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Abstract

We study cooperation among individuals and groups facing a dynamic social

dilemma in which the benefits of cooperation are divided according to political

power obtained in a contest. The main theoretical and experimental results focus

on the role of the incumbency advantage. Specifically, an incumbency advantage in

the political contest leads to a rapid breakdown of cooperation in the social dilemma.

In addition, we provide simulations based on the individual evolutionary learning

model of Arifovic and Ledyard (2012) to shed light on the difference between the

behavior of individuals and groups.
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1 Introduction

Political parties have to cooperate on policy after elections in which they were adversaries. The

elections are traditionally modeled as contests with spending influencing voting outcomes (e.g.,

Baron, 1994; Grossman and Helpman, 1996). At the same time, empirical papers in economics and

political science have documented the presence of an incumbency advantage both in US politics

(e.g., Gelman and King, 1990; Prior, 2006; Fowler and Hall, 2014) and on the international stage

(Boas and Hidalgo, 2011). In this paper, we incorporate an incumbency advantage into the po-

litical contest and focus on the decision to cooperate in the subsequent policy-coordination game.

Specifically, we model the policy-coordination game as a decision between a safe option (e.g., no

compromise on the party platform) and a risky cooperation decision that could generate a surplus

(e.g., agreeing to compromise). We assume the surplus is distributed among cooperating factions

according to the political power that they hold. Thus, the policy coordination is a collection action

problem akin to the multiplayer stag-hunt game (Rousseau, 1754), except the benefits to cooper-

ation are divided according to political power. We then combine the political contest and policy

coordination game into an infinitely repeated dynamic game with two alternating stages – a politi-

cal contest, which determines political power, and policy coordination, which determines resources

available for the contest.

We model the incumbency advantage in the political contest as complementarity between the

current political power and the expenditure on the contest. That is, expenditures on the contest

are amplified by the party’s political power.1 We then use a three-fold approach of theory, agent-

based simulations, and experiments to show that an incumbency advantage leads to a breakdown

in cooperation in the policy-coordination game. In particular, on the theoretical front, we charac-

terize myopic best-response equilibria and show that an increase in the incumbency advantage in

the political contest leads to lower cooperation in the coordination stage. On the computational

front, we use the individual evolutionary learning model (henceforth IEL) of Arifovic and Ledyard

(2011, 2012) to run agent-based simulations and show how cooperation breakdown unfolds over

time. Finally, on the experimental front, we conduct controlled experiments in which we vary

the complementarity between the current power and spending in the political contest to confirm

theoretical and computational predictions regarding the role of the incumbency advantage.

In addition to the main result on the role of the incumbency advantage, we use experiments

in combination with agent-based simulations to investigate the difference between the behavior

of individuals and groups. After all, the elections may be between parties (e.g., parliamentary

elections) or between individuals (e.g., presidential elections). Therefore, understanding whether

the difference in the decision-making entities could lead to a difference in cooperation is important.

Although we do not have a theoretically driven motivation for this difference, existing research

in economics and psychology has demonstrated that groups behave differently than individuals

(Cooper and Kagel, 2005). To gain insight into the difference between individuals and groups, we

1An example of complementarity between spending on an election and political power is when opposition leaders
are jailed or disallowed from running for office (Egorov and Sonin, 2014).
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model a group consisting of IEL agents. Each agent in a group proposes a strategy, and then one of

those strategies is selected to be implemented by the group.2 Simulation results using parameters

from Arifovic and Ledyard (2012) suggest that groups will be less cooperative than individuals.

We then test this prediction with human-subject experiments. We find that in the absence of

an incumbency advantage, groups are less cooperative than individuals. When the incumbency

advantage is strong, however, neither groups nor individuals cooperate, and hence, we find no

difference between the two.

Our paper contributes to three broad strands of literature. The first is the literature on co-

ordination games (see Cooper and Weber (2020) for a review). More specifically, our paper fits

within the stream that studies dynamic coordination games in combination with contests. The

most closely related paper in this stream is Rosokha, Lyu, Tverskoi, and Gavrilets (2022), who use

the same environment to show that cooperation in the collective-action stage predictably responds

to the fundamental parameters of the game. In addition, Rosokha et al. (2022) show that cooper-

ation depends on the nature of the political contest. Specifically, if the contest is an unrestricted

proportional prize, cooperation is lower than when the contest is an exogenously restricted propor-

tion of earnings. Other papers in this literature include Houle, Ruck, Bentley, and Gavrilets (2022)

and Tverskoi, Senthilnathan, and Gavrilets (2021), who theoretically and computationally study

the environment with an exogenously specified contest. In addition to the theory and simulations,

Houle, Ruck, Bentley, and Gavrilets (2022) use cross-country data on social unrest as a proxy for

the breakdown of cooperation in society and find evidence that a measure of the rule of law (which

may be relevant for an incumbency advantage) is highly indicative of cooperation breakdown. Our

paper is different along several dimensions. First, it is the first to explicitly vary the incumbency

advantage in conjunction with an unrestricted proportional-prize Tullock contest underlying the

contest for power. Second, this paper is the first to conduct a controlled economics experiment to

study the complementarity between political power and expenditure in the contest. Finally, the

focus on the difference between the behavior of individuals and groups is a distinct feature of this

paper.

The second strand of literature that we contribute to compares individual and group decision-

making. Research by Cooper and Kagel (2005) indicates that groups play more strategically and

that this difference is especially pronounced in complex games. Most closely related to our work,

however, are papers studying cooperation in social dilemmas. In particular, Cooper and Kagel

(2022) find that groups are more cooperative in the prisoner’s dilemma, Cason and Mui (2019) find

no difference in cooperation between groups and individuals in a noisy version of the prisoner’s

dilemma, and Nielsen, Bhattacharya, Kagel, and Sengupta (2019) find that groups are less coop-

erative in the trust game with pre-play communication. We find that groups cooperate less than

individuals in treatments in which positive cooperation can be sustained as a myopic best-response

equilibrium. Notably, our setting is more complex than the above studies and includes a distinct

2To the best of our knowledge, this paper offers the first attempt to model group decision-making with IEL.
The advantage of this approach is that heterogeneity across individuals’ other-regarding preferences is explicitly
incorporated into a group decision. See section 3 for more details.
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competitive stage. We also contribute to this literature, by providing an agent-based model of

group decision-making.

The third strand of literature that we contribute to uses agent-based models to complement

human-subject experiments to study cooperation (see, Duffy, 2006; Arifovic and Duffy, 2018, for a

review). Early papers in this literature include Arifovic (1994), who compares results from human-

subject experiments with simulations based on a genetic algorithm (Holland, 1975) in the context

of a cobweb model.3 More recently, Arifovic and Ledyard (2011, 2012) developed an individual

evolutionary model inspired by a genetic algorithm that incorporates some of the behavioral fac-

tors documented within the experimental economics literature (i.e., other-regarding preferences).

In particular, Arifovic and Ledyard (2012) study cooperation in a repeated public-goods game and

show that the model calibrated on data from human experiments from Isaac and Walker (1988)

is transferable to other settings and can also match human-subject behavior in Andreoni (1988),

Croson (1996), and Andreoni (1995).4 We adapt the IEL model to a group-decision setting. Specif-

ically, we construct groups composed of distinct IEL agents, so that each agent is characterized by

unique behavioral characteristics, maintains their own set of strategies, and learns on their own.

At the same time, the group-decision process means that strategies proposed by one of the other

agents in the group could be implemented. The results of simulations show that in the complex

dynamic environment studied in this paper, groups tend to cooperate less than individuals.

The rest of the paper is organized as follows. In section 2, we provide details of the environment

and derive theoretical predictions. In section 3, we present the agent-based model and carry out

simulations to shed additional insights into the problem at hand. In section 4, we describe the

details of the experiment designed to test the theoretical and computational predictions. In section

5, we present the main experimental results. Finally, in section 6, we conclude.

2 Environment and Theoretical Predictions

The environment studied in this paper is similar to the endogenous-contest treatment of Rosokha

et al. (2022).5 Specifically, we consider a society composed of 𝐼 = {1, . . . , 𝑛} decision-making

units, whereby each decision-making unit is composed of 𝐾 individuals.6 For the purposes of the

theoretical analysis presented in this section, we will refer to decision-making units as players.

Players interact over an infinite sequence of rounds. In each round, 𝑡 ∈ {1, 2, 3, . . .}, players face a

3Subsequent literature that combined learning via genetic algorithm and human subject experiments includes Ari-
fovic (1995) and Arifovic (1996) who study inflationary economies; Arifovic and Eaton (1995) who study coordination
problems in a two stage signalling game; and Romero and Rosokha (2019) who study cooperation in the indefinitely
repeated Prisoners’ Dilemma.

4IEL has also been used as a model of behavior in other settings. In particular, Anufriev, Arifovic, Ledyard, and
Panchenko (2013) and Anufriev, Arifovic, Ledyard, and Panchenko (2022) study continuous double auction; Arifovic
and Ledyard (2018) study alternation in the Battle of Sexes game; Arifovic, Boitnott, and Duffy (2019) study behavior
in games with correlated equilibria; Arifovic, Duffy, and Jiang (2023) study adoption of payment methods. In all
instances, the authors found a reasonably good match between IEL and results from human subject experiments.

5An environment with an exogenous contest is studied in Houle, Ruck, Bentley, and Gavrilets (2022).
6𝐾 = 1 corresponds to the individual decision-making setting studied in the prior work. 𝐾 > 1 corresponds to the

group decision-making setting.
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coordination game (stage 1) and a contest for power (stage 2). Specifically, in stage 1 of period 𝑡,

each player 𝑖 chooses between cooperation (𝑎𝑖,𝑡 = 1) and defection (𝑎𝑖,𝑡 = 0). For convenience, let

𝑎𝑡 = (𝑎𝑖,𝑡 , 𝑎−𝑖,𝑡 ) = (𝑎1,𝑡 , . . . , 𝑎𝑛,𝑡 ) denote the action profile in period 𝑡, and let 𝑎−𝑖,𝑡 denote an action

profile of all players excluding 𝑖. The payoff from cooperation, 𝐹 (𝑎𝑡 ), is an S-shaped function of

the proportion of players who decide to cooperate, 𝑎𝑡 =
∑

𝑖∈𝐼 𝑎𝑖,𝑡
𝑛

, as follows:

𝐹 (𝑎𝑡 ) = 𝑏
(𝑎𝑡 )𝜅

(𝑎𝑡 )𝜅 + (𝑎0)𝜅
, (1)

where 𝑏 > 0 is the maximum benefit to cooperation, 𝑎0 ∈ (0, 1) is the “half-effort” parameter that

determines the proportion of the group required to produce half of the maximum benefit, (𝑏2 ), and

𝜅 ≥ 1 is the parameter that determines the steepness of the production function.

Unlike the widely studied stag-hunt or public-goods games, the share of the production that

player 𝑖 gets in period 𝑡 depends on their political power 𝑓𝑖,𝑡 ∈ [0, 1].7 Specifically, player 𝑖’s payoff

in stage 1 is

𝜋1𝑖 (𝑎𝑡 , 𝑓𝑡 ) = 𝑅0 + 𝑎𝑖,𝑡
( 𝑓𝑖,𝑡

𝑎𝑡 · 𝑓𝑡
𝐹 (𝑎𝑡 ) − 𝑐

)
, (2)

where 𝑐 > 0 is the cost of cooperation, 𝑎𝑡 · 𝑓𝑡 =
∑

𝑖∈𝐼 𝑎𝑖,𝑡 𝑓𝑖,𝑡 is the sum of powers of cooperating

players, and 𝑅0 > 𝑐 is an endowment. That is, we consider a club-good setting in which the benefits

of cooperation are split among cooperating players according to their political power.8

In stage 2 of period 𝑡, each player 𝑖 chooses how much to spend in the contest for political

power, 𝑒𝑖,𝑡 ∈ [0, 𝜋1
𝑖
(𝑎𝑡 , 𝑓𝑡 )]. The main focus of this paper and the novelty relative to Rosokha

et al. (2022) is the incumbency advantage. We chose to model the incumbency advantage as

complementarity between the current power and expenditure in the contest. In particular, let

𝜀 ∈ [0, 1] be the incumbency-effect parameter. Then, given the vector of expenditures, 𝑒𝑡 =

(𝑒𝑖,𝑡 , 𝑒−𝑖,𝑡 ) = (𝑒1,𝑡 , ..., 𝑒𝑛,𝑡 ), political power of an individual 𝑖 at time step 𝑡 + 1 is defined as

𝑓𝑖,𝑡+1 = 𝜙𝑖
(
𝑒𝑡 , 𝑓𝑡

)
=
𝑒𝑖,𝑡 (1 − 𝜀 + 𝜀 𝑓𝑖,𝑡 )
𝑒𝑡 · (1 − 𝜀 + 𝜀 𝑓𝑡 )

. (3)

Thus, if 𝜀 = 0, the political power, 𝑓 , is determined as the relative expenditure in the contest,

whereas if 𝜀 = 1, the political power in the next period depends on both the current power and

the expenditure.9 In general, the larger 𝜀 is, the stronger the complementarity between the current

power and the current expenditure. Notably, in the absence of the incumbency advantage, 𝜀 = 0,

the political power only guarantees a higher share of the current cooperation benefit, whereas when

the incumbency advantage, 𝜀 > 0 captures the interdependence of current political power and

future political power and, thus, the future cooperation benefit. 10

7∑𝑛
𝑖=1 𝑓𝑖,𝑡 = 1

8There are two special cases stemming from the possibility of the denominator being zero. First, when cooperating

agents have zero political power (𝑎𝑡 · 𝑓𝑡 = 0 and 𝑎𝑡 · 𝟙 ≠ 0), we define 𝜋(𝑎𝑡 , 𝑓𝑡 ) = 𝑅0 + 𝑎𝑖,𝑡
(

1
𝑎𝑡 ·𝟙𝐹 (𝑎𝑡 ) − 𝑐

)
. Second, when

there are no cooperating agents (𝑎𝑡 · 𝟙 = 0), we define 𝜋(𝑎𝑡 , 𝑓𝑡 ) = 𝑅0.
9In the special case of 𝑒𝑡 · (1 − 𝜀 + 𝜀 𝑓𝑡 ) = 0, we define 𝑓𝑖,𝑡+1 = 𝑓𝑖,𝑡 .

10For example, consider a two-player game where player 1 has 0.6 power and player 2 has 0.4 power. Suppose in
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Finally, the total payoff in round 𝑡 is

𝜋𝑖 (𝑎𝑡 , 𝑓𝑡 , 𝑒𝑡 ) = 𝜋1𝑖 (𝑎𝑡 , 𝑓𝑡 ) − 𝑒𝑖,𝑡 . (4)

2.1 Parameters

In the experiment, we vary the incumbency parameter 𝜀 ∈ {0, 1} and fix 𝑏 = 232, 𝑛 = 3, 𝑎0 = 0.812,

𝑅0 = 60, 𝑐 = 20.4, 𝜅 = 12, and 𝑒𝑖,0 = 0, ∀𝑖 ∈ 𝐼 (experimental treatment T1). The resulting stage

game payoffs for the case of equal power are presented in Table 1. Notice that the game is the

three-player stag-hunt game with a safe action 𝐷 that yields a payoff of 60 regardless of what

everyone else does and a risky action 𝐶 that yields a payoff of 110 if everyone else chooses 𝐶.

Table 1: Stage-Game Payoffs when All Players Have the Same Power

0 1 2

C 40 50 110

D 60 60 60

Notes: Payoff for choosing C(cooperate) and D(defect) when all players have equal power. Columns

denote how many other players choose C (out of 𝑛 − 1). Players always have equal power in Round 1

of a match, but may have equal power in other rounds depending on players’ choices in prior rounds.

2.2 Myopic Best-Response, Contest for Power, and the Long-Term Outcomes

In our model, there are two interrelated decisions: the decision to cooperate in collective action at

stage 1, 𝑎𝑖,𝑡 ∈ {0, 1} and the decision to spend in the contest for power at stage 2, 𝑒𝑖,𝑡 ∈ [0, 𝜋1
𝑖
(𝑎𝑡 , 𝑓𝑡 )].

In particular, the expenditure in stage 2 of period 𝑡 directly affects not only the current period 𝑡

payoff but also the next period 𝑡 + 1 payoff (which also depends on the next period cooperation

decision, 𝑎𝑖,𝑡+1). Therefore, to make the theoretical analysis manageable, we assume the individual

simultaneously chooses the expenditure 𝑒𝑖,𝑡 in stage 2 of period 𝑡 and the action 𝑎𝑖,𝑡+1 in stage 1

of period 𝑡 + 1 to maximize her expected total earnings by best responding to the previous choices

(𝑎𝑡 , 𝑒𝑡−1). That is, if 𝑎−𝑖,𝑡 · 𝑒−𝑖,𝑡−1 ≠ 0 or 𝑎−𝑖,𝑡 = 0 in stage 2 of period 𝑡, player 𝑖 chooses11

(𝑎𝑖,𝑡+1, 𝑒𝑖,𝑡 ) = 𝐵𝑅𝑎,𝑒
𝑖

(𝑎𝑡 , 𝑒𝑡−1, 𝑓𝑡 ) =

= argmax
𝑎𝑖∈{0,1},𝑒𝑖∈[0, 𝜋1

𝑖
(𝑎𝑡 , 𝑓𝑡 ) ]

{
− 𝑒𝑖 + 𝛿𝜋1𝑖

(
(𝑎𝑖 , 𝑎−𝑖,𝑡 ), 𝜙

(
(𝑒𝑖 , 𝑒−𝑖,𝑡−1), 𝑓𝑡

) )}
, (5)

stage 1, the benefit to cooperation is 100. Then, if both players cooperate in stage 2, Player 1 earns 60, and player 2
earns 40. Suppose that in stage 2 both players choose to spend 10 in the contest. If 𝜀 = 0, their next round powers
will be equal, while 𝜀 = 1, their next round power will stay the same. Thus, as 𝜀 increases, players maintain their
power advantage more easily.

11For simplicity, here we assume (a) 𝜀 ∈ [0, 1), and (b) 𝑓𝑖,𝑡+1 = 1/𝑛 in formula (3) if 𝑒𝑡 · (1 − 𝜀 + 𝜀 𝑓𝑡 ) = 0.
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where 𝜙
(
(𝑒𝑖 , 𝑒−𝑖,𝑡−1), 𝑓𝑡

)
=

(
𝜙1

(
(𝑒𝑖 , 𝑒−𝑖,𝑡−1), 𝑓𝑡

)
, .., 𝜙𝑛

(
(𝑒𝑖 , 𝑒−𝑖,𝑡−1), 𝑓𝑡

) )
, 𝑎−𝑖,𝑡 ·𝑒−𝑖,𝑡−1 =

∑
𝑗∈𝐼\{𝑖} 𝑎 𝑗 ,𝑡𝑒 𝑗 ,𝑡−1

is the total expenditure of all cooperating players except 𝑖, and 𝛿 ∈ (0, 1) is the probability of con-

tinuing the game to the next round.

Definition 1 A strategy profile (𝑎∗, 𝑒∗) is a myopic-best-response equilibrium in the model if

(𝑎∗𝑖 , 𝑒∗𝑖 ) = 𝐵𝑅
𝑎,𝑒
𝑖

(𝑎∗, 𝑒∗, 𝑓 ),∀𝑖 ∈ 𝐼, (6)

where

𝑓̂𝑖 = 𝜙𝑖 (𝑒∗, 𝑓 ),∀𝑖 ∈ 𝐼 . (7)

Proposition 1 Existence of myopic-best-response equilibria. A symmetric myopic-best-

response equilibrium is characterized by at most two types of players: defectors and cooperators.

All 𝑛𝐶 ∈ {0, 1, .., 𝑛}\{1} cooperators (if they exist) have the same power 𝑓𝐶 = 1/𝑛𝐶 and have the

same non-zero expenditure 𝑒∗
𝐶
= 𝛿

(
1 − 1

𝑛𝐶

)
𝐹 (𝑛𝐶/𝑛)

𝑛𝐶
; and all 𝑛 − 𝑛𝐶 defectors (if they exist) have the

same power 𝑓𝐷 = 0 and the same expenditure 𝑒∗
𝐷
= 0.

The conditions for equilibrium existence as well as the proof of Proposition 1 can be found in Ap-

pendix A.2 and Appendix A.1, respectively.12

Definition 2 Let (𝑎∗, 𝑒∗) be a myopic-best-response equilibrium with the corresponding power 𝑓

defined by equations (6) and (7). We say that (𝑎∗, 𝑒∗) is stable to small perturbations in expenditures

and powers if (𝑒∗, 𝑓 ) is a locally stable equilibrium of the system

𝑒𝑖,𝑡 = 𝜓𝑖 (𝑒𝑡−1, 𝑓𝑡 ),∀𝑖 ∈ 𝐼, (8)

𝑓𝑖,𝑡+1 = 𝜙𝑖 (𝑒𝑡 , 𝑓𝑡 ),∀𝑖 ∈ 𝐼, (9)

where 𝜓𝑖 (𝑒𝑡−1, 𝑓𝑡 ) = argmax𝑒𝑖∈[0, 𝜋1
𝑖
(𝑎∗, 𝑓𝑡 ) ]

{
− 𝑒𝑖 + 𝛿𝜋1𝑖

(
𝑎∗, 𝜙

(
(𝑒𝑖 , 𝑒−𝑖,𝑡−1), 𝑓𝑡

) )}
.

Proposition 2 Stability of symmetric myopic-best-response equilibria. The symmetric

equilibrium with 𝑛𝐶 = 0 cooperators is stable. Consider a symmetric myopic-best-response equilib-

rium with 𝑛𝐶 ∈ {2, .., 𝑛} cooperators. If 𝜀 < 𝑛𝐶
2(𝑛𝐶−1) and 𝑛𝐶 ≤ 3, the equilibrium is stable to small

perturbations in expenditures and powers.

The proof of Proposition 2 can be found in Appendix A.3. The main takeaway is that the stability

of a symmetric equilibrium depends only on the incumbency-effect parameter 𝜀 and the number

of cooperators 𝑛𝐶 , and not on the parameters capturing the benefits and costs of cooperation. In

particular, increasing the incumbency advantage in the political contest leads to instability of the

cooperative coalition and to a breakdown in cooperation.

12See also Appendix A.1, Appendix A.2, and Appendix A.4 for more information on asymmetric equilibria.
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Figure 1: Stable Myopic-Best-Response Equilibria

(a) 𝜀 = 0 (b) 𝜀 = 1

Notes: Regions of stability of equilibria with 𝑛∗
𝐶

cooperators and 𝑛 − 𝑛∗
𝐶

defectors as a function the

maximum benefit to cooperation 𝑏 and the proportion of the group 𝑎0 required to produce benefit 𝑏
2 .

Except for the case of 𝜀 = 1 and 𝑛𝑐 = 2, these equilibria are symmetric. If 𝜀 = 1 and 𝑛𝑐 = 2, there is an

infinite family of equilibria with 2 cooperators characterized by powers 𝑓 and 1 − 𝑓 , respectively, and

the same expenditure 𝑒∗
𝐶

= 𝛿𝐹 (2/𝑛) 𝑓 (1 − 𝑓 ), where 𝑓 ∈ ( 𝑓𝑚𝑖𝑛, 1 − 𝑓𝑚𝑖𝑛) (for more details see Appendix

A.4). Parameters corresponding to the experimental treatment 𝑇1 are marked by •.

Overall, increasing the incumbency advantage in the political contest has two effects on the

equilibrium results: (1) it leads to the instability of more cooperative equilibria by promoting

inequality in power and expenditures among cooperators; and (2) it leads to the emergence of less

cooperative equilibria. Figure 1 illustrates these theoretical findings for the case of 𝑛 = 3 players.

The figure shows parameter regions for which a particular equilibrium (denoted by the number of

cooperators) exists. Below we discuss these equilibria in detail providing an intuitive explanation

for their existence and stability. First, in the equilibrium with 𝑛𝐶 = 0 cooperators all agents have

equal powers 1/3 and zero expenditures 𝑒∗
𝐷
= 0 (see Proposition 1). This equilibrium exists if the

individual payoff from cooperation of an agent who unilaterally switched to cooperation does not

cover the cost of cooperation (i.e., if 𝐹 (1/3) < 𝑐, see Proposition 3 in Appendix A.2). Second, in

the equilibrium with 𝑛𝐶 = 3 cooperators all agents have equal powers 1/3 and equal expenditures

𝑒∗
𝐶
= 2𝛿

9 𝐹 (1). Intuitively, this equilibrium exists if each individual payoff from cooperation greatly

exceeds the cost of cooperation (i.e., if 1
3𝐹 (1) ≥ 3𝑐, see Proposition 3 in Appendix A.2). However,

this equilibrium becomes unstable if 𝜀 > 0.75 (see Proposition 2). This means that for large

𝜀 even infinitesimal differences in power and expenditures between the three cooperating agents

are amplified, since more powerful agents can easily grab even more power by increasing their

expenditures in the contest due to the incumbency advantage. Conversely, less powerful agents are

forced to decrease their expenditures and eventually switch to defection as their power becomes

sufficiently low. Third, in the symmetric equilibrium with 𝑛𝐶 = 2 cooperators, the cooperators

have equal powers 1/2 and equal expenditures 𝑒∗
𝐶

= 𝛿
4 𝐹 (2/3), while the defector has zero power

and expenditures. On the one hand, the above equilibrium exists if the individual payoff from

7



cooperation is high enough to motivate cooperators not to defect. On the other hand, the benefit

from cooperation should not be very high or the incumbency advantage should be sufficiently high

to restrain the defector from cooperation (see Proposition 3 in Appendix A.2 for details). Finally,

note that with 𝜀 = 1, the symmetric equilibrium with 𝑛𝐶 = 2 cooperators is part of an infinite

family of asymmetric equilibria with 𝑛𝐶 = 2 cooperators (see Appendix A.4 for details).

In Figure 1, we also mark the parameter combination, 𝑇1, that we chose to run for the experi-

ment. Specifically, the T1 parameter combination with 𝜀 = 1 is predicted to have no cooperation,

whereas for the same parameter combination and 𝜀 = 0, full cooperation (all three players) can

be supported in equilibrium, along with the equilibrium with no cooperators. We summarize the

above considerations with the following hypothesis:

Hypothesis 1 Cooperation is lower in treatments with a higher incumbency advantage.

Figure 2 summarizes theoretical predictions on the equilibrium expenditures in the contest for

power. The main takeaway is that for the T1 parameter combination increasing the incumbency

advantage in the political contest on average leads to a decrease in the expenditures. Specifically,

we predict all agents to have zero expenditures in the contest if 𝜀 = 1, while with 𝜀 = 0, two

equilibria are supported: full-defection and full-cooperation with expenditures 𝑒∗
𝐷

= 0 and 𝑒∗
𝐶

=

41.69, respectively.

Figure 2: Contest Expenditures in Equilibrium

(a) 𝜀 = 0 (b) 𝜀 = 1

Notes: The figure shows equilibrium expenditures 𝑒∗ of individuals in the contest in stage 2 at equilibria with 𝑛𝐶 = 0, 2,

and 3 cooperators. Solid curves show expenditures of cooperators (i.e., 𝑒∗
𝐶
), while dashed curves correspond to

expenditures of defectors (i.e., 𝑒∗
𝐷
). Vertical dashed lines denote experimental treatment T1. With 𝜀 = 1 and 𝑛𝑐 = 2,

there is an infinite family of equilibria forming the green shaded region in panel (b).
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3 Agent-based Simulations

The theory has several shortcomings. First, in the presence of multiple equilibria, as is the case of

𝜖 = 0, the theory does not provide a precise prediction. For example, for the chosen parameters

in the 𝜖 = 0 treatment, 𝑛∗
𝐶
= 0 and 𝑛∗

𝐶
= 3 are two possible equilibria. Second, we carried out the

theoretical analysis without taking into account behavioral considerations such as altruism (Simon,

1993; Andreoni and Miller, 2002) and fairness (Kahneman, Knetsch, and Thaler, 1986; Rabin, 1993;

Fehr and Schmidt, 1999), which have been extensively shown to matter for human decisions (Falk,

Fehr, and Fischbacher, 2008; Duffy and Muñoz-Garćıa, 2015). Third, and most importantly for

this project, the theory does not provide a prediction regarding the difference between individual

and group-decision-making processes. Finally, the theory does not provide predictions regarding

the dynamics of cooperation across rounds of interactions. We look to overcome these shortcomings

by using simulations with an agent-based model motivated by the individual evolutionary model

of Arifovic and Ledyard (2011, 2012).

3.1 Individual Evolutionary Model

For the baseline individual-decision-maker treatment, we follow the model of Arifovic and Ledyard

(2011, 2012). Specifically, we assume that when making a choice in round 𝑡, each agent has a set

of rules in their memory, denoted by 𝐴𝑖,𝑡 . The number of rules in the set is denoted by 𝐽 = |𝐴𝑖,𝑡 |.
Although any rule could be selected to make a choice, rules that yield higher utilities are selected

with higher probability. Each rule’s utility is determined based on forgone utility (i.e., the utility

that the rule would have generated had it made a choice). Individual evolutionary learning has

two main operators. The first operator is experimentation — going from round to round, agents

experiment with new rules by perturbing old rules (selected with a probability 𝜌), using a normal

distribution that has a mean of zero and a variance of 𝜎. The second operator is replication — going

from round to round, agents are more likely to replicate rules that generate higher forgone utilities.

We follow Arifovic and Ledyard (2012) in assuming the three free parameters in the learning model

(𝐽 = 100, 𝜌 = 0.033, 𝜎 = 0.1).13

In addition to the learning component, Arifovic and Ledyard (2012) emphasize the role of

other-regarding preferences. Specifically, the utility function takes the following form:

𝑢𝑖 = 𝔼[𝜋𝑖]︸︷︷︸
Expected individual

payoff

+ 𝛽𝑖

𝑛

∑︁
𝑗∈𝐼

𝔼[𝜋 𝑗]︸          ︷︷          ︸
Preference for higher payoffs
to all agents (i.e., altruism)

− 𝛾𝑖

𝑛 − 1

∑︁
𝑗≠𝑖, 𝑗∈𝐼

𝑚𝑎𝑥{0,𝔼[𝜋 𝑗] − 𝔼[𝜋𝑖]}︸                                           ︷︷                                           ︸
Disutilty from being

taken advantage of (i.e., envy)

, (10)

where the behavioral components are captured by parameters 𝛽 (altruism) and 𝛾 (envy).14 Follow-

13As mentioned in the introduction, these parameters were estimated by Arifovic and Ledyard (2012) based on the
data from Isaac and Walker (1988).

14Unlike experiments by Isaac and Walker (1988), in our environment subjects receive feedback regarding individual
payoffs of all other subjects, therefore, we modified the fairness component to take that into account.
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ing Arifovic and Ledyard (2012), we assume with probability 48% an agent is self-interested (with

𝛽𝑖 = 0 and 𝛾𝑖 = 0), and with probability 52% an agents has uniformly and independently drawn 𝛽𝑖

and 𝛾𝑖 from the ranges of [0,22] and [0,8], respectively. Notice that the notation in equation (10) is

simplified relative to equation (4) by omitting the strategies, timing, and decision structure across

stages in order to focus on the functional form of the utility. Next, we provide more details.

Our environment differs from those studied in Arifovic and Ledyard (2011, 2012) in that we

have two distinct stages that occur sequentially. Thus, each subject will maintain two rule sets,

𝐴1
𝑖,𝑡

and 𝐴2
𝑖,𝑡
. In particular, 𝐴1

𝑖,𝑡
contains 𝐽 probabilities of cooperation that a subject may consider

in stage 1 of round 𝑡. We denote the 𝑗th rule in set 𝐴1
𝑖,𝑡

by 𝑟
1, 𝑗
𝑖,𝑡

∈ [0, 1]. At the same time, 𝐴2
𝑖,𝑡

contains 𝐽 expenditure proportions that the subject may consider in stage 2 of round 𝑡. We denote

the 𝑗th rule in set 𝐴2
𝑖,𝑡

by 𝑟
2, 𝑗
𝑖,𝑡

∈ [0, 1]. The rules are selected to make a choice based on their

forgone utilities 𝑣
𝑠, 𝑗

𝑖,𝑡
. Specifically, the forgone utilities of each rule are calculated based on equation

(10) with the strategies of others taken to be the most recently observed strategies at each stage

(see Appendix B for details). Then, subject 𝑖 selects rule 𝑗 to make a choice in stage 𝑠 of round 𝑡

with probability

𝜓
𝑠, 𝑗

𝑖,𝑡
=

𝑣
𝑠, 𝑗

𝑖,𝑡
− 𝜈𝑠,𝑚𝑖𝑛

𝑖,𝑡∑𝐽
𝑗=1(𝑣

𝑠, 𝑗

𝑖,𝑡
− 𝜈𝑠,𝑚𝑖𝑛

𝑖,𝑡
)
, (11)

where 𝜈𝑠,𝑚𝑖𝑛
𝑖,𝑡

= min 𝑗∈{1,...,𝐽 }{0, 𝑣𝑠, 𝑗𝑖,𝑡
}.

As mentioned above, the learning process contains two operators: experimentation and repli-

cation. First, with probability 𝜌, each rule is modified to introduce a new, related rule. The

modification is done via adding noise drawn from a normal distribution with a mean equal to the

current rule and standard deviation 𝜎 = .1. Second, the replication is carried out by the following

procedure: for each slot 𝑗 ∈ {1, 2, ...𝐽} in 𝐴𝑠
𝑖,𝑡
, two rules are randomly selected from 𝐴𝑠

𝑖,𝑡−1 (with

replacement). In each pair, a rule with a higher forgone utility will be chosen to fill the slot in 𝐴𝑠
𝑖,𝑡
.

3.2 Agent-based Model of Group Decision

One of the contributions of this paper is to provide an agent-based model of group decision-making.

To this end, we build on the IEL model described above, by adding a group-decision-making stage.

Specifically, first, each agent proposes a rule for making a choice. This process is similar to the rule

selection in the individual model. Second, all of the proposed rules are evaluated by each agent

based on the forgone utility. Finally, each agent votes for one of the rules proposed by the members

of own group. The voting takes a form of probabilistic choice based on the forgone utilities. For

simplicity, we use the same proportional rule from in equation 11. The rule with the most votes

is chosen to make the choice for a group (with ties broken randomly). Algorithm 1 presents the

outline of steps for the group-decision-making process based on IEL agents. Notice that when

𝐾 = 1, the algorithm implements the individual evolutionary learning paradigm of Arifovic and

Ledyard (2011, 2012). For the experiment carried out in this paper, we are interested in comparing

individual and group decision-making (𝐾 = 1 vs. 𝐾 = 2).

10



Algorithm 1 IEL and Group Decision (group of size K)

1: Initialize 𝑖 ∈ {1, ..., 𝐾 × 𝑛} agents

w.p. 48%: 𝛽𝑖 = 0 and 𝛾𝑖 = 0; w.p. 52%: 𝛽𝑖 ∼ 𝑈 [0, 22] and 𝛾𝑖 ∼ 𝑈 [0, 8]
initialize 𝐴1

𝑖,0 and 𝐴2
𝑖,0 with 𝐽 = 100 random rules: 𝑟

𝑠, 𝑗

𝑖,0 ∼ 𝑈 [0, 1]
2: Randomly split agents into 𝑛 groups
3: For each round 𝑡 ∈ {1, ..., 𝑇}:
4: For each stage 𝑠 ∈ {1, 2}:
5: For each agent 𝑖 ∈ {1, ..., 𝐾 × 𝑛}:
6: Experimentation: modify each rule 𝑟

𝑠, 𝑗

𝑖,𝑡
∈ 𝐴𝑠

𝑖,𝑡−1 with probability 𝜌
7: Replication: probabilistically copy good rules from 𝐴𝑠

𝑖,𝑡−1 to 𝐴𝑠
𝑖,𝑡

8: Proposal : probabilistically choose a rule 𝑟𝑠
𝑖,𝑡

from 𝐴𝑠
𝑖,𝑡

9: For each group 𝑛 ∈ {1, ..., 𝑛}:
10: For each agent 𝑘 ∈ {1, ..., 𝐾}:
11: Evaluate all group members’ proposals
12: Vote for one rule among 𝐾 proposed

13: Implementation: proposal with the most votes is implemented (ties broken randomly)

3.3 Simulations

The simulations are carried out in the environment presented in section 2. Specifically, in each

match, we have three decision-making units. In the individual treatment, each decision-making

unit consists of one agent (𝐾 = 1); in group treatment, each decision-making unit consists of

two agents (𝐾 = 2). We simulated a repeated interaction for the four treatments of interest

({𝜖 = 0, 𝜖 = 1} × {𝐾 = 1, 𝐾 = 2}). Each treatment contains 200 independent trials of 15 rounds of

play. Figure 3 presents the simulation results. The left panel shows the average cooperation rate

in stage 1, whereas the right panel shows the average spending amount in stage 2.
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Figure 3: IEL Simulations
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Notes: Red lines indicate individual treatments (𝐾 = 1). Blue lines indicate group treatments (𝐾 = 2).

Solid lines indicate no incumbency advantage (𝜖 = 0). Dashed lines indicate with incumbency advantage

(𝜖 = 1).

We find cooperation rates are higher for 𝜖 = 0 than for 𝜖 = 1 for both the Individual and the

Group treatment which is aligned with Hypothesis 1. More importantly, the cooperation rates in

the Group treatment are lower than Individual treatment both when 𝜖 = 0 and when 𝜖 = 1. Thus,

the results of the simulations provide a foundation for our second hypothesis.

Hypothesis 2 Cooperation is lower in treatments with groups than in treatments with individuals.

In addition to the comparative static predictions, the simulations provide predictions regarding

the dynamics of cooperation. Specifically, Figure 2 shows that cooperation decreases over time

across all four treatments. Thus, we rely on these results to propose our third hypothesis:

Hypothesis 3 Cooperation within an interaction breaks down over time.

4 Experimental Design

For our human-subject experiment, we implement a 2×2 factorial design similar to the simulations

described above. Specifically, in the experiment we vary the incumbency advantage (𝜖 = 0 vs 𝜖 = 1)

and the decision-making unit (individual vs group). We recruited 288 subjects and ran 16 sessions

at the Vernon Smith Experimental Economics Laboratory at Purdue University between February

and March 2023. Table 2 presents a summary of the four treatments. Each treatment contains

four sessions and 48 decision-making units. On average, subjects earned $24.1 (including the $5
show-up fee).
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Table 2: Summary of Experiment Administration

Treatment
Administration Demographics

Sessions DM Units Subjects Earnings % Male % STEM % US HS

GRP E0 4 48 96 23.6 53.1 66.7 64.6

(0.3) (5.1) (4.8) (4.9)

GRP E1 4 48 96 24.0 47.9 60.4 72.9

(0.2) (5.1) (5.0) (4.6)

IND E0 4 48 48 25.9 52.1 72.9 58.3

(0.4) (7.3) (6.5) (7.2)

IND E1 4 48 48 23.5 43.8 70.8 75.0

(0.5) (7.2) (6.6) (6.3)

Overall 16 192 288 24.1 49.7 66.3 68.1

(0.2) (3.0) (2.8) (2.8)

Notes: Standard errors are in parentheses. DM Units denote the number of decision-making units for

each treatment. % STEM denotes proportion of participants that are in STEM majors. % US HS

denotes the proportion of participants that completed high school in the US.

The experiment began with 11 matrix-reasoning questions (see Appendix E.1.1 for an example)

and a demographic questionnaire. Next, subjects had 20 minutes to go through a set of interactive

instructions. After the instructions, the main experiment began. Throughout the experiment, all

payoffs were displayed in Experimental Currency Units (ECUs) The main part of the experiment

consisted of 10 matches for the group treatments and 20 matches for the individual treatments.15

Each match consisted of an indefinitely repeated interaction with a probability of continuation

𝛿 = .875 (Roth and Murnighan, 1978). Specifically, at the end of each decision round, the computer

randomly drew a number between 1 and 8. The repeated game ended if 8 was drawn and continued

to at least one more round otherwise. Therefore, the expected duration of interaction was eight

rounds.

Each round contained two stages: (1) collective action game and (2) contest for power. In

stage 1, decision-making units simultaneously decide whether to cooperate in the production of a

collective good. Figure 4 presents the decision screen for stage 1 of the Group 𝜖 = 1 treatment.

Given the complexity of the environment and the dynamic consequences of decisions, we provide

a hypothetical calculator (4 in Figure 4). Using the calculator, subjects could enter a hypothetical

scenario to see the resulting payoffs for the round as well as the power in the following round.

15This difference is motivated by the fact that group treatments proceed much slower. For the main analysis below,
we report results from the first 10 matches for both group and individual treatments. In the appendix figure ??, we
report results from all 20 matches in individual treatments and confirm that behaviors have stabilized in matches
5-10.
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Figure 4: Stage 1 Screenshot
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Notes: The screenshot shows the decision screen in the Group 𝜖 = 1 treatment. The neutral actions 𝑋

and 𝑌 correspond to 𝐷 (defect) and 𝐶 (cooperate), respectively. The screenshot shows (1) decision entry

in the first row and the dynamically updated teammate’s choice in the second row (in the individual

treatment, the second row is left blank), (2) the group chat window (in individuals treatment, the

chat window is left blank), (3) the current-round summary with power distribution in the first column

(neutral “current shares” was used instead of “power”) and a question mark denoting the current

decision, (4) a hypothetical payoff calculator, and (5) a recap of the decision rules.

After all decision-making units make their stage 1 decisions, the experiment proceeds to stage

2. Figure 5 presents the screenshot of the stage 2 interface for the Group 𝜖 = 1 treatment. Decision-

making units need to decide how many points to spend in the contest for power. In particular, we

use neutral phrases such as “shares” when referring to power (see (2) in Figure 5). The points they

spend in stage 2 cannot exceed their earnings in stage 1.
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Figure 5: Stage 2 Screenshot
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Notes: The screenshot shows the decision screen in the Group 𝜖 = 1 treatment. The neutral actions

𝑋 and 𝑌 correspond to 𝐷 (defect) and 𝐶 (cooperate), respectively. The screenshot shows (1) stage

2 decision entry in the first row and the dynamically updated teammate’s choice in the second row

(in individual treatment, the second row is left blank), (2) the group chat window (in individuals

treatment, the chat window is left blank), (3) the current-round summary with power distribution in

the first column (neutral “current shares” was used instead of “power”) and a question mark denoting

the current decision, (4) a hypothetical payoff calculator, and (5) a recap of the decision rules.

4.1 Group vs. Individual Decision-Making

For group-decision-making treatments, we adopted procedures from Cooper and Kagel (2022).

Specifically, at the beginning of the experiment, subjects were randomly matched into groups of

two. Subjects stayed matched in the same groups throughout the experiment. To make decisions

jointly, each subject entered a choice for the game. The choice was immediately displayed to the

partner but was implemented only if both subjects in the group agreed within an allocated time

interval. If subjects did not agree on the choice within an allocated time, we followed Cooper and
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Kagel (2022) in implementing the choice (see (5) 16 in Figures 4 and 5, and Appendix E.2.7). To

facilitate the decision-making process, subjects had access to the chat box for the duration of the

main experiment. If the two subjects failed to reach an agreement within the allocated time, the

default option was implemented (see Appendix E.2.7).17 The time restrictions were as follows:

before the first match, we allocated five minutes for groups to discuss their planned strategies for

the match (which we call “prematch chat” as shown in Appendix E.3.2). After the first match, we

gradually reduced the time of the pre-match chat to one minute.18 On average, subjects spent 2.29

minutes discussing their plan prior to the first match, and 0.36 minutes discussing their plan prior

to matches 5–10. After the match began, we allocated up to one minute for the group to make a

choice in each stage of round 1 and 2, and up to 40 seconds in each stage of rounds 3 onward. On

average, subjects in the group treatment spent 12.7 seconds to make a decision in each round of

matches 5–10.

In the individual-decision-making treatments, we maintained the above procedures as much as

possible. In particular, the instructions were identical except for the two pages explaining group

decision-making (pages 9 and 10 in Appendix E). The stage-game interface was the same as the

group treatment except that we removed the teammate’s choice and the chat window. Importantly,

because of the existing evidence that additional reflection may impact the decisions (e.g., Piovesan

and Wengström, 2009; Rand, Greene, and Nowak, 2012; Neo, Yu, Weber, and Gonzalez, 2013; Rand,

Peysakhovich, Kraft-Todd, Newman, Wurzbacher, Nowak, and Greene, 2014; Kocher, Martinsson,

Myrseth, and Wollbrant, 2017), we implemented the same time restrictions. Specifically, subjects

had up to five minutes before the first match to think about their plan for the match. The “pre-

match” time was then reduced in the same manner as in the group treatment.

Given the complexity of the environment, we took several steps to ensure subjects understood

the interface and the consequences of the cooperation and competition decisions. First, we de-

veloped an interactive interface to engage subjects throughout the instructions (see Appendix E).

Second, to ensure subjects actively engaged with the interactive instructions, they were given 20

minutes to complete the instruction and 10 incentivized comprehension questions. Each compre-

hension question was worth $0.5 and was designed to test the understanding of different parts of

the instructions. Subjects received immediate feedback once they answered the question. After

the interactive instructions, we provided subjects with a hard copy of the instructions and a recap

of the decisions in each stage. Third, to improve participants’ understanding of how earnings in

stages 1 and 2 were determined, we required each participant to go through five examples with

16The decision rules are recapped as: As a team you will make decisions jointly. You should use this chat box to
discuss what to do and come to an agreement regarding what choice to make. Please coordinate your choice with
your teammate once you have reached an agreement as a round ends after all teams have made their choices. If
you and your teammate have not coordinated your choices within the allocated time, then: if one of you has made
a choice, then that will be your team’s choice; if both of you made choices (but they do not match), then one will
be picked at random to be your team’s choice; if neither of you has made a choice, then your team’s choice in the
previous round will be your team’s choice in the current round.

17In the second half of the experiment, only 2.7% of choices reached the time-out.
18Prematch-chat duration: match 2, 3 minutes; matches 3 to 5, 2 minutes; matches 6 and onward, 1 minute.
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step-by-step calculations.19 Lastly, we provided access to the payoff calculator for the duration of

the experiment (including the waiting pages).

5 Experimental Results

Figure 6: Cooperation and Competition Across Matches
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Notes: Blue color denotes the Group treatments (𝐾 = 2). Red color denotes the Individual treatment

(𝐾 = 1). Solid line with filled markers denotes treatments without incumbency advantage (𝜖 = 0).

Dashed line with empty markers denotes treatments with incumbency advantage (𝜖 = 1).

19To avoid bias, we randomly generated the power distribution and choices in those examples. In particular, for
stage 1, subjects saw five randomly generated power distributions and five sets of random choices. They then saw
step-by-step calculations of their earnings in stage 1. Next, in stage 2, they saw randomly generated spending and
how the spending will result in the next-round power.
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Figure 6 presents the average cooperation in the first round (top left panel) and in all rounds (top

right panel) across matches observed in our experiment.20 The solid lines indicate treatment 𝜖 = 1

whereas the dashed lines indicate treatment 𝜖 = 0. In the raw data, it is clear that for both the

Individual treatment (red lines) and the Group treatment (bue lines), the average cooperation is

higher when 𝜖 = 0, which is consistent with our theoretical prediction. To formally test Hypothesis

1, we run a regression of cooperation in a round on treatment dummies and their interaction. In the

regression, we include controls that capture the history of play (e.g., others’ cooperation in round 1

of the previous match) and demographic characteristics (e.g., major). The results of the regression,

presented in columns (1)-(3) of Table 3, show that the estimated coefficient of the dummy for 𝜖 = 1

treatment is negative and highly significant (p-value< .01).

Result 1 Cooperation is lower in treatments with a higher incumbency advantage.

Figure 6 also shows stage 2 spending in the first round (bottom left panel) and in all rounds

(bottom right panel) across matches observed in our experiment. In both panels, we see a clear

downward trend for all treatments, which is consistent with the previous finding in Rosokha, Lyu,

Tverskoi, and Gavrilets (2022), such that over time, subjects learn to spend less.21 Although

subjects in the Individual treatment tend to spend slightly more than the Group treatment for both

𝜖 = 0 and 𝜖 = 1 in the first 10 matches, the difference is not significant in the formal regression test

as shown in table 3 when we include other control variables. The average spending amount doesn’t

seem to differ between 𝜖 = 0 and 𝜖 = 1 treatments, either (p-value is .789 for comparison between

two Group treatments; p-value is .064 for the comparison between two Individual treatments).

The comparison of cooperation between the Individual and Group treatments is less clear.

Focusing on all rounds, we see that the average cooperation rate in the Individual treatment is

higher than Group treatment when 𝜖 = 0, but not when 𝜖 = 1. To delve deeper, Figure 7 shows the

evolution of cooperation within match. There are two notable observations from this figure. First,

the difference in cooperation between individuals and groups when 𝜖 = 0 arises after the second

round of interaction. Second, cooperation in Individual and Group treatments tends to zero when

𝜖 = 1. Regression results in Table 3 confirm these observations. Specifically, the cooperation in

rounds after round four is significantly lower for groups (p-value < .05) but only when 𝜖 = 0.

Result 2 Cooperation is higher by individuals than groups when 𝜖 = 0, but not when 𝜖 = 1.

20The cooperation rates observed in Individual 𝜖 = 0 treatment are comparable to previous experiments with similar
parameters (Rosokha, Lyu, Tverskoi, and Gavrilets, 2022). Specifically, with 𝑏 = 218, Rosokha, Lyu, Tverskoi, and
Gavrilets (2022) reported average cooperation of 69.7% for the 𝑛 = 2 treatment and 24.9% for the 𝑛 = 4 treatment. In
comparison, for 𝑏 = 232 and 𝑛 = 3 we find an average cooperation rate of 50.8%, which is within the expected range.

21For the two comparable treatments reported in Rosokha, Lyu, Tverskoi, and Gavrilets (2022), the average
spending fraction over stage 1 earnings both started from around 0.4 in match 1 and dropped to 0.1 (𝑛 = 4) and 0.3
(𝑛 = 2) respectively. In comparison, the average spending fraction in the Individual 𝜖 = 0 treatment of the current
paper is 0.19.
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Table 3: Cooperation and Competition

Cooperation Spending

Round 1 Round 5+ All Rounds Round 1 Round 5+ All Rounds

(1) (2) (3) (4) (5) (6)

E = 1 -0.26*** -0.31*** -0.27*** 5.14 1.44 2.27

(0.07) (0.06) (0.05) (5.27) (2.32) (2.71)

Being in a GRP -0.07 -0.19** -0.15* -6.27 -2.88 -3.47

(0.07) (0.09) (0.08) (5.63) (2.48) (2.66)

E=1 × GRP 0.20 0.21* 0.20* 2.26 -2.79 -1.69

(0.12) (0.11) (0.12) (7.55) (3.14) (3.37)

Power Inequality / 100 -6.91*** -8.86***

(1.81) (1.37)

My power -0.66 -1.84**

(0.93) (0.93)

Money at Hand 0.29*** 0.21*** 0.24***

(0.05) (0.06) (0.04)

Own Round 1 Coop in Match 1 0.14** 0.01 0.02 -1.40 0.09 -0.57

(0.06) (0.02) (0.03) (2.38) (0.94) (1.18)

Others’ Round 1 Coop in Match t-1 0.09*** -0.02 -0.00 4.29** 1.82* 2.10**

(0.03) (0.04) (0.04) (2.08) (1.01) (0.99)

Round Number / 10 -0.05* -0.23*** -2.39*** -3.72***

(0.03) (0.03) (0.81) (0.71)

Match Number / 10 0.09 -0.02 -0.14 -12.70** -8.60** -9.52***

(0.09) (0.11) (0.11) (6.06) (3.42) (3.39)

Constant 0.64*** 0.46*** 0.72*** 4.94 6.80 8.79**

(0.09) (0.16) (0.16) (5.28) (5.25) (4.25)

Observations 924 5,649 8,961 924 5,649 8,961

Number of Decision Makers 192 192 192 192 192 192

Notes: The table reports results from random-effects regressions using data across all treatments in

match 6-10. Columns (1)-(3) show how the cooperation responds to the treatments. The dependent

variable is 1 if subjects chose “Y”(cooperation) in stage 1, and 0 otherwise. Columns (4)-(6) show how

the spending responds to the treatments. The dependent variable is subjects’ spending in stage 2. ***

𝑝 < 0.01, ** 𝑝 < 0.05, * 𝑝 < 0.1.

One interesting observation from Figure 6 is that the cooperation in round 1 was increasing

across matches but cooperation across all rounds was decreasing across matches. For example, the

Individual 𝜖 = 0 treatment started from 0.58 in match 1 and increased to 0.87 by match 10. Despite

this increase, cooperation across all rounds actually dropped from 0.58 to 0.48. This indicates that

cooperation break-down within a match is substantial. For a closer look, Figure 7 presents the

evolution of cooperation and spending within a match. The figure shows a clear downward trend

which we confirm with regression presented in Table 3. In particular, the coefficient on ‘Round

Number’ is negative and highly significant (p-value < .01). We summarize these observations with

the following result.
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Result 3 Cooperation breaks down across rounds.

Figure 7: Cooperation and Competition Within a Match
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Notes: The figure indicates the average cooperation rate in round 1 and all rounds for match 5-10 only.

In each panel, a blue color indicates the Group treatment while a red color indicates the Individual

treatment. A solid line with filled markers indicates the treatment without incumbency 𝜖 = 0. A dashed

line with empty markers indicates the treatment with incumbency 𝜖 = 1.

6 Conclusion

In this paper, we investigate the role of the incumbency advantage in driving the breakdown of

cooperation between political factions. Our approach is threefold. First, we develop the theory

based on the myopic best response. Second, we run agent-based simulations using the recent model

of individual evolutionary learning proposed by Arifovic and Ledyard (2012). Finally, we run

controlled economics experiments. Across all three approaches we show that cooperation in the

collective action is lower if the incumbency advantage in the political contest is high.

In addition to the incumbency advantage, we investigate the difference between individuals and

groups. In particular, we contribute to the existing literature by proposing an extension to the

individual evolutionary learning of Arifovic and Ledyard (2011, 2012) to model the group decision-

making process. The computational and experimental results show that without the incumbency

advantage, groups are less cooperative than individuals. However, in the environment with the

incumbency advantage, cooperation for both individuals and groups breaks down to zero thus

leading to no difference.

Our work is not without limitations and as such opens many exciting avenues for future re-

search. First, we consider one specific setting for the comparison between individuals and groups.
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Investigating whether the proposed model of group decision-making can reconcile some of the con-

flicting results in the literature (e.g., more cooperation in the prisoners’ dilemma, less cooperation

in the trust game) would be an important next step. Second, our results highlight that inequality

in power over the division of surplus, such as those generated during elections, are important deter-

minants of subsequent cooperation.22 Furthermore, the incumbency advantage only amplifies this

inequality and leads to a dramatic breakdown in cooperation. Future research could investigate

mechanisms and institutions that could mitigate the detrimental effect of inequality. Finally, al-

though in our environment players could communicate within groups, they could not communicate

across groups. Understanding the extent to which communication across groups (as is the case

with political negotiations) could improve cooperation is important.
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Appendix A Additional details on theoretical predictions

In Appendix A.1-Appendix A.3, we build a general theory for 𝜀 ∈ [0, 1). For the sake of simplicity, we

assume 𝑓𝑖,𝑡+1 = 1/𝑛 in formula (3) if 𝑒𝑡 · (1 − 𝜀 + 𝜀 𝑓𝑡 ) = 0.23 In Appendix A.4, we discuss the special case of

𝜀 = 1.

Appendix A.1 Proof of Proposition 1

Here we will prove an extended version of Proposition 1.

Proposition 1 (an extended version). Existence of myopic-best-response equilibria.

• A symmetric myopic-best-response equilibrium is characterized by at most two types of players: defec-

tors and cooperators. All 𝑛𝐶 ∈ {0, 1, .., 𝑛}\{1} cooperators (if they exist) have the same power 𝑓𝐶 = 1/𝑛𝐶
and spend the same non-zero expenditure 𝑒∗

𝐶
= 𝛿

(
1− 1

𝑛𝐶

)
𝐹 (𝑛𝐶/𝑛)

𝑛𝐶
; and all 𝑛−𝑛𝐶 defectors (if they exist)

have the same power 𝑓𝐷 = 0 and the same expenditure 𝑒∗
𝐷
= 0.

• With 𝜀 ∈ (0, 1) and 𝑛 ≥ 3, an asymmetric myopic-best-response equilibrium is characterized by at most

three types of players: defectors (if they exist) and two types of cooperators. All 𝑛𝐶1 ∈ {1, .., 𝑛 − 1}
cooperators of the first type have the same power 𝑓𝐶1 =

𝜀−(2𝜀−1)𝑛𝐶2

𝜀 (𝑛𝐶1−𝑛𝐶2 ) and spend the same non-zero

expenditure 𝑒∗
𝐶1

=
𝛿𝐹 (𝑛𝐶1+𝑛𝐶2/𝑛)
𝜀 (𝑛𝐶1−𝑛𝐶2 )2

(
𝜀(𝑛𝐶1 − 1) − (1 − 𝜀)𝑛𝐶2

) (
𝜀 − (2𝜀 − 1)𝑛𝐶2)

)
. All 𝑛𝐶2 ∈ {1, .., 𝑛 − 1}

cooperators of the second type (𝑛𝐶1 > 𝑛𝐶2, and 𝑛𝐶1 +𝑛𝐶2 ≤ 𝑛) have the same power 𝑓𝐶2 =
−𝜀+(2𝜀−1)𝑛𝐶1

𝜀 (𝑛𝐶1−𝑛𝐶2 )
and spend the same non-zero expenditure 𝑒∗

𝐶2
=

𝛿𝐹 (𝑛𝐶1+𝑛𝐶2/𝑛)
𝜀 (𝑛𝐶1−𝑛𝐶2 )2

(
−𝜀(𝑛𝐶2−1)+(1−𝜀)𝑛𝐶1

) (
−𝜀+(2𝜀−1)𝑛𝐶1)

)
.

All 𝑛 − 𝑛𝐶1 − 𝑛𝐶2 defectors (if exist) have the same power 𝑓𝐷 = 0 and the same expenditure 𝑒∗
𝐷
= 0.

Proof. Let 𝐹𝐶 (𝑎−𝑖,𝑡 ) = 𝐹
(
1+(𝑛−1)𝑎−𝑖,𝑡

𝑛

)
is the total production when player 𝑖 cooperates and 𝑎−𝑖,𝑡 is the

proportion of cooperators among other players. Let 𝐸𝑖 (𝑎𝑖 , 𝑒𝑖) = −𝑒𝑖 + 𝛿𝜋1𝑖
(
(𝑎𝑖 , 𝑎−𝑖,𝑡 ), 𝜙

(
(𝑒𝑖 , 𝑒−𝑖,𝑡−1), 𝑓𝑡

) )
be

expected earnings of individual 𝑖. Recall that

∀𝑖 ∈ 𝐼 : 𝜙𝑖
(
(𝑒𝑖 , 𝑒−𝑖,𝑡−1), 𝑓𝑡

)
=


𝑒𝑖 (1−𝜀+𝜀 𝑓𝑖,𝑡 )

𝑒𝑖 (1−𝜀+𝜀 𝑓𝑖,𝑡 )+𝑒−𝑖,𝑡−1 · (1−𝜀+𝜀 𝑓−𝑖,𝑡 ) , if 𝑒𝑖 + 𝑒−𝑖,𝑡−1 · 𝟙 > 0

1
𝑛
, otherwise,

(12)

∀ 𝑗 ∈ 𝐼\{𝑖} : 𝜙 𝑗

(
(𝑒𝑖 , 𝑒−𝑖,𝑡−1), 𝑓𝑡

)
=


𝑒 𝑗,𝑡−1 (1−𝜀+𝜀 𝑓𝑖,𝑡 )

𝑒𝑖 (1−𝜀+𝜀 𝑓𝑖,𝑡 )+𝑒−𝑖,𝑡−1 · (1−𝜀+𝜀 𝑓−𝑖,𝑡 ) , if 𝑒𝑖 + 𝑒−𝑖,𝑡−1 · 𝟙 > 0

1
𝑛
, otherwise,

(13)

To prove proposition 1, we need to consider the following lemmas:

Lemma 1 Assume that 𝑎−𝑖,𝑡 · 𝑒−𝑖,𝑡−1 = 0 and 𝑎−𝑖,𝑡 ≠ 0. Then, player 𝑖 to maximize her expected earnings

𝐸𝑖 (𝑎𝑖 , 𝑒𝑖) on the set {0, 1} × [0, 𝜋1
𝑖
(𝑎𝑡 , 𝑓𝑡 )],

• is motivated to cooperate (i.e., 𝑎𝑖 = 1) and spend expenditure 𝑒𝑖 = Δ, where Δ > 0 and Δ → 0 if

𝑐 < 𝐹𝐶 (𝑎−𝑖,𝑡 ),

• chooses to defect with the zero expenditure, otherwise.

23Although this assumption differs from what we used in the experiment setting (see footnote #9 in the main text),
it does not affect our main equilibrium results, while simplifying all the proofs.
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Proof. With 𝑎−𝑖,𝑡 · 𝑒−𝑖,𝑡−1 = 0 and 𝑎−𝑖,𝑡 ≠ 0, the expected earnings of individual 𝑖 are

𝐸𝑖 (𝑎𝑖 , 𝑒𝑖) =


−𝑒𝑖 + 𝛿𝑅0, if 𝑎𝑖 = 0,

𝛿

(
𝑅0 − 𝑐 + 1

1+𝑎−𝑖,𝑡 ·𝟙𝐹𝐶 (𝑎−𝑖,𝑡 )
)
, if 𝑎𝑖 = 1, 𝑒𝑖 = 0,

−𝑒𝑖 + 𝛿(𝑅0 − 𝑐 + 𝐹𝐶 (𝑎−𝑖,𝑡 )), if 𝑎𝑖 = 1, 𝑒𝑖 ≠ 0.

Given the expected earnings, it is straightforward that argmax𝑒𝑖∈[0, 𝜋1
𝑖
(𝑎𝑡 , 𝑓𝑡 ) ] 𝐸𝑖 (0, 𝑒𝑖) = 0 and 𝐸𝑖 (1, 0) <

𝐸𝑖 (1,Δ) if Δ ∈
(
0, 𝛿𝐹𝐶 (𝑎−𝑖,𝑡 ) 𝑎−𝑖,𝑡 ·𝟙

1+𝑎−𝑖,𝑡 ·𝟙

)
. With 𝐹𝐶 (𝑎−𝑖,𝑡 ) ≤ 𝑐, one concludes that ∀Δ > 0 : 𝐸𝑖 (0, 0) > 𝐸𝑖 (1,Δ).

As a result,

argmax
𝑎𝑖∈{0,1},𝑒𝑖∈[0, 𝜋1

𝑖
(𝑎𝑡 , 𝑓𝑡 ) ]

𝐸𝑖 (𝑎𝑖 , 𝑒𝑖) = (0, 0).

With 𝐹𝐶 (𝑎−𝑖,𝑡 ) > 𝑐, one concludes that 𝐸𝑖 (0, 0) < 𝐸𝑖 (1,Δ) if Δ ∈
(
0, 𝛿(𝐹𝐶 (𝑎−𝑖,𝑡 ) − 𝑐)

)
. As a result, an

individual maximizing her expected earnings should choose among strategies (1,Δ), where

Δ ∈
(
0, 𝑚𝑖𝑛

{
𝛿𝐹𝐶 (𝑎−𝑖,𝑡 )

𝑎−𝑖,𝑡 · 𝟙
1 + 𝑎−𝑖,𝑡 · 𝟙

, 𝛿(𝐹𝐶 (𝑎−𝑖,𝑡 ) − 𝑐)
})
.

Specifically, the individual should choose Δ > 0 such that Δ → 0. The lemma is proved.

Lemma 2 If 𝑎−𝑖,𝑡 = 0,

(𝑎𝑖,𝑡+1, 𝑒𝑖,𝑡 ) = 𝐵𝑅𝑎,𝑒
𝑖

(𝑎𝑡 , 𝑒𝑡−1, 𝑓𝑡 ) =

(1, 0), if 𝑐 ≤ 𝐹𝐶 (0),
(0, 0), otherwise.

(14)

Proof. With 𝑎−𝑖,𝑡 = 0, 𝐸𝑖 (1, 𝑒𝑖) = −𝑒𝑖 + 𝛿(𝑅0 − 𝑐 + 𝐹𝐶 (0)). Consequently, one concludes that

𝑎𝑟𝑔𝑚𝑎𝑥𝑒𝑖∈[0, 𝜋1
𝑖
(𝑎𝑡 , 𝑓𝑡 ) ]𝐸𝑖 (1, 𝑒𝑖) = 0.

Moreover, argmax𝑒𝑖∈[0, 𝜋1
𝑖
(𝑎𝑡 , 𝑓𝑡 ) ] 𝐸𝑖 (0, 𝑒𝑖) = 0. Then, 𝐵𝑅𝑎,𝑒 (𝑎𝑡 , 𝑒𝑡−1, 𝑓𝑡 ) = 1 if 𝐸𝑖 (1, 0) ≥ 𝐸𝑖 (0, 0) and 𝐵𝑅𝑎,𝑒 (𝑎𝑡 , 𝑒𝑡−1, 𝑓𝑡 ) =

0, otherwise, which is equivalent to the statement of the lemma.

Lemma 3 Assume that 𝑎−𝑖,𝑡 · 𝑒−𝑖,𝑡−1 ≠ 0. Then,

𝜋1𝑖

(
(𝑎𝑖 , 𝑎−𝑖,𝑡 ), 𝜙

(
(𝑒𝑖 , 𝑒−𝑖,𝑡−1), 𝑓𝑡

) )
=


𝑅0, if 𝑎𝑖 = 0,

𝑅0 − 𝑐 + 𝑒𝑖 (1−𝜀+𝜀 𝑓𝑖,𝑡 )
𝑒𝑖 (1−𝜀+𝜀 𝑓𝑖,𝑡 )+𝑆−𝑖,𝑡

𝐹𝐶 (𝑎−𝑖,𝑡 ), otherwise,
(15)

where 𝑆−𝑖,𝑡 =
∑

𝑗∈𝐼\{𝑖} 𝑎 𝑗 ,𝑡𝑒 𝑗 ,𝑡−1 (1 − 𝜀 + 𝜀 𝑓 𝑗 ,𝑡 ).

Proof. The proof is straightforward. Since 𝑎−𝑖,𝑡 · 𝑒−𝑖,𝑡−1 ≠ 0, there exists individual 𝑗 ∈ 𝐼\{𝑖} such that

𝑎 𝑗 ,𝑡 ≠ 0 and 𝑒−𝑖,𝑡−1 ≠ 0. As a result, 𝑒𝑖 + 𝑒−𝑖,𝑡−1 · 𝟙 > 0, and according to formula 13, 𝜙 𝑗

(
(𝑒𝑖 , 𝑒−𝑖,𝑡−1), 𝑓𝑡

)
≠ 0.

This means that 𝜋1
𝑖

(
(𝑎𝑖 , 𝑎−𝑖,𝑡 ), 𝜙

(
(𝑒𝑖 , 𝑒−𝑖,𝑡−1), 𝑓𝑡

) )
is defined by formula 2 in the main text. Combining

together formulas 12, 13, and 2, we get 15. The lemma is proved.

Lemma 4 Let
√︁
𝛿𝐹𝐶 (𝑎−𝑖,𝑡 ) (1 − 𝜀 + 𝜀 𝑓𝑖,𝑡 )𝑆−𝑖,𝑡 − 𝑆−𝑖,𝑡 ≤ 𝜋1

𝑖
(𝑎𝑡 , 𝑓𝑡 ) (1 − 𝜀 + 𝜀 𝑓𝑖,𝑡 ), and 𝑎−𝑖,𝑡 · 𝑒−𝑖,𝑡−1 ≠ 0. Then,

(𝑎𝑖,𝑡+1, 𝑒𝑖,𝑡 ) = 𝐵𝑅𝑎,𝑒
𝑖

(𝑎𝑡 , 𝑒𝑡−1, 𝑓𝑡 ) =

26



=


(
1, 1

1−𝜀+𝜀 𝑓𝑖,𝑡

(√︁
𝛿𝐹𝐶 (𝑎−𝑖,𝑡 ) (1 − 𝜀 + 𝜀 𝑓𝑖,𝑡 )𝑆−𝑖,𝑡 − 𝑆−𝑖,𝑡

) )
, if

√︁
𝑆−𝑖,𝑡 <

√︁
𝛿(1 − 𝜀 + 𝜀 𝑓𝑖,𝑡 ) (

√︁
𝐹𝐶 (𝑎−𝑖,𝑡 ) −

√
𝑐),

(0, 0), otherwise.
(16)

Proof. First, note that argmax𝑒𝑖∈[0, 𝜋1
𝑖
(𝑎𝑡 , 𝑓𝑡 ) ] 𝐸𝑖 (0, 𝑒𝑖) = 0, and according to formula 15

argmax
𝑒𝑖∈[0, 𝜋1

𝑖
(𝑎𝑡 , 𝑓𝑡 ) ]

𝐸𝑖 (1, 𝑒𝑖) =


1

1−𝜀+𝜀 𝑓𝑖,𝑡

(√︁
𝛿𝐹𝐶 (𝑎−𝑖,𝑡 ) (1 − 𝜀 + 𝜀 𝑓𝑖,𝑡 )𝑆−𝑖,𝑡 − 𝑆−𝑖,𝑡

)
, if 𝑆−𝑖,𝑡 < 𝛿𝐹𝐶 (𝑎−𝑖,𝑡 ) (1 − 𝜀 + 𝜀 𝑓𝑖,𝑡 ),

0, otherwise.

Since 𝐸𝑖 (0, 0) > 𝐸𝑖 (1, 0), one concludes that 𝐵𝑅𝑎,𝑒
𝑖

(𝑎𝑡 , 𝑒𝑡−1, 𝑓𝑡 ) = (1, 𝑒#
𝑖
) if 𝑆−𝑖,𝑡 < 𝛿𝐹𝐶 (𝑎−𝑖,𝑡 ) (1 − 𝜀 +

𝜀 𝑓𝑖,𝑡 ) and 𝐸𝑖 (0, 0) ≤ 𝐸𝑖 (1, 𝑒#𝑖 ), where 𝑒#
𝑖

= 1
1−𝜀+𝜀 𝑓𝑖,𝑡

(√︁
𝛿𝐹𝐶 (𝑎−𝑖,𝑡 ) (1 − 𝜀 + 𝜀 𝑓𝑖,𝑡 )𝑆−𝑖,𝑡 − 𝑆−𝑖,𝑡

)
. Otherwise,

𝐵𝑅
𝑎,𝑒
𝑖

(𝑎𝑡 , 𝑒𝑡−1, 𝑓𝑡 ) = (0, 0). A straightforward algebraic manipulations show that this is equivalent to the

statement of the lemma.

Now we can prove proposition 1. Consider an equilibrium with 𝑛𝐶 ∈ {0, 1, .., 𝑛} cooperators, and

𝑛− 𝑛𝐶 defectors. Assume that 𝑛𝐶 < 𝑛, then, as follows from Lemmas 1-3, each defector has an effort 𝑒∗
𝐷
= 0.

Assume that 𝑛𝐶 = 1. Let player 𝑖 is the cooperator. Then, 𝑎∗−𝑖 = 0, and according to Lemma 2, 𝑒∗
𝑖
= 0,

and 𝐹𝐶 (𝑎−𝑖,𝑡 ) = 𝐹𝐶 (0) = 𝐹 (1/𝑛) ≥ 𝑐. Then, consider a defector 𝑗 ∈ 𝐼\{𝑖}. Note, that 𝑎∗− 𝑗
· 𝑒∗− 𝑗

= 0 and

𝑎∗− 𝑗
≠ 0. As a result, according to Lemma 1, 𝑗 is motivated to defect if 𝑐 ≥ 𝐹𝐶 (𝑎− 𝑗 ,𝑡 ) = 𝐹𝐶 (1/𝑛) = 𝐹 (2/𝑛),

which leads to a contradiction 𝑐 ≤ 𝐹 (1/𝑛) < 𝐹 (2/𝑛) ≤ 𝑐 since 𝐹 is a monotonically increasing function on

(0, +∞). Consequently, a state with 𝑛∗
𝐶
= 1 cooperator is not an equilibrium in the model.

Assume that 𝑛𝐶 > 1. Let 𝑖 is a cooperator. Then, (1) 𝑎∗−𝑖𝑒
∗
−𝑖 ≠ 0, and (2)

√︃
𝛿𝐹𝐶 (𝑎∗−𝑖) (1 − 𝜀 + 𝜀 𝑓𝑖)𝑆∗−𝑖 −

𝑆∗−𝑖 ≤ 𝜋1
𝑖
(𝑎∗, 𝑓 ) (1−𝜀+𝜀 𝑓𝑖). First, we prove statement (1). Indeed, assume that 𝑎∗−𝑖𝑒

∗
−𝑖 = 0. Since 𝑛𝐶 > 1, one

concludes that 𝑎∗−𝑖 ≠ 0, i.e. there exists 𝑗 ∈ 𝐼\{𝑖} with 𝑎∗
𝑗
= 1. Moreover, since 𝑎∗

𝑗
𝑒∗
𝑗
= 0 by the assumption,

it follows that 𝑒∗
𝑗
= 0. Furthermore, according to Lemma 1, 𝑖 is motivated to make an infinitely small but

non-zero effort, which implies 𝑎∗− 𝑗
· 𝑒∗− 𝑗

≠ 0. Consequently, we can apply Lemma 4 to individual 𝑗 which

implies that (𝑎∗
𝑗
, 𝑒∗

𝑗
) = (1, 0) cannot be the best response choice of 𝑗 which is a contradiction.

Second, we prove statement (2). Indeed, assume that
√︃
𝛿𝐹𝐶 (𝑎∗−𝑖) (1 − 𝜀 + 𝜀 𝑓𝑖)𝑆∗−𝑖 − 𝑆∗−𝑖 ≤ 𝜋1

𝑖
(𝑎∗, 𝑓 ) (1 −

𝜀 + 𝜀 𝑓𝑖). Then, 𝑒∗
𝑖
= 𝜋1

𝑖
(𝑎∗, 𝑓 ). As a result, 𝐸𝑖 (1, 𝑒∗𝑖 ) = (𝛿 − 1)𝜋1

𝑖
(𝑎∗, 𝑓 ) < 0 < 𝛿𝑅0 = 𝐸 (0, 0), which is a

contradiction.

As a result of (1) and (2), we can apply Lemma 4 to two cooperators, 𝑖 and 𝑗 . Specifically, it means that

𝑒∗
𝑖
, 𝑒∗

𝑗
, 𝑓𝑖 , 𝑓 𝑗 , 𝑆

∗
−𝑖 , 𝑆

∗
− 𝑗
> 0 and

√︁
𝛿𝐹 (𝑛𝐶/𝑛) =

𝑆∗−𝑖 + 𝑒∗𝑖 (1 − 𝜀 + 𝜀 𝑓𝑖)√︃
𝑆∗−𝑖 (1 − 𝜀 + 𝜀 𝑓𝑖)

=
𝑆∗− 𝑗

+ 𝑒∗
𝑗
(1 − 𝜀 + 𝜀 𝑓 𝑗 )√︃

𝑆∗− 𝑗
(1 − 𝜀 + 𝜀 𝑓 𝑗 )

. (17)

From equation 7 and since for each defector 𝑘, 𝑓𝑘 = 0, one shows that

𝑓𝑖 =
𝑒∗
𝑖
(1 − 𝜀 + 𝜀 𝑓𝑖)

𝑒∗
𝑖
(1 − 𝜀 + 𝜀 𝑓𝑖) + 𝑆∗−𝑖

⇒ 𝑆∗−𝑖 =
𝑒∗
𝑖
(1 − 𝜀 + 𝜀 𝑓𝑖) (1 − 𝑓𝑖)

𝑓𝑖
. (18)
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Plugging equation 18 into 17 one concludes that

𝛿𝐹 (𝑛𝐶/𝑛) =
𝑒∗
𝑖

𝑓𝑖 (1 − 𝑓𝑖)
=

𝑒∗
𝑗

𝑓 𝑗 (1 − 𝑓 𝑗 )
⇒

𝑒∗
𝑖
𝑓 𝑗

𝑒∗
𝑗
𝑓𝑖

=
1 − 𝑓𝑖

1 − 𝑓 𝑗
. (19)

As follows from equation 7,

𝑓𝑖

𝑓 𝑗
=
𝑒∗
𝑖
(1 − 𝜀 + 𝜀 𝑓𝑖)

𝑒∗
𝑗
(1 − 𝜀 + 𝜀 𝑓 𝑗 )

⇒
𝑒∗
𝑖
𝑓 𝑗

𝑒∗
𝑗
𝑓𝑖

=
1 − 𝜀 + 𝜀 𝑓 𝑗
1 − 𝜀 + 𝜀 𝑓𝑖

. (20)

Combining equations 19 and 20, one observes:

1 − 𝑓𝑖

1 − 𝑓 𝑗
=
1 − 𝜀 + 𝜀 𝑓 𝑗
1 − 𝜀 + 𝜀 𝑓𝑖

⇒ ( 𝑓𝑖 − 𝑓 𝑗 ) [𝜀( 𝑓𝑖 + 𝑓 𝑗 ) + 1 − 2𝜀] = 0, (21)

which means that either 𝑓𝑖 = 𝑓 𝑗 or 𝑓𝑖 + 𝑓 𝑗 = 2 − 1/𝜀. Now we can show that there are no more than two

distinct types of cooperators at an equilibrium. To do this, assume that there are three cooperators 𝑖, 𝑗 , 𝑘

with different powers 𝑓𝑖 , 𝑓 𝑗 , 𝑓𝑘 ( 𝑓𝑖 ≠ 𝑓 𝑗 , 𝑓𝑖 ≠ 𝑓𝑘 , and 𝑓 𝑗 ≠ 𝑓𝑘). Then, 2 − 1/𝜀 − 𝑓𝑖 = 𝑓 𝑗 = 𝑓𝑘 , which is a

contradiction. As a result, either all cooperators have the same power 𝑓𝐶 = 1/𝑛𝐶 or there are two types of

cooperators with non-zero powers 𝑓𝐶1 and 𝑓𝐶2 such that 𝑓𝐶1 ≠ 𝑓𝐶2 and 𝑓𝐶1 + 𝑓𝐶2 = 2 − 1/𝜀.
To finish the proof, we need to calculate the characteristics of equilibria. As follows from formula 19,

𝑒∗𝐶 = 𝛿

(
1 − 1

𝑛∗
𝐶

) 𝐹 (𝑛∗
𝐶
/𝑛)

𝑛∗
𝐶

(22)

in a symmetric equilibrium with 𝑛𝐶 > 1 cooperators. For each asymmetric equilibrium, we have:
𝑓𝐶1 + 𝑓𝐶2 = 2 − 1/𝜀,
𝑛𝐶1 𝑓𝐶1 + 𝑛𝐶2 𝑓𝐶2 = 1.

Solving the above system, one ends up with the corresponding formulas for 𝑓𝐶1 and 𝑓𝐶2. Applying formula 19,

one also observes the corresponding formulas for 𝑒∗
𝐶1

and 𝑒∗
𝐶2

. The proposition is proved.

Appendix A.2 Results on the existence of equilibria

Proposition 3 Existence of symmetric equilibria.

• The symmetric equilibrium with all defectors exists if 𝐹 (1/𝑛) < 𝑐.

• The symmetric equilibrium with all cooperators exists if 𝐹 (1)
𝑛

≥ 𝑐𝑛.

• A symmetric equilibrium with 𝑛𝐶 ∈ 𝐼\{0, 1, 𝑛} cooperators exists if two conditions hold:

𝐹 (𝑛𝐶/𝑛)
𝑛𝐶

≥ 𝑐𝑛𝐶 , and (23)

𝜀

1 − 𝜀 >


𝛿
𝑒∗
𝐶

(√︁
𝐹 (𝑛𝐶 + 1/𝑛) −

√
𝑐
)2 − 𝑛𝐶 , if 𝐹 (𝑛𝐶 + 1/𝑛) < 1

𝑐

(
𝑐 + 𝑅0

𝛿

)2
,

𝑅0

𝑒∗
𝐶

(
𝐹 (𝑛𝐶+1/𝑛)
𝑐+𝑅0/𝛿 − 1

)
− 𝑛𝐶 , otherwise.

(24)

Proof. Consider a state with 𝑛𝐶 ∈ 𝐼\{1} cooperators and 𝑛 − 𝑛𝐶 defectors such that each defector has zero
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power and spend the zero expenditure, while each cooperator has power 1/𝑛𝐶 and spend expenditure 𝑒∗
𝐶

defined by formula 22. Overall, to check existence, we need to check condition 6 in Definition 1 (note that

condition 7 is automatically satisfied for the above state). Namely, for each defector (if exists), we should

check that (0, 0) is the best response strategy to the strategies of others for given powers of all players.

Likewise, for each cooperator (if exists) we should check that (1, 𝑒∗
𝐶
) is the best rsponse strategy to the

strategies of others for given powers of all players.

• Let 𝑛𝐶 = 0. Then, according to Lemma 2, for each defector 𝑖: (0, 0) = 𝐵𝑅𝑎,𝑒
𝑖

(𝑎∗, 𝑒∗, 𝑓 ) if 𝑐 > 𝐹 (1/𝑛).

• Let 𝑛𝐶 = 𝑛. Then, according to Lemma 4, for each cooperator 𝑖: (1, 𝑒∗
𝐶
) = 𝐵𝑅𝑎,𝑒

𝑖
(𝑎∗, 𝑒∗, 𝑓 ) if√︃

𝑆∗−𝑖 ≤
√︃
𝛿(1 − 𝜀 + 𝜀 𝑓𝑖) (

√︃
𝐹𝐶 (𝑎∗−𝑖) −

√
𝑐),

which transforms to
√︃
(𝑛 − 1)𝑒∗

𝐶
(1 − 𝜀 + 𝜀/𝑛) ≤

√︁
𝛿(1 − 𝜀 + 𝜀/𝑛) (

√︁
𝐹 (1) −

√
𝑐), which, in turn, is equiv-

alent to 𝐹 (1)
𝑛

≥ 𝑐𝑛.

• Let 𝑛𝐶 ∈ 𝐼\{0, 1, 𝑛}. Then, according to Lemma 4, for each cooperator we should have√︃
(𝑛𝐶 − 1)𝑒∗

𝐶
(1 − 𝜀 + 𝜀/𝑛𝐶 ) ≤

√︁
𝛿(1 − 𝜀 + 𝜀/𝑛𝐶 ) (

√︁
𝐹 (𝑛𝐶/𝑛) −

√
𝑐),

which transforms to 𝐹 (𝑛𝐶/𝑛)
𝑛𝐶

≥ 𝑐𝑛𝐶 . To check whether a defector is not motivated to cooperate, we

should take into account the fact that their expenditures cannot exceed their current payoff 𝑅0. As a

result, Lemma 4 cannot be employed. Instead, we should explicitly consider their expected earnings

𝐸 and show

∀𝑒 ∈ [0, 𝑅0] : 𝐸 (1, 𝑒) ≤ 𝐸 (0, 0) ⇔

⇔ ∀𝑒 ∈ [0, 𝑅0] : −𝑒 + 𝛿
(
𝑅0 − 𝑐 +

𝑒(1 − 𝜀)
𝑒(1 − 𝜀) + 𝑒∗

𝐶
[(1 − 𝜀)𝑛𝐶 + 𝜀] · 𝐹 (𝑛𝐶 + 1/𝑛)

)
≤ 𝛿𝑅0 ⇔

⇔ ∀𝑒 ∈ [0, 𝑅0] : 𝐿 (𝑒) = 𝑒2 + (𝐵 + 𝐷 − 𝐴)𝑒 + 𝐵𝐷 ≥ 0,

where 𝐴 = 𝛿𝐹 (𝑛𝐶 + 1/𝑛), 𝐵 = 𝑒∗
𝐶
[(1 − 𝜀)𝑛𝐶 + 𝜀], and 𝐷 = 𝛿𝑐. Let us consider the opposite expression:

we need to find parameter values such that

∃𝑒 ∈ [0, 𝑅0] : 𝐿 (𝑒) < 0.

Since 𝐿 (0) = 𝐵𝐷 > 0 and ∀𝑒 : 𝐿′′ (𝑒) > 0, the above condition is equivalent to the system of 3

conditions: 
𝑥 > 0 (i.e., 𝐿′ (0) < 0 ⇒ all roots of 𝐿 (𝑒) = 0 (if exist) are positive),

𝑥2 − 4𝐵𝐷 ≥ 0 (i.e., 𝐿 (𝑒) = 0 has real roots),

2𝑅0 ≥ 𝑥 −
√
𝑥2 − 4𝐵𝐷 (i.e., the smallest root is less than or equal to 𝑅0),

where 𝑥 = 𝐴 − 𝐵 − 𝐷. The above system of inequalities transforms to
𝑥 ≥ 2

√
𝐵𝐷, if 𝑅0 ≥

√
𝐵𝐷,

𝑥 ≥ 𝐵𝐷
𝑅0

+ 𝑅0, otherwise.

29



Substituting the expression for 𝑥, we obtain
𝐵 ≤

(√
𝐴 −

√
𝐷

)2
, if 𝐴 < (𝐷+𝑅0 )2

𝐷
,

𝐵 ≤ (𝐴−𝐷−𝑅0 )𝑅0

𝐷+𝑅0
, otherwise .

Taking the opposite expression and plugging in the expressions for 𝐴, 𝐵, and 𝐷, we obtain the required

condition 24. The proposition is proved.

Note that in an equilibrium with 1 < 𝑛𝐶 < 𝑛 cooperators, the decisions of at least one agent (defector) in

stage 1 are actually constrained by their current payoff only if 𝐹 (𝑛𝐶 + 1) > 1
𝑐

(
𝑐 + 𝑅0

𝛿

)
(see condition 24),

which implies

𝑏 > 𝑐 + 𝑅0

(
2 + 𝑅0

𝑐

)
.

Intuitively, this means that incentives of a defector to cooperate are actually limited by their current payoff

(i.e., 𝑅0) if the maximum benefit to cooperation is very high relative to the endowment (or alternatively, the

endowment is very small compared to the maximum benefit to cooperation).

Proposition 4 Existence of asymmetric equilibria. An asymmetric equilibrium with 𝑛𝐶 ∈ {3, .., 𝑛}
cooperators such that 𝑛𝐶1 > 0 of them are of the first type, and 𝑛𝐶2 > 0 of them are of the second type

(𝑛𝐶1 + 𝑛𝐶2 = 𝑛𝐶 , 𝑛𝐶1 < 𝑛𝐶2) exists if

•

𝑘 ≤ 1

𝑛𝐶
and 𝜀 ∈

[
1

2 − 𝑘 + 𝑘𝑛𝐶2−1
𝑛𝐶1

,
𝑛𝐶

2(𝑛𝐶 − 1)

)
∪

(
𝑛𝐶

2(𝑛𝐶 − 1) ,
1

2 − 𝑘 + 𝑘𝑛𝐶1−1
𝑛𝐶2

]
, (25)

where 𝑘 =
√︃

𝑐
𝐹 (𝑛𝐶/𝑛) , and

•

𝜀

1 − 𝜀 𝑓𝐶1 𝑓𝐶2 >


(√

𝐹 (𝑛𝐶+1/𝑛)−
√
𝑐
)2

𝐹 (𝑛𝐶/𝑛) − 1, if 𝐹 (𝑛𝐶 + 1/𝑛) < 1
𝑐

(
𝑐 + 𝑅0

𝛿

)2
,

𝑅0

𝛿𝐹 (𝑛𝐶/𝑛)

(
𝐹 (𝑛𝐶+1/𝑛)
𝑐+𝑅0/𝛿 − 1

)
− 1, otherwise.

(26)

Proof.

• First, we need to ensure that 𝑓𝐶1, 𝑓𝐶2 ≥ 0 and 𝑓𝐶1 ≠ 𝑓𝐶2, which (According to Proposition 1) implies

𝜀 ∈
[ 𝑛𝐶1

2𝑛𝐶1 − 1
,

𝑛𝐶

2(𝑛𝐶 − 1)

)
∪

( 𝑛𝐶

2(𝑛𝐶 − 1) ,
𝑛𝐶2

2𝑛𝐶2 − 1

]
. (27)

• For each cooperator 𝑖 of the first type, we should check that (1, 𝑒∗
𝐶1

) is the best response strategy to

the strategies of others for given powers of all players. Then, according to Lemma 4,√︃
𝑆∗−𝑖 ≤

√︃
𝛿(1 − 𝜀 + 𝜀 𝑓𝐶1)

(√︁
𝐹 (𝑛𝐶/𝑛) −

√
𝑐

)
,

which (employing equation 18) is equivalent to√√
𝑒∗
𝑖
(1 − 𝑓𝐶1)
𝑓𝐶1

≤
√
𝛿

(√︁
𝐹 (𝑛𝐶/𝑛) −

√
𝑐

)
.
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According to equation 19, the above inequality can be transformed to

𝑓𝐶1 ≥ 𝑘.

• Likewise, for each cooperator of the second type, we should check that (1, 𝑒∗
𝐶2

) is the best response

strategy to the strategies of others for given powers of all players, which is equivalent to 𝑓𝐶2 ≥ 𝑘.

Combining together conditions 𝑓𝐶1, 𝑓𝐶2 ≥ 𝑘 and condition 27, one obtains condition 25.

• Let 𝑛𝐶 < 𝑛. Then, there exists defector 𝑑. To check whether the defector is not motivated to cooperate,

we should take into account the fact that their expenditures cannot exceed their current payoff 𝑅0. As

a result, Lemma 4 cannot be employed. Instead, we should explicitly consider their expected earnings

𝐸 and show

∀𝑒 ∈ [0, 𝑅0] : 𝐸 (1, 𝑒) ≤ 𝐸 (0, 0) ⇔

⇔ ∀𝑒 ∈ [0, 𝑅0] : −𝑒 + 𝛿
(
𝑅0 − 𝑐 +

𝑒(1 − 𝜀)
𝑒(1 − 𝜀) + 𝑆−𝑑

· 𝐹 (𝑛𝐶 + 1/𝑛)
)
≤ 𝛿𝑅0.

Following the arguments used to prove Proposition 3, we show that the above condition is equivalent

to

𝑆−𝑑
1 − 𝜀 >


𝛿
(√︁
𝐹 (𝑛𝐶 + 1/𝑛) −

√
𝑐
)2
, if 𝐹 (𝑛𝐶 + 1/𝑛) < 1

𝑐

(
𝑐 + 𝑅0

𝛿

)2
,

𝑅0

(
𝐹 (𝑛𝐶+1)
𝑐+𝑅0/𝛿 − 1

)
otherwise .

(28)

Sequentially employing conditions 18, 19, and the fact that (1 − 𝑓𝐶1) (1 − 𝜀 + 𝜀 𝑓𝐶1) = 1 − 𝜀 + 𝜀 𝑓𝐶1 (2 −
1/𝜀 − 𝑓𝐶1) = 1 − 𝜀 + 𝜀 𝑓𝐶1 𝑓𝐶2, we get

𝑆−𝑑 =
𝑒∗
𝐶1

(1 − 𝜀 + 𝜀 𝑓𝐶1)
𝑓𝐶1

= 𝛿𝐹 (𝑛𝐶/𝑛) (1 − 𝑓𝐶1) (1 − 𝜀 + 𝜀 𝑓𝐶1) = 𝛿𝐹 (𝑛𝐶/𝑛) (1 − 𝜀 + 𝜀 𝑓𝐶1 𝑓𝐶2).

Plugging in the above expression for 𝑆−𝑑 to condition 28, we obtain condition 26. The proposition is

proved.

Appendix A.3 Proof of Proposition 2

Here we will prove an extended version of Proposition 2.

Proposition 2 (an extended version). Stability of symmetric myopic-best-response equilibria. The

symmetric equilibrium with 𝑛𝐶 = 0 cooperators is stable. Consider a symmetric myopic-best-response equi-

librium with 𝑛𝐶 ∈ {2, .., 𝑛} cooperators.

• If 𝜀 < 𝑛𝐶
2(𝑛𝐶−1) and 𝑛𝐶 ≤ 3, the equilibrium is stable to small perturbations in expenditures and powers.

• if 𝜀 > 𝑛𝐶
2(𝑛𝐶−1) or 𝑛𝐶 ≥ 5, the equilibrium is unstable. 24

Proof. First, note that the stability of the symmetric equilibrium with 𝑛𝐶 ≥ 2 cooperators among 𝑛

players is equivalent to the stability of the symmetric equilibrium with 𝑛𝐶 cooperators among 𝑛𝐶 players

𝐼𝐶 = {1, .., 𝑛𝐶 }. Second, note that without loss of generality we can postulate

𝜓𝑖 (𝑒𝑡−1, 𝑓𝑡 ) =
1

1 − 𝜀 + 𝜀 𝑓𝑖,𝑡
(√︁
𝛿𝐹𝐶 (𝑎−𝑖,𝑡 ) (1 − 𝜀 + 𝜀 𝑓𝑖,𝑡 )𝑆−𝑖,𝑡 − 𝑆−𝑖,𝑡

)
,∀𝑖 ∈ 𝐼𝐶 ,

24Remark 1. Numerical simulations show that with 𝑛𝐶 = 4, the equilibrium is stable if 𝜀 < 2/3 and unstable if
𝜀 > 2/3.
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where 𝑆−𝑖,𝑡 =
∑

𝑗∈𝐼𝐶\{𝑖} 𝑒 𝑗 ,𝑡−1 (1 − 𝜀 + 𝜀 𝑓 𝑗 ,𝑡 ). Let ∀𝑖 ∈ 𝐼𝐶 : Ψ𝑖 (𝑒𝑡−1, 𝑓𝑡 ) = 𝜓𝑖

(
𝑒𝑡−1, ( 𝑓1,𝑡 , .., 𝑓𝑛𝐶−1,𝑡 , 1 − 𝑓1,𝑡 − ... −

𝑓𝑛𝐶−1,𝑡 )
)
, and Φ𝑖 (𝑒𝑡 , 𝑓𝑡 ) = 𝜙𝑖

(
𝑒𝑡 , ( 𝑓1,𝑡 , .., 𝑓𝑛𝐶−1,𝑡 , 1 − 𝑓1,𝑡 − ... − 𝑓𝑛𝐶−1,𝑡 )

)
, where 𝑓𝑡 = ( 𝑓1,𝑡 , .., 𝑓𝑛𝐶−1,𝑡 ). Then,

instead of the system 8-9, we can check stability of the system

𝑒𝑖,𝑡 = Ψ𝑖 (𝑒𝑡−1, 𝑓𝑡 ),∀𝑖 ∈ 𝐼𝐶 , (29)

𝑓𝑖,𝑡+1 = Φ𝑖 (𝑒𝑡 , 𝑓𝑡 ),∀𝑖 ∈ 𝐼𝐶\{𝑛𝐶 }, (30)

which can be rewritten as an autonomous non-linear system of 2𝑛𝐶 − 1 difference equations of the form

𝑓𝑖,𝑡+1 = 𝐻𝑖 (𝑒𝑡−1, 𝑓𝑡 ),∀𝑖 ∈ 𝐼𝐶\{𝑛𝐶 }, (31)

𝑒𝑖,𝑡 = Ψ𝑖 (𝑒𝑡−1, 𝑓𝑡 ),∀𝑖 ∈ 𝐼𝐶 , (32)

where ∀𝑖 ∈ 𝐼𝐶 : 𝐻𝑖 (𝑒𝑡−1, 𝑓𝑡 ) = Φ𝑖 (Ψ(𝑒𝑡−1, 𝑓𝑡 ), 𝑓𝑡 ), Ψ(𝑒𝑡−1, 𝑓𝑡 ) = (Ψ1 (𝑒𝑡−1, 𝑓𝑡 ), ..,Ψ𝑛𝐶 (𝑒𝑡−1, 𝑓𝑡 )). The Jacobian

matrix of this system calculated at the equilibrium point is a block matrix of the form

𝐽 =

(
𝜕𝐻
𝜕 𝑓

𝜕𝐻
𝜕𝑒

𝜕Ψ
𝜕 𝑓

𝜕Ψ
𝜕𝑒

)
, (33)

where 𝜕𝐻
𝜕 𝑓

is (𝑛 − 1) × (𝑛 − 1) matrix with elements
(
𝜕𝐻
𝜕 𝑓

)
𝑖, 𝑗

=

(
𝜕𝐻𝑖 (𝑒𝑡−1 , 𝑓𝑡 )

𝜕 𝑓 𝑗,𝑡

)���
(𝑒∗ , 𝑓 ∗ )

, 𝑖, 𝑗 ∈ 𝐼𝑐\{𝑛𝐶 }; 𝜕𝐻
𝜕𝑒

is

(𝑛 − 1) × 𝑛 matrix with elements
(
𝜕𝐻𝑖 (𝑒𝑡−1 , 𝑓𝑡 )

𝜕𝑒 𝑗,𝑡−1

)���
(𝑒∗ , 𝑓 ∗ )

, 𝑖 ∈ 𝐼𝑐\{𝑛𝐶 }, 𝑗 ∈ 𝐼𝐶 ;
𝜕Ψ
𝜕 𝑓

is 𝑛 × (𝑛 − 1) matrix with

elements
(
𝜕Ψ𝑖 (𝑒𝑡−1 , 𝑓𝑡 )

𝜕 𝑓 𝑗,𝑡

)���
(𝑒∗ , 𝑓 ∗ )

, 𝑖 ∈ 𝐼𝐶 , 𝑗 ∈ 𝐼𝑐\{𝑛𝐶 }; and 𝜕Ψ
𝜕𝑒

is 𝑛 × 𝑛 matrix with elements
(
𝜕Ψ𝑖 (𝑒𝑡−1 , 𝑓𝑡 )

𝜕𝑒 𝑗,𝑡−1

)���
(𝑒∗ , 𝑓 ∗ )

,

𝑖, 𝑗 ∈ 𝐼𝑐, where 𝑓 ∗ = ( 𝑓1, ..., 𝑓𝑛𝐶−1).
Let 𝛼 =

𝜀𝑒∗
𝐶
𝑛𝐶

1−𝜀+𝜀/𝑛𝐶 , 𝛽 = − (𝑛−2)
2(𝑛−1) , and 𝛾 = 1

𝑛2
𝐶
𝑒∗
𝐶

. Then, straightforward calculations show that:

( 𝜕Ψ
𝜕 𝑓

)
𝑖, 𝑗

=


−𝛼𝛽, if 𝑖 = 𝑗 ,

𝛼𝛽, if 𝑖 = 𝑛𝐶 ,

0, otherwise,

( 𝜕Ψ
𝜕𝑒

)
𝑖, 𝑗

=


0, if 𝑖 = 𝑗 ,

𝛽, otherwise.

To derive
(
𝜕𝐻
𝜕 𝑓

)
𝑖, 𝑗

and
(
𝜕𝐻
𝜕𝑒

)
𝑖, 𝑗
, one should calculate some auxiliary derivatives:

( 𝜕Φ
𝜕Ψ

)
𝑖, 𝑗

=

( 𝜕Φ𝑖 (𝑒𝑡 , 𝑓𝑡 )
𝜕𝑒𝑡

)���
(𝑒∗ , 𝑓 ∗ )

=


(𝑛𝐶 − 1)𝛾, if 𝑖 = 𝑗 ,

−𝛾, otherwise,

( 𝜕Φ
𝜕 𝑓

)
𝑖, 𝑗

=

( 𝜕Φ𝑖 (𝑒𝑡 , 𝑓𝑡 )
𝜕 𝑓𝑡

)���
(𝑒∗ , 𝑓 ∗ )

=


𝛼𝛾, if 𝑖 = 𝑗 ,

0, otherwise.
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Then, ( 𝜕𝐻
𝜕 𝑓

)
𝑖,𝑖

=

( 𝜕Φ
𝜕 𝑓

)
𝑖,𝑖︸   ︷︷   ︸

=𝛼𝛾

+
( 𝜕Φ
𝜕Ψ

)
𝑖,𝑖︸   ︷︷   ︸

=(𝑛𝐶−1)𝛾

( 𝜕Ψ
𝜕 𝑓

)
𝑖,𝑖︸   ︷︷   ︸

=−𝛼𝛽

+
( 𝜕Φ
𝜕Ψ

)
𝑖,𝑛𝐶︸      ︷︷      ︸

=−𝛾

( 𝜕Ψ
𝜕 𝑓

)
𝑛𝐶 ,𝑖︸      ︷︷      ︸

=𝛼𝛽

+
∑︁

𝑗=𝐼𝐶\{𝑖,𝑛𝐶 }

( 𝜕Φ
𝜕Ψ

)
𝑖, 𝑗

( 𝜕Ψ
𝜕 𝑓

)
𝑗 ,𝑖︸    ︷︷    ︸

=0

=

= 𝛼𝛾(1 − 𝑛𝐶 𝛽),∀𝑖 ∈ 𝐼𝐶\{𝑛𝐶 }.

Similar algebraic manipulations allows to calculate all elements of matrices 𝜕𝐻
𝜕 𝑓

and 𝜕𝐻
𝜕𝑒

, so that:

( 𝜕𝐻
𝜕 𝑓

)
𝑖, 𝑗

=


𝛼𝛾(1 − 𝑛𝐶 𝛽), if 𝑖 = 𝑗 ,

0, otherwise,

( 𝜕𝐻
𝜕𝑒

)
𝑖, 𝑗

=


−𝛽𝛾(𝑛𝐶 − 1), if 𝑖 = 𝑗 ,

𝛽𝛾, otherwise.

To examine stability of the equilibrium, one should find eigenvalues of the Jacobian 𝐽, i.e., solve equation

𝑑𝑒𝑡 (𝐽 − 𝜆𝐼2𝑛𝐶−1) = 0, where 𝐼2𝑛𝐶−1 is (2𝑛𝐶 − 1) × (2𝑛𝐶 − 1) identity matrix. Given that 𝐽 is a block matrix,

and 𝜆 ≠ 𝛼𝛾(1 − 𝑛𝐶 𝛽),
𝑑𝑒𝑡 (𝐽 − 𝜆𝐼2𝑛𝐶−1) = 0 ↔ 𝑑𝑒𝑡 (Ω) = 0, (34)

where Ω =
(
𝜕𝐻
𝜕 𝑓

− 𝜆𝐼𝑛𝐶−1
)
− 𝜕𝐻

𝜕𝑒
·
(
𝜕Ψ
𝜕𝑒

− 𝜆𝐼𝑛𝐶
)−1 · 𝜕Ψ

𝜕 𝑓
. The elements (Ω)𝑖, 𝑗 of matrix Ω are

(Ω)𝑖, 𝑗 =

−𝛼𝛽2𝛾 (𝑛𝐶−1)

𝛼𝛾 (1−𝑛𝐶𝛽)−𝜆 − 𝜆, if 𝑖 = 𝑗 ,

𝛼𝛽2𝛾 1
𝛼𝛾 (1−𝑛𝐶𝛽)−𝜆 + 𝛽, otherwise.

According to Tverskoi, Senthilnathan, and Gavrilets (2021), the equation 𝑑𝑒𝑡 (Ω) = 0 is equivalent to either

𝜆 = (𝑛𝐶 − 1)𝛽 = − 𝑛𝐶−2
2 or 𝜆 = −𝛽 − 𝛼𝛽2𝛾 𝑛𝐶

𝛼𝛾 (1−𝑛𝐶𝛽)−𝜆 . The latter one leads to the quadratic equation on 𝜆:

𝜆2 + (𝛽 + 𝑛𝑐𝛽𝛼𝛾 − 𝛼𝛾)𝜆 − 𝛽𝛼𝛾 = 0. (35)

As a result, the spectrum of the Jacobian consists of three elements: 𝜆1 = − 𝑛𝐶−2
2 , 𝜆2, and 𝜆3, where 𝜆2 and

𝜆3 are the solutions to equation 35. To unsure stability, one can check that 𝜆1, 𝜆2, and 𝜆3 lie inside the unit

disk. In particular, it means 𝑛𝐶 < 4 and (Eladyi, 2000):


1 + (𝛽 + 𝑛𝐶 𝛽𝛼𝛾 − 𝛼𝛾) − 𝛽𝛼𝛾 > 0,

1 − (𝛽 + 𝑛𝐶 𝛽𝛼𝛾 − 𝛼𝛾) − 𝛽𝛼𝛾 > 0,

1 + 𝛽𝛼𝛾 > 0,

which is equivalent to 𝜀 < 𝑛𝐶
2(𝑛𝐶−1) . The proposition is proved.

Appendix A.4 The special case of 𝜀 = 1

With 𝜀 = 1, all previous results on the existence and stability of the above symmetric and asymmetric

equilibria are valid. However, there is an additional family of asymmetric equilibria observed only for 𝜀 = 1.

Proposition 5. With 𝜀 = 1, there is a family of asymmetric equilibria with 2 cooperators and 𝑛 − 2
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defectors. All defectors (if they exist) have the same power 𝑓𝐷 = 0 and the same expenditure 𝑒∗
𝐷

= 0.

Cooperators have powers 𝑓𝐶 and 1 − 𝑓𝐶 , respectively, and the same expenditure 𝑒∗
𝐶

= 𝛿𝐹 (2/𝑛) 𝑓𝐶 (1 − 𝑓𝐶 ),
where 𝑓𝐶 ≠ 0.5 and 𝑓𝐶 ∈

[√︃
𝑐

𝐹 (2/𝑛) , 1 −
√︃

𝑐
𝐹 (2/𝑛)

]
. These equilibria exist if 𝑐 < 𝐹 (2/𝑛)

4 .

Proof. Following the arguments used to prove Proposition 1, it is straightforward to show that in an

asymmetric equilibrium with two cooperators, all defectors (if they exist) have the same power 𝑓𝐷 = 0 and

the same expenditure 𝑒∗
𝐷

= 0, while cooperators have powers 𝑓𝐶 and 1 − 𝑓𝐶 , respectively, and the same

expenditure 𝑒∗
𝐶
= 𝛿𝐹 (2/𝑛) 𝑓𝐶 (1 − 𝑓𝐶 ), where 𝑓𝐶 ∈ (0, 1). To check the existence, we need to show that: (1)

for each defector (if exists) (0, 0) is the best rsponse strategy to the strategies of others for given powers of

all players; and (2) for the two cooperators, (1, 𝑒∗
𝐶
) is the best rsponse strategy to the strategies of others

for given powers of all players.

First, note that condition (1) is satisfied for all values of the model parameters (this can be verified using

Lemma 3). To check condition (2), we employ Lemma 4. Namely, the following condition must be satisfied

for cooperator 𝑖: √︃
𝑆∗−𝑖 <

√︃
𝛿 𝑓𝑖

(√︁
𝐹 (2/𝑛) −

√
𝑐

)
,

which transforms to two conditions for cooperators 1 and 2 with powers 𝑓𝐶 and 1 − 𝑓𝐶 , respectively:√︃
𝑒∗
𝐶
(1 − 𝑓𝐶 ) <

√︃
𝛿 𝑓𝐶

(√︁
𝐹 (2/𝑛) −

√
𝑐

)
and √︃

𝑒∗
𝐶
𝑓𝐶 <

√︃
𝛿(1 − 𝑓𝐶 )

(√︁
𝐹 (2/𝑛) −

√
𝑐

)
,

which yields

𝑓𝐶 ∈
[√︂ 𝑐

𝐹 (2/𝑛) , 1 −
√︂

𝑐

𝐹 (2/𝑛)

]
and

𝑐 <
𝐹 (2/𝑛)

4
.

The proposition is proved. Note that together with the symmetric equilibrium with 𝑛𝐶 = 2 cooperators, the

above asymmetric equilibria constitute a family of equilibria with 2 cooperators that exist if 𝑐 < 𝐹 (2/𝑛)
4 .

Proposition 6. An asymmetric equilibrium with 𝑛𝐶 = 2 cooperators is unstable to small perturbations

in expenditures and powers if 𝑓𝐶 ∉

[
1
2 − 1

2
√
2
, 12 + 1

2
√
2

]
.

Proof. To check the stability of an asymmetric equilibrium, we follow the arguments used to prove

Proposition 2. Specifically, we consider the system of 3 difference equations 29-30. The corresponding

Jacobian is

𝐽 =
©­­«
1 + 2𝐴2𝐶𝐷 𝐵𝐷𝐴 𝐵𝐶𝐴

−𝐶
𝐵
𝐴 0 𝐶𝐴

−𝐷
𝐵
𝐴 −𝐷𝐴 0,

ª®®¬ (36)

where 𝐴 = 𝑓𝐶 − 1
2 , 𝐵 = 1

𝛿𝐹 (2/𝑛) , 𝐶 = 1

𝑓𝐶
, and 𝐷 = 1

1− 𝑓𝐶
. To examine stability of an asymmetric equilibrium,

one should find eigenvalues of the Jacobian 𝐽, i.e., solve equation 𝑑𝑒𝑡 (𝐽 − 𝜆𝐼3), where 𝐼3 is 3 × 3 identity

matrix. Given that 𝜆 ≠ 1 + 2𝐴2𝐶𝐷,

𝑑𝑒𝑡 (𝐽 − 𝜆𝐼3) = 0 ↔ 1 + 2𝐴2𝐶𝐷 − 𝜆 −
(
𝐵𝐷𝐴 𝐵𝐶𝐴

)
·
(
−𝜆 𝐶𝐴

−𝐷𝐴 −𝜆

)−1
·
(
−𝐶

𝐵
𝐴

−𝐷
𝐵
𝐴

)
= 0. (37)
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The above expression can be simplified so we end up with the equation

𝜆3 − (2𝑘 + 1)𝜆2 + 3𝑘𝜆 − 𝑘 = 0, (38)

where 𝑘 = 𝐴2𝐶𝐷. This equation is equivalent to

(𝜆 − 1) (𝜆2 − 2𝑘𝜆 + 𝑘) = 0.

At least one root of this equation is outside the unit disk if

𝑘 > 1,

which gives us the condition on 𝑓𝐶 :

𝑓𝐶 ∉

[1
2
− 1

2
√
2
,
1

2
+ 1

2
√
2

]
.

The proposition is proved.

Remark 2. Numerical simulations show that an asymmetric equilibrium with 𝑛𝐶 = 2 cooperators is

stable to small perturbations in expenditures and powers if 𝑓𝐶 ∈
(
1
2 − 1

2
√
2
, 12 + 1

2
√
2

)
.

Appendix B Additional details on IEL application

In this Appendix, we provide more detailed information about the IEL. Specifically, we discuss how to

calculate the forgone utilities in each stage.

In stage 1 of round 𝑡, agents know the stage choices of others in the previous round (𝑎−𝑖,𝑡−1, 𝑒−𝑖,𝑡−1), the

current power distribution 𝑓𝑡 , and calculate the expected payoffs for each 𝑟
1, 𝑗
𝑖,𝑡−1 ∈ 𝐴1

𝑖,𝑡−1 as follows:

𝔼[𝜋1, 𝑗
𝑖,𝑡−1] = [𝑟1, 𝑗

𝑖,𝑡−1𝜋
1 (1, 𝑎−𝑖,𝑡−1, 𝑓𝑡 ) + (1 − 𝑟1, 𝑗

𝑖,𝑡−1)𝜋
1 (0, 𝑎−𝑖,𝑡−1, 𝑓𝑡 )] − 𝑒𝑖,𝑡−1 (39)

, where 𝑒𝑖,𝑡−1 is agent 𝑖’s stage 2 choice in the previous round. The forgone utility for each rule is:

𝑣
1, 𝑗
𝑖,𝑡

= 𝔼[𝜋1, 𝑗
𝑖,𝑡−1] +

𝛽𝑖

𝑛

∑︁
𝑘∈𝐼

𝔼[𝜋1, 𝑗
𝑘,𝑡−1] −

𝛾𝑖

𝑛 − 1

∑︁
𝑘≠𝑖,𝑘∈𝐼

𝑚𝑎𝑥{0,𝔼[𝜋1, 𝑗
𝑘,𝑡−1] − 𝔼[𝜋1, 𝑗

𝑖,𝑡−1]} (40)

In sage 2 of round 𝑡, agents have decided their stage 1 cooperation probability 𝑟1
𝑖,𝑡
, know others’ stage

1 choice in round 𝑡 (𝑎−𝑖,𝑡), and assume that others will spend the same amount (𝑒−𝑖,𝑡−1) in this round. To

ensure that the round earning is non-negative, we time the spending with 𝜋1,𝑚𝑖𝑛 (𝜋1,𝑚𝑖𝑛 = 𝑅0 − 𝑐 = 40, the

lowest possible stage 1 earning in our experiment). The spending rule 𝑟
2, 𝑗
𝑖,𝑡−1 ∈ 𝐴2

𝑖,𝑡−1 doesn’t only change

the earning in the current round 𝑡, but will also change the next round power distribution and the future

earning. Thus, the expected payoff for each stage 2 rule is defined as:

𝔼[𝜋2, 𝑗
𝑖,𝑡−1] = −𝑟2, 𝑗

𝑖,𝑡−1𝜋
1,𝑚𝑖𝑛 + 𝛿[𝑟1𝑖,𝑡𝜋1 (1, 𝑎−𝑖,𝑡 , 𝑓𝑡+1) + (1 − 𝑟1𝑖,𝑡 )𝜋1 (0, 𝑎−𝑖,𝑡 , 𝑓𝑡+1)] (41)

where the next round power distribution becomes 𝑓𝑖,𝑡+1 (𝑟2, 𝑗𝑖,𝑡−1) =
𝑟
2, 𝑗

𝑖,𝑡−1 𝜋
1,𝑚𝑖𝑛 (1−𝜖 +𝜖 𝑓𝑖,𝑡 )

𝑒𝑡−1 (1−𝜖 +𝜖 𝑓𝑡 ) , and 𝑒𝑡−1 = (𝑟2, 𝑗
𝑖,𝑡−1𝜋

1,𝑚𝑖𝑛, 𝑒−𝑖,𝑡−1).
The forgone utility for each rule is:

𝑣
2, 𝑗
𝑖,𝑡

= 𝔼[𝜋2, 𝑗
𝑖,𝑡−1] +

𝛽𝑖

𝑛

∑︁
𝑘∈𝐼

𝔼[𝜋2, 𝑗
𝑘,𝑡−1] −

𝛾𝑖

𝑛 − 1

∑︁
𝑘≠𝑖,𝑘∈𝐼

𝑚𝑎𝑥{0,𝔼[𝜋2, 𝑗
𝑘,𝑡−1] − 𝔼[𝜋2, 𝑗

𝑖,𝑡−1]} (42)
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In round 1 stage 1, without the history of others’ choices, each agent assumes that others will use the

same rule as the one he considers and calculate the expected utilities accordingly.

Appendix C Robustness Checks for IEL Simulation

Appendix C.1 Varying Other-regarding Preferences

Other-regarding preferences seem to play an important role in driving the cooperation difference observed

between individuals and groups when 𝜖 = 0. In figure C-2, we present simulation results varying the other-

regarding preferences. Each line represents the average simulated results of 200 independent trials of 15

rounds of play. We start by completely removing the other-regarding preferences and assuming that all

agents only care about their individual expected payoffs. The results, as shown in the left column, suggest

no difference in cooperation rate between individuals and groups when 𝜖 = 0. This inconsistency confirms

that other-regarding preferences drive the observed cooperation differences between groups and individuals.

Next, we separately remove the altruistic term (second term in equation 10) and the envious term (second

term in equation 10) to check which part of the other-regarding preference plays a larger role in driving

the difference. In the middle column, when the other-regarding agents are only “envious”, the simulated

results consistently show that individuals are more cooperative than groups. In addition, the cooperation

rate declines rapidly even in 𝜖 = 0 case. In the right column, when the other-regarding agents are only

“altruistic”, the simulated results are no longer consistent with the laboratory findings since groups are

simulated to be more cooperative than individuals. Combining these results, the envious term seems to

be more important in driving the behavioral differences between groups and individuals. Previous studies

about parochial altruism indicate that people are inclined to behave more aggressively against other groups

(Bernhard, Fischbacher, and Fehr, 2006; Yamagishi and Mifune, 2016; Abbink, Brandts, Herrmann, and

Orzen, 2010, 2012; Song and Houser, 2021; Eckel, Fatas, and Kass, 2022). It is thus possible that when

subjects make decisions in groups, they end up incurring more disutility from earning less than other groups,

which drives the groups to act less cooperatively than individuals.
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Figure C-1: Simulated Results Vary Other-regarding Preference
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Notes: Red lines indicate individual treatments (𝐾 = 1). Blue lines indicate group treatments (𝐾 = 2).

Solid lines indicate no incumbency advantage (𝜖 = 0). Dashed lines indicate with incumbency advantage

(𝜖 = 1). The top panels present the average simulated cooperation rate of 200 independent simulations.

The bottom panels present the average simulated spending of 200 independent simulations. In the

left column, agents are modeled as self-interested without other-regarding preferences. Their utility

functions only contain the expected individual payoffs (the first component of equation 10). In the

middle column, agents with other-regarding preferences are modeled as caring about their individual

expected payoffs and incurring a disutility from being taken advantage of. In the simulation, 𝛽𝑖 = 0 for

all 𝑖, 𝛾 is uniformly and independently drawn from the range of [0,8]. In the right column, agents are

modeled as caring about their individual expected payoffs and preferring higher payoffs to all agents.

In the simulation, 𝛾𝑖 = 0 for all 𝑖, 𝛽 is uniformly and independently drawn from the range of [0,22].
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Figure C-2: Simulated Results Modeling Groups as Self-interested Agents
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Notes: Red lines indicate individual treatments (𝐾 = 1). Blue lines indicate group treatments (𝐾 = 2).

Solid lines indicate no incumbency advantage (𝜖 = 0). Dashed lines indicate with incumbency advantage

(𝜖 = 1). The top panels present the average simulated cooperation rate of 200 independent simulations.

The bottom panels present the average simulated spending of 200 independent simulations. In the

left column, agents are modeled as self-interested without other-regarding preferences. Their utility

functions only contain the expected individual payoffs (the first component of equation 10). In the

middle column, agents with other-regarding preferences are modeled as caring about their individual

expected payoffs and incurring a disutility from being taken advantage of. In the simulation, 𝛽𝑖 = 0 for

all 𝑖, 𝛾 is uniformly and independently drawn from the range of [0,8]. In the right column, agents are

modeled as caring about their individual expected payoffs and preferring higher payoffs to all agents.

In the simulation, 𝛾𝑖 = 0 for all 𝑖, 𝛽 is uniformly and independently drawn from the range of [0,22].
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Appendix C.2 Varying 𝜖

Figure C-3: Simulated Results Vary Incumbency Parameter 𝜖
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Notes: Red lines indicate individual treatments (𝐾 = 1). Blue lines indicate group treatments (𝐾 = 2).

Solid lines indicate no incumbency advantage (𝜖 = 0). Dashed lines indicate with incumbency advantage

(𝜖 = 1). The top panels present the average simulated cooperation rate of 200 independent simulations.

The bottom panels present the average simulated spending of 200 independent simulations.
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Appendix D Additional Tables and Figures

Table D-1: Supergame Lengths

1

7

11

17

1

2

4

4

3

6

3

18

13

1

5

4

7

11

7

1

5

1

4

3

15

6

6

17

25

3

7

2

10

11

14

8

17

10

3

2

9

11

9

8

12

10

8

5

2

19

11

7

2

8

3

12

1

4

20

9

13

24

7

4

1

14

6

11

11

21

15

14

18

8

7

16

23

6

2

4

17

7

3

2

8

18

5

8

3

3

19

3

11

19

16

20

3

6

12

2

M10:

8.1

9.4

8.0

7.8

M20:

8.7

8.5

8.45

7.6

Supergame Number:

Realization #0:

Realization #1:

Realization #2:

Realization #3:

Table D-2: Average Cooperation Rate across Treatments

All Rounds Round 1

all Match Match 1-5 Match 6-10 all Match Match 1-5 Match 6-10

GRP E0 43.5 49.5 37.1 74.4 70.8 78.1

(2.69) (3.63) (3.87) (2.03) (2.87) (2.83)

GRP E1 34.1 36.7 31.4 63.2 57.1 69.9

(2.44) (3.17) (3.74) (2.34) (3.03) (3.45)

IND E0 50.8 57.8 48.4 84.8 70.4 86.7

(1.75) (3.54) (3.18) (1.27) (3.41) (2.02)

IND E1 33.0 43.1 24.2 62.0 55.8 55.4

(1.49) (2.98) (2.43) (1.58) (3.18) (3.35)

Notes: “all Match” means match 1-20 for the Individual treatment and match 1-10 for the Group

treatment. Standard errors (in parentheses) are calculated by taking one group in one match as a unit

of observation.
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Table D-3: Average Spending Proportion across Treatments

All Rounds Round 1

Match 1-5 Match 6-10 all Match Match 1-5 Match 6-10 all Match

GRP E0 26.1 10.7 18.6 35.3 19.6 27.6

(1.11) (0.76) (0.72) (1.49) (1.44) (1.07)

IND E0 33.9 17.8 18.8 37.3 26.0 24.1

(1.79) (1.44) (0.78) (2.17) (2.11) (1.05)

GRP E1 26.8 10.7 19.1 38.5 25.8 32.5

(1.21) (0.74) (0.77) (1.55) (1.28) (1.04)

IND E1 42.5 18.2 21.0 51.3 31.5 31.0

(1.98) (1.58) (0.91) (2.29) (2.27) (1.17)

Notes: “all Match” means match 1-20 for the Individual treatment and match 1-10 for the Group

treatment. Standard errors (in parentheses) are calculated by taking one group in one match as a unit

of observation.
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Appendix E Experimental Instructions (E1 Group)

Appendix E.1 Part 1

Appendix E.1.1 Task: ICAR Example
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Appendix E.2 Part 2

Appendix E.2.1 Match Overview
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Appendix E.2.2 Round Overview
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Appendix E.2.3 Stage 1 Details
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Appendix E.2.4 Stage 2 Details
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Appendix E.2.5 How to use the calculator
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Appendix E.2.6 How history will be recorded
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Appendix E.2.7 Team Decision

These two pages are specific to the group treatment.
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Appendix E.3 Main Experiment

Appendix E.3.1 Remainder

Appendix E.3.2 Prematch Chat
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Appendix E.3.3 Stage 1 Decision Page
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Appendix E.3.4 Stage 2 Decision Page
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