
∂t︸ ︷︷ ︸

continuation values from aggregate changes

.

Our equilibrium definition is standard and therefore omitted. The main advantage of the Master

Equations (14)-(15) is that they provide a parsimonious representation of the general equilibrium of the

economy. The derivations above prove our first result.

9We omit the full dependence of the value function and its derivatives on (K,N, t, ϵ) on the right-hand-side for brevity.
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Proposition 1. (Equilibrium)

A solution (V,Q) to the Master Equations (14)-(15) together with a solution to the population and capital

distributions {Nt,Kt}t to the KF equations (4) and (8) is an equilibrium of our economy.

3.3 The FAME

Despite providing a parsimonious representation of the equilibrium, the nonlinear Master Equations (14)-

(15) are challenging to solve numerically because they depend on large-dimensional distributions. Existing

numerical techniques would rapidly run into the curse of dimensionality. Instead, we use an analytic

approach to gain economic insights and substantially simplify the computational burden. Following Bilal

(2021), we use a local perturbation technique. Namely, we seek a local solution to the Master Equations

(14)-(15) when the scale parameter ϵ is small enough. That is, we solve the First-order Approximation

to the Master Equations (FAME).

The FAME is a first-order Taylor expansion of the Master Equations (14)-(15) in ϵ around the initial

steady-state. We consider distributions and shocks that are close enough to steady-state. Namely, denote

N = NSS + ϵn and K = KSS + ϵk, where the vectors n, k denote scaled deviations of the population and

capital distributions from steady-state.

We then seek a solution of the form

Vit(z,N
SS + ϵn,KSS + ϵk) = V SS

i + ϵ

∑
j

vNij nj +
∑
j

vKij kj + vZi z + vTit

+O(ϵ2),

Qit(z,N
SS + ϵn,KSS + ϵk) = QSSi + ϵ

∑
j

qNij nj +
∑
j

qKij kj + qZi z + qTit

+O(ϵ2). (16)

The additive separability follows from the first-order Taylor expansion in ϵ.

Thus, instead of seeking full functions V,Q as solutions to the Master Equations, the first-order

approach lets us seek a restricted number of coefficients: the directional derivatives vNij , v
K
ij , v

Z
i , v

T
it of

the value function with respect to the population and capital distributions, temperature shocks and

temperature trends. We call these derivatives the ‘impulse values’ following Bilal (2021). We substitute

the first-order Taylor expansions (16) into the Master Equations (14)-(15) and obtain a set of restrictions

on these directional derivatives: the FAME. These restrictions constitute our second key set of results.

Proposition 2. (Deterministic FAME)

The matrices vN , vK , qN , qK satisfy the generalized Sylvester matrix equation:

ρvd = Dd +Mvd + vdM∗ + vdPdvd, vd ≡

vN vK

qN qK

 ,
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where M denotes the steady-state matrix M(V SS), and we defined the following 2I × 2I matrices:

Dd =

−DUN DUK

−DRN DRK

 , M =

M 0

0 0

 , Pd =

G 0

0 DIQ

 ,

and where

DUN = ξ(1−ϖ)diag
(
u′(CSSi )CSSi /NSS

i

)
DUK = ξ(1− ω −ϖ)diag

(
u′(CSSi )CSSi /KSS

i

)
DRK = −ϕdiag

(
RSSi /KSS

i

)
DRN = −ψdiag

(
RSSi /NSS

i

)
G = µν

(
diag(NSS)−m∗diag(NSS)m

)
DIQ = ζdiag

(
KSS
i ci0(Q

SS
i )ζ−1

)
.

Proof. See Appendix B.

The deterministic FAME in Proposition 2 is a Bellman equation that is satisfied by the deterministic

impulse values vN , vK , qN , qK . This Bellman equation takes the form of a nonlinear Sylvester matrix

equation.10

The right-hand-side of the FAME has four components. Each one encodes a particular force that

affects how the value of workers and capitalists in location i changes in equilibrium when an additional

worker enters location j or an additional unit of capital is added in location j.

The first component in the deterministic FAME is the direct price impact matrix Dd. When population

and capital distributions change, prices also change. The movement in prices affects the flow payoff of

workers and capitalists. The upper left block of the price impact matrix Dd, DUN , encapsulates how

changes in the population distribution affect workers in location i. The combination of parameters ξ(1−ϖ)

summarize the effect on real wages. The real wage effect is then converted into utility units by the diagonal

marginal utility matrix diag
(
u′(CSSi )CSSi /NSS

i

)
. The upper right block of the impact matrix Dd, DUK ,

encapsulates how changes in the capital distribution affect workers in location i through their effect on

real wages. The lower half of the price impact matrix Dd, (−DRN DRK), similarly reflects how changes

in the population and capital distributions affect the return on capital.

The second component in the deterministic FAME, Mvd, encodes a partial equilibrium force. When

the value of locating in a particular region changes because of population and capital flows, the migration

decisions of workers change. The second component of the FAME encapsulates the option value of

migration. Crucially, the FAME reveals that workers only need to evaluate this option value using their

steady-state migration matrix M . This property arises because of the envelope condition: migration

decisions are already optimal before the economy moves out of steady-state.

The third component in the deterministic FAME, vdM∗, represents a first general equilibrium force.

When contemplating the effect of an additional worker in location j on the economy, workers and cap-

10A standard Sylvester matrix equation is a matrix equation in an unknown matrix X such that AX +XB + C = 0.
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italists in location i expect this additional worker in location j to behave just as any other worker. In

particular, the worker in location j will migrate going forward. Keeping track of where this worker goes

matters to project the economy forward in time and evaluate how the population distribution will evolve.

The FAME shows that this expectation is summarized by the steady-state migration matrix M .11 Once

more, only the steady-state transition matrix M matters because changes in migration patterns envelope

out. The (augmented) steady-state matrix M∗ right-multiplies the deterministic impulse value because

it represents the effect of an additional worker in location j on the value of workers and capitalists in

location i.

The fourth component in the deterministic FAME, vdPdvd, encodes a second general equilibrium force.

It represents how workers and capitalists in location i value changes in the law of motion of the population

and capital distributions that arise because of an additional worker or capital unit in location j. Why

would the law of motion change? An additional worker or capital unit in location j affects prices. Because

prices change, all workers and capitalists change their migration and investment behavior. This change

in migration and investment behavior affects the law of motion of the distribution to first order through

the matrix Pdvd. Ultimately, this change affects any given worker and capitalist after converting it into

utility units using the deterministic impulse value vd.

Proposition 2 highlights the first two key properties of the FAME. First, the deterministic FAME is

a standard Bellman equation in finite dimension. The dimensionality of the impulse value vd is simply

(2I)2, instead of being infinite-dimensional like the nonlinear Master Equations (14)-(15). This drastic

simplification stems from the local perturbation. Workers and capitalists in location i need only consider

isolated impulses in the population and capital distribution (Nt,Kt) at any other possible location j: any

pairwise impulses would lead to a second-order deviation in the value function.

Second, all the objects entering in the FAME are steady-state objects with closed form expressions.

This property is a consequence from the analytic nature of the perturbation. This observation implies

that, once the nonlinear steady-state of the model is known, no additional calculation is needed to set up

the FAME.

With the deterministic FAME at hand, we solve for the trend FAME. Namely, for the values of vT

and qT in equations (16). This is important since we capture direct changes in temperature through these

terms. The stochastic FAME (vZ and qZ), where we could capture the direct effect of climate variability,

follows a similar equation that we report in Appendix B.

Proposition 3. (Trend FAME)

11The corresponding component for capital drops out because there is no gross capital growth in steady-state in any
location.
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The matrices vTt , q
T
t satisfy the Ordinary Differential Equation system:

ρvTt = DT
t +MvTt +

∂vTt
∂t

+ vdPdvTt , vTt ≡

vTt
qTt

 ,

where we defined the 2I × 1 vector

DT
t = TDt

 DUT − vKD∆T

−DQT − qKD∆T

 ,

and where ai1 = a′i(0), χi1 = χ′
i(0), δi1 = δ′i(0), so that:

DUT = vec
(
ai1 + u′(CSSi )CSSi (1− β)χi1

)
, D∆T = vec

(
KSS
i δi1

)
, DQT = vec

(
δi1Q

SS
i −RSSi χi1

)
.

Proof. See Appendix B.

The structure of the trend FAME in Proposition 3 is similar to the deterministic FAME in Proposition

2. The first component DT
t in the trend FAME is the direct climate impact. When global temperatures

rise, climate damages intensify. The damage matrices DUT , DQT and D∆T capture these forces through

the damage coefficients ai1, χi1, and δi1. The deterministic impulse values vK , qK enter in the direct

climate impact because workers and capitalists value depreciation damages going forward through their

effect on the law of motion of the capital distribution.

The second component MvTt in the trend FAME encodes the partial equilibrium option value of mi-

gration. When the value of locating in a particular region changes because of climate damages, migration

decisions of any given worker change according to the steady-state migration matrix M .

The third component
∂vTt
∂t in the trend FAME encodes how exogenous changes in global mean tem-

peratures affect workers and capitalists.

The fourth component in the FAME, vdPdvTt , encodes a general equilibrium force. It represents how

workers and capitalists in location i value changes in the law of motion of the population and capital

distributions that arise because of climate damages. These changes in the laws of motion are valued

through the deterministic impulse value vd.

Proposition 3 reveals the third key property of the FAME: block-recursivity. The deterministic FAME

does not depend on the trend or stochastic FAMEs. One can solve for the deterministic FAME in a first

step. In a second step, given the deterministic impulse value vd, one solves for the trend and stochastic

impulse values vT and vZ .
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3.4 Transitional dynamics

With value functions and thus policy functions at hand from the FAME, we obtain the law of motion of

population and capital across locations for a sequence of climate change shocks.

Proposition 4. (Transitional dynamics)

Given initial conditions n0, k0, the transitional dynamics in response to a sequence of shocks {zt}t and

{TDt }t are given by paths {nt, kt}t such that:

d

dt

nt
kt

 = (M∗ + Pd)

nt
kt

+ Pd(vTt + ztv
Z)− (TDt + zt)

 0

D∆T

 . (17)

Proposition 4 strengthens the block-recursivity structure of the FAME since the FAME inherits the

block-recursivity from the Master Equation. The FAME is the only fixed point that must be solved to

determine individual behavior. There is no additional price or distributional fixed point to solve because

these fixed points are merged into the Master Equation, and hence into the FAME. Given impulse values

vd, vT , vZ , any counterfactual impulse response obtains from a single time iteration as per Proposition 4.

3.5 Welfare

Equipped with values and allocations in the FAME, we characterize the welfare effect of climate change.

We denote by V t =
∑

iNiVit utilitarian worker welfare, and by dV t the change in utilitarian welfare

following climate change. This welfare metric does not include current preference shocks and is consistent

with the interpretation in which preference shocks are experienced once and for all upon moving.12

Proposition 5. (Worker welfare)

The change in worker welfare in response to climate change can be decomposed according to

dV t = EN [ϵvTit ]︸ ︷︷ ︸
direct impact

+ CovN
[
V SS
i , n̂it

]
︸ ︷︷ ︸
value reallocation: PE

+CovN
[
εvNi , n̂it

]
+ CovK

[
εvKi , k̂it

]
︸ ︷︷ ︸

elasticity reallocation: GE

+ EK
[
εvKi

]
k̂t︸ ︷︷ ︸

aggregate capital

,

where

εvNi = EN [vN•i ], εvKi = EN [vK•i ], n̂it =
ϵnit

NSS
i

, k̂it =
ϵkit

KSS
i

, k̂t = ϵ
∑
i

kit,

and EN ,CovN ,EK ,CovK denote expectations and covariances weighted by the steady-state population (N)

or capital (K) distributions.13

12We also consider an alternative welfare metric that includes the distribution of preference shocks of current residents:

Wit =
1
ν
log

(∑
j e

ν(Vjt−τij)
)
. This metric is consistent with the interpretation in which preference shocks are permanently

enjoyed until the next moving opportunity. In that case, we denote Wt =
∑

iNiWit utilitarian worker welfare, and by dWt

welfare changes.
13When using the welfare metric dWt, replace V

SS
i with WSS

i in the value reallocation component.
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Proof. See Appendix B.6.1.

We also show in Appendix B.6.2 that the change in consumption-equivalent welfare dωt is then related

to the change in utilitarian welfare by

dωt =
ρdV t

Ṽ
,

where Ṽi satisfies the HJB (ρ+µ)Ṽi = ρ(CSSi )1−γ +µ
∑

jmij Ṽj and is equal to 1 under log utility, γ = 1,

and Ṽ =
∑

iN
SS
i Ṽi.

Proposition 5 reveals that aggregate welfare changes split into four components. The direct impact

component EN [ϵvTit ] reflects the direct effect of climate change through the trend impulse value vTit .

The value reallocation component CovN
[
V SS
i , n̂it

]
reflects a partial equilibrium force. Climate change

generates net migration out of highly affected locations and towards locations that are less affected. This

net migration generates welfare changes if destination locations are more valuable than origin locations.

The covariance between population changes and local valuations summarizes this effect. Because of the

first-order perturbation nature of the FAME, it suffices to use the steady-state valuations V SS
i to evaluate

whether climate-induced net migration is beneficial or harmful to the average worker.

The elasticity reallocation component CovN
[
εvNi , n̂it

]
+ CovK

[
εvKi , k̂it

]
reflects general equilibrium

forces. Climate change leads to net population and capital flows. These flows affect local prices, which

feed back into worker welfare. The impact of local price movements is summarized by the deterministic

impulse values vN , vK from the FAME, averaged into the elasticities εvN , εvK . Whether price movements

affect welfare ultimately depends on the covariance between population and capital net flows on the one

hand, and average impulse values εvN , εvK on the other hand.

The aggregate capital component EK
[
εvKi

]
k̂t captures changes in the overall capital stock of the

economy. If climate change leads to higher capital depreciation or declines in investment, the aggregate

capital stock shrinks. This reduction affects workers through the average impulse value εvK .

Our counterfactuals in Section 6 explore the role of migration as an adaptation mechanism. The

decomposition in Proposition 5 makes immediately evident that migration affects welfare through the

partial equilibrium value reallocation component, the general equilibrium elasticity reallocation compo-

nent, as well as possibly through the aggregate capital component. Note, however, that the direct impact

component also depends on migration as evidenced by Proposition 3. The trend FAME vTt depends on

migration through three channels: first, the steady-state migration share matrix M because of the option

value of migration; second, the valuation of capital depreciation through vK ; third, changes in general

equilibrium migration patterns through G.

Our key result is that the option value of migration is irrelevant for the direct impact of climate
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change. Indeed, Proposition 3 immediately implies that EN [v
T
t ] satisfies the ODE

ρEN [v
T
t ] = TDt EN [DUT − vKD∆T ] + 0 +

∂EN [v
T
t ]

∂t
+ EN [vdPdvTt ]. (18)

The option value of migration MvTt drops out once aggregated across all workers in the economy. Alge-

braically, this result is a direct consequence of the determination of the steady-state population distribu-

tion in equation (11), namely, EN [MvTt ] = N ′Mvt = 0.

Why is the option value of migration irrelevant for aggregate welfare? The intuition lies in an envelope

argument. Prior to climate change, workers make privately optimal migration decisions. Once climate

change occurs, workers adjust their migration decisions. But just as with any decision, the valuation of

the climate change shock enters only through its direct effect on workers MvTt . Prior to climate change,

the marginal worker is already indifferent between their preferred and runner-up locations. Thus, there

are no welfare gains from adjusting migration decisions in response to climate change.

Under the FAME, the direct effect MvTt is then evaluated using steady-state migration decisions.

But because the average worker does not migrate on net in steady-state—there are gross migration

flows but no net migration flows—the direct effect MvTt averages to zero across all workers. This result

generalizes those in Deryugina and Hsiang (2017) to a setting with heterogeneous workers who make

dynamic decisions.14

Of course, the option value of migration may still matter indirectly for the direct impact EN [v
T
t ]

in equation (18) through either the valuation of capital depreciation vK or through changes in general

equilibrium migration patterns through the term PdvTt . Our quantitative exercises in Section 6 unpack

the relative importance of these forces.

3.6 Implementation

Proposition 2 indicates a straightforward algorithm to compute the deterministic impulse value. Indeed,

all the known inputs into the deterministic FAME can be directly constructed given steady-state objects.

Thus, given steady-state objects, we directly construct the 2I × 2I matrices Dd,M and Pd. We then seek

a 2I × 2I matrix vd that satisfies the nonlinear Sylvester matrix equation

0 = Dd + (M− ρId)vd + vd(M∗ + Pdvd).

Following Bilal (2021), we use a simple iterative algorithm to solve for vd. Given a guess vdn at step n, we

solve for vdn+1 as follows:

0 = Dd + (M− ρId)vdn+1 + vdn+1(M
∗ + Pdvdn) =⇒ vdn+1 = sylvester

(
M− ρId,M∗ + Pdvdn,Dd

)
,

14Our irrelevance result holds exactly because the FAME is a first-order perturbation, and so the envelope condition
applies exactly. In a global solution, higher-order effects may become relevant.
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where sylvester(A,B,C) denotes the solution X of the Sylvester equation AX +XB + C = 0. Given

vdn, standard numerical packages solve efficiently for vdn+1 as the root of a standard Sylvester equation.15

Why choose to use the guess from last iteration vdn in this specific part of the Sylvester equation? The

intuition is to use the guess from last iteration vdn where a given worker considers the valuations of other

individuals, and solve for the valuation of the current individual vdn+1 in the current step.

Once we have solved for the deterministic impulse value vd, we solve for the trend impulse value

leveraging Proposition 3 in two steps. In the first step, we solve for the long-run trend impulse value.

When time t is large enough, temperatures do not change anymore. The economy has then reached the

new steady-state, and ∂vT

∂t = 0. Hence, we specify a large enough time t = t̄ where the time derivative is

zero, and where we use Proposition 3 to solve for vTt̄ . Specifically, vTt̄ = (ρId − (M + vdPd))
)−1

DT
t̄ . The

solution vTt̄ is our terminal condition.

In the second step, we iterate backward in time from the terminal condition vTt̄ . We construct the

2I × 1 vector DT for each time t. Given a time step dt, we construct a solution vTt to the ODE system

in Proposition 3 given vTt+dt by iterating backward in time:

vTt =
(
Id + dt(ρId− (M + vdPd))

)−1(
dt DT

t + vTt+dt

)
.

Once we have solved for the deterministic and trend impulse values, we compute any impulse response to

a shock or initial conditions with a simple forward iteration using Proposition 4. Having established an

efficient solution method, we turn to our reduced-form estimates and estimation strategy.

4 Reduced-form impact of natural disasters

In order to quantify our model in a way that accounts well for the economic impact of climate change, we

start by estimating the reduced-form impact that climate change has had on economic outcomes. In the

next section we use these results to estimate the climate damage functions, as well as the mobility and

investment elasticities.

4.1 Data

We combine data of two types. First, we use economic data from several sources by county and year.

We collect data on population, income per capita, wages and employment from the Bureau of Economic

Analysis. We obtain investment data at 5-year intervals from the Census of Manufactures. These data

span the years 1960 to 2019. We provide more details in Appendix H.1.

Second, we use weather data. We obtain daily information on surface temperature, windspeed, and

precipitation for a raster at the 0.5◦ by 0.5◦ since 1901 from the inputs to the Inter-Sectoral Impact Model

15For instance, Matlab has a built-in sylvester.m function.
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Intercomparison Project (ISMIP). This information consists of reanalysis data: it combines historical

station-level weather measurements with a climate model to produce high-resolution weather information.

We convert this information into a dataset that tracks annual extremes for every county and year in the

U.S. We provide more details in Appendix H.2.

We seek to capture the impact of extreme weather events. To that end, we construct indicator variables

that capture whether local weather realizations are above a pre-specified threshold. Specifically, we first

consider weather variables Xit for county i at time t in the following list: (i) maximum daily windspeed in

the year, (ii) maximum daily precipitation in the year, and (iii) fraction of days with temperature above

the 95th percentile of the national annual mean temperature distribution in 1901-1910. We provide more

details in Appendix H.3.

Our weather variables are designed to capture salient features of (i-ii) storms and flooding, which we

combine into ‘storms’ and (iii) heat waves. Of course, the physical processes leading to and defining such

events are necessarily more complex than the specific metrics available in large-scale datasets covering the

entire U.S. for over a century. For our purposes, it only matters that these variables correlate strongly

enough with actual storms, floods, and heat waves. Ultimately, the impact of our weather-related variables

on economic activity determines climate damages regardless of their specific interpretation. We refer to

our variables as storms and heat waves for expositional simplicity but acknowledge that our variables

necessarily are a stylized measurement of the underlying phenomena.16

Different locations may be differentially adapted to natural disasters. To capture this adaptation and

not overstate damages, we residualize our three weather variables Xit before constructing the indicator of

extreme realizations. Therefore, we capture storm and heat wave realizations that are particularly severe

relative to county-specific and annual conditions. Specifically, we strip out county and year fixed effects

by estimating the linear regression:

Xit = αi + βt + X̂it, Ei[X̂it] = Et[X̂it] = 0.

We then use the estimated residual X̂it to construct our indicator of extreme value for X̂it:

Dit = 1[X̂it ≥ p(X̂)],

where p(X̂) denotes a given percentile of X̂it across all counties i and years t. We choose realizations above

the 99th percentile for windspeed and precipitation. This choice is guided by meteorological estimates

of wind and concentrated precipitation measures that lead to property damages. It also coincides with

the threshold at which we detect significant economic damages. We finally define our storm indicator as

Dstorm
it = max{Dwindspeed

it , Dprecipitation
it }. A similar logic leads us to choose realizations above the 95th

16Our measures also have the advantage of being objective physical measures, rather than human-made reports of storms
or floods that are likely to be endogenous to economic activity or population density.
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Figure 1: Global mean temperature over time.
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percentile for heat waves. We provide more details in Appendix H.3.17

4.2 Trends in natural disasters

We start by documenting salient trends in natural disasters over the course of the 20th century for the

U.S. Figure 1 first shows the well-known fact that global mean temperatures have risen by over 1°C since

1900. The rate of warming has accelerated in the last decades, reaching nearly 0.2°C by decade.

Figure 2 presents a binned scatterplot of the relationship between global mean temperature and the

annual probability of a 1-in-50-years storm and a 1-in-20-years heat wave.18 We start with severe storms

which occur every 50 years on average in the middle of the century according to our definition. The

frequency of severe storms, presented in panel (a), rises substantially and approximately linearly with

global mean temperatures across the U.S., consistently with the conclusions of the IPCC (2022).

Panel (a) reveals that the frequency of severe storms rises particularly fast in coastal counties—counties

that have a coast along the Atlantic or Pacific oceans. A warming of 1°C over the course of the 20th

century implies that the frequency of severe storms more than quadruples in coastal counties, from less

than 2% to nearly 8%. These probabilities imply that severe storms used to occur less than every 50

years at pre-industrial temperatures in coastal counties. They now occur every 12 years. If global mean

temperatures increase by 4°C by 2100 as in the business-as-usual scenario, severe storms would occur

every 3 years in coastal counties. In contrast, the frequency of severe storms rises only modestly in inland

areas—which we define as any county that does not have a coast along the Atlantic or Pacific oceans.

The frequency of heat waves, presented in panel (b) of Figure 2, also rises markedly as global temper-

atures rise, consistently with the conclusions from the IPCC (2022). We split our analysis between warm

17We also choose realizations below the 5th percentile for cold waves when we introduce them in Appendix D.1.
18We focus on observations post-1920 to have precisely one century of data.
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Figure 2: Natural disasters and global mean temperature.
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(b) 1-in-20-years heat wave
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counties that have above-median average annual temperatures, and cold counties that have below-median

average annual temperatures. We find that a heat wave that occurred every 20 years on average at 1920

global temperatures occurs every 5 years on average in 2023 in warm counties.19 If global mean tempera-

tures increase by 4°C by 2100 as in the business-as-usual scenario, a heat wave that happened only every

20 years in 1920 would happen every 2 years by 2100. By contrast, the frequency of heat waves in cold

counties remains largely constant and close to zero.20

Which locations experience more natural disasters? Figure 2 indicates that coastal and warm counties

have been more exposed in the last decades. We map out the detailed geography of exposure in Figure

3. The South-East Atlantic coast is particularly exposed to storms. For instance, counties in Texas,

Louisiana, Florida, Georgia, North Carolina, and Virginia have experienced at least 3 severe storms since

1990. However, inland counties in states such as Nebraska and New York have also experienced several

severe storms. Heat waves are prevalent across the South of the U.S. Some counties in Florida, Louisiana,

Texas, Kansas, New Mexico, and Arizona are among the most exposed, with over 3 heat waves since 1990.

4.3 Event study design

The next step is to estimate the effect of a given natural disaster on economic activity. We use a standard

distributed lag specification given by

yit = αi + βt +
B∑

h=−A
γhDi,t−h + γ−A−1D̄i,t,−A−1 + γB+1D̄i,t,B+1 + δS(i),t +Witη

′ + εit, (19)

19The prevalence of extreme heat is subject to important natural variability. For instance, the second square from the left
corresponds to Dust Bowl years.

20We also show that the frequency of cold waves declines markedly with global temperature in Figure 13, Appendix D.1.
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Figure 3: Natural disasters across counties.

(a) Storm counts since 1990 (b) Heat wave counts since 1990

Note: Counties in white: missing data.

where i denotes counties and t denotes calendar years. yit denotes the logged outcome of interest: income

per capita, wages, employment, population, or investment. αi is a county fixed effect, βt is a year fixed

effect. Di,t−h is our indicator that an extreme event occurred h years before calendar year t in county i. We

include individual horizons h up to A = 5 years prior to and B = 10 years after the event. We also control

for the average effect before A and after B: D̄i,t,−A−1 =
∑

h≤−A−1Di,t−h, and D̄i,t,B+1 =
∑

h≤B+1Di,t−h.

δS(i),t denotes a set of trends by state, local mean temperature decile, local maximum daily windspeed

and maximum precipitation deciles, population decile, and income per capita decile. Wit denotes a vector

of time-varying county-specific controls that includes local government expenditures.21 εit is a mean-zero

residual. Our coefficients of interest are γh, the effect of an event h periods ago on outcomes today.

We focus on calendar years t after 2000. Restricting the data to focus on the post-2000 period lets

us capture the most recent severity of extreme events in case it is time-varying. To the extent that not

only the frequency but also the intensity of extreme events is projected to grow over time, our estimates

represent a lower bound on expected damages going forward.22

We allow the effect of storms and temperature to differ depending on the characteristics of locations.

Namely, we allow the impact of storms to differ in coastal counties and inland counties. This split is natural

given that severe storms on the coast may concur with coastal storm surges that worsen damages. In line

with the literature that has found nonlinear effects of temperature on mortality and labor productivity

(e.g. Deschênes and Greenstone, 2011 and Cruz and Rossi-Hansberg, 2023, respectively), we allow the

effect of temperature to differ depending on the average temperature of a given location. We operationalize

these ideas by running our analysis separately for coastal, inland, warm and cold counties as defined in

Section 4.2.

Our identification condition is that treatment is randomly assigned conditional on our controls. Cru-

21Including or excluding government expenditures does not affect our conclusions.
22For storms, we restrict attention to counties that experience either zero or one event.
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cially, we include rich controls for location-specific trends δS(i),t. These state-specific and county-group-

specific trends absorb potentially important confounds to our exercise. For instance, demographic and

income shifts have pushed high-income households to move to states such as Florida over the last 20

years. Florida also happens to be more exposed to severe storms and heat waves. As a result, omitting an

adjustment to these background trends may lead to inferring that storms and heat waves increase income

and employment.

Another concern for identification is whether the Stable Unit Treatment Value Assumption (SUTVA)

is satisfied, namely that the control group remains unaffected by the treatment. This concern is valid

given that in our model, untreated locations may respond to shocks in other regions because of general

equilibrium effects. Thus, our empirical estimates may be biased by these general equilibrium effects.

Our structural approach addresses this concern in two ways. First, we can explicitly inspect these general

equilibrium effects inside our estimated model in Section 5. We find that these general equilibrium

responses are small compared to the direct effect on treated locations. Second, we estimate our model by

indirect inference: we replicate the same regression in the model and match the empirical coefficient—thus

accounting for general equilibrium effects directly.

4.4 Results

We find that severe storms have a significant impact on economic activity in coastal counties. Figure

4 displays the impact of 1-in-50-year storms on six indicators of economic activity. Each panel shows

year-by-year point estimates together with 95% confidence intervals.

Panel 4(a) shows that a 1-in-50-years storm lowers wages of employed workers by about 2.5% over 10

years. The effect for income per capita in panel 4(b), which accounts for self-employment and business

income, is similar. Despite our rich set of controls, our estimated effects for income per capita display

somewhat of an upward pre-trend. If we accounted for this differential trend, the estimated effect would

be even larger. Panel 4(c) shows that population drops by 5% after 10 years in coastal counties that expe-

rience a severe storm. This decline in population is associated with a substantial reduction in employment

in panel 4(d) which exceeds 8%. As with income per capita, and despite our rich controls, employment

displays somewhat of an upward pre-trend. Again, if we accounted for it, our estimated effects would be

even larger. Panel 4(e) reveals that investment booms after a severe storm, with a peak at 20% in the

third year after the storm. To the extent that storms destroy capital, this positive investment response is

natural given the need for reconstruction. Since our measure of investment only accounts for manufactur-

ing investment, we reproduce our main result in Panel 4(f) where we rescale manufacturing investment

by the manufacturing employment share in the same year. We find that this adjustment has virtually no

effect on our results.23

23We also investigate the impact of severe storms on inland counties. We find no statistically significant or economically
meaningful effect there. For completeness, we report these results in Figure 14 in Appendix D.2.
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Figure 4: The impact of 1-in-50-years-storms on economic activity in coastal counties.
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Taken together, these results indicate that severe storms in coastal counties are well captured by a

capital depreciation shock. Indeed, in our model—as in a standard Real Business Cycle model—a capital

depreciation shock lowers wages and employment but increases investment, as the local economy rebuilds

its capital stock. Key to this interpretation is the positive sign of the investment response. A negative

investment response would, instead, suggest a negative productivity shock.24

Having established the effect of severe storms on economic activity, we turn to the impact of temper-

ature. We start with the effect of heat waves on counties with temperatures above the median (warm

counties). Figure 5 displays the impact of heat waves on the same six indicators of economic activity as for

storms. Panel 5(a) shows that wages drop by 1% before recovering in a couple of years. Once we account

for self-employment and business income, panel 5(b) reveals that income per capita displays a slightly

larger response, but is more persistent over time. It takes 10 years for income per capita to fully recover.

Population and employment both fall by 2.5% over the course of 10 years following a 1-in-20-years heat

wave. Investment shows a moderate and negative response following a heat wave.

Together, these results suggest that heat waves in warm counties are well captured by a negative

productivity shock. Crucially, the negative sign of the investment response allows us to differentiate

the effect of a heat wave from the effect of a storm. Given the sizable population response in light of

the moderate wage and income per capita response, these results indicate that heat waves may also be

associated with a negative local amenity shock. Our structural estimation in Section 5 allows for both.25

We also estimate the impact of cold waves on economic activity. We do not detect statistically

significant or economically consistent effects of cold waves in cold counties. We report them in Figure 16,

Appendix D.3. Thus, we exclude cold waves from our main structural analysis in Sections 5 and 6. We

report sensitivity analysis when we include cold waves, but their effect is quantitatively small relative to

storms and heat.26

With estimates of the impact of extreme events on economic activity, we now turn to estimating the

underlying damage functions.

24The estimation above uses a selected sample of counties that experience only one windspeed and precipitation extreme
event (one storm) in order to avoid confounding the cumulative effects of multiple storms. The reason is that, if the effects
of multiple storms cumulate nonlinearly, controlling for past storms as in equation (19) may not be enough. We verify that
our results are not sensitive to this choice. In Figure 15, Appendix D.2, we show that our main results continue to hold when
we even consider counties that experience any number of storms. Although the response of population is somewhat muted
in this larger sample, the responses of wages, income per capita, employment, and investment are all similar.

25Of course, heat waves may also have an effect in initially cold counties. However, there are too few heat waves in cold
counties to let us reliably estimate these effects once we introduce our rich set of controls. Hence, we do not attempt to
include these effects in our analysis.

26Similarly to heat, there are too few cold waves in warm counties to let us reliably estimate these effects once we introduce
our rich set of controls. Hence, we do not attempt to include these effects in our analysis.
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Figure 5: The impact of 1-in-20-years heat waves on economic activity in warm counties.
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5 Model Quantification

5.1 Baseline parameters

We start by determining baseline preference and technology parameters. Importantly, we estimate the

two key migration and investment elasticities in Section 5.3 below. Throughout the rest of the paper, we

interpret an interval [t, t+ 1) as one year.

Preference parameters are determined as follows. We use a conservative time discount rate. Our value

of ρ = 0.03 lies towards the high end of the range of values used in the climate change literature. Our

baseline results should thus be seen as a lower bound on economic damages. We analyze the impact of

different choices of the discount rate on our results in Section 6. We set the housing expenditure share

for workers to the common value of β = 0.3. We set the risk-aversion parameter to γ = 1.

The next step is to determine the parameters governing migration decisions. We set µ = 2.30 so

that 90% of workers have the option to migrate within a year. We estimate bilateral migration costs

τij consistent with the empirical migration rate at baseline, as described in more detail below. Local

amenities are estimated using the model inversion as described in the next section.

The parameters in the production function of goods and buildings are set to standard values. The share

of commercial structures in goods production in the model includes both capital and physical structures

in the data. Typical estimates put the first share at 0.3, and the second at 0.1. Together, we obtain

α = 0.4. To obtain the share of labor ϖ in the production function of buildings, we measure the fraction

of labor in the structures production sector x from the BEA input-output data. We obtain x = 0.95.

Thus, we recover ϖ = (1−α)(1−x)
αx+(1−α)β = 0.05 from equation (21). To obtain the share of land in the building

production function ω, we use common estimates from the real estate literature. For a typical property,

the value of land represents 20% of the property value, while the building value represents 80%. Hence,

we set ω = 0.2. Local productivities are the result of the model inversion, as described below.

The final set of parameters is related to investment choices. We impose a common capital depreciation

rate of ∆i = ∆ = 0.08 for all counties at baseline. Of course, climate change affects the depreciation rate

heterogeneously across locations. We estimate the investment elasticity and the local investment costs as

described below.

5.2 Inversion of fundamentals

Our second step is to estimate time-invariant fundamentals for every location. Suppose for now that we

have estimates of the migration elasticity ν and the investment elasticity ζ.

We use 2012 data for wages wi, employment Ni, investment Ii, and migration flows mij for every

pair of counties i, j. We also use county manufacturing employment shares πi to adjust our measure of

manufacturing investment Ĩi = Ii/πi. We interpret 2012 as the initial stead-state of the economy. We use

a recursive scheme to recover the time-invariant fundamentals in every location Zi, Ai, ci0, and τij . The
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following proposition shows that, given the observed data, we can uniquely recover these fundamentals.

Proposition 6. (Inversion of fundamentals)

Given data wi, Ni, Ĩi, mij, there exists a unique set of vectors of fundamentals Zi, Ai, ci0 and a unique

symmetric migration cost matrix τij.

Proof. See Appendix E.

The proof of Proposition 6 is constructive and thus provides an algorithm to recover fundamentals.

The proof extends standard static inversion arguments to our fully forward-looking dynamic setting. We

can only recover symmetric migration costs because we invert them non-parametrically.27

5.3 Migration and investment elasticities

Our inversion argument relies on knowledge of the migration and investment elasticities ν, and ζ. We

estimate those internally using our reduced-form estimates of the impact of extreme events on economic

activity. Thus, we nest our inversion procedure in an outer loop in which we sample possible values for ν

and ζ.

Consistently with our reduced-form results, we assume that storms only generate a capital depreciation

shock. Heat waves generate a simultaneous productivity and amenity shock. We assume that local

amenities and local productivity respond proportionally to temperature shocks, such that ai1/χi1 = η.

The effect of heat waves remains heterogeneous across locations, but locations that experience larger

productivity shocks due to heat waves also experience larger amenity shocks.

We then proceed by indirect inference. We draw triplets θ ≡ (ν, η, ζ).28 For every triplet (ν, η, ζ),

we first solve for the steady-state following Section 2.7 and Appendix C. For a given triplet (ν, η, ζ), we

invert fundamentals as in Section 5.2. Next, we solve the steady-state and the FAME of our economy.

We further simulate the dynamic response of the entire economy to a 1% transitory productivity shock,

together with the corresponding amenity shock, localized in a randomly chosen location. We also simulate

the dynamic response of the entire economy to a 1% capital depreciation shock localized in a randomly

chosen location. From these counterfactual responses, we construct model analogs of the event study

estimates from Section 4. We then use these model-based event study estimates to construct target

moments that inform (ν, η, ζ).

Specifically, we denote by irfv,s,θ the model impulse response function corresponding to the event study

estimates for outcome variable v, shock s, and parameters θ. The outcome v denotes either income per

capita, population, or investment.29 The shock s denotes either a joint productivity-amenity shock or a

27Without symmetry, they are not separately identified from local amenities. If we imposed instead that migration costs
depend on some distance metric, we could, of course, estimate this dependence flexibly.

28We use a Sobol sequence to cover the multivariate space more efficiently than with a standard tensor product grid.
29We use income per capita as the data counterpart of wages in the model to capture self-employment and business income

that is not explicitly modeled. The model does not feature non-employment, so in principle we could use either employment
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capital depreciation shock. We denote by IRFv,s its counterpart in the data. We also denote by cirv,s,θ

and CIRv,s the model and data cumulative impulse responses. That is, for any impulse response irf and

horizon h, we define cirh =
∑h

h′=0 irfh′ .

We leverage a key property of the FAME to estimate the migration and investment elasticities without

having to specify the magnitude of shocks. The response of the economy to shocks is linear in the

magnitude of the shock by construction. Hence, relative impulse response are independent from the

magnitude of a common shock. For instance, in the FAME, the impulse response of employment relative

to the response of income per capita following a productivity shock is independent from the magnitude of

this productivity shock. If we target relative impulse responses, we can thus use a shock of an arbitrary

magnitude.

What moments are best fit for our purposes? Our strategy estimates the three parameters θ = (ν, ζ, η)

jointly, but we discuss how we select each moment to provide intuition for identification. We provide

numerical confirmation that these parameters determine the relevant moments below.

The gravity structure of migration indicates that the migration elasticity ν is related to the response

of local population relative to the response of income per capita holding amenities fixed. If we could

isolate a productivity shock in the data, we could use the response of population relative to income per

capita. However, heat waves also cause amenity shocks, thereby leading to a well-known omitted variable

problem. Thus, we use the response of population relative to investment, the latter being likely less

directly sensitive to the response of amenities than income per capita.30

Specifically, we use the cumulative impulse response of local population relative to the cumulative

impulse response of investment at 10 years after a productivity shock,
cir10,pop,prod-am,θ

cir10,inv,prod-am,θ
, to inform the

migration elasticity ν. We target the corresponding moment in the data following a heat wave in warm

counties. Intuitively, if population responds strongly relative to investment, the migration elasticity must

be large.31 We use cumulative impulse responses—or, equivalently, average impulse responses—rather

than plain impulse responses because they are less sensitive to short-term, slow adjustment mechanisms

that we do not model (e.g. sticky wages).

To inform the amenity-productivity ratio η, we use the cumulative impulse response of income per

capita relative to the cumulative impulse response of local population at 10 years after a productivity

shock,
cir10,ipc,prod-am,θ

cir10,pop,prod-am,θ
. We target the corresponding moment in the data following a heat wave in warm

counties. Intuitively, if population responds strongly relative to income per capita holding the migration

elasticity ν fixed, amenities must be a large component of the effect of heat waves.

The cumulative impulse response of population relative to investment 10 years after a capital depre-

or population in the data as a counterpart of population in the model. We use population in the data as it is the most
natural counterpart of population in the model.

30Although we use indirect inference that explicitly accounts for the response of amenities to heat waves, we use a target
moment that identifies the migration elasticity ν more sharply.

31In the model, population is related to the own migration share. Hence, our approach also resembles a gravity equation
regression in which we instrument for the origin investment with heat waves.

32



Figure 6: Identification of migration and investment elasticities and amenity-productivity ratio.
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ciation shock,
cir10,pop,cap dep,θ

cir10,inv,cap dep,θ
informs the investment elasticity ζ. Intuitively, the size of the population

response encapsulates the overall magnitude of the shock. If investment responds strongly relative to

population, the investment elasticity ζ must be large. We target its counterpart in the data following

storms in coastal counties.

The computational speed of the FAME lets us handle the computational demands of our estimation

strategy. We invert fundamentals, solve for the steady-state of the model, the FAME, and impulse

responses for 10,000 triplets θ = (ν, η, ζ). We construct our target moments and contrast them with their

data counterparts in Figure 6. The figure confirms our global identification argument numerically.32

Panel 6(a) displays the cumulative response of population relative to investment following a productivity-

amenity shock. Each blue dot is the relative cumulative response in the model, for a given triplet of

parameter values (ν, η, ζ). We order results by the migration elasticity ν on the x-axis to highlight our

identification argument in a multivariate and univariate sense. The impact of ν on the relative cumulative

response on the y-axis manifests clearly in the upward-sloping relationship visible in the scatterplot: on

average, across all possible values (η, ζ), a higher value of ν increases the response of population rela-

tive to investment (multivariate identification). The impact of the migration elasticity ν on the relative

cumulative response is also visible in the upward-sloping relationship between the moment and the mi-

gration elasticity ν when we hold the other parameters (η, ζ) fixed at their point estimate (univariate

identification).

Variation in the relative cumulative response on the y-axis conditional on ν along the x-axis captures

32In order to be able to cover the parameter space efficiently, we aggregate counties into 100 clusters for this exercise.
Our results vary only slightly when we increase the number of clusters.
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how the investment elasticity ζ and the amenity-productivity ratio η also affect the relative cumulative

response. Visually, the migration elasticity ν emerges as a key determinant of the cumulative response

of population relative to investment following productivity-amenity shocks. Panel 6(a) also reports the

relative cumulative response in the data for heat waves in warm counties.

Panel 6(b) depicts the cumulative response of income per capita relative to population following a

productivity-amenity shock on the y-axis. The x-axis represents the productivity-amenity ratio η. This

ratio emerges visually as a key determinant of the response of income per capita relative to population.

We contrast the results from the model with the data following heat waves in warm counties.

Panel 6(c) depicts the cumulative response of population relative to investment following a capital

depreciation shock on the y-axis. The x-axis represents the investment elasticity ζ. The investment

elasticity emerges visually as a key determinant of the response of employment relative to investment.

We contrast the results from the model with the data following storms in coastal counties.

We estimate the migration elasticity to be ν = 0.48. Consistently with our county-level specification,

our value is somewhat above the value of 0.2 in the state-level specification in Caliendo et al. (2019). We

estimate that amenities respond η = 1.33 times more than productivity following heat waves. This relative

response is four times larger than the average one in Cruz and Rossi-Hansberg (2023) for developed and

developing countries. The larger relative role of amenities in the context of the U.S. is consistent with

production being better shielded from extreme heat through adaptation such as air conditioning than in

developing nations. Our estimate of the investment elasticity ζ = 5.67 implies adjustment costs that are

somewhat less convex than quadratic, a common benchmark in the literature.

5.4 Damage functions

With the migration and investment elasticities in hand, we turn to estimating the damage functions

for productivity, amenities, and capital depreciation. We do so in two steps. In the first step, we

estimate economic damages from a given realization of storms and heat waves using the cumulative

impulse responses from Section 4.4. In the second step, we interact these damages from single events

with the change in the probability that these events occur as global mean temperatures rise, as shown in

Figure 2.

In the first step of our estimation strategy, we estimate economic damages from a given realization of

storms and heat waves by matching the magnitude of the cumulative impulse responses. As in Section

4, we leverage the linearity of the FAME. It implies that the size of the shock is equal to
CIR10,v,s

cir10,v,s,θ̂
, where

cir10,v,s,θ̂ denotes the cumulative impulse response of variable v to a 1% shock to s (productivity-amenity

or capital depreciation) for the estimates of the triplet θ̂ we obtained above.

For heat waves in warm counties, we target the population response. Given that we match exactly

the responses of population relative to investment and income per capita in Figure 6, we match exactly

the cumulative response of population, investment, and income per capita 10 years out. We estimate
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Figure 7: Heat waves: impulse responses in model and in data.

(a) Investment
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Note: Impulse responses for investment (a), population (b), and income per capita (c) after a 1-in-20-years heat wave in a warm
county. For (c) we use the response of wages, wit, in the model and income per capita in the data.

storm damages in coastal counties by targeting the cumulative impact of storms on investment 10 years

out. Given that we match exactly the population response relative to investment in Figure 6, we match

exactly the cumulative investment response 10 years out.

In addition to matching exactly the cumulative response 10 years out, we ask whether the estimated

model provides a plausible account of the time path of the impulse response function of targeted moments.

Of course, our framework cannot be expected to match exactly the precise time path of income per capita,

population, and investment responses jointly for each extreme event. Nevertheless, Figure 7 displays

impulse responses in the model and in the data for heat waves in warm counties.

Figure 7 displays the investment, population, and income per capita impulse responses in the data

(circles and dotted line) and in the model (solid line) following heat waves in warm counties. Because

we match the 10-year cumulative response, the areas under the impulse response in the model and in the

data match exactly. Figure 7 reveals that the model provides a reasonable account of the full time path

of the response of investment population and wages to heat waves. For all three outcomes, the response

in the model lies within the 95% confidence interval around the empirical point estimates for nearly all

horizons.

Our impulse response-matching exercise implies that a 1-in-20-years heat wave causes a Dheat,prod.
warm ≡

5.1% negative productivity shock to a warm county, accompanied by a Dheat,am.
warm ≡ 6.8% reduction in

local amenities. This impact is sizeable. Yet, it is lower than the local effects estimated for locations in

the entire world, including developing countries. For instance, Cruz and Rossi-Hansberg (2023) find that

the productivity effect in the warmest locations across the world can exceed 15%.

Figure 8 displays the investment, population, and income per capita impulse responses in the data

(circles and dotted line) and in the model (solid line) following storms in coastal counties. Figure 7
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Figure 8: Storms: impulse responses model and in data.
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Note: Impulse responses for investment (a), population (b), and income per capita (c) after a 1-in-50-years storm in a coastal county.
For (c) we use the response of wages, wit, in the model and income per capita in the data. The 10-year cumulative impulse response
for investment (a) and population (b) are targeted. The impulse response for income per capita is untargeted.

reveals that the model provides a reasonable account of the full time path of the response of investment

and population to storms. The untargeted response of income per capita is flatter in the data than in the

model. However, for all three outcomes, the response in the model lies within the 95% confidence interval

around the empirical point estimates for nearly all horizons.

Our impulse response-matching exercise implies that a 1-in-50-years storm causes a Dstorm
coastal ≡ 17%

negative capital depreciation shock to a coastal county. This impact is substantial and, to the best of our

knowledge, is a new estimate to the literature.

We now turn to the second step of our estimation strategy. To construct damage functions that depend

on global mean temperatures, we interact our estimates of shocks (Dstorm
coastal, D

heat,prod.
warm , Dheat,am.

warm ) with

secular changes in the probability of the corresponding events. These changes are similar to those in Figure

2, but we construct trends location by location. To estimate secular changes in the probability of extreme

events for each location, we simply regress the change in the probability of an event e ∈ {storm, heat},

peit, for each location i on changes in global mean temperatures Tt:

∆peit = cst + pei1∆Tt + εit.

Finally, we construct damage functions according to

δi1 = 1{i is coastal}pstormi1 Dstorm
coastal, χi1 = 1{i is warm}pheati1

Dheat,prod.
warm

ψheat
warm

, ai1 = 1{i is warm}pheati1

Dheat,am.
warm

ψheat
warm

,

where ψheat
warm denotes the estimated mean-reversion coefficient of productivity following heat-waves.33 To

33We estimate ψheat
warm by targeting the shape of the impulse response for income per capita.
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Figure 9: Damage functions from heat and storms in the United States.

(a) Change in log productivity (b) Change in annual capital depreciation

Note: The effect of a 1°C increase in global temperature on productivity and annual capital depreciation rates across counties in the
U.S. Panel (a): coefficients χi1 such that d logZit = χi1dTt. Panel (b): negative of coefficients δi1 such that dδit = δi1dTt.

have sufficient statistical precision in practice, we construct 100 clusters of contiguous counties based on

coastal status and annual mean temperature, and estimate the slopes pei1 at the cluster level.

Figure 9 maps our estimated damage functions. Panel 9(a) shows the impact of a 1°C increase in global

mean temperatures on productivity for every county in the U.S. The impact is highly heterogeneous across

space. We find that southern Florida will experience productivity reductions of 5% due to the rapidly

rising occurrence of heat waves. For a 3°C warming scenario, this reduction compounds to a 15% reduction

in productivity. Productivity losses of comparable magnitude are pervasive throughout the South of the

U.S. Northern Texas and Oklahoma gain moderately, as our historical data shows that they experienced

a reduction in the frequency of heat waves. By construction, the change in amenities is proportional to

the change in productivity and thus we omit the corresponding map.

Panel 9(b) shows the impact of a 1°C increase in global mean temperatures on capital depreciation for

every county in the U.S. The impact is highly heterogeneous across space and only imperfectly correlated

with the one for heat waves. Storms increase capital depreciation rates substantially in the South-Eastern

Atlantic coast. In Louisiana and North and South Carolina, a 1°C increase in global temperature increases

the capital depreciation rate by 4 p.p. This effect amounts to a 12 p.p. increase for a warming scenario

of 3°C, more than doubling the baseline capital depreciation rate. These capital depreciation effects are

substantial, but affect a much smaller fraction of counties than heat waves. Through the lens of our

structural model, we can compare their relative importance.

6 The impact of climate change

With our estimated damage functions at hand, we evaluate the impact of climate change on welfare and

allocations. We start the economy in steady-state. We use 2023 as the year in which individuals learn the
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Table 1: Impact of climate change on welfare.

Workers Capitalists

2023 2100 2023 2100

Welfare loss (EV, %) -4.9 -11.6 -0.8 -13.4

95% confidence interval
Impact coefficients -(5.8, 4.0) -(14.3, 8.9) -(0.9, 0.7) -(23.5, 3.3)
Frequency slopes -(5.7, 4.1) -(14.1, 9.1) -(0.9, 0.7) -(23.0, 3.8)
Both -(6.2, 3.6) -(15.3, 7.9) -(1.0, 0.6) -(27.9, -1.1)

path of warming TDt and start reacting to it. We use a warming scenario TDt that increases temperatures

by 3°C in 2100 relative to 2023, and by 4°C by 2300. This temperature path is consistent with the

business-as-usual scenario put forward by the IPCC and the current slope of warming reported in Figure

1.34 Because the impact of shocks is linear in the FAME, the effect of another scenario with a different

final temperature can be obtained by rescaling our results. For example, we can scale changes down to

account for possible mitigation efforts within the century, as captured by other IPCC scenarios.

6.1 Aggregate damages from climate change

We uncover substantial effects of climate change on welfare. Table 1 reports the impact of climate change

on workers and capitalists in 2023 and 2100. In 2023, workers already lose 4.9% in consumption-equivalent

welfare on average. This substantial impact represents an annual loss of consumption of $3,005 to the

average resident of the U.S.35 For comparison, estimates from the gains from trade for the U.S.—i.e. the

benefits from moving from autarky to current trade—are typically less than 3%.36

Crucially, these losses arise because of anticipations of future climate change. In our evaluation in

2023, climate change is just starting. Workers anticipate that climate conditions will worsen in the future,

lowering productivity and amenities, depreciating capital, and ultimately affecting future real wages and

the present value of future consumption streams, which are discounted at 3% annually. By 2100, once

climate change has mostly materialized, welfare losses to workers are much larger—11.6% in consumption

equivalent terms—because most climate damages are no longer discounted. This impact amounts to an

annual loss equivalent to $7,115 out of current consumption expenditures.37

Capitalists are initially less exposed to climate change. In 2023, their welfare loss is only 0.8%.

34Given the warming of 1°C in 2023 relative to pre-industrial temperatures, this warming scenario corresponds to 4°C
warming relative to pre-industrial temperatures by 2100.

35The Bureau of Labor Statistics reports average annual expenditures of $61,334 in 2020.
36See for example Costinot and Rodŕıguez-Clare (2014).
37Our framework does not feature permanent economic growth. Yet, assuming a 3% annual growth rate, our results imply

that in 2100 climate change represents a $69,283 annual consumption loss for the average resident of the U.S.
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However, their exposure grows faster over time. By 2100, the welfare losses to capitalists reach 13.4% in

the aggregate. This sizable effect is largely driven by a dramatic 31.8% reduction in the aggregate capital

stock of the U.S. because of climate change. The welfare loss to capitalists is only half of the reduction in

the aggregate capital stock because of general equilibrium effects: as capital becomes scarcer, its return

rises, which offsets part of the losses to capitalists.

The efficiency in computing the FAME allows us to construct confidence intervals around our baseline

welfare results. To construct these confidence intervals, we incorporate uncertainty around our estimated

event study coefficients in Section 4, namely, (Dstorm
coastal, D

heat,prod.
warm , Dheat,am.

warm ), as well as uncertainty in the

local changes in the frequency of extreme events with global mean temperatures (pstormi1 , pheati1 ).38 Table 1

reports the confidence intervals for each component in isolation, as well as the overall confidence interval.

It shows that our main conclusions are robust to accounting for standard errors around the estimated

damage functions (χi1, ai1, and δi1). The 95% confidence interval around the 2023 aggregate worker

welfare loss ranges from 3.6% to 6.2%. In fact, for workers in 2023 and 2100 and for capitalists in 2023,

the 95% confidence interval always excludes aggregate gains.

6.2 The spatial distribution of climate damages

How unequally distributed are the welfare losses from climate change? Figure 10 depicts the spatial

distribution of the impact of climate change on welfare and allocations. Panel 10(a) displays 2023 welfare

losses to workers in each county relative to the aggregate. Counties in green are counties that are better

off than the average county—although this does not imply that these counties gain from climate change.

Counties in orange are counties that are worse off than the average county.

We find that workers in almost all counties lose from climate change in 2023. Workers in the South-

East of the U.S. are particularly exposed. The combination of more frequent heat waves and destructive

storms on the coast implies that residents of multiple counties in Louisiana lose more than 15% ($9,200

annually) because of climate change in 2023. Losses above 10% in 2023 ($6,133 annually) are experienced

in Texas, Florida, and North and South Carolina. By 2100, the spatial distribution of welfare losses from

climate change is highly correlated with the spatial distribution in 2023, as evidenced by panel 10(c). The

magnitude of losses, however, is much larger. Residents of coastal counties in Louisiana are more than

30% worse off in 2100 because of climate change.

Capitalists experience much more unequal impacts from climate change, as shown in panel 10(b).

Owners of capital in southern coastal Louisiana, Georgia, and North and South Carolina experience

welfare losses in excess of 20% in consumption-equivalent welfare in 2023 because of climate change. This

concentration of large damages in coastal areas and negligible impacts in inland counties implies that

the standard deviation of welfare losses for capitalists in 2023 (5.6 p.p.) is more than twice the standard

deviation of welfare losses for workers (2.4 p.p.), as shown in Table 2.

38We provide more details in Appendix F. For simplicity, we hold the elasticities ν, ζ, and η fixed at their point estimates.
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Figure 10: Impact of 3°C additional warming by 2100

(a) Worker welfare in 2023
Relative to aggregate (-4.9%)

(b) Capitalist welfare in 2023,
Relative to aggregate (-0.8%)

(c) Worker welfare in 2100,
Relative to aggregate (-11.6%)

(d) Capital owner welfare in 2100,
Relative to aggregate (-13.4%)

(e) Population change in 2100 (f) Capital stock change in 2100
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Welfare losses to capitalists are more unequally distributed than those for workers because capital

cannot move, while workers can. Migration provides an important adaptation strategy that spreads

losses from climate change more equally across workers. Owners of an immobile capital stock do not have

that option. As a group, capitalists can only let the capital stock depreciate in locations that experience

adverse climate change, and invest anew in the places where comparative advantage rises.

By 2100, inequality among capitalists skyrockets (see panel 10(d)). Owners of capital on the South-

Eastern coast of the U.S. lose in excess of 50% in consumption-equivalent welfare. Over 77 years, however,

workers have time to migrate to less affected areas, increasing the return to capital there. Thus, capitalists

in the North of the U.S. experience substantial gains that can exceed 50% in consumption equivalent terms.

We find that migration responds substantially to climate change. Panel 10(e) reveals that counties that

are heavily exposed to extreme heat and storms in the South-East lose more than half of their population

by 2100. While coastal counties in Florida lose most of their population, the state as a whole loses 46%

of its residents. These workers move to Northern counties that are shielded from these adverse effects,

some of which double their population. These population movements reflect the changing comparative

advantage of locations. As workers reallocate, the rental rate of capital adjusts accordingly, imposing

additional losses to capitalists in locations that lose population. Over time, changes in the local stock of

capital are highly correlated with population movements as shown in panel 10(f). Capital is no longer

profitable once workers have left, and capitalists in Northern locations invest heavily to accommodate

higher demand for capital and housing.

Our results highlight that climate damages—and the ensuing reallocation of economic activity—are

substantial. Critically, we find large economic damages because we constrain the model to match our

empirical event study results using a relatively large discount rate of 3%. In the ‘Discount rate’ section

of Table 2, we analyze how discounting affects climate damages. Consistent with the climate change

literature,39 we find that lower discount rates increase welfare losses from climate change for workers

in 2023 since climate damages remain back-loaded then. By 2100, climate change has mostly already

occurred in the simulation and the discount rate does not affect worker welfare that much anymore. The

patterns are reversed for capitalists. This reversal takes place because of two offsetting forces. Similarly

to workers, when the discount rate falls, capitalists value back-loaded damages more. However, when

the discount rate falls, the cost of funding goes down because the interest rate goes down, which makes

reallocating capital and investing cheaper. In 2023, these two effects offset each other. In 2100, the

‘damage valuation effect’ largely vanishes because climate change has mostly already happened, leaving

only the ‘cost of funding effect’ operative. As a result, in 2100, the lower the discount rate, the lower the

losses to capitalists.

Having established the magnitude of climate damages, we now study the role of anticipation and

adaptation using three distinct counterfactual exercises.

39See, for example, Heal (2017) for a discussion of discount rates in the climate change literature.
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Table 2: Impact of climate change on welfare and allocations.

Welfare Allocations

Workers Capitalists Population Capital

2023 2100 2023 2100 2100 2100

Baseline
Aggregate (%) -4.9 -11.6 -0.8 -13.4 -31.8
St.dev. (p.p.) 2.4 4.2 5.6 46.4 40.8 45.9

Discount rate: Aggregate (%)
5% -3.4 -12.0 -0.5 -12.8 -32.0
2% -6.2 -12.0 -0.6 -12.2 -33.8
1% -8.5 -12.4 -0.6 -11.9 -34.7

By type of damages: Aggregate (%)
Capital depreciation -2.2 -5.3 -0.7 -11.6 -23.9
Temperature -2.7 -6.3 -0.1 -1.8 -7.9

Productivity -1.3 -3.1 -0.1 -2.3 -5.8
Amenities -1.4 -3.2 0.0 0.5 -2.2

No climate anticipations: Workers and capitalists
Aggregate (%) -4.8 -11.5 -0.5 -13.1 -29.5
St.dev. (p.p.) 2.4 4.7 3.9 43.1 36.9 42.4

No adaptation: Fixed population
Aggregate (%) -4.8 -11.3 -0.6 -12.6 -20.1
St.dev. (p.p.) 8.7 16.3 1.8 22.8 0 24.1
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6.3 Capital depreciation and temperature

Our first exercise highlights the role of anticipation in forward-looking capital investment decisions. In-

troducing anticipation through the FAME lets us study the role of climate change on capital depreciation.

How large is this novel role of anticipation and capital depreciation relative to the role of heat waves?

The linearity of the FAME lets us propose an exact additive decomposition.

Table 2 reveals that the impact of capital depreciation is substantial. Despite affecting only a small

subset of locations, repeated capital destruction due to rising storm activity in coastal counties accounts

for 88% of aggregate welfare losses to capitalists and for 45% of aggregate welfare losses to workers in

2023. Temperature accounts for the remaining 12% and 55%, respectively.

The capital depreciation channel also accounts for 75% of the reduction of the capital stock due

to climate change in the U.S. This effect reflects both the direct depreciation effect as well as reduced

incentives to invest in counties that have high capital depreciation rates. Temperature is responsible for

the remaining 25% of the reduction in the capital stock. As productivity drops because of extreme heat,

capital becomes less valuable and investment falls. The effects of heat waves can be further split into

productivity and amenity effects. Table 2 indicates that they contribute nearly equally to the welfare

losses of workers in 2023 and 2100.40

6.4 Anticipation

In a second exercise, we shut down climate change anticipation by either workers or capitalists. In this

counterfactual, workers or capitalists experience the effect of the current and past changes in temperatures

but they believe that future temperatures will remain as in the current period. Hence, their actions

incorporate no anticipation effects.

We find that anticipation leads to substantial mobility. When individuals fail to anticipate future

climate change, mobility falls. Figure 11(a) reveals that the gap with the baseline scenario is largest

close to 2050. By 2050, the standard deviation of population changes is 7 p.p. lower when both workers

and capitalists do not anticipate climate change, and 4 p.p. lower when only workers do not. These

impacts represent a substantial fraction—32% and 18%, respectively—of the baseline gross mobility rate.

Of course, the decline in mobility due to lack of anticipation is a transitory phenomenon: in the long run,

anticipations do not affect decisions anymore once the economy converges back to a new steady-state.

Anticipation increases mobility because climate change builds up slowly over time. Individuals who

anticipate future climate internalize that their location will become worse than it is today. As a result, they

move out more rapidly. Crucially, the anticipation of workers and capitalists reinforce each other: when

40When we include the effects of extreme cold in the analysis using the event study results in Appendix D.3, we find
that the reduction in extreme cold delivers moderate 0.7% gains for workers in the U.S. If we factor in cold waves into our
analysis, damages to the capital stock then account for over half of the welfare losses of workers, which amount to 4.2% in
this case.
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Figure 11: The impact of shutting down anticipations on mobility and welfare.

(a) Population change dispersion relative to baseline.
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(b) Capital change dispersion relative to baseline.
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(c) Relative population change in 2050 (p.p.). (d) Relative worker welfare change in 2050 (p.p.).

(e) Relative capital change in 2050 (p.p.). (f) Relative capitalist welfare change in 2050 (p.p.).
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capitalists do not anticipate future climate change, they keep investing in locations that will deteriorate

in the future. This excess investment further keeps workers in place through a larger capital stock, higher

nominal wages, and lower housing prices.41

Since the future climate is correlated with the current climate, the locations in which anticipation

lead to the largest mobility gaps are also those where climate change has the largest effect in the baseline

warming scenario. Panel 11(e) highlights that the South-East of the U.S. loses less population when

workers and capitalists fail to anticipate future climate. In Louisiana, Florida, and coastal counties in

North and South Carolina, these effects are large and can offset as much as half of the baseline decline in

2050.

Without anticipation, welfare is more unequally distributed than with anticipation. Individuals in

locations that suffer most from climate change experience larger losses without anticipation because they

fail to pre-emptively out-migrate or divest and are continuously surprised by a worsening climate. Panel

11(f) shows that workers in Florida who do not anticipate climate lose an additional 0.65% of welfare

($397 per year) by 2050. Across the U.S., the standard deviation of welfare is 0.5 p.p. higher without

anticipations, 13% above the baseline warming scenario. However, despite this higher dispersion, aggregate

welfare of workers and capitalists are largely unchanged by the lack of anticipation. The additional losses

in exposed locations are offset by relative gains in non-exposed counties. We summarize these results

in the ‘No Anticipation’ section of Table 2 when both workers and capitalists do not anticipate climate

change.42

6.5 Adaptation

The third exercise highlights the role of adaptation through migration. We evaluate the impact of global

warming when we shut down migration completely, i.e. µ = 0 in the ‘Adaptation’ section of Table 2.43

Welfare losses for workers are much more spatially concentrated absent migration. Figure 12(a) reveals

that workers in coastal counties in the South-East lose an additional 20% in welfare terms in 2023 when

they cannot move. Welfare losses in these areas in 2023 can thus exceed 25% ($15,334 per year) without

migration. Across the U.S., the standard deviation of welfare losses of workers rises to 8.7 p.p. from 2.4

p.p. in 2023.

Capitalists benefit when workers remain in place. Abundant labor raises the return to capital. Panel

12(b) shows that relative capitalists gains in 2023 are the mirror image of worker losses. Overall, the

dispersion of capitalist welfare losses drops from 5.6 p.p. in the baseline to 1.8 p.p. when migration is

41In Figure 17, Appendix G, we also consider an alternative scenario in which individuals learn of future climate change
several years before global temperatures start rising in 2023. In this case, individuals take anticipatory actions, and population
and capital stocks in 2023 already differ from steady-state. If individuals learn of climate change at least by 2000, the standard
deviation of population changes in 2023 is above 9 p.p.

42Table 3 in Appendix G presents results for the cases where either workers or capitalists do not anticipate climate change.
43We do not consider a counterfactual with fixed capital because we would have to assume away damages to the capital

stock, which are important both quantitatively and in determining the geography of losses from climate change.
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Figure 12: The impact of shutting down migration.

(a) Relative worker welfare change in 2023 (p.p.). (b) Relative capitalist welfare change in 2023 (p.p.).

(c) Welfare decomposition in baseline scenario.
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(d) Welfare decomposition with correlated damages.
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Note: Welfare decomposition from Proposition 5 in baseline model (a) and in model with correlated damages (b). Correlated dam-
ages defined as x̃i1 = x̄(maxj V

SS
j − V SS

i )4 for x ∈ {χ, a, δ} and where x̄ is chosen so that the relative importance of temperature and
capital depreciation, as well as aggregate damages, are identical to the baseline model.

shut down.

Perhaps surprisingly, migration has a negligible effect on aggregate welfare losses for workers, despite

its sizeable effect on welfare dispersion. Our welfare decomposition in Proposition 5 and in equation (18)

sheds light on this result. The primary channel through which migration affects welfare is through the

option value to migrate once the comparative advantage of locations changes. This effect is large in the

cross-section. Yet, equation (18) shows that the option value drops out exactly in the aggregate.

The welfare decomposition in Proposition 5 and in equation (18) indicate that migration may operate

through additional reallocation channels. We find these channels to be quantitatively small in the U.S.

with current climate damage functions. Figure 12(c) displays the welfare decomposition from Proposition

5 in our baseline calibration.

In 2023, there is no role for any reallocation component, because by definition reallocation only
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happens gradually over time. Thus, in 2023, the direct impact of climate change constitutes 100% of

climate damages. We find that the irrelevance result from equation (18) holds quantitatively: the option

value of migration does not affect welfare losses, which remain near 4.9% with and without migration.

By 2100, the value reallocation channel becomes active but is negative and small. The aggregate capital

depreciation channel imposes additional losses because the aggregate capital stock is lower primarily due

to storms.44

Crucially, the irrelevance of migration as an aggregate adaptation mechanism is a feature of U.S. data,

not of migration in general. In the U.S., climate damages—and hence migration patterns—are largely

uncorrelated with the initial valuations of locations. As a result, the value reallocation component does

not contribute significantly to welfare.

In principle, however, the value reallocation channel could be large. As an example, we construct

an economy in which climate damages are perfectly negatively correlated with baseline valuations of

locations and are highly spatially concentrated. In this economy, climate change pushes workers out of

low-valuation locations and into high-valuation locations, thereby generating a high value of reallocation.

Figure 12(d) displays the welfare decomposition in this artificial economy, where we calibrate the overall

magnitude of damages to match the magnitude in our baseline economy and only change their spatial

distribution.

When climate damages are negatively correlated with baseline location valuations and highly concen-

trated, migration becomes a powerful adaptation mechanism in the aggregate and offsets a large fraction

of welfare losses. In our artificial economy, migration offsets as much as 32% of welfare losses by 2100,

largely due to value reallocation. Thus, we emphasize that the irrelevance of migration as an aggregate

adaptation mechanism may not hold in other environments.45

7 Conclusion

We have proposed a quantitative dynamic spatial assessment model of the U.S. economy. The model

features forward-looking migration and capital investment decisions and can be quantified at the county

level, namely, for the 3,143 counties in the U.S. economy. Importantly, because of the methodological

advances we employ to solve for the dynamic equilibrium of the model, a numerical solution can be

44Perhaps surprisingly, shutting down migration delivers slight gains—0.2% out of 11.6%—given our utilitarian social
welfare function in Appendix B.6. This result arises because our utilitarian social welfare function weights individuals by
their location rather than by their type, which is defined by their location as well as their idiosyncratic preference. Hence,
the Pareto frontier changes when comparing the economy with and without migration (Fajgelbaum and Gaubert, 2020).
Consistently, we find that migration can deliver small gains (less than 1%) when we lower the number of locations or increase
the migration elasticity, implying that preference shocks are less dispersed. In any case, these forces are small compared
to the overall impact of climate change. Defining the appropriate welfare function accounting for dynamic migration with
infrequent draws of preference shocks is beyond the scope of this paper and thus left for future work.

45For instance, at the world level one may hypothesize that exposure to climate damages is negatively correlated with
valuations of locations, as low-income countries are more exposed to climate change. The value reallocation channel would
then be large and positive. In that case, migration would mitigate the welfare effects of climate in the aggregate, as in Cruz
and Rossi-Hansberg (2023).
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computed in a matter of seconds. We leverage this feature to structurally estimate the migration and

investment elasticities, two key parameters that determine adaptation responses in the model. To quantify

the damage functions that map global temperature increases with increases in local capital depreciation

rates, amenities, and productivity, we use an extensive dataset of daily precipitation, windspeed, and

temperatures since 1900 at the county level. This data, together with economic information at the county

level, allowed us to estimate reduced-form reaction functions on several economic outcomes. We choose

migration and investment elasticities, as well as damage functions, that make the model match this

reduced form evidence. The resulting quantified model yields damages from a 3°C increase in average

world surface temperatures that are about twice as large as what alternative models without an effect on

capital depreciation yield for the U.S. (e.g. Cruz and Rossi-Hansberg, 2023).

Using this framework we reach three distinct conclusions. First, accounting for the effect of temper-

ature on capital depreciation, through the impact of more frequent storms, is essential to obtain more

accurate estimates of the welfare losses of climate change. Second, anticipation has small average effects on

welfare but leads to large increases in migration flows, and large changes in the geography of investment,

as workers and capitalists correctly anticipate the persistence of climate damages in particular regions.

Finally, in the U.S., migration also has a very small average impact on welfare, but it leads to substantial

increases in the dispersion of worker and capitalist welfare across locations; worker movements increase

the losses in the value of capital at locations harmed by climate change.

Inevitably, our analysis abstracts from a number of potentially important mechanisms. One of them

is costly trade in goods and heterogeneous climate effects by sector. Another is the differential effect

temperature increases can have on people with heterogeneous skills, incomes, or assets. Finally, it is

essential to incorporate risk and account for the uncertainty in climate predictions. To do so, we need to

rely on second rather than first-order approximations of the “Master Equation”. This methodology has

also been developed by Bilal (2021) and we plan to use it to study the importance and implications of

climate risk in subsequent work.
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Online Appendix

A Derivations: setup

A.1 Static equilibrium

We solve for equilibrium prices and quantities as functions of the local capital stock Kit and local number

of workers Nit. Combining labor demand in final good and building production, we obtain ϖα Bit

NB
it

=

(1− α) Sit

NP
it
. Housing demand rewrites β(1− α)Nit

Sit

NP
it

= αHit.

We look for shares x, y such that

NP
it = xNit , Hit = yBit (20)

and so NB
it = (1 − x)Nit and Sit = (1 − y)Bit. Substituting into the previous equations, we obtain

ϖα
1−α = (1−y)(1−x)

x and β(1−α)
α = xy

1−y . These two equations imply46

x =
(1− α)(1−ϖβ)

αϖ + (1− α)
, y = β

(1− α) + αϖ

α+ (1− α)β
, 1− y = α

1− βϖ

α+ (1− α)β
. (21)

Using these shares, we express the wage and the rental rate as

wit = (1− α)ααΞ−αZit(Bit/Nit)
α , rit = ααΞ1−αZit(Bit/Nit)

−(1−α), (22)

where Ξ = (1−α) α+(1−α)β
αϖ+(1−α) . Before proceeding, it is useful to substitute out buildings and express prices

in terms of capital:

wit = wi0ZitL
ωα
i (K1−ω−ϖ

it Nϖ−1
it )α , rit = ri0ZitL

−ω(1−α)
i (K1−ω−ϖ

it Nϖ−1
it )−(1−α),

where wi0 = (1− α)ααΞ−α(1− x)ϖα, ri0 = ααΞ1−α(1− x)−(1−α)ϖ.

We now solve for the rental rate of capital:

RK,it = (1− ω −ϖ)(1− x)ϖK
−(ω+ϖ)
it Lωi N

ϖ
it rit

= (1− ω −ϖ)ααΞ1−α(1− x)αϖZitL
ωα
i K−ϕ

it N
1−α+αϖ
it

= (1− ω −ϖ)ααΞ1−α(1− x)αϖZiL
ωα
i︸ ︷︷ ︸

≡R0i

eχitK−ϕ
it N

ψ
it

= R0ie
χitK−ϕ

it N
ψ
it

≡ Ri(χit,Kit, Nit),

46Multiplying both equations leads to y(1− x) = ϖβ which can then be substituted into either of the equations.
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where ϕ = ω +ϖ + (1 − ω −ϖ)(1 − α) and ψ = 1 − α + αϖ. Turning to worker consumption (the real

wage) in location i, we obtain:

Cit =
wit

rβit

=
(1− α)ααΞ−α(1− x)ϖαZitL

ωα
i (K1−ω−ϖ

it Nϖ−1
it )α[

ααΞ1−α(1− x)−(1−α)ϖZitL
−ω(1−α)
i (K1−ω−ϖ

it Nϖ−1
it )−(1−α)

]β
= (1− α)αα(1−β)Ξ−ξ(1− x)ϖξZ1−β

it Lωξi K
(1−ω−ϖ)ξ
it N

−ξ(1−ϖ)
it

= (1− α)αα(1−β)Ξ−ξ(1− x)ϖξZ1−β
i Lωξi︸ ︷︷ ︸

≡C0i

·e(1−β)χit

(
K1−ω−ϖ
it

N1−ϖ
it

)ξ

≡ C0ie
(1−β)χit

(
K1−ω−ϖ
it

N1−ϖ
it

)ξ
where ξ = α+ β(1− α). With consumption at hand, we express the flow utility in location i at time t:

Ait + u

(
wit

rβit

)
= Ai + ait + u

(
C0ie

(1−β)χit

(
K1−ω−ϖ
it

N1−ϖ
it

)ξ)
≡ Ui(ait, χit,Kit, Nit).

A.2 Capitalists

We denote by Yit(I,K) = RK,itK−ci(I/K)K the net income of a capitalist with capital stock K investing

I. We first guess and verify that Pit(K, b) = Πit(K)+b+Tit, where Πit(K) reflects the permanent income

of capitalists from capital returns, and Tit reflects the present discounted value of transfers from the

national mutual fund. Substituting our guess into the capitalist problem (6), we obtain

ρΠit(K) = max
I
Yit(I,K) + (I − δitK)

∂Πit
∂K

(K) +
Et[dtΠit]

dt
, ρ = Rt , ρTit = θit +

Et[dtTit]
dt

. (23)

Thus, investment decisions are independent from bond holdings b and from transfers. We further guess and

verify that Πit(K) = QitK. Substituting this guess in (23), the investment policy becomes c′i(I/K) = Qit

and so I = (c′i)
−1(Qit)K.

Using our guess, the investment policy and the functional form of the investment cost in (23), we

obtain

(ρ+ δit)Qit = RK,it +
ci0Q

1+ζ
it

1 + ζ
+

Et[dtQit]
dt

, I∗(K,Qit) = ci0Q
ζ
itK.
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B Derivations: FAME

B.1 Flow payoffs

B.1.1 Workers

The flow payoffs become, to first order,

Uit − USSi
ϵ

= ai1
(
z + TDt

)
+ u′(CSSi )CSSi ·

(
(1− β)χi1

(
z + TDt

)
+ ξ(1− ω)

ki

KSS
i

− ni

NSS
i

)
,

with u′(C) = C−γ . In vector notation,

ϵ−1(Ut − USS) = vec
(
ai1

)(
z + TDt

)
+ diag

(
u′(CSSi )CSSi

)[
(1− β)vec(χi1)

(
z + TDt

))
+ξ(1− ω)diag

(
1/KSS

i

)
k − ξdiag

(
1/NSS

i

)
n

]
≡ DUZz +DUTTt +DUKk −DUNn,

where we have defined

DUT = DUZ = vec
(
ai1 + u′(CSSi )CSSi (1− β)χi1

)
DUK = ξ(1− ω −ϖ)diag

(
u′(CSSi )CSSi /KSS

i

)
DUN = ξ(1−ϖ)diag

(
u′(CSSi )CSSi /NSS

i

)
.

B.1.2 Capitalists

Similarly, to first order and in vector notation,

ϵ−1

[(
RK,it +

ci0Q
1+ζ
it

1 + ζ
−∆itQit

)
−
(
RSSK,i +

ci0(Q
SS
i )1+ζ)

1 + ζ
−∆iQ

SS
i

)]I
i=1

= DRKk −DRNn+DCQ

[
qNn+ qKk + qZ + qT

]
−DQTT

D
t −DQZz,

where

DRK = −ϕdiag
(
RSSi /KSS

i

)
DRN = −ψdiag

(
RSSi /NSS

i

)
DCQ = diag

(
ci0(Q

SS
i )ζ −∆i

)
DQT = DQZ = vec

(
δi1Q

SS
i −RSSi χi1

)
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B.2 Continuation value from migration

Denote by M the steady-state matrix M(V SS). The continuation value from migration becomes, to

leading order,

M[V ]−M[V SS ]

ϵ
=MvNn+MvKk +MvZz +MvTt .

B.3 Continuation value from changes in population distribution

To linearize the law of motion of population, first note that

∂mji

∂Vk
=

 −νmjimjk if i ̸= k

νmji(1−mji) if i = k

and so

M∗
ij(V + dV ) = M∗

ij(V ) + µ
∑
k

∂mji

∂Vk
dVk =M∗

ij(V ) + µνmji

{
dVi −

[
m · dV

]
j

}
.

Then to leading order,

M∗
i (V + dV )[NSS ] = M∗

i (V )[NSS ] + µν
∑
j

mji

{
dVi −

[
m · dV

]
j

}
NSS
j

= M∗
i (V )[NSS ] + νµ

[(
diag(m∗NSS)−m∗diag(NSS)m

)
· dV

]
i

≡ M∗
i (V )[NSS ] + (G · dV )i

where G = νµ
(
diag(m∗NSS)−m∗diag(NSS)m

)
. In vector notation, to leading order,

ϵ−1

∑
j

∂Vi
∂Nj

(M∗(V )N)j

I

i=1

= vNM∗n+ vNG
(
vNn+ vKk + vZz + vTt

)
Similarly,

ϵ−1

∑
j

∂Qi
∂Nj

(M∗(V )N)j

I

i=1

= qNM∗n+ qNG
(
vNn+ vKk + vZz + vTt

)
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B.4 Continuation value from changes in capital distribution

We obtain, to leading order,

ϵ−1
∑
j

∂Vi
∂Kj

Kj

(
cj0Q

ζ
j −∆jt

)
=

∑
j

vKijK
SS
j

{
ϵ−1dI∗j − δ1j

(
z + TDt

)}

=
∑
j

vKijK
SS
j

ζcj0(QSSj )ζ−1

∑
j

qNjℓnℓ +
∑
ℓ

qKjℓkℓ + qZj z + qTtj

− δj1
(
z + TDt

)
= vK

{
DIQ

[
qNn+ qKk + qZz + qTt

]
−
(
z + TDt

)
D∆T

}

where

DIQ = ζdiag
(
KSS
j cj0(Q

SS
j )ζ−1

)
D∆T = vec

(
KSS
j δj1

)
Similarly, to leading order,ϵ−1

∑
j

∂Qi
∂Kj

Kj

(
cj0Q

ζ
j −∆jt

)
i

= qK

{
DIQ

[
qNn+ qKk + qZz + qTt

]
−
(
z + TDt

)
D∆T

}

B.5 FAME in vector notation

B.5.1 Workers

Thus, the linearized master equation for the worker value becomes, in vector notation,

ρ
(
vNn+ vKk + vZz + vT

)
− ∂vT

∂t

=

flow payoff︷ ︸︸ ︷
DUZz +DUTT

D
t +DUKk −DUNn+

continuation value from migration︷ ︸︸ ︷
M
(
vNn+ vKk + vZz + vT

)
+

c.v. from climate shocks︷ ︸︸ ︷
A(z)[vZz]

+ vNM∗n+ vNG
(
vNn+ vKk + vZz + vT

)︸ ︷︷ ︸
continuation value from changes in the population distribution

+ vK
{
DIQ

[
qNn+ qKk + qZz + qT

]
− (z + TDt )D∆T

}
︸ ︷︷ ︸

continuation value from changes in the capital distribution

We impose that zt follows an AR(1) process: A(z)[V ] = −θzV ′(z) + z2

2 V
′′(z). Identifying coefficients,

and with unknowns in bold notation,

ρvNvNvN = −DUN +MvNvNvN + vNvNvNM∗ + vNvNvNGvNvNvN + vKvKvKDIQq
NqNqN

ρvKvKvK = DUK +MvKvKvK + vNvNvNGvKvKvK + vKvKvKDIQq
KqKqK

ρvZvZvZ = DUZ +MvZvZvZ − θvZvZvZ + vNvNvNGvZvZvZ + vKvKvKDIQq
ZqZqZ − vKvKvKD∆T

ρvTvTvT − ∂vTvTvT

∂t
= DUTT

D
t +MvTvTvT + vNvNvNGvTvTvT + vKvKvKDIQq

TqTqT − vKvKvKD∆TT
D
t .
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B.5.2 Capitalists

Similarly, the linearized master equation for capitalists becomes, in vector notation,

ρ
(
qNn+ qKk + qZz + qT

)
− ∂qT

∂t

=

flow payoff︷ ︸︸ ︷
DRKk −DRNn+DCQ

[
qNn+ qKk + qZz + qT

]
−DQTT

D
t −DQZz+

c.v. from climate shocks︷ ︸︸ ︷
A(z)[qZz]

+ qNM∗n+ qNG
(
vNn+ vKk + vZz + vT

)︸ ︷︷ ︸
continuation value from changes in the population distribution

+ qK
{
DIQ

[
qNn+ qKk + qZz + qT

]
− (z + TDt )D∆T

}
︸ ︷︷ ︸

continuation value from changes in the capital distribution

Identifying coefficients, and with unknowns in bold notation,

ρqNqNqN = −DRN +DCQq
NqNqN + qNqNqNM∗ + qNqNqNGvNvNvN + qKqKqKDIQq

NqNqN

ρqKqKqK = DRK +DCQq
KqKqK + qNqNqNGvKvKvK + qKqKqKDIQq

KqKqK

ρqZqZqZ = −DQZ +DCQq
ZqZqZ − θqZqZqZ + qNqNqNGvZvZvZ + qKqKqKDIQq

ZqZqZ − qKqKqKD∆T

ρqTqTqT − ∂qTqTqT

∂t
= −DQTT

D
t +DCQq

TqTqT + qNqNqNGvTvTvT + qKqKqKDIQq
TqTqT − qKqKqKD∆TT

D(t)

Collecting terms for vNvNvN , vKvKvK , qNqNqN , qKqKqK , Proposition 2 obtains. Collecting terms for vTvTvT , qTqTqT , Proposition 3

obtains. The stochastic FAME writes

(ρ+ θ)

vZvZvZ
qZqZqZ

 =

 DUZ − vKD∆T

−DQZ − qKD∆T

+

M + vNG vKDIQ

qNG DCQ + qKDIQ

vZvZvZ
qZqZqZ

 . (24)

This is now a standard matrix equation.

B.6 Welfare

B.6.1 Proof of Proposition 5

Omit time subscripts and steady-state superscripts for simplicity. Totally differentiating aggregate welfare,

we obtain:

dV =
∑
i

[
NidVi + VidNi

]
= EN [dVi]︸ ︷︷ ︸

expectation

+CovN
[
dNi

Ni
, Vi

]
︸ ︷︷ ︸

covariance
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We can further characterize the expectation component:

ϵ−1EN [dVi] =
∑
i

Ni

vTi +
∑
j

vNij dNj +
∑
j

vKij dKj


=

∑
i

Niv
T
i +

∑
j

(∑
i

Niv
N
ij

)
dNj +

∑
j

(∑
i

Niv
K
ij

)
dKj

= EN [vTi ] + EN
[
εvNj

dNj

Nj

]
+ EK

[
εvKj

dKj

Kj

]
,

where we defined εvNj ≡
∑

iNiv
N
ij and εvKj ≡

∑
iNiv

K
ij . Then,

EN
[
εvNj

dNj

Nj

]
= CovN

[
εvNj ,

dNj

Nj

]
+ EN

[
εvNj

]
EN
[
dNj

Nj

]
= CovN

[
εvNj ,

dNj

Nj

]
.

In addition,

EK
[
εvKj

dKj

Kj

]
= CovK

[
εvKj ,

dKj

Kj

]
+ EK

[
εvKj

]
EK

[
dKj

Kj

]
= CovK

[
εvKj ,

dKj

Kj

]
+ EK

[
εvKj

]
dK̄,

which concludes the proof of the first part of the proposition. For the proof of the second part, note that

dWt =
∑
i

NSS
i dWit +

∑
i

dNitWSS
i =

∑
i

NSS
i dVit +

∑
i

dNitWSS
i ,

where the second line uses the steady-state determination of population.

B.6.2 Consumption equivalent welfare

For any period τ , we compute consumption equivalent welfare change between the steady-state SS and

any counterfactual as ωiτ , such that

Eτ
∫ ∞

τ
e−ρ(t−τ)

{
ASSi(t) + εi(t)t + u((1 + ωiτ )C

SS
i(t))

}
dt = Eτ

∫ ∞

τ
e−ρ(t−τ)

{
Ai(t),t + u(Ci(t),t)

}
dt

where εit denotes the preference shock for the current (chosen) location.

Worker welfare: lump-sum preference shocks We start with the definition of welfare when prefer-

ence shocks are ‘lump-sum’, that is, when they are realized upon moving. In that case, preference shocks

are not included in the welfare metric, which simply becomes Vit in location i at time t.

Log utility. Under log utility γ = 1, we obtain

V SS
i + ρ−1 log(1 + dωiτ ) = Viτ ⇐⇒ dωiτ = eρ(Viτ−V

SS
i ) − 1.
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When shocks are small ϵ→ 0, to a first order,

dωiτ = ρ dViτ (25)

CRRA utility. With CRRA utility when γ ̸= 1, u(C) = C1−γ−1
1−γ ,

V A,SS
i + (1 + dωiτ )

1−γV C,SS
iτ − 1

ρ(1− γ)
= Viτ ,

where

V A,SS
i = E0

∫ ∞

0
e−ρt

{
ASSi(t)

}
dt =⇒ (ρ+ µ)V A,SS

i = ASSi + µ
∑
j

mijV
A,SS
j

V C,SS
i = E0

∫ ∞

0
e−ρt

(CSSi(t))
1−γ

1− γ
dt =⇒ (ρ+ µ)V C,SS

i =
(CSSi )1−γ

1− γ
+ µ

∑
j

mijV
C,SS
j .

Then

(1 + dωiτ )
1−γV C,SS

iτ − V C,SS
i = Viτ − V SS

i ⇐⇒ dωiτ =

(
1 +

Viτ − V SS
i

V C,SS
i

) 1
1−γ

− 1

When shocks are small ϵ→ 0, to a first order,

dωiτ =
1

1− γ

dV IRF
iτ

V C,SS
i

=
ρ dV IRF

iτ

Ṽi
, (26)

where

Ṽi = ρE0

∫ ∞

0
e−ρt(CSSi(t))

1−γdt =⇒ (ρ+ µ)Ṽi = ρ(CSSi )1−γ + µ
∑
j

mij Ṽj .

Aggregate welfare Aggregate welfare is defined as

V t =
∑
i

NitVit , Qt =
∑
i

KitQit.

Derivations and formulas are identical to the local welfare case above after replacing local values with

aggregate values.

Worker welfare: permanent preference shocks
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Log utility. When preference shocks are permanent until the next moving opportunity, then local

welfare is given by

Wi[Vt] =
1

ν
log

∑
j

eν(Vjt−τij)

 .

In response to a change, we have

dWi =
∑
j

mijdVjt =
(
m · dVt

)
i
.

Under log utility, similar derivations as above for small ϵ lead to

(
m · dVt

)
i
=
(
m ·

(
dωiτ
ρ

)
j

)
i
=
dωiτ
ρ

,

so that

dωiτ = ρ
(
m · dVt

)
i
.

CRRA utility. Similar derivations as above lead to

dωiτ =
ρ
(
m · dVt

)
i(

m · Ṽ
)
i

.

Aggregate worker welfare. Aggregate welfare is defined as Wt =
∑

iNitWit.

Capitalist welfare. For capitalists we must take a stand on how claims to the national mutual fund

are distributed—and hence land rents rebated. For simplicity, we assume that Tit is proportional to(
RK,it +

ci0Q
ζ
it

1+ζ −∆itQit

)
Kit. Let π be this proportionality constant. Under this assumption, Tit =

πQitKit.

Because of linear utility, without loss we may pin down bit = 0. Hence, capitalist welfare in location i

at time t is Pit = (1 + π)QitKit, and aggregate welfare is Pt =
∑

i Pit.

C Steady-state computation

We solve for steady-state using the following algorithm:

1. Start by using (12) to solve for QSSi
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2. Given QSSi , then use (10) to solve for the equilibrium capital as a function of population:

KSS
i = R

1/ϕ
0i

(
ρQSSi +

ζci0(Q
SS
i )1+ζ

1 + ζ

)−1/ϕ

(NSS
i )ψ/ϕ ≡ Ki(N

SS
i ) (27)

3. Substitute (27) into (9) to obtain

ρV SS
i = Ui(Ki(N

SS
i ), NSS

i ) +Mi[V
SS ] (28)

4. Iterate alternatively on (28) and (11) to jointly solve equilibrium values V SS
i and population NSS

i :

(a) Start from a uniform guess for NSS
i (or any other guess)

(b) Solve (28) for V SS
i

(c) Update NSS
i by solving (11) given V SS

i

(d) Keep iterating on (b-c) until both NSS
i and V SS

i have converged.

D Reduced-form evidence

D.1 Trends in cold waves

Figure 13: 1-in-20-years cold waves and global mean temperature.
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D.2 The impact of storms

Figure 14: The impact of 1-in-50-years-storms on economic activity in inland counties.
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Figure 15: The impact of 1-in-50-years-storms on economic activity in all counties.
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D.3 The impact of cold waves

Figure 16: The impact of 1-in-20-years cold waves on economic activity in cold counties.
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E Estimation: Proof of Proposition 6

We use the steady-state investment rate (12) to obtain an estimate of the steady-state capital stock in

each location: Ki = Ĩi/δ. Next, we recover an estimate of the stock of buildings Bi and housing Hi from

the constant shares rule (20)-(21) and the buildings production function:

Bi = Lωi

(
(1− x)Ni

)ϖ
K1−ω−ϖ
i , Hi = yBi

The wage equation (22) then delivers an estimate of fundamental productivity in county i:

Zi =
wi

(1− α)ααΞ−α
(
Bi/Ni

)α .
From there we construct R0i = (1− ω −ϖ)ααΞ1−α(1− x)αϖZiL

ωα
i . Combining equations (10) and (12)

then delivers local investment costs:

ci0 = δ

[
1

R0iK
−ϕ
i Nψ

i

(
ρ+

ζδ

1 + ζ

)]ζ

Next, we construct C0i = (1−α)αα(1−β)Ξ−ξZ1−β
i Lωξi and so ui0 = u

(
C0iK

(1−ω−ϖ)ξ
i N

−(1−ϖ)ξ
i

)
which

implies Ui = Ai + ui0.

To recover migration costs, we construct migration shares as mij =
mij∑
k mik

. The equation for migration

shares (4) implies that Xij ≡ logmij − logmii = ν(Vj − Vi) − ντij ≡ Yj − Yi + εij after imposing the

normalization τii = 0 . We exploit that Xij + Xji = εij + εji. We assume symmetric migration costs

τij = τji, which we then recover as

τij = −Xij +Xji

2ν
.

We are left with estimating local amenities. We proceed in two steps. The first step consists in

recovering local valuations from the steady-state population distribution. Defining Xi = eνVi and θki =

e−ντki , equation (11) implies, together with a normalization of values:

Xi =
Ni∑

k
Nkθki∑
j θkjXj

,
∑
i

Xi = 1. (29)

The system of equations (29) satisfies the gross substitutes property, and so has at most one solution. A

simple iterative method delivers the solution to equation (29), and we recover Vi =
1
ν log

(
Xi

)
.

With an estimate of local valuations Vi at hand, the second step consists in inverting the HJB (3) to
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recover amenities. In particular,

Ai = (ρ+ µ)Vi −
(
ui0 +Mi[V ]

)
.

F Confidence intervals

To compute confidence intervals, we leverage the analytic structure of the FAME. Suppose that we

contemplate various possible damage functions Xi = (χi1, ai1, δi1). Our first observation is that the

deterministic FAME is independent from the damage functions, and so needs not be recomputed. The

second observation is that the trend FAME is linear in the damage functions. Indeed, standard ODE

results guarantee that

vTt = Vt ·X,

where Vt satisfies a matrix trend FAME similar to the one in Proposition 3. Similarly,nt
kt

 = Dt ·X,

where Dt satisfies a matrix law of motion similar to the one in Proposition 4. Thus, we compute Vt,Dt in

a single time iteration, and next use the Delta-method to obtain standard errors and confidence intervals

around our counterfactuals of interest.

G Additional results

See Table 3 and Figure 17.

H Data description

H.1 Economic data

We use county-year population data from the BEA. The BEA constructs annual population data starting

from the decennial Census population figures. They estimate population at intercensal dates using the

Das Gupta method. Estimates are replaced with official Census intercensal figures as they are released,

which are generated via the Das Gupta and location and demographic-specific adjustments.

Income per capita is measured as personal income from the BEA. It includes income of individuals,

nonprofit institutions serving individuals, private noninsured welfare funds, private trust funds, trans-

fer receipts, employer contributions to health and pensions plans, interest received, imputed incomes.
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Table 3: Impact of climate change on welfare and allocations without anticipations.

Welfare Allocations

Workers Capitalists Population Capital

2023 2100 2023 2100 2100 2100

No climate anticipations: Workers
Aggregate (%) -4.9 -11.6 -0.8 -13.4 -30.8
St.dev. (p.p.) 2.4 4.6 5.2 44.1 38.0 43.5

No climate anticipations: Capitalists
Aggregate (%) -4.9 -11.6 -0.5 -13.1 -30.6
St.dev. (p.p.) 2.4 4.2 4.4 45.6 39.9 45.0

No climate anticipations: Both
Aggregate (%) -4.8 -11.5 -0.5 -13.1 -29.5
St.dev. (p.p.) 2.4 4.7 3.9 43.1 36.9 42.4

Figure 17: Early learning of climate change.
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Personal income excludes personal contributions for government social insurance, pension and annuity

benefits from private and government employee pension plans, and income from interpersonal transfers.

To measure wages, we use salary income from the BEA.

We also obtain employment from the BEA. They weight full-time and part time jobs.

To measure investment, we use capital expenditures, which consists of total capital expenditures

for the manufacturing sector from the Census of Manufacturers from 1958 to 1992, and the Economic

Censuses from 1997 to 2012. The Census of Manufacturers reports are digitized via the ICPSR 2896

project. Economic Censuses are released with a lag. Presently, capital expenditures at the county level

are available for 2002, 2007, and 2012. The economic census is conducted by the Census Bureau every 5

years and includes more than 4 million selected business locations to get metrics on the American economy.

Because our measure of investment of available every 5 years only, we linearly interpolate between Census

years prior to running our event studies.

We also collect information on local government expenditures from the Government Finance Database,

which assembles and standardizes data provided by the Census of Governments. We use total government

expenditures (Census codes E, F, G, L, and M) as a control in our analysis, that we linearly interpolate

in between Census years.

H.2 ISIMIP3a data

The Inter-Sectoral Impact Model Intercomparison Project (ISIMIP) models the impacts of climate change

on natural and human systems. ISIMIP simulation round 3a introduced several global, high-frequency

datasets quantifying several atmospheric variables across the 20th and early 21st centuries. We use

the observed climate dataset, spanning 1901-2019 at a 0.5◦ × 0.5◦ resolution. This dataset harmonizes

two constituent datasets, Global Soil Wetness Project Phase 3 (GSWP3, 1901-1978) (Kim, 2017) and

WATCH Forcing Data methodology applied to ERA5 reanalysis dataset (W5E5, 1979-2019) (Lange,

2021a), each generated through a combination of numerical weather prediction (NWP) models and station-

level atmospheric observations (Mengel et al., 2021).

The foundation of the GSWP3 is the Twentieth Century Reanalysis Project dataset (20CR), covering

1871 to 2008 at a 2◦ resolution and 6-hour frequency. Using the NOAA’s NCEP Global Forecast System

to first simulate a suite of atmospheric variables, the resulting weather predictions are then disciplined

using reported and derived surface and sea-level pressure observations via an Extended Kalman Filter

data assimilation system (Cucchi, 2020). Lower boundary conditions used to run the NWP consist of

sea surface temperature and sea-ice concentration from the UK Met Office HadISST1.1 dataset (Rayner,

2003) interpolated from monthly mean data to a daily frequency. Pressure observations for the data

assimilation step were obtained from the International Surface Pressure Databank version 2 (Cram, 2015),

which collates data from numerous international meteorological organizations.

Drawing from 20CR, GSWP3 was created by dynamically downscaling and applying bias-adjustment
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to several selected variables. Variables were first cast from a 2◦ to a roughly 0.5◦ resolution from 1901-2010

at a 3 hour frequency using a spectral nudging technique in a Global Spectral Model (Yoshimura and

Kanamitsu, 2008). The downscaled dataset was then bilinearly interpolated to a regular 0.5◦ grid, with

model biases further corrected by variable using observational data: Global Precipitation Climatology

Centre Full Data Monthly Product Version 7 (Schneider, 2014) for precipitation; Climatic Research Unit

CL2.0 (New et al., 2002) dataset for windspeed; and Climatic Research Unit TS3.23 (Harris, 2014) dataset

for temperature, pressure, and humidity.

Similar to the bias-adjustments applied to 20CR in order to create GSWP3, W5E5 is built on the

European Centre for Medium-Range Weather Forecast’s (ECMWF) reanalysis dataset version 5 (ERA5)

(Hersbach, 2020). ERA5 first leverages the ECMWF’s Integrated Forecasting System Cycle 41r2 for

numerical weather prediction. These modeled estimates are then reconciled with station-level observations

to create a high-resolution dataset using a two-part data assimilation system: 1) the incremental 4D-

Variable Assimilation method (Courtier et al., 1994) for atmospheric variables and ozone, and 2) a land

data assimilation system comprising optimal interpolation schemes for temperature, relative humidity,

and snow and a Simplified Extended Kalman Filter for soil moisture. The ensemble data assimilation

incorporates approximately 96 billion observed data points across the complete dataset (1979-2019) from

a plethora of sources, spanning conventional meteorological measurements to satellite data, around the

globe. The final ERA5 dataset is at a resolution of 31km and an hourly frequency.

Following the framework for land surface models and global hydrological models set out by the EU

WATCH program, time series from ERA5 were bias-corrected and aggregated to a 0.5◦ resolution to

create the WATCH Forcing Data methodology applied to ERA5 reanalysis (WFDE5) (Cucchi, 2020)

dataset. Adjustments to match observed monthly moments were applied using the Climatic Research

Unit TS40.3 (Harris, 2020) dataset for surface air temperature, shortwave radiation, rainfall rate, and

snowfall rate, and the Global Precipitation Climatology Centre Full Data Monthly Product Version 2018

(Schneider, 2018) for rainfall and snowfall rates. W5E5, used in the ISIMIP dataset, was created by

combining WFDE5 observations over land with ERA5 observations over the ocean (Lange, 2021a).

Inconsistent availability in the data used to produce 20CR, as well as in the subsequent bias-adjustment

to generate GSWP3, produced known artifacts and spurious trends. Furthermore, many more observations

were used for data assimilation in ERA5, and thus WFDE5, leading the authors of ISIMIP3a to consider

W5E5 the more realistic dataset. In order to temporally extend W5E5 backward to 1901, GSWP3 data

from 1901-1978 were homogenized with W5E5 to smooth discontinuities between the datasets at the

1978/1979 threshold. Within the common 1979-2004 reference period, GSWP3 time series were quantile

mapped (Lange, 2019; Lange, 2021b) to match the distribution of the corresponding W5E5 time series.

The resulting GSWP3-W5E5 dataset preserves the trends of the GSWP3 data and is identical to the

original W5E5 data from 1979 onwards, but differs from the original 1901-1978 GSWP3 data.
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H.3 Extreme event indicators

Heat—The 95th percentile of the annual mean temperature distribution in 1901-1910 is equal to 20°C.

Importantly, an annual mean temperature of 20°C or above is highly correlated with extreme heat. For

instance, the 95th percentile of daily maximum temperature is 33°C. The correlation between annual mean

temperature and annual maximum temperature is high, at 0.71.

The 95th percentile of days spent above the 95th percentile of annual mean temperature for the 1901-

1910 distribution is 20% of the year spent above 20°C. Crucially, this proportion is highly correlated with

a high fraction of the year spent at much higher temperatures. The 95th percentile of days spent above

the 95th percentile of maximum temperature for the 1901-1910 distribution is 18% of the year spent above

33°C. The correlation between these two fractions is substantial, at 0.91.

Storms—For comparison with our residualized percentiles, the 99th percentile of the un-residualized

distribution of daily maximum windspeed for the years 1901-1910 is 10 meters per second (m/s). The

largest windspeed is 18 m/s. Recall that these measures are daily averages, and thus allow for much

faster gusts in small time windows. Similarly, the 99th percentile of the un-residualized distribution of

daily maximum precipitation for the years 1901-1910 is 100 millimeters per day (mm/d). The maximum

is above 220 mm/d.
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