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Abstract

Railway safety is affected by the weather. We quantify these effects by leveraging a

comprehensive dataset on railway safety incidents in the United States spanning 1997–2019.

Though weather conditions are noted as a primary or contributing factor to 2.2% of rail-

way safety incidents during our data period, we find that weather causes closer to 8.5%

of all rail safety incidents—four times the documented amount. Both heat and cold cause

elevated incident counts, with effects especially strong for incidents leading to injuries or

deaths. Exposure to a daily average temperature over 30◦C (86◦F) leads to a 9.5% increase

in the number of rail safety incidents, a 27% increase in the number of incidents leading to a

casualty, and 25% and 57% increases injuries and deaths—effects net of any operational ad-

justments made to mitigate these effects. Extreme cold and extreme precipitation also affect

safety. We find that locations are adapted to their local climate, with, for example, warmer

places exhibiting a weaker relationship between heat and incident count. Further, past expo-

sure to hazardous weather leads to fewer accidents future accidents, perhaps demonstrating

learning. The numbers of injuries and deaths associated with rail system weather exposure

may suggest a role for enhanced rail safety regulations and adaptation funding to protect

critical infrastructure.
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1 Introduction

Railways are a critical component of many economies, serving as an efficient way to move people

and goods. Rail is of particular importance in the United States, where it played a key role in

U.S. industrialization and the western expansion of trade networks. The elaboration of the U.S.

rail network in the 19th century connected communities across the country to domestic and in-

ternational markets but led to the consolidation of market power. In 1887, the U.S. government

responded by creating the Interstate Commerce Commission. By the 1970s, railroads were fac-

ing financial crisis due perhaps in part to excessive regulation by the Commission. In response,

Congress largely deregulated the industry by removing rate controls, simplifying procedures for

opening or closing rail lines, limiting the Commission’s authority to intervene in markets domi-

nated by a small number of participants, and circumscribing the administrative state’s authority

to prevent rail mergers and acquisitions. The number of active freight rail lines and operators

shrunk dramatically; today, freight rail is dominated by a small set of “Class I” railroads that

move most of their cargo on a set of non-redundant lines between major hubs. Still, by 2017,

the U.S. rail system comprised over 140,000 miles of track that supported the movement of 1.7

billion tons ($690 billion) of domestic freight (Bureau of Transportation Statistics, 2021a) and

handled over 6.6 billion passenger–miles of transportation (Bureau of Transportation Statistics,

2021b).

Given the industry’s scope and scale, safety remains a key concern of rail regulation. For

example, the passage of the Rail Safety Improvement Act of 2008 mandated regular equipment

and track inspections and updated various technical standards applied to rail equipment. This

and related regulations—as well as voluntary investment by rail operators—have led rail to

be among the safest means of good and passenger transportation per service mile (Kyriakidis

et al., 2012). Nonetheless, individual rail safety incidents can lead to large social costs, as trains

can carry hazardous materials or large numbers of people and travel at high speeds through

populated areas. A series of high-profile derailments around 2015—one of which destroyed

an entire town (Murphy, 2018)—led to the promulgation of rules to require upgraded braking

systems in trains carrying high-hazard flammable materials (Department of Transportation,

2015). These rules, however, were eventually rescinded on the basis of their high cost (Office of

the Federal Register, 2018), a sign of the fraught nature of rail safety regulation made all the

more complex by arcane tracking rules and interoperability challenges.

Here, we investigate the degree to which weather exposure is associated with rail safety

incidents. We are motivated by three observations: operators understand that weather affects

rail safety, weather is predictable on short horizons, and operators are able to mitigate weather

risks in response to these predictions. We discuss each in turn.

First, weather is a known determinant of rail safety(Rossetti, 2003, 2007). In North America,

rails are laid in long sections, typically 1500 feet (about 0.5 kilometers). These sections are
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brought to temperatures close to the annual average of extreme heat and cold experienced by

rail at its installation location (“rail neutral temperature”)1 before being secured into place

with a small amount of slack to allow for thermal expansion and contraction. However, slack

is minimized to avoid undermining rail stability. As a result, if track temperatures rise too

high, rail will buckle or warp, leading to derailments or other safety hazards(Liu et al., 2012).

Extreme cold is also problematic for railways, and can lead to track fractures. However, whereas

breaks caused by thermal contraction can be detected by resulting interruptions in rail signaling

systems, buckling or warping due to heat cannot be detected in the same way.2

Second, weather is predictable over timescales that enable rail operators to modify their

behavior to counteract its risks. Over hourly to daily timescales, rail operators have a num-

ber of strategies available for weather risk mitigation including cancelling or slowing routes or

changing the number of cars they move per locomotive, which improves train control. Indeed,

rail operators are routinely subject to “slow orders” (temporarily imposed speed limits) to give

rail crew time to react to track bends caused by heat exposure and to reduce the stress caused

to heated rails by trains transiting at a high speed (Xia et al., 2013).

Third, economic intuition suggests that operators may be mitigating weather-related risks

less intensively than they would if they bore the full costs of rail safety incidents—some costs

are borne by persons not directly connected to rail operators, such as those injured or killed in

the event of a train derailment. Conversely, available adaptation strategies are often costly and

produce benefits—such as an improved perception of rail safety in general—that do not accrue

to any particular railroad. In the absence of regulation, rail operators must then choose a level

of weather risk mitigation that weighs these predictable costs against multiple risk mitigation

options: cancelling or slow shipments, which risks supply chain disruptions; moving fewer cars

per locomotive, which increases costs; or making costly capital investments, such as improved

braking equipment or track upgrades, which may be difficult given competitive pressures or

liquidity constraints. In other words, absent appropriate regulation, economic intuition suggests

that weather risk will be mitigated at a level too low from the perspective of society.

Motivated by these observations, we leverage detailed data on all railroad safety incidents

(which includes all railroad equipment failures and incidents involving railroads resulting in at

least one casualty—i.e., an injury or death) that occurred in the United States between January

1997 and December 2019. We summarize these events at the county–day level, which we then

link to detailed weather information. We isolate plausibly random variation in temperature and

precipitation conditional on a location’s climate and determine an overall relationship between

1This range of temperatures may be quite large, as steel rails exposed to direct sunlight are routinely 20◦C
hotter than ambient air temperature (Bruzek et al., 2014).

2A notable implication of rail infrastructure design is that a change in average temperatures or temperature
variability—changes currently underway as a result of climate change—may move installed rail, which typically
has a life between 20 and 100 years, outside of its design specifications more frequently. Appropriate responses
to such changes may include modifying installed rail or accelerating rail replacement schedules, both of which
are expensive and disruptive.
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random variations in weather and a range of outcomes, such as changes in the count of safety

incidents or the number of resulting injuries and deaths (see Methods). We likewise evaluate

whether certain types of accidents or rail service appear particularly vulnerable to weather

variation. We then assess whether a location’s climate affects the strength of these relationships,

hypothesizing that, for example, warmer locations may exhibit lower vulnerability to a given

level of extreme heat. Finally, we test whether train operators learn from earlier accidents,

possibly by adopting precautionary measures which lead to later reductions in accident rates

(see Methods).

We contribute to the existing literature in three ways. First, we provide a plausibly causal

quantification of the effect of weather exposure on railway safety incidents. Closest to our

paper, Xia et al. (2013) provides descriptive evidence on weather and railway disturbances in

the Netherlands without controlling for potential confounding effects like seasonality. They find

that exposure of rail to temperatures higher than 30◦C increases service disruptions by 30%.

Some related work has also demonstrated that air pollution and weather affect rates of road

traffic accidents (Leard and Roth, 2015; Sager, 2019). Second, we contribute to the broader

literature on the effects of weather on socioeconomic outcomes. We focus on railway systems,

which are an important element of transportation systems but are less studied than other forms

of transportation. Third, our study highlights tradeoffs between, on the one hand, speed and

tonnage—which determine railroad profits—and, on the other hand, safety. We motivate this

tradeoff with economic intuition that in turn leads us to a set of policy recommendations.

2 Data and methods

2.1 Weather

Weather data for the contiguous United States is calculated from the PRISM weather dataset

is processed in a way that holds “fixed” the set of weather stations and harmonizes them into a

complete panel (details of this process can be found here) before transforming observations—in

this case, temperature and precipitation—into a gridded product with a 2.5×2.5 mile resolution.

We calculate daily temperature as the average of daily maximum and minimum temperatures,

a method often deployed in studies focused on daily mean temperature values (Deryugina and

Hsiang, 2014). Figure S4 displays aspects of the distribution of temperatures between 1997 and

2019 across the contiguous United States.

2.2 Railway incidents, injuries, and deaths

Railway incident data comes from the Federal Railroad Administration (FRA). Our study uses

two distinct FRA datasets: Rail Equipment Accident/Incident data (REA/I data, submitted by

completing “Form 54”) and Injury/Illness Summary - Casualty data (I/IS-CD data, submitted

by completing “Form 55A”). Before collapsing to the county–day level, we collapse the REA/I
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data by incident (the unit for the raw data is a report, and single incidents can and often

do generate multiple reports). The unit of the I/IS-CD data is a single illness or injury, so

a preliminary collapse is not needed. Though the REA/I data reports counts of injuries and

deaths, these counts are smaller than the number of injuries and deaths reported in the I/IS-CD

data because REA/I uses a higher reporting threshold. For our analyses of injury and death

counts, we rely on the I/IS-CD data.

We make a small but crucial adjustment to counts of injuries and deaths in the I/IS-CD

data: we omit all events that are described as a suicide in the narrative included with each

record.

For each incident in the REA/I data, the FRA reports one of 13 incident types, including

derailments, collisions, incidents at grade crossings, explosions, and other events. FRA also

documents the type of trains involved in each accident, including freight trains, passenger

trains, commuter trains, and work trains. We redefine a passenger train as any of ‘Commuter

Train - Pulling,’ ‘Commuter Train - Pushing,’ ‘Passenger Train - Pulling,’ or ‘Passenger Train

- Pushing.’ Critically, all FRA data excludes incidents of mass transit operations in an urban

area that are not connected with the national network of mainline rail.

Throughout, we compare overall results from our empirical approach with the tally of acci-

dents actually attributed to weather by reporting entities. We define an incident as “weather

attributed” if the primary cause code or contributing cause code is one of a set of weather related

codes (codes M101–105, M199, M306, and T002) or if the accompanying narrative includes a

weather-related word (such as “rain,” “wind,” “temperature,” or “frostbite”). We manually

verified 1000 records to ensure that this method correctly identifies weather-related incidents.

Figure 1 shows the total number of incidents for each county between 1997 and 2019.

2.3 Empirical framework

We estimate a flexible Poisson relationship between rail safety outcomes and weather, similar

to Deschenes and Greenstone (2011) and Hsiang (2016), as follows:

yit = exp(
M∑

m=1

βmtemp binm
it +

N∑
n=1

βnprecip binn
it + γit)εit (1)

where temp binm
it is a dummy variable that measures whether mean temperature in county i

on day t falls in the bin m. Mean daily temperature is calculated as the average between the

daily maximum and daily minimum temperature. We group mean temperature into 17 bins

(M = 17), with the hottest bin covering temperature above 30◦C, the coldest bin covering

temperature below −15◦C, and 3◦C temperature increments. The 12–15◦C bin, which includes

the mean temperature, is used as the reference bin; the coefficient βm then captures the marginal

effect of shifting a county-day from the 12–15◦C bin to bin m. Similarly, precip binn
it is binned

total daily precipitation, in millimeters, in county i on day t, with the reference bin set to the
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0–1 mm bin.

yit is the outcome of interest, typically the count of accidents or the count of some subtype

of accident that occurred in county i on day t. γit includes county-by-month fixed effects, which

adjust for seasonal weather variation by county, and state-by-year fixed effects, which adjust for

state-level annual conditions. We adopt a Poisson GLM approach due to the large number of

zero-valued county–day observations in our sample (Chen and Roth, 2022). We cluster standard

errors at the county level, which accounts for auto-correlation over time within a county.

To aid visualization, in Figure 2, we replace our binned approach with a continuous natural

cubic spline in temperature (with knots placed at the 10th, 50th, and 90th percentiles of the

historical temperature distribution).

The identification assumption requires that percent deviations from average risk in a county–

month when the temperature is different from the local mean are uncorrelated with unobserved

factors. Temperature fluctuations relative to a seasonal mean are random, and train schedules

are decided in advance. While it is possible that the quantity of people or goods moving on

a given day can be related to weather, we believe these effects are likely to be small and to

bias our results downward. Under the assumption of zero behavioral change, β is the causal

effect of temperature on railway events, namely the percent deviation from average accident

risk resulting temperature and precipitation exposure.

2.4 Waybills

Our main empirical approach assumes a Poisson relationship between our outcomes of interest

and covariates. In supplementary analyses, we instead attempt to convert these count outcomes

to rates. The incident data contain information only on incidents, without accompanying in-

formation about the degree of exposure (in terms of cars, car-miles, etc. per county-day). We

use a separate dataset to impute values for this denominator: the Confidential Carload Waybill

Sample (CCWS) from the U.S. Department of Transportation’s Surface Transportation Board.

The CCWS is a stratified sample of carload waybills for all U.S. rail traffic submitted by large

rail carriers (those terminating 4500 or more revenue carloads annually). Waybills are a non-

negotiable transport document nominating a rail carrier to transport a shipment. Waybills are

generally issued at the point that a shipment is received by a rail carrier.

Individual CCWS records contain a substantial amount of information, including informa-

tion related to billing, shipment characteristics, shipment routing, and all companies handling a

shipment during transit. We use the waybill date (which we take as a proxy for shipment start

date), origin and destination counties, and shipment carloads to approximate the movement of

rail cars across the U.S. freight rail network.

Our procedure starts with the North American Rail Network Lines dataset maintained by

the Bureau of Transportation Statistics. We link each county in the U.S. to a segment of the

U.S. rail network by finding the segment closest to the county’s center of population. We then
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use Dijkstra’s algorithm to find the shortest path along rail main lines for each county pair. We

assume that shipments follow these shortest paths at a constant speed (30 miles per hour) and

start at midnight on the date the waybill is generated, which gives us a panel of the counties that

each shipment traversed on each day of our sample. We aggregate these shipments as cars and

car-miles per county–day, which we use alternatively as an offset in our main specification and

as a denominator for our outcome variables (e.g., instead of estimating the relationship between

covariates and percent changes in injuries, we estimate the relationship between covariates and

the number of injuries per car-mile).

A diagram depicting the data setting for this routing exercise is shown in Figure 3.

3 Results

3.1 Weather and railway incidents

Figure S4 displays the distribution of daily mean temperatures across the 21.6 million county-

days in our 23-year sample. Here, the green kernel density estimate depicts the distribution

of annual “rail neutral” temperatures by county (the annual mean of location-specific 99th-

and 1st-percentile daily average temperatures). The blue kernel density estimate depicts the

density of historical daily average temperature exposures for county-days without recorded rail

incidents leading to casualties; by contrast, the red kernel density estimate depicts the distri-

bution of temperatures for county-days with recorded rail incidents leading to a casualty. As is

suggested by this figure, the skewness of the overall temperature exposure distribution results

in a large amount of probability mass warmer than the distribution of rail installation temper-

atures, suggesting that heat may cause relatively more stress to rail infrastructure. Notably,

county-days with casualty incidents exhibit more probability mass on the hot side of overall

historical temperatures, especially at the highest temperatures and for temperatures just above

the distribution of rail-neutral temperatures– -around 20◦C to 25◦C. Specifications that use a

binned approach to estimating temperature–accident relationships are noisier for the highest

and lowest bins, as those bins contain substantially less data; for example, over our sample

period, the portions of all county-days with average temperatures over 27◦C and 30◦C are 6.4%

and 0.8%, respectively.

Figure 1 shows the total number of equipment incidents for each county 1997–2019. Counties

with no recorded equipment incident during this period are shown in white and are excluded

from our empirical analysis as we cannot distinguish counties without any rail service from

those with rail service that experienced no accidents. Notably, metropolitan areas—such as

Los Angeles, Chicago, New York, and Houston—experience more accidents than the average

rural county. This may be unsurprising, as they also likely have more rail exposure, both in

passenger counts and freight movement. That said, a number of low population states and

counties, especially in the middle of the country, nonetheless experience a large number of
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accidents. For example, Nebraska, which has less than 0.6% of the U.S. population, is the site

of 3.4% of accidents in our sample. As a result, the correlation between county population and

historical accident count is less than 0.6. Together, county area and population only explain

about 40% of the variation in historical accident counts. Overall, the states with the largest

number of incidents during 1997–2019 are Texas (11.2% of the total), Illinois (9.4%), California

(6.0%), Nebraska (3.4%), and Pennsylvania (3.3%).

Table 1 reports the impact of exposure to different temperature and precipitation bins on

railway accidents by estimating equation (1). In Column (1), all the coefficients on temperature

bins are significantly positive when the temperature is above 24◦C or below 6◦C. This confirms

both hot weather and cold weather affect train safety. When the temperature is above 27◦C,

equipment failures increase by around 10% relative to the mean.

In Columns (2) to (4), we find similar nonlinear effects of temperature on casualty events,

deaths and injuries. Point estimates increase as temperature bins move away from the mean.

Single days at temperatures above 30◦C are associated with a 27% increase in casualty events,

a 25% increase in injuries, and a 57% increase in deaths. The magnitude of the effect is larger

than that for incidents overall, suggesting that the subset of incidents caused by temperature

tend to be more harmful to health than other accidents in the data. The opposite is true for

rainfall, which appears to generate incidents that are less harmful to health (i.e., effects of

rainfall on incident count are larger than effects on injuries and deaths).

Figure 2 highlights the nonlinearity of estimated temperature–accident relationships, but

replaces our binned temperature approach with a continuous natural cubic spline with three

internal knots at the 10th, 50th, and 90th percentile of historical temperature exposure. Across

the four subplots of this figure, it is evident that both cold and heat lead to increased numbers

of rail accidents, incidents leading to a casualty of any type, and injuries and deaths resulting

from railway incidents. Counts of accidents overall are minimized around 18◦C (or 64◦F),

and rise nearly symmetrically to an associated rate of around 1 accident per 1000 county-

days of exposure at 5th and 95th percentile average daily temperatures (−5.8◦C and 27.6◦C,

respectively), though the slope is steeper for exposure to heat. The count of incidents leading

to a casualty are minimized at a somewhat lower temperature than accidents overall, leading

the effect of exposure to 5th percentile (cold) temperatures on casualty incidents to be about

1/3 the effect size of exposure to 95th percentile (hot) temperatures. The third subplot depicts

the relationship between temperature and counts of injuries; here, we find that 5th and 95th

percentile temperature exposure leads to around 2 and 3 more injuries per 1000 county-days of

exposure, respectively. The fourth subplot depicts the relationship between temperature and

counts of deaths; here, we find that 5th and 95th percentile temperature exposure leads to

around 0.2 and 0.3 more deaths per 1000 county-days of exposure, respectively. In other words,

the exposure of 20% of U.S. counties to one week of average temperatures around 85◦F would

cause one additional death due to incidents on railroads.
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3.1.1 Alternative model with imputed exposure estimate

As an alternative to main model, we reproduce our main results using two alternate specifi-

cations for our outcomes of interest. Both rely on our development of an imputed measure

of exposure (i.e., cars traversing a county on a given day or car-miles traveled during on a

county-day). In the first alternate specification, we add this imputed measure of exposure as an

offset in our Poisson model. We find largely similar results (Table S2). In our second alternate

specification, we use our imputed measure of exposure as a denominator, essentially converting,

for example, the count of incidents on a county–day to the count of incidents per car–mile on a

county day. We then re-estimate our main specification as a linear rather than Poisson model.

To estimate this model, we must make two changes to the data: first, we drop county–days for

which we impute that the number of car–miles is zero (this would result in dividing our out-

come by zero); second, we winsorize the top 1% of nonzero county–day rates. Together, these

two adjustments lead us to drop about 1.2% if the data. Using this alternate specification, we

estimate roughly similar overall effects of weather on rail safety, but our point estimates are

noisier (Table S4). We attribute these larger standard errors to the noise in our imputed ex-

posure estimate, which relies on assumptions about shipment routing and transit speed. These

assumptions likely result in nonclassical measurement error in the dependent variable (which is

a ratio). We thus find it challenging to attach a clear interpretation to our results using this

modeling approach.

3.2 Heterogeneity by train type (freight v. passenger)

In Table 2, we separate accidents for freight trains and passenger trains. We find suggestive

evidence that freight trains—and especially trains carrying hazardous materials—are less sen-

sitive to weather than passenger trains. For example, temperatures between −3 and −6◦C are

associated with a 53% increase in passenger train incidents, a 34% increase in freight train

incidents, and a 19% increase in incidents involving freight trains transporting hazardous ma-

terials. When temperatures are above 30◦C, passenger trains experience a 118% increase in

incident count, whereas freight trains experience only a 23% increase and hazardous materials

trains experience essentially no change. We believe some of this may be explained by a greater

flexibility in freight schedules. An alternate explanation is that passenger trains on average

travel at a much higher speed than freight trains, making them more vulnerable to equipment

or track problems caused by the weather.

3.3 Heterogeneity by accident type

We separately estimate the temperature impact on different types of equipment incidents in Ta-

ble S3. Derailments are much more frequent than the other accident types we study, accounting

for 60.6% of all incidents. Our results in columns (1)–(4) suggest that derailments drive most of
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our results. Very hot weather (temperature higher than 30◦C) increases derailments by about

16% relative to the mean, an effect size similar in magnitude to that found in prior work (Liu

et al., 2012). Colder weather is also harmful, with temperatures below 3◦C associated with at

least a 20% increase in derailments. By contrast, we do not estimate statistically significant

effects on collisions, accidents at grade crossings, or fires/explosions. Our specification including

fixed effects, temperature, and precipitation also has a higher predictive power for derailments,

as indicated by a larger R2, than for other incident types.

3.4 Heterogeneity by climate

We separately estimate equation (1) for counties with different climates.3 Figure S3 plots the

marginal effect of a single county–day of a given temperature on the count of safety incidents.

Following prior work (Barreca et al., 2016; Carleton et al., 2022), we hypothesize that effects

of high temperatures on operations in the warmest U.S. counties will be higher than effects of

similar temperatures on cold counties. This is indeed what we find. We also find that effects

in warmer counties are minimized at a higher temperature (around 21◦C), whereas the coldest

counties experience the lowest number of safety incidents at colder temperatures (around 9◦C).

The coldest counties in the U.S., however, experience a wider range of temperatures throughout

a typical year, which may explain why we also find that marginal effects at the 1st and 99th

percentile temperatures for these counties are larger than effects at the 1st and 99th percentile

temperatures for counties with the warmest climates.

4 Adaptation

We explore three possible dimensions along which rail operators may be adjusting behavior to

reduce the harmful effects of weather: learning (a general concept possibly inclusive of other

channels), delaying trains, slowing trains, and changing train length (longer and heavier trains

are harder to control).

4.1 Learning from previous accidents

One behavioral response is learning from previous accidents. Train operators may be more

cautious after experiencing a safety incident. We use a two-stage Poisson generalized linear

model to test whether train operators learn from previous accidents by estimating the following

equation:

yit = exp(
M∑

m=1

βmtemp binm
it +

N∑
n=1

βnprecip binn
it + αŷs,t−1 + γit)εit (2)

3We use the average between the top 1% and the bottom 1% temperature 1997–2019 to classify counties,
which we believe approximates “rail neutral” temperature for a location.
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where ŷs,t−1 is the total number of accidents in the state containing county i in the calendar

year before day t. We estimate predicted events at the county–day level using equation (1). We

the sum up predicted values to the state–year level to code ŷst. We assume a state is the correct

geography for learning because we believe that matches the scale at which safety incidents are

most salient. In our model, coefficient α captures the impact of last year’s predicted number of

statewide incidents (via exposure) on this year’s number of incidents conditional on last year’s

temperature fluctuation. A negative sign, as seen in column (1) for overall incident count, would

imply that prior incidents due to weather are resulting in a behavioral response that improves

future safety. Despite some evidence that this is the case for the overall number of incidents,

we see no evidence that operators are learning, year-over-year, how to reduce the more serious

safety incidents—i.e., those leading to casualties or even death.

4.2 Train delays

Another behavioral response lies in train delays. Railway operators may take extra time before

train departure and arrival to avoid accident risks. To study the relationship between tempera-

ture and delays, we obtain railway on-time performance data from Amtrak Timetable Archives.4

To construct the sample, we scrape scheduled and actual departure time and the occurrence of

cancellation for all trains departing from 25 large U.S. train stations from January 2009 to De-

cember 2018. Locations, temperature, and daily number of trains are shown in Figure S6. We

merge train delays with departing airports’ daily temperature and precipitation and estimate

equation (1).

In Table S7, single days above 30◦C lead to 7.3 minutes of departure delays—an 89% increase

relative to the mean delay time—and temperatures below −20◦C lead to an over 50 minute

delay—a 625% increase relative to the mean. The total extra delay from weather exposure is 3.9

hours per day per station, taking all trains together. On days above 30◦C, trains also experience

2.8 percentage points more likely to experience a service disruption; on days below −10◦C, this

value is at least 3%. Hot weather is not associated with significant changes in cancellations,

though weather below freezing is strongly associated with at least a 1 percentage point increase

in cancellations. Figure S7 plots the fitted restricted cubic spline using departure stations’ daily

temperature and train performances with 10 knots. There is a convex relationship between

temperature and train delay, while we find no effect of hot weather on train cancellations.

These results suggest that our estimates for safety incidents do not capture the full social

(or even private) cost of weather on train operations, as a nonzero portion of these costs come

through the channel of delays and cancellations, which are costly.

4The data can be downloaded here: www.juckins.net/amtrak timetables/archive/home.php. Note that this
portion of our analysis focuses only on passenger services, omitting freight and intraurban services. Any claims
made may also hold for other rail service types, though the exact magnitudes for other types of service are not
observable.
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4.3 Railway speed

We also assess the impact of hot weather on train speeds during transit, as departure and

arrival delays may not fully capture changes in speed or temperature exposure. Since faster

trains are associated with higher accident risks, railway dispatchers implement speed limits and

slow orders in response to weather conditions. The relationship between temperature and speed

is then a joint adaptation effort by both train drivers and railway operators.

We obtain train speed data from Amtrak Status Maps.5 For each train, we observe train

number, coordinates, heading direction, and speed every 10 minutes or more frequently. There

are 689 different routes (train numbers) in total, with an average of 290 routes per day. We

then merge temperature at the county-day level with train speed.

In Figure S5, we observe a similar nonlinear relationship between temperature and train

speed. Both high and low temperatures lead to slower trains. The magnitude at 99th percentile

temperatures is twice as large as the magnitude at 1st percentile temperatures. A temperature

range of 20–25◦C results in a 1 mph decrease in train speed, equivalent to the speed decrease

when the temperature is -20◦C. When the temperature reaches above 40◦C, the speed decrease

is around 2.5 mph.

These results show that train operators are changing operations in response to temperature,

suggesting adaptive behavior. In the absence of this adaptation, we expect that safety incidents

would be more common.

4.4 Train lengths

The U.S. freight trains are mainly operated by private companies. They face a tradeoff between

adding more freight cars and avoiding accident risks. With one train engine, an extra freight

car generates high marginal revenue with low marginal costs. However, longer trains are on

average heavier and are thus harder to control with the same number of locomotives.

To understand how freight train lengths affect accident risks, we perform a company-county-

day level analysis to disentangle the role of train operators:

Yict =
K∑
k=1

βkTempbink
it + Precit + ϕLengthsict + ηc + γit + λt + εict (3)

where Yict is the number of freight train accidents in county i on day t that happen on trains

owned by company c 1997–2000. We use all Class 1 Railroad companies to construct our sample.

Company list and characteristics are reported in Table S1. Among these 10 Class 1 companies,

the number of freight incidents over these four years ranges between 2 and 1582, with an average

of 461.

5Real-time data is available from the Amtrak Track-A-Train service: https://www.amtrak.com/track-your-
train.html. Historical data since December 2016 is scraped and made publicly available by Intercity Rail Map:
https://asm.transitdocs.com/
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On the right-hand side, Tempbink
it, Precit, γit and λt are the same variables as those in

equation (1), including county-day level weather variables, local seasonality, annual differences

in each state, and day of week fixed effects. Lengthsict is the average number of freight cars in

each train with failure. We use the sum of loaded and unloaded freight cars to code total lengths.

In our sample, the number of freight cars for each train varies between 29 and 95, and the mean

is 70. Since we are not able to observe trains without accidents, ϕ captures the intensive margin

of accident risks. We add company fixed effects in ηc to capture each company’s time-invariant

conditions.

Table S5 Column (1) shows similar nonlinear patterns as those in Table 1. Temperature bins

above the average bin witness significant increases in freight equipment failures. When weather

is hotter than 27◦C and 30◦C, the number of events increases by 0.05×10−3 and 0.07×10−3 at the

company-county-day level, equivalent to 40.4% and 54.4% of the mean. The magnitude of results

is more striking than that in the county-day level analysis, suggesting heat stress generates more

severe damage on companies operating more freight trains. Column (2) adds company fixed

effects and reports very similar estimates on hot bins, suggesting a robust nonlinear relationship

between temperature and freight accidents. R2 is small and has almost no change from .0007

to .0009. This indicates that companies have little predicting power of accident risks.

In Columns (3) and (4), the length of freight cars is associated with a higher risk of equipment

failure. As the number of freight cars increases by 1 per train, the number of incidents increases

by 0.014 per company-county-day. Column (5) and (6) show freight lengths also make heat

stress more severe, captured by positive estimates on the interaction terms of freight length

and temperature bins above 27◦C. Estimates on interaction terms with cold bins are negative,

suggesting cold-induced accidents are less severe on longer trains. Among all freight train

companies, the average number of freight cars per train is 67, and the maximum is 204. Moving

from the 75th quartile (98) to the 25th quartile (36) could decrease heat-induced accidents by

0.9 per company-county-year.

5 Conclusion

Railway systems play a vital role in economic activity—a role that is growing in importance over

time. While it is known that weather affects rail safety, the overall magnitude of these effects

is unknown. By leveraging methods from the climate impacts literature, we shown that the

number of safety incidents attributed to weather undercount the number of incidents caused by

weather by a factor of four. We demonstrate that this is true for a range of outcomes, including

injuries and deaths from safety incidents. We also explore mechanisms through which train

operators adapt to weather risk. Our results suggest that adaptation increases train safety, but

that the external costs of accidents may not be fully internalized.

Prior work documenting the potential effects of climate change on the U.S. rail network,
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including Chinowsky et al. (2019) and Neumann et al. (2021), has not assessed the costs or

damages associated with safety incidents. We find that these are , but these can be large.

Over our sample period, railroads report $507 million in damages to rail infrastructure per year

due to accidents. Our results suggest that around $48 million of those costs are caused by

temperature exposure, with about half of expenses related to cold and half related to heat. A

uniform 2◦C shift in the historical temperature distribution, without corresponding adaptation,

would increase overall temperature-related damages by around $10 million annually. The sizes

of these effects are much larger if one monetizes associated injuries and deaths.

We find that precipitation and temperature exposure cause around 8.5% of the 3000 reported

annual safety incidents experienced on the U.S. rail network, as well as around 4.9% of casualties.

Importantly, we find that reporting entities have attributed only 15 historical deaths (3735

injuries) to weather, while we find that weather was causative of around 108 historical deaths

(7145 injuries). Applying a reasonable estimate for the value of a statistical life ($10 million)

approximately doubles our estimate of the annual costs of weather exposure on U.S. railroads.

Assuming reported injuries fall evenly into Abbreviated Injury Codes(Palmer et al., 2016) 1 and

2 and applying a common U.S. government approach to valuing quality of life loss from injury

(Spicer and Miller, 2010), our estimates increase to approximately $175 million annually.

Railroads have long understood that weather affects the safety of their operations. We

have shown that rail operators delay train departures, slow trains down, and learn from past

weather exposure how to reduce future accidents. We have also shown that rail operations are

adapted to their local climate. Nonetheless, weather exposure causes around 8.5% of annual

rail safety incidents—four times greater than the count officially acknowledged by rail operators

in incident reports. Overall, U.S. railroads report about 703 safety incidents per year involving

hazardous materials, 49 of which lead to a hazardous materials release; rail accidents are also

associated with 834 direct annual deaths and 9449 direct annual injuries—the latter leading to

over 300,000 days of missed or restricted work. Even a modest valuation of the health conse-

quences of rail accidents suggests that most costs are borne by employees and the communities

in which railroads operate, which may suggest a role for enhanced safety regulations. Climate

change will also reallocate weather risks, making existing rail system adaptations—which rely

on particularly fixed assets—less effective, decreasing safety overall. This suggests a need for

greater expenditure on adaptation.
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Figure 1: Rail safety incidents across the U.S.
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Notes: This figure depicts the total number of rail accidents at the county level between 1997 and 2019. Counties without
no recorded accidents are shown in white.

Figure 2: Temperature and railway accidents
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Notes: The estimated relationships between daily average temperature four outcomes: the number of incidents/accidents,
the number of incidents/accidents leading to a casualty, the number of injuries, and the number of deaths. Note that the
y-axis scales differ and that the values shown are for 1000 county–days of exposure at the indicated temperature. The

x-axis is shown from the 1st percentile of historical cold exposure and up to the maximum of historical heat exposure to
improve presentation while still exhibiting the portion of the relationship relevant for the changing climate. Due to the
fixed effects specification, the level of each relationship is identified relative to minimum effect temperature, which we set

to zero. The full empirical specification is as in 1, though we replace bins of temperature with basis functions for a
natural cubic spline with knots at the 10th, 50th, and 90th percentile of historical temperature exposure. In each plot,

the shaded areas represent 99%, 95%, 90%, 80%, and 50% simultaneous confidence intervals for each spline.
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Figure 3: North American rail network, sample route, and estimated “treatment” counties

County boundaries
U.S. mainline rail network
Non-U.S. North American rail network
“Treated” counties

Notes: This diagram depicts the North American rail network used to route waybills for the portion of our analysis that
relies on an imputed measure of train exposure intensity. The U.S. portion of the North American rail network used for
waybill routing is depicted in green. A sample route as determined by our algorithm, from Bertie County, NC to Lane
County, OR, is shown as the blue path. At an assumed transit speed of 30 mph, this path takes around 4.6 days to

complete.
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Table 1: Effects on main outcomes for all trains (Poisson model)

Dep. variable: Incident count Casualty occurrence Injuries Deaths

precip ∈ (1,2] mm 0.0413∗ 0.0288∗∗ 0.0347 0.0088
(0.0210) (0.0107) (0.0233) (0.0639)

precip ∈ (2,5] mm 0.0731∗∗∗ 0.0477∗∗∗ 0.0355∗∗∗ -0.0053
(0.0166) (0.0108) (0.0119) (0.0587)

precip ∈ (5,10] mm 0.1305∗∗∗ 0.0744∗∗∗ 0.0761∗∗∗ -0.0926
(0.0209) (0.0111) (0.0124) (0.0608)

precip ∈ (10,20] mm 0.1567∗∗∗ 0.0708∗∗∗ 0.0691∗∗∗ -0.1226
(0.0207) (0.0154) (0.0203) (0.0767)

precip ∈ (20,50] mm 0.2363∗∗∗ 0.0852∗∗∗ 0.0727∗∗∗ -0.1627
(0.0251) (0.0222) (0.0262) (0.1089)

precip ∈ (50,100] mm 0.6255∗∗∗ 0.1785∗∗∗ 0.1473∗∗∗ 0.3353∗

(0.1240) (0.0466) (0.0466) (0.1962)
precip > 100 mm 0.3959 -0.0944 -0.0045 -9.098∗∗∗

(0.2753) (0.2568) (0.2636) (0.0282)
temp < −15◦C 0.3816∗∗∗ 0.3699∗∗∗ 1.022∗∗∗ 0.7965∗∗∗

(0.0663) (0.0570) (0.3799) (0.2002)
temp ∈ (-15,-12]◦C 0.2375∗∗∗ 0.3205∗∗∗ 0.2967∗∗∗ 0.4489∗

(0.0550) (0.0463) (0.0564) (0.2477)
temp ∈ (-12,-9]◦C 0.1650∗∗∗ 0.2707∗∗∗ 0.2419∗∗∗ 0.3595

(0.0478) (0.0335) (0.0649) (0.2561)
temp ∈ (-9,-6]◦C 0.1635∗∗∗ 0.1864∗∗∗ 0.1662∗∗∗ 0.3979∗∗

(0.0438) (0.0251) (0.0402) (0.1650)
temp ∈ (-6,-3]◦C 0.1548∗∗∗ 0.1710∗∗∗ 0.1611∗∗∗ 0.2568

(0.0322) (0.0182) (0.0371) (0.1649)
temp ∈ (-3,0]◦C 0.1433∗∗∗ 0.1113∗∗∗ 0.1183∗∗∗ 0.1446

(0.0255) (0.0195) (0.0393) (0.1655)
temp ∈ (0,3]◦C 0.1059∗∗∗ 0.0208 0.0094 0.1857

(0.0282) (0.0158) (0.0223) (0.1342)
temp ∈ (3,6]◦C 0.1183∗∗∗ -0.0106 -0.0011 0.3228∗∗∗

(0.0258) (0.0154) (0.0316) (0.1006)
temp ∈ (6,9]◦C 0.0238 -0.0294 -0.0457∗ 0.1533

(0.0201) (0.0178) (0.0237) (0.1122)
temp ∈ (9,12]◦C 0.0108 0.0072 -0.0026 0.0840

(0.0211) (0.0105) (0.0148) (0.1079)
temp ∈ (15,18]◦C -0.0054 0.0178 0.0504∗ 0.1473∗∗

(0.0178) (0.0120) (0.0287) (0.0619)
temp ∈ (18,21]◦C 0.0006 0.0355∗∗∗ 0.0278 0.0017

(0.0260) (0.0129) (0.0195) (0.0706)
temp ∈ (21,24]◦C 0.0211 0.0569∗∗∗ 0.0658∗∗∗ 0.1727∗∗

(0.0253) (0.0142) (0.0241) (0.0820)
temp ∈ (24,27]◦C 0.0582∗ 0.0864∗∗∗ 0.0831∗∗∗ 0.2602∗∗

(0.0326) (0.0144) (0.0237) (0.1048)
temp ∈ (27,30]◦C 0.1041∗∗ 0.1677∗∗∗ 0.1575∗∗∗ 0.3478∗∗

(0.0417) (0.0169) (0.0250) (0.1308)
temp > 30◦C 0.0906∗∗ 0.2384∗∗∗ 0.2226∗∗∗ 0.4491∗∗

(0.0440) (0.0210) (0.0308) (0.1944)

Dep. variable mean 0.0033 0.0092 0.0098 0.00026

Fit statistics
Observations 20,580,000 20,580,000 20,580,000 20,580,000
Squared Correlation 0.03019 0.17618 0.05326 0.00212

Clustered (state) standard-errors in parentheses
Signif. Codes: ***: 0.01, **: 0.05, *: 0.1

Note: Due to our use of a Poisson model, effects should be interpreted as eβ − 1 percent changes from the mean.
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Table 2: Effects on incident count by train type (Poisson model)

Dep. variable: Passenger trains Freight trains Hazmat trains

precip ∈ (1,2] mm 0.0682 0.0467∗∗ 0.0307
(0.0743) (0.0223) (0.0431)

precip ∈ (2,5] mm -0.0060 0.0811∗∗∗ 0.0226
(0.0600) (0.0171) (0.0312)

precip ∈ (5,10] mm 0.0580 0.1387∗∗∗ 0.1253∗∗∗

(0.0629) (0.0252) (0.0364)
precip ∈ (10,20] mm 0.1692 0.1298∗∗∗ 0.2024∗∗∗

(0.1068) (0.0279) (0.0310)
precip ∈ (20,50] mm 0.3774∗∗∗ 0.2269∗∗∗ 0.1482∗∗∗

(0.0849) (0.0295) (0.0501)
precip ∈ (50,100] mm 1.017∗∗∗ 0.5898∗∗∗ 0.3487∗

(0.2022) (0.1083) (0.2058)
precip > 100 mm -9.558∗∗∗ 1.049∗∗∗ 0.6257

(0.0197) (0.2546) (0.5160)
temp < −15◦C 0.9914∗∗ 0.5919∗∗∗ 0.4868∗∗∗

(0.4093) (0.0866) (0.0730)
temp ∈ (-15,-12]◦C 0.7859∗∗ 0.4623∗∗∗ 0.2607∗

(0.2946) (0.0994) (0.1361)
temp ∈ (-12,-9]◦C 0.6747∗∗∗ 0.3041∗∗∗ 0.1626∗

(0.1674) (0.0801) (0.0927)
temp ∈ (-9,-6]◦C 0.4447∗∗ 0.2691∗∗∗ 0.1752∗∗∗

(0.1680) (0.0628) (0.0619)
temp ∈ (-6,-3]◦C 0.4315∗∗∗ 0.2915∗∗∗ 0.1708∗∗∗

(0.1171) (0.0475) (0.0636)
temp ∈ (-3,0]◦C 0.1368 0.2719∗∗∗ 0.1993∗∗∗

(0.0989) (0.0377) (0.0471)
temp ∈ (0,3]◦C -0.0693 0.2207∗∗∗ 0.1558∗∗∗

(0.1112) (0.0348) (0.0522)
temp ∈ (3,6]◦C 0.0744 0.1784∗∗∗ 0.1184∗∗

(0.1016) (0.0297) (0.0454)
temp ∈ (6,9]◦C -0.0886 0.0790∗∗∗ 0.0241

(0.0772) (0.0260) (0.0330)
temp ∈ (9,12]◦C 0.0968 0.0437∗ 0.0565

(0.0792) (0.0255) (0.0363)
temp ∈ (15,18]◦C 0.0507 -0.0202 -0.0111

(0.0988) (0.0247) (0.0476)
temp ∈ (18,21]◦C 0.2107∗∗ -0.0189 -0.0215

(0.1001) (0.0446) (0.0679)
temp ∈ (21,24]◦C 0.2211∗∗ 0.0055 0.0335

(0.0922) (0.0448) (0.0655)
temp ∈ (24,27]◦C 0.3506∗∗∗ 0.0287 0.0779

(0.1235) (0.0486) (0.0607)
temp ∈ (27,30]◦C 0.3850∗∗ 0.1300∗∗ 0.1249∗

(0.1533) (0.0624) (0.0626)
temp > 30◦C 0.7815∗∗∗ 0.2055∗∗∗ 0.0342

(0.2647) (0.0622) (0.0810)

Dep. variable mean 0.00018 0.0015 0.00072

Fit statistics
Observations 20,580,000 20,580,000 20,580,000
Squared Correlation 0.00798 0.00647 0.00916

Clustered (state) standard-errors in parentheses
Signif. Codes: ***: 0.01, **: 0.05, *: 0.1

Note: Due to our use of a Poisson model, effects should be interpreted as eβ − 1 percent changes from the mean.
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Online Appendix

S1 Additional Figures

Figure S1: Temperature and railway accidents, malfunction
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Notes: The top panel depicts the estimated relationship between daily average temperature and the count of safety
incidents (one incident may lead to multiple casualties, deaths, etc.). The middle panel depicts the distribution of

historical temperatures across all county–days. The bottom panel bins the middle panel by year and multiplies it by the
top panel, resulting in the estimates number of safety incidents resulting from each bin of temperature exposure across

the entire U.S. each year. The x-axis is shown from the 1st percentile of historical cold exposure and up to the maximum
of historical heat exposure to improve presentation while still exhibiting the portion of the relationship relevant for the
changing climate. Due to the fixed effects specification, the level of each relationship is identified relative to minimum

effect temperature, which we set to zero. The full empirical specification is as in 1, though we replace bins of temperature
with basis functions for a natural cubic spline with knots at the 10th, 50th, and 90th percentile of historical temperature
exposure. In each plot, the shaded areas represent 99%, 95%, 90%, 80%, and 50% confidence intervals for each spline.
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Figure S2: Temperature and railway accidents, events with death or injury

0%

25%

50%

75%

E
ve

nt
s 

w
ith

 d
ea

th
 o

r 
in

ju
ry

Pooled response (across all "rail neutral temperature" groups)

0.00

0.01

0.02

0.03

D
en

si
ty

0

10

20

30

40

−20 0 20 40
Temperature

A
nn

ua
l t

ot
al

Notes: The top panel depicts the estimated relationship between daily average temperature and the count of casualties.
The middle panel depicts the distribution of historical temperatures across all county–days. The bottom panel bins the
middle panel by year and multiplies it by the top panel, resulting in the estimates number of casualties resulting from

each bin of temperature exposure across the entire U.S. each year. The x-axis is shown from the 1st percentile of
historical cold exposure and up to the maximum of historical heat exposure to improve presentation while still exhibiting
the portion of the relationship relevant for the changing climate. Due to the fixed effects specification, the level of each
relationship is identified relative to minimum effect temperature, which we set to zero. The full empirical specification is
as in 1, though we replace bins of temperature with basis functions for a natural cubic spline with knots at the 10th,
50th, and 90th percentile of historical temperature exposure. In each plot, the shaded areas represent 99%, 95%, 90%,

80%, and 50% confidence intervals for each spline.
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Figure S3: Heterogeneity across baseline temperature
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Notes: Rail neutral temperature is defined as the mean of a county’s 1st and 99th percentile temperatures.
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Figure S4: Distribution of daily mean temperature, 1997-2019 (◦C)
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Notes:
The density of historical temperature exposures. The blue kernel density estimate depicts the historical density of daily

average temperature exposures. The green kernel density estimate depicts the distribution of annual rail neutral
temperatures by county (the mean of annual maximum and minimum temperatures, which is ideally the temperature at
which rail is installed). The red kernel density estimate depicts the distribution of temperatures for county-days on which

rail accidents occurred.

Figure S5: Train speed and ambient temperature (Amtrak)

Notes: The estimated relationship between average temperature and the speed of Amtrak trains by county–day. The
main relationship is modeled as a natural cubic spline with knots at the 10th, 50th, and 90th percentile of historical
temperature exposure, with county-by-train route fixed effects. The shaded areas represent 99%, 95%, 90%, 80%, and

50% simultaneous confidence intervals for each spline.

23



Figure S6: Locations of 25 large train stations in the U.S.

Notes: Daily mean temperature averaged over 10 years is denoted by color. Daily average number of trains is denoted by
size, 6 to 86 trains per day.

Figure S7: Nonlinear impact of temperature on on-time performances

Notes: This figure shows temperature and predicted performance using restricted cubic splines. The dash lines indicate
the 95% confidence intervals.
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S2 Additional Tables

Table S1: Class 1 railway companies

Railroad code Company name #Events #Freight cars
1997-2000 per train

UP Union Pacific Railroad Company 1582 73.7
BNSF BNSF Railway Company 1303 74.4
CSX CSX Transportation 779 67.8
NS Norfolk Southern Railway Company 518 68.6
KCS Kansas City Southern Railway Company 178 63.8
IC Illinois Central Railroad Company 124 78.3
SOO SOO Line Railroad Company 75 72.9
GTW GRAND TRUNK WESTERN RAILROAD INC. 43 72.7
CR Conrail 4 94.5
CRSH Consolidated Rail Corporation 2 29.0
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Table S2: Effects on main outcomes for all trains (Poisson model, car–miles offset)

Dep. variable: Incident count Casualty occurrence Injuries Deaths

precip ∈ (1,2] 0.0426∗∗ 0.0294∗∗∗ 0.0353 0.0120
(0.0210) (0.0105) (0.0231) (0.0639)

precip ∈ (2,5] 0.0762∗∗∗ 0.0506∗∗∗ 0.0384∗∗∗ -0.0037
(0.0169) (0.0107) (0.0117) (0.0593)

precip ∈ (5,10] 0.1344∗∗∗ 0.0778∗∗∗ 0.0793∗∗∗ -0.0911
(0.0210) (0.0108) (0.0121) (0.0609)

precip ∈ (10,20] 0.1609∗∗∗ 0.0746∗∗∗ 0.0729∗∗∗ -0.1199
(0.0210) (0.0154) (0.0204) (0.0772)

precip ∈ (20,50] 0.2410∗∗∗ 0.0898∗∗∗ 0.0776∗∗∗ -0.1661
(0.0248) (0.0222) (0.0259) (0.1105)

precip ∈ (50,100] 0.6273∗∗∗ 0.1881∗∗∗ 0.1579∗∗∗ 0.3367∗

(0.1225) (0.0463) (0.0464) (0.1949)
precip > 100 mm 0.4282 -0.0784 0.0099 -8.959∗∗∗

(0.2646) (0.2521) (0.2594) (0.0275)
temp < −15◦C 0.3979∗∗∗ 0.3914∗∗∗ 1.043∗∗∗ 0.7855∗∗∗

(0.0679) (0.0530) (0.3794) (0.1990)
temp ∈ (-15,-12]◦C 0.2379∗∗∗ 0.3366∗∗∗ 0.3108∗∗∗ 0.4775∗

(0.0526) (0.0445) (0.0538) (0.2473)
temp ∈ (-12,-9]◦C 0.1733∗∗∗ 0.2905∗∗∗ 0.2597∗∗∗ 0.3850

(0.0487) (0.0291) (0.0616) (0.2559)
temp ∈ (-9,-6]◦C 0.1679∗∗∗ 0.1978∗∗∗ 0.1759∗∗∗ 0.4152∗∗

(0.0450) (0.0255) (0.0398) (0.1633)
temp ∈ (-6,-3]◦C 0.1597∗∗∗ 0.1816∗∗∗ 0.1702∗∗∗ 0.2703

(0.0338) (0.0178) (0.0340) (0.1637)
temp ∈ (-3,0]◦C 0.1458∗∗∗ 0.1178∗∗∗ 0.1233∗∗∗ 0.1551

(0.0258) (0.0202) (0.0384) (0.1642)
temp ∈ (0,3]◦C 0.1055∗∗∗ 0.0234 0.0100 0.1846

(0.0287) (0.0164) (0.0220) (0.1344)
temp ∈ (3,6]◦C 0.1182∗∗∗ -0.0104 -0.0022 0.3254∗∗∗

(0.0258) (0.0156) (0.0302) (0.0995)
temp ∈ (6,9]◦C 0.0218 -0.0306∗ -0.0472∗ 0.1571

(0.0198) (0.0178) (0.0236) (0.1109)
temp ∈ (9,12]◦C 0.0095 0.0044 -0.0050 0.0855

(0.0211) (0.0101) (0.0146) (0.1081)
temp ∈ (15,18]◦C -0.0068 0.0141 0.0468 0.1482∗∗

(0.0175) (0.0123) (0.0289) (0.0617)
temp ∈ (18,21]◦C -0.0019 0.0315∗∗ 0.0240 0.0006

(0.0254) (0.0128) (0.0196) (0.0708)
temp ∈ (21,24]◦C 0.0177 0.0514∗∗∗ 0.0599∗∗ 0.1720∗∗

(0.0253) (0.0147) (0.0245) (0.0832)
temp ∈ (24,27]◦C 0.0545 0.0814∗∗∗ 0.0775∗∗∗ 0.2586∗∗

(0.0331) (0.0143) (0.0234) (0.1062)
temp ∈ (27,30]◦C 0.0998∗∗ 0.1638∗∗∗ 0.1537∗∗∗ 0.3477∗∗

(0.0419) (0.0171) (0.0258) (0.1338)
temp > 30◦C 0.0810∗ 0.2283∗∗∗ 0.2122∗∗∗ 0.4429∗∗

(0.0426) (0.0209) (0.0318) (0.1971)

Dep. variable mean 0.0033 0.0092 0.0098 0.00026

Fit statistics
Observations 20,580,000 20,580,000 20,580,000 20,580,000
Squared Correlation 0.03019 0.17618 0.05326 0.00212

Clustered (state) standard-errors in parentheses
Signif. Codes: ***: 0.01, **: 0.05, *: 0.1

Note: Due to our use of a Poisson model, effects should be interpreted as eβ − 1 percent changes from the mean.
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Table S3: Effects on count of incidents by subtype (Poisson model)

Dep. variable: Derailments Collisions Grade crossing incidents Fires and explosions

precip ∈ (1,2] mm 0.0804∗∗∗ -0.0139 -0.0783 0.0494
(0.0203) (0.0653) (0.0525) (0.1575)

precip ∈ (2,5] mm 0.1311∗∗∗ -0.0493 -0.0115 -0.0703
(0.0176) (0.0490) (0.0460) (0.1337)

precip ∈ (5,10] mm 0.1718∗∗∗ 0.0377 0.0452 -0.0120
(0.0282) (0.0580) (0.0647) (0.1452)

precip ∈ (10,20] mm 0.1900∗∗∗ 0.1407 0.0587 0.0928
(0.0232) (0.0863) (0.0778) (0.1680)

precip ∈ (20,50] mm 0.2672∗∗∗ 0.0019 0.2613∗∗∗ -0.6011∗

(0.0301) (0.1068) (0.0913) (0.3349)
precip ∈ (50,100] mm 0.3582∗∗∗ 0.8151∗∗∗ 0.3297 0.6241

(0.1076) (0.2314) (0.3326) (0.5399)
precip > 100 mm 0.7071∗∗∗ -8.895∗∗∗ 0.6320 -12.15∗∗∗

(0.2443) (0.0303) (0.7040) (0.0474)
temp < −15◦C 0.4442∗∗∗ -0.1095 0.5107∗ -0.1849

(0.1154) (0.2834) (0.2949) (0.5109)
temp ∈ (-15,-12]◦C 0.3405∗∗∗ 0.3458 0.0376 -12.73∗∗∗

(0.0816) (0.2185) (0.2625) (0.2153)
temp ∈ (-12,-9]◦C 0.3491∗∗∗ -0.5842∗∗∗ -0.0115 -0.3772

(0.0684) (0.1918) (0.2286) (0.5410)
temp ∈ (-9,-6]◦C 0.2489∗∗∗ -0.1683 0.1597 -0.4166

(0.0581) (0.1645) (0.1366) (0.3828)
temp ∈ (-6,-3]◦C 0.2829∗∗∗ -0.1902 0.2606∗∗ 0.1376

(0.0491) (0.1261) (0.1206) (0.3298)
temp ∈ (-3,0]◦C 0.2684∗∗∗ 0.0071 0.1318 -0.1654

(0.0374) (0.1094) (0.1282) (0.2817)
temp ∈ (0,3]◦C 0.2093∗∗∗ -0.0941 0.0634 0.0681

(0.0335) (0.1172) (0.0898) (0.2331)
temp ∈ (3,6]◦C 0.1864∗∗∗ 0.0804 0.0390 0.2606

(0.0312) (0.1007) (0.1024) (0.2040)
temp ∈ (6,9]◦C 0.0727∗∗∗ 0.0756 -0.0851 0.3027

(0.0248) (0.0771) (0.0769) (0.1846)
temp ∈ (9,12]◦C 0.0521∗ -0.0390 0.0758 0.0226

(0.0262) (0.0777) (0.0611) (0.1611)
temp ∈ (15,18]◦C -0.0185 0.0037 0.0187 -0.0549

(0.0217) (0.0845) (0.0669) (0.1596)
temp ∈ (18,21]◦C -0.0229 -0.0172 0.0332 0.0465

(0.0304) (0.0957) (0.0715) (0.1660)
temp ∈ (21,24]◦C 0.0194 0.0537 -0.0028 0.0880

(0.0319) (0.1103) (0.0620) (0.1968)
temp ∈ (24,27]◦C 0.0605 0.0843 0.0129 -0.0241

(0.0406) (0.1118) (0.0800) (0.2425)
temp ∈ (27,30]◦C 0.0534 0.1550 0.2123∗ 0.1336

(0.0387) (0.1631) (0.1102) (0.2949)
temp > 30◦C 0.1460∗∗ -0.2485 0.0883 -0.3953

(0.0583) (0.2114) (0.1343) (0.4542)

Dep. variable mean 0.0020 0.00036 0.00031 0.000035

Fit statistics
Observations 20,580,000 20,580,000 20,580,000 20,580,000
Squared Correlation 0.01772 0.00474 0.00175 0.00269

Clustered (state) standard-errors in parentheses
Signif. Codes: ***: 0.01, **: 0.05, *: 0.1

Note: Due to our use of a Poisson model, effects should be interpreted as eβ − 1 percent changes from the mean.
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Table S4: Change in outcomes per car-mile (linear model, imputed denominator)

Mean car-miles
per county–day: 8184

Dep. variable: Incident count Casualty occurrence Injuries Deaths Cost of damage
(2022 USD)

precip ∈ (1,2] 6.58× 10−8 −2.18× 10−9 8.43× 10−9 7.45× 10−8 0.0055
(4.82× 10−8) (9.32× 10−8) (1.83× 10−8) (8.58× 10−8) (0.0065)

precip ∈ (2,5] 2.98× 10−8 2.78× 10−7 1.51× 10−8 3.09× 10−7 0.0134∗∗

(4.26× 10−8) (1.98× 10−7) (1.87× 10−8) (2× 10−7) (0.0065)
precip ∈ (5,10] 2.09× 10−7∗∗∗ 8.29× 10−7∗∗ −2.15× 10−8∗∗ 6.93× 10−7∗∗ 0.0160∗∗

(6.12× 10−8) (3.48× 10−7) (1.01× 10−8) (3.32× 10−7) (0.0067)
precip ∈ (10,20] 2.74× 10−7∗∗ 7.42× 10−7∗ −1.9× 10−8 7.19× 10−7 0.0271∗∗∗

(1.02× 10−7) (4.36× 10−7) (2.05× 10−8) (4.55× 10−7) (0.0085)
precip ∈ (20,50] 5.52× 10−7∗∗∗ 6.22× 10−7 −8.73× 10−9 5.42× 10−7 0.0617∗∗∗

(1.18× 10−7) (5.61× 10−7) (2.99× 10−8) (5.04× 10−7) (0.0127)
precip ∈ (50,100] 1.2× 10−6∗∗∗ 2.59× 10−6∗ 2.29× 10−9 2.58× 10−6 0.2937∗∗∗

(3.87× 10−7) (1.54× 10−6) (5.91× 10−8) (1.61× 10−6) (0.0790)
precip > 100 mm 6.79× 10−7 2.04× 10−6 −1.61× 10−7∗∗∗ 1.61× 10−6 0.6728

(8.47× 10−7) (3× 10−6) (3.65× 10−8) (2.94× 10−6) (0.4081)
temp < −15◦C 9.07× 10−8 1.39× 10−6∗∗∗ 7.58× 10−8 1.28× 10−6∗∗∗ 0.0553∗∗

(9.44× 10−8) (4.5× 10−7) (8.05× 10−8) (4.57× 10−7) (0.0233)
temp ∈ (-15,-12]◦C −4.22× 10−8 9.05× 10−7∗∗ 1.74× 10−7 9.73× 10−7∗∗ 0.0492∗

(8.17× 10−8) (4.19× 10−7) (1.34× 10−7) (4.64× 10−7) (0.0250)
temp ∈ (-12,-9]◦C 1.32× 10−7 1.24× 10−6∗∗∗ 1.14× 10−8 1.19× 10−6∗∗ 0.0546∗∗∗

(1.1× 10−7) (4.07× 10−7) (3.13× 10−8) (4.51× 10−7) (0.0175)
temp ∈ (-9,-6]◦C 2.54× 10−7∗ 7.09× 10−7 5.1× 10−8 7.67× 10−7 0.0428∗

(1.27× 10−7) (4.85× 10−7) (3.23× 10−8) (5.27× 10−7) (0.0216)
temp ∈ (-6,-3]◦C 2.45× 10−7∗∗ 1.04× 10−6 7.98× 10−9 8.86× 10−7 0.0378∗∗∗

(9.53× 10−8) (7.02× 10−7) (2.85× 10−8) (6.67× 10−7) (0.0126)
temp ∈ (-3,0]◦C 2.07× 10−7∗∗ 2.74× 10−7 1.2× 10−8 2.2× 10−7 0.0443∗∗∗

(8.43× 10−8) (3.66× 10−7) (2.68× 10−8) (4.24× 10−7) (0.0162)
temp ∈ (0,3]◦C 1.83× 10−7∗∗ 2.38× 10−7 1.91× 10−8 2.58× 10−7 0.0374∗∗∗

(7.6× 10−8) (4.5× 10−7) (1.88× 10−8) (4.57× 10−7) (0.0131)
temp ∈ (3,6]◦C 9.76× 10−8 −3.13× 10−7 5.66× 10−8∗ −2.84× 10−7 0.0203∗

(9.4× 10−8) (2.8× 10−7) (2.85× 10−8) (2.37× 10−7) (0.0112)
temp ∈ (6,9]◦C 8.22× 10−8 −2.23× 10−7 2.22× 10−8 −2.37× 10−7 0.0112

(7.87× 10−8) (2.49× 10−7) (2.24× 10−8) (2.54× 10−7) (0.0112)
temp ∈ (9,12]◦C 1.67× 10−7∗∗ −5.01× 10−7∗∗ 1.3× 10−8 −4.59× 10−7 0.0083

(6.59× 10−8) (2.44× 10−7) (2.11× 10−8) (2.76× 10−7) (0.0089)
temp ∈ (15,18]◦C 1.66× 10−7∗∗ −4.5× 10−7 2.32× 10−8 −4.3× 10−7 0.0061

(7.34× 10−8) (3.33× 10−7) (2.25× 10−8) (3.04× 10−7) (0.0097)
temp ∈ (18,21]◦C 5.11× 10−8 −3.25× 10−7 −7.87× 10−9 −3.23× 10−7 0.0083

(5.84× 10−8) (3.81× 10−7) (1.58× 10−8) (3.61× 10−7) (0.0092)
temp ∈ (21,24]◦C 7.4× 10−8 −1.77× 10−7 1.54× 10−8 −8.52× 10−8 0.0129

(5.6× 10−8) (3.57× 10−7) (2.18× 10−8) (3.19× 10−7) (0.0086)
temp ∈ (24,27]◦C 2.34× 10−7∗∗∗ 5.07× 10−7∗ 1.2× 10−8 5.56× 10−7∗∗ 0.0147

(6.67× 10−8) (2.87× 10−7) (2.93× 10−8) (2.7× 10−7) (0.0106)
temp ∈ (27,30]◦C 3.12× 10−7∗∗∗ 1.06× 10−6∗∗ 8.2× 10−8 1.08× 10−6∗∗ 0.0266

(1.04× 10−7) (4.5× 10−7) (5.24× 10−8) (4.27× 10−7) (0.0189)
temp > 30◦C 5.04× 10−7∗∗∗ 1.56× 10−6∗∗∗ 9.71× 10−10 1.51× 10−6∗∗∗ 0.0319

(1.82× 10−7) (5.37× 10−7) (4.28× 10−8) (5.22× 10−7) (0.0228)

Dep. variable mean 1.18× 10−6 6.29× 10−6 6.47× 10−6 1.12× 10−7 0.129

Fit statistics
Observations 20,226,070 20,225,000 20,226,608 20,224,971 20,226,070
R2 0.00405 0.08893 0.00165 0.09050 0.00248
Within R2 5.26× 10−6 5.66× 10−6 1.53× 10−6 5.38× 10−6 6.18× 10−6

Clustered (state) standard-errors in parentheses
Signif. Codes: ***: 0.01, **: 0.05, *: 0.1
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Table S5: Railway safety incidents at the company-county-day level

Incidents
(1) (2) (3) (4) (5) (6)

(,-15) 0.044 0.044 0.007 0.007 0.003 0.003
(0.029) (0.029) (0.014) (0.014) (0.010) (0.010)

[-15,-12) 0.037 0.037 0.019 0.019 0.009 0.009
(0.027) (0.027) (0.015) (0.015) (0.010) (0.010)

[-12,-9) 0.061∗∗∗ 0.061∗∗∗ 0.028∗∗ 0.028∗∗ 0.012 0.012
(0.023) (0.023) (0.013) (0.013) (0.008) (0.008)

[-9,-6) 0.010 0.010 0.001 0.001 0.002 0.002
(0.018) (0.018) (0.008) (0.008) (0.007) (0.007)

[-6,-3) .00572 .00572 -.00648 -.00648 -.00154 -.00154
(.0144) (.0144) (.00711) (.00711) (.00593) (.00593)

[-3,0) .00853 .00853 -.000314 -.000313 .0000871 .000088
(.0125) (.0125) (.00646) (.00646) (.00537) (.00537)

[0,3) .019∗ .019∗ .00562 .00562 .00276 .00276
(.0108) (.0108) (.00521) (.00521) (.00447) (.00447)

[3,6) .00804 .00804 .000719 .000719 .001 .001
(.00949) (.00949) (.00517) (.00517) (.00393) (.00393)

[6,9) .0133 .0133 .00439 .00439 .0026 .0026
(.00902) (.00902) (.00458) (.00458) (.0035) (.0035)

[9,12) .00293 .00293 .000312 .000312 -.000835 -.000835
(.00775) (.00775) (.00419) (.00419) (.0031) (.0031)

[15,18) .00836 .00836 -.00314 -.00314 -.000815 -.000814
(.0084) (.0084) (.00432) (.00432) (.00299) (.00299)

[18,21) .013 .013 .00181 .00181 .000638 .000638
(.00873) (.00873) (.00428) (.00428) (.00325) (.00325)

[21,24) .0197∗∗ .0197∗∗ -.0038 -.00379 -.00273 -.00273
(.00994) (.00994) (.00485) (.00485) (.00377) (.00377)

[24,27) .0246∗∗ .0246∗∗ -.00553 -.00553 -.00338 -.00338
(.0115) (.0115) (.00538) (.00538) (.0047) (.0047)

[27,30) .0497∗∗∗ .0497∗∗∗ .00344 .00344 .00201 .00201
(.0147) (.0147) (.00684) (.00684) (.00585) (.00585)

[30,) .0669∗ .0669∗ .0321 .0321 .0125 .0126
(.035) (.035) (.022) (.022) (.0195) (.0195)

Precipitation .00127∗∗∗ .00127∗∗∗ .000307∗ .000307∗ .000312∗ .000312∗

(.000328) (.000328) (.000168) (.000168) (.000167) (.000167)
#Freight cars 11.6∗∗∗ 11.6∗∗∗ 11.6∗∗∗ 11.6∗∗∗

(.113) (.113) (.316) (.316)
#Freight × (,-15) .387 .386

(.802) (.802)
#Freight × [-15,-12) 1.14 1.14

(.965) (.964)
#Freight × [-12,-9) 1.67∗ 1.67∗

(.924) (.924)
#Freight × [-9,-6) -.178 -.179

(.562) (.562)
#Freight × [-6,-3) -.578 -.578

(.492) (.492)
#Freight × [-3,0) -.0389 -.0389

(.444) (.444)
#Freight × [0,3) .368 .368

(.447) (.447)
#Freight × [3,6) -.0269 -.027

(.427) (.427)
#Freight × [6,9) .237 .237
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(.44) (.44)
#Freight × [9,12) .159 .159

(.404) (.404)
#Freight × [15,18) -.273 -.273

(.409) (.409)
#Freight × [18,21) .152 .152

(.359) (.359)
#Freight × [21,24) -.109 -.109

(.421) (.421)
#Freight × [24,27) -.216 -.216

(.387) (.387)
#Freight × [27,30) .204 .204

(.432) (.432)
#Freight × [30,) 1.74 1.74

(1.1) (1.1)

Observations 40038705 40038705 40038705 40038705 40038705 40038705
R-square 0.001 0.001 0.748 0.748 0.749 0.749
Y-mean 0.123 0.123 0.123 0.123 0.123 0.123
Y-std.dev. 11.487 11.487 11.487 11.487 11.487 11.487
FEs State-year, county-month, day of week
Company FEs Y Y Y

Notes: Outcome variables are multiplied by 1000. Robust standard errors are clustered at the county level
and reported in parentheses.
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Table S6: Learning from previous accidents

Dep. variable: Incident count Casualty events Deaths

# incident type last year -0.0001∗∗∗ 3.6× 10−6 0.0003
(2.86× 10−5) (8.57× 10−6) (0.0031)

precip ∈ (1,2] mm 0.0469∗∗ 0.0301∗∗ 0.0060
(0.0205) (0.0114) (0.0643)

precip ∈ (2,5] mm 0.0777∗∗∗ 0.0494∗∗∗ -0.0300
(0.0164) (0.0112) (0.0647)

precip ∈ (5,10] mm 0.1383∗∗∗ 0.0771∗∗∗ -0.0754
(0.0211) (0.0116) (0.0637)

precip ∈ (10,20] mm 0.1643∗∗∗ 0.0724∗∗∗ -0.1448∗

(0.0207) (0.0163) (0.0805)
precip ∈ (20,50] mm 0.2432∗∗∗ 0.0909∗∗∗ -0.1963∗

(0.0258) (0.0209) (0.1060)
precip ∈ (50,100] mm 0.6325∗∗∗ 0.1386∗∗∗ 0.0846

(0.1255) (0.0463) (0.2576)
precip > 100 mm 0.4238 -0.0960 -9.156∗∗∗

(0.2756) (0.2642) (0.0321)
temp < −15◦C 0.3794∗∗∗ 0.3467∗∗∗ 0.8401∗∗∗

(0.0662) (0.0562) (0.2274)
temp ∈ (-15,-12]◦C 0.2645∗∗∗ 0.3016∗∗∗ 0.4874∗

(0.0596) (0.0509) (0.2624)
temp ∈ (-12,-9]◦C 0.1828∗∗∗ 0.2626∗∗∗ 0.2920

(0.0494) (0.0323) (0.2758)
temp ∈ (-9,-6]◦C 0.1780∗∗∗ 0.1757∗∗∗ 0.3642∗∗

(0.0414) (0.0246) (0.1773)
temp ∈ (-6,-3]◦C 0.1552∗∗∗ 0.1633∗∗∗ 0.2469

(0.0324) (0.0184) (0.1630)
temp ∈ (-3,0]◦C 0.1426∗∗∗ 0.1079∗∗∗ 0.1385

(0.0267) (0.0193) (0.1784)
temp ∈ (0,3]◦C 0.1060∗∗∗ 0.0189 0.2164

(0.0260) (0.0140) (0.1437)
temp ∈ (3,6]◦C 0.1188∗∗∗ -0.0172 0.3527∗∗∗

(0.0260) (0.0150) (0.1019)
temp ∈ (6,9]◦C 0.0277 -0.0336∗ 0.1758

(0.0220) (0.0183) (0.1165)
temp ∈ (9,12]◦C 0.0106 0.0056 0.1029

(0.0210) (0.0094) (0.1120)
temp ∈ (15,18]◦C -0.0070 0.0319∗∗∗ 0.1959∗∗∗

(0.0185) (0.0112) (0.0604)
temp ∈ (18,21]◦C -0.0047 0.0475∗∗∗ 0.0180

(0.0276) (0.0139) (0.0649)
temp ∈ (21,24]◦C 0.0175 0.0776∗∗∗ 0.2043∗∗

(0.0279) (0.0137) (0.0847)
temp ∈ (24,27]◦C 0.0518 0.1090∗∗∗ 0.3052∗∗∗

(0.0343) (0.0142) (0.0953)
temp ∈ (27,30]◦C 0.1047∗∗ 0.1956∗∗∗ 0.3955∗∗∗

(0.0427) (0.0170) (0.1204)
temp > 30◦C 0.0774∗ 0.2583∗∗∗ 0.3621

(0.0458) (0.0217) (0.2169)

FEs Year, county-month, day of week

Fit statistics
Observations 20,580,000 20,580,000 20,580,000
Squared Correlation 0.02928 0.16765 0.00095

Clustered (state) standard-errors in parentheses
Signif. Codes: ***: 0.01, **: 0.05, *: 0.1

Note: Due to our use of a Poisson model, effects should be interpreted as eβ − 1 percent changes from the mean.
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Table S7: Nonlinear impact of temperature on on-time performance (◦C)

Cancellation Depart delay Depart delay Service disruption
dummy dummy time (min) dummy

(,-20) 16.934∗∗∗ 462.942∗∗∗ 51.185∗∗∗ 159.485∗∗∗

(3.436) (72.577) (6.791) (38.968)
[-20,-15) 10.517∗∗∗ 291.334∗∗∗ 29.767∗∗∗ 48.343∗∗∗

(2.568) (48.037) (5.358) (10.956)
[-15,-10) 16.479∗∗∗ 229.234∗∗∗ 17.444∗∗∗ 44.299∗∗∗

(3.659) (25.913) (1.530) (4.256)
[-10,-5) 23.588∗∗∗ 145.230∗∗∗ 9.398∗∗∗ 30.887∗∗∗

(4.153) (18.241) (0.981) (3.038)
[-5,0) 12.5∗∗∗ 67.8∗∗∗ 4.37∗∗∗ 16.9∗∗∗

(2.72) (11.7) (.643) (2.33)
[0,5) 4.42∗∗∗ 13.9∗∗∗ 1.3∗∗∗ 2.24

(1.35) (4.62) (.319) (2.11)
[5,10) .648 1.14 .595∗ 1.09

(.401) (3.32) (.3) (1.25)
[10,15) 0 0 0 0

(.) (.) (.) (.)
[15,20) .83∗ 6.58∗∗ .199 .823

(.442) (2.6) (.15) (1.04)
[20,25) 1.6 22.1∗∗∗ 1.05∗∗∗ 4.39∗∗∗

(.98) (3.47) (.252) (1.51)
[25,30) -.115 48∗∗∗ 2.43∗∗∗ 6.98∗∗∗

(.895) (5.5) (.421) (1.6)
[30,) 1.17 114∗∗∗ 7.3∗∗∗ 28.2∗∗∗

(.754) (22.4) (1.69) (6.93)
Precipitation .346∗∗∗ 2.86∗∗∗ .137∗∗∗ 1.46∗∗∗

(.0453) (.167) (.012) (.174)

Observations 88827 88827 88511 88827
R-square 0.066 0.421 0.219 0.060
Y-mean 6.089 179.392 8.192 23.285
Y-std.dev. 40.171 173.844 10.082 74.306
DOW FEs Y Y Y Y
Year FEs Y Y Y Y
Station-month FEs Y Y Y Y

Notes: Cancellation dummy, departure delay dummy and service disruption dummy are multi-
plied by 1000. Standard errors are clustered at the train station level, reported in parentheses.
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