

A Preferred-Habitat Model with the Corporate Sector

Introduction

Motivation: Study relation between corporate and sovereign debt: Prices and quantities.

Investment and credit supply decisions made by firms and intermediaries.

► These entities cannot usually borrow at the Treasury rate: Credit spreads. Credit risk factors explain modest fraction of variation in credit spreads.

Idea: Building on Chen, Collin-Dufresne & Goldstein (2008); He, Khorrami & Song (2022).

- ► Variation in credit spreads driven by risk premia rather than default probabilities.
- ► Intermediary factors explain substantial fraction of variation in credit spreads.

Contribution: Defaultable bonds in a preferred-habitat model. Endogenous habitat demand. Richer state dynamics. Arbitrageurs' portfolio choice across markets.

Environment

Arbitrageurs: Arbitrageurs choose holdings $x_{j,t}^{(\tau)}$, $j \in \{c, g\}$, $\tau \in (0, \infty)$ such that

$$\max\left[\mathbb{E}_t(dW_t) - \frac{a}{2} \,\mathbb{V}_t(dW_t)\right]$$

where wealth W_t evolves as

$$dW_{t} = \underbrace{\left(W_{t} - \int_{0}^{\infty} x_{g,t}^{(\tau)} d\tau - \int_{0}^{\infty} x_{c,t}^{(\tau)} d\tau\right) \mathbf{r}_{t} dt}_{\text{Risk-free}} + \underbrace{\int_{0}^{\infty} x_{g,t}^{(\tau)} \frac{dP_{g,t}^{(\tau)}}{P_{g,t}^{(\tau)}} d\tau}_{\text{Government}} + \underbrace{\int_{0}^{\infty} x_{c,t}^{(\tau)} \left(\frac{dP_{c,t}^{(\tau)}}{P_{c,t}^{(\tau)}} - \lambda_{t} dt\right) d\tau}_{\text{Corporate}}$$

Habitat Investors: Demand for corporate and government bonds is

$$Z_{j,t}^{(\tau)} = -\alpha^{j}(\tau) \log P_{j,t}^{(\tau)} - \theta_{0}^{j}(\tau) - \sum_{k=1}^{K} \theta_{k}^{j}(\tau)\beta_{k,t}$$

Dynamics: Short term rate r_t , default intensity λ_t , demand shocks β_t . Stack in s_t such that

$$ds_t = -\Gamma\left(s_t - \overline{s}\right)dt + \Sigma dB_t$$

Prices and Risk Premia

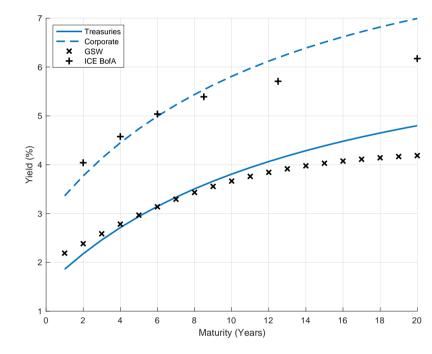
Equilibrium Yields: Prices are exponentially-affine in s_t , $P_{i,t}^{(\tau)} = e^{-[A(\tau)^T s_t + C(\tau)]}$.

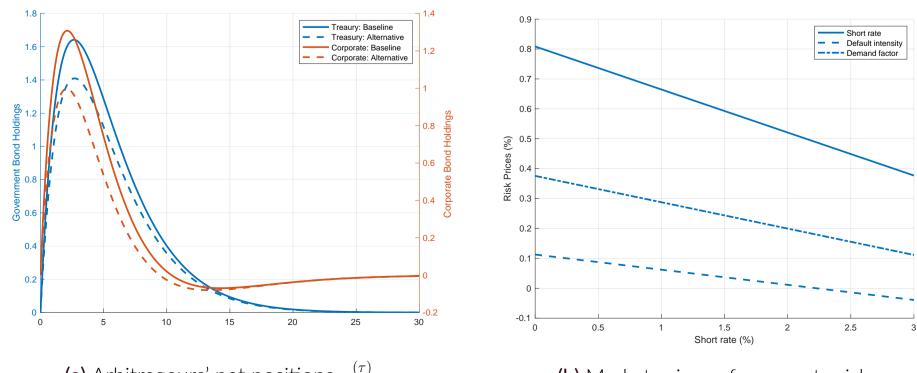
 \blacktriangleright <u>Government bonds</u> load on λ_t , as movements in default intensity affect risk premia.

Risk Prices: K + 2 risk prices η_t driven by quantities of corporate **and** government bonds.

$$\boldsymbol{\eta}_t = a \Sigma^T \left[\sum_j \int_0^\infty x_{j,t}^{(\tau)} A_j(\tau) d\tau \right]$$

▶ Pricing kernel $\pi_t = u'(W_t)$ inherits dynamics dW_t . Arbitrageurs' portfolio prices all bonds. **Risk-neutral Dynamics**: The (endogenous) risk-neutral dynamics of s_t are


$$ds_t = -\boldsymbol{M}^T \left(\boldsymbol{s}_t - \overline{\boldsymbol{s}}^{\mathbb{Q}} \right) dt + \Sigma dB_t^{\mathbb{Q}}$$


 \blacktriangleright The matrix *M* describes where risk adjustments come from.

$$\boldsymbol{M} = \Gamma^T - a \sum_j \int_0^\infty \Theta_j^T(\tau) A_j(\tau)^T - \alpha^j(\tau) A_j(\tau) A_j(\tau)^T d\tau \Sigma \Sigma^T$$

▶ Risk premia vary with λ_t and r_t if $a \neq 0$ and $\alpha^j(\tau) \neq 0$, as arbitrageurs' portfolio changes.

Policy Implications: Intermediaries' portfolio choice (rebalancing) affects monetary policy transmission. State-dependent impact of QE, contingent on assets purchased.

Filippo Cavaleri¹

¹University of Chicago – Booth School of Business

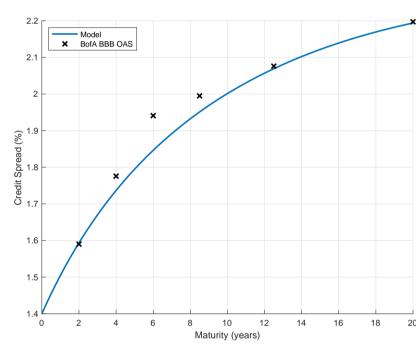
Summary and Main Results

Mechanism: Preferred-habitat model with a government and corporate sector. ► The <u>same</u> marginal investor prices Treasuries and defaultable bonds.

Proposition: Duration and credit risk prima jointly determined by the arbitrageurs' pricing kernel. Arbitrageurs induce dependence (under \mathbb{Q}) between the risk factors.

► Risk premia vary with corporate and Treasury quantities. Concentration of risks.

► Credit spreads move due to (i) changes in **credit quality** of corporate issuers (ii) **mon**etary policy shocks and (iii) local and global demand effects.


Calibration

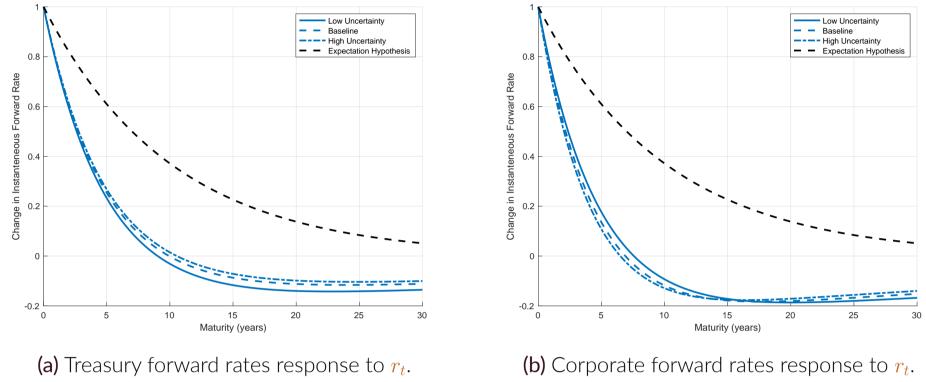
Calibration: $\widehat{\vartheta}$ minimizes squared deviation between model and empirical moments.

$$\widehat{\vartheta} = \arg\min L(\vartheta) \doteq \sum_{i} \left(\mathcal{M}_{i}(\vartheta) - m_{i} \right)$$

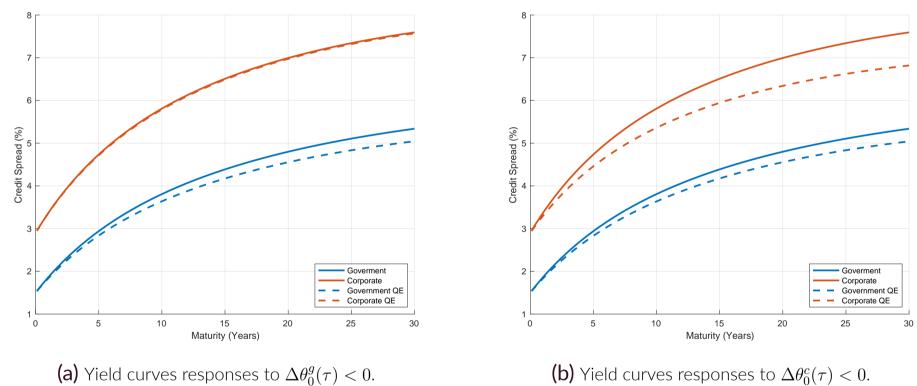
Fit: Good fit for yields. Replicate upward sloping term structure of credit spreads (BBB).

(a) Model-implied and observed yields $y_{it}^{(\tau)}$.

(b) Model-implied and observed BBB credit spreads.


Credit Spreads

Credit Spreads: The credit spread $\mathcal{S}_t^{(\tau)}$ at maturity τ is


$$\mathcal{S}_{t}^{(\tau)} = \frac{1}{\tau} \left[A_{\mathcal{S},r}(\tau) \mathbf{r}_{t} + A_{\mathcal{S},\lambda}(\tau) \lambda_{t} + \sum_{k=1}^{K} A_{\mathcal{S},k}(\tau) \beta_{k,t} + C_{\mathcal{S}}(\tau) \right]$$

1. Fluctuations in the credit quality of corporate issuers λ_t . 2. Monetary policy, through the short term rate r_t effect on risk premia. 3. Local and global demand effects, within and across markets.

(b) Market prices of aggregate risk.

- Treasury-only QE lowers Treasury yields more than corporate yields: $\mathcal{S}_t^{(\tau)} \uparrow$.
- Corporate-only QE lowers corporate yields more than Treasury yields. $\mathcal{S}_t^{(\tau)} \downarrow$

Revisiting Habitat Demand and State Dynamics

Discussion: Specifications of habitat demand and state dynamics have three shortcomings: (i) No guarantee that $\lambda_t > 0$ (ii) habitat demand insensitive to fundamentals (iii) exogenous price elasticity without microfoundation.

Solution: Endow habitat investors with CARA utility. Specify CIR dynamics for r_t and λ_t .

$$\begin{aligned} d\boldsymbol{r}_{t} &= \kappa_{r}(\overline{r} - \boldsymbol{r}_{t})dt + \sigma_{r}\sqrt{\lambda_{t}}dB_{r,t} \\ d\lambda_{t} &= \kappa_{\lambda}(\overline{\lambda} - \lambda_{t})dt + \sigma_{\lambda}\sqrt{\lambda_{t}}dB_{\lambda,t} \\ Z_{c,t}^{(\tau)} &= \frac{\alpha(\tau)}{\lambda_{t}} \left[\mu_{t}^{(\tau)} - \boldsymbol{r}_{t} - \lambda_{t} \right] + \frac{\alpha(\tau)}{\lambda_{t}}\beta_{t} + \theta(\tau) \quad : \quad \alpha(\tau) \propto \frac{1}{a^{h} \left[A_{r}(\tau)^{2}\sigma_{r}^{2} + A_{\lambda}(\tau)^{2}\sigma_{\lambda}^{2} \right]} \end{aligned}$$

Novelty: Preserve affine structure. Demand is microfounded. Identify habitat investors:

(a) Arbitrageurs' net positions $x_{it}^{(\tau)}$.

AFA PhD Student Poster Session

Policy Intervention

Monetary Policy Transmission: Arbitrageurs transmit shocks to r_t throughout the yield curves, but that requires compensation for exposure to duration and credit risk.

 \blacktriangleright Default uncertainty (σ_{λ}) affects transmission across both yield curves.

• Higher σ_{λ} : Corporate carry-trades become riskier \implies Weaker transmission. • Higher σ_{λ} : Treasuries hedge against default shocks \implies Stronger transmission.

Quantitative Easing: Effect of QE interventions contingent on assets being purchased.

► Habitat investors as delegated asset managers: Portfolio choice with benchmarking. \blacktriangleright Habitat investors as <u>P&Is</u>: Duration matching between assets and liabilities.