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Abstract

What is the impact and value of hurricane forecasts? We study this question using
newly-collected forecast data for major US hurricanes since 2005. We find higher wind
speed forecasts increase pre-landfall protective spending, but erroneous under-forecasts
increase post-landfall damage and rebuilding expenditures. Our main contribution is a
new theoretically-grounded approach for estimating the marginal value of forecast im-
provements. We find that the average annual improvement reduced total per-hurricane
costs, inclusive of unobserved protective spending, by $700,000 per county. Improve-
ments since 2007 reduced costs by 19%, averaging $5 billion per hurricane. This exceeds
the annual budget for all federal weather forecasting.
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Extreme weather like hurricanes, flooding, and extreme heat has devastated regions

around the world. In the United States alone, these events have caused over $700 billion in

damage since 2017, and trillions of dollars of damage since 1980, with the majority caused

by hurricanes (Weinkle et al., 2018; NOAA Office for Coastal Management, 2022; NOAA

National Centers for Environmental Information, 2022). One of the key levers for mitigat-

ing the destructive impacts of extreme weather, and especially hurricanes, is forecasting.

Forecasts provide information on the expected strength, location, and timing of the event,

allowing households and government actors to make better preparation decisions. Despite

their importance and ubiquity, however, there is limited evidence on the historical value of

hurricane forecasts or the potential value of future forecasting improvements.

In this paper, we investigate the value and economic impact of hurricane forecasts in

the US.1 Using the actual models underpinning the national hurricane forecast system, we

develop a new county-level dataset that replicates past official forecasts and also reconstructs

realizations of wind speed and precipitation, as well as the contemporaneous ex ante uncer-

tainty embedded in the forecasts. Our dataset accounts for all major hurricanes in the US

from 2005–2020, including all hurricanes that were classified at Category 3 or above (maxi-

mum wind speeds greater than 50 meters per second [m/s]), or generated at least $20 billion

in damage. 2 In total, our dataset accounts for 90% of hurricane-caused property damage

and deaths in the mainland US.3 We use these new data to (1) estimate how emergency

federal expenditures for protecting against hurricanes respond to forecast information, (2)

estimate the costs of forecast errors in terms of damages and increased expenditures for

after-storm recovery, and (3) our primary contribution, develop a theoretically-grounded ap-

proach for estimating the ex ante marginal value of a forecast improvement. Our method

accounts for unobserved protective actions taken prior to landfall, and it is flexible enough

to be applied to other kinds of hazardous weather forecasts. We then use this method to

value the dramatic improvements in wind speed forecast accuracy since the 2000s.

The value of a forecast comes from how they help agents make better protective decisions,

by balancing both the potential damages of a hazard as well as costly adaption. We start

1We focus on hurricane forecasts that are issued in the several days between a hurricane’s formation and
its landfall, however, there also exist seasonal forecasts of the characteristics of an entire hurricane season.
Recent theoretical work has highlighted that short-run forecasts are often more valuable than longer-run
forecasts (Millner and Heyen, 2021).

2While all hurricanes produce life-threatening winds, hurricanes rated Category 3 and higher are known
as major hurricanes, and they can cause devastating to catastrophic wind damage and significant loss of
life simply due to the strength of their winds. We included lower-category, but highly destructive, storms
(i.e., Ike, Sandy and Florence) because neither deadly hurricane-related hazards, such as storm surge and
tornadoes, nor damages from a hurricane are fully captured by a given storm’s category.

3The hurricanes in our study also account for over 70% of property damage and 40% of deaths for all
environmental hazards.
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our analysis by estimating if and how hurricane forecasts affect the allocation of federal

emergency protective funding in the days before a hurricane reaches land. Relying on the

exogenous variation between wind and precipitation forecast from different storms, we find

that federal protective funding is targeted toward areas predicted to experience higher wind

speeds. Counties forecast to experience hurricane-force winds receive in average $30 million

more in protective funding than counties forecast to have lower, sub-hurricane force winds.

This difference is equivalent to 0.5% more funding as a share of county GDP, or $200 more

per person.

We next estimate the consequences of forecast errors. Conditional on hurricane inten-

sity, forecast errors only matter if protective actions respond to forecasts and also mitigate

hurricane impacts. We find that there are economically significant increases in damages

and post-landfall federal disaster recovery costs from underestimating hurricane wind speed,

conditional on realized wind speed. When hurricanes are stronger than the forecast, affected

counties incur larger property, crop, and mortality damages. These same counties also use

larger amounts of emergency recovery spending allocated after the hurricane to rebuild a

disaster area. Relative to a perfect forecast, underestimating wind speed by 10 m/s – an

error that would be a misclassification by up to two categories on the commonly used Saffir-

Simpson scale – increases county-specific damages by $500 million and after-landfall federal

emergency spending for recovery by $30 million. For damages, this is about 40% of county

GDP or $15,000/person.

Finally, our main contribution is a new theoretically-grounded approach to estimate the

expected total cost reduction from a marginal decrease in a forecast’s ex ante standard

deviation. We call this measurement the value of a forecast improvement. Lower standard

deviation forecasts have smaller ex post errors, which means agents are less likely to uptake

excess protective costs from an over-forecast, or incur excess damages and recovery costs from

an under-forecast. Here, we show that the value of a forecast improvement can be identified

by first regressing the sum of damages and recovery spending on the ex post squared error in

the forecast, and then multiplying the estimate by the baseline ex ante standard deviation at

which we are valuing the marginal improvement. This approach does not require observing

pre-landfall protective actions, so we are able to establish the value of a forecast improvement

without having to track how agents might protect themselves against a hurricane.

Overall, we find that a one standard deviation forecast improvement reduces total protec-

tive spending, damages, and recovery spending costs in a county by $30 million per hurricane,

which is equivalent to about 3% of local GDP or over $1,000 per person. We show that this

value is driven entirely by counties that experience hurricane-force winds. We then use our

estimates to establish value the historical improvements in forecasting over 2007-2020, fol-
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lowing a federal effort to improve the performance of the hurricane forecast system in the

United States, and find that they led to an 19% reduction in total hurricane costs, about

$5 billion per hurricane. The average benefit per hurricane is larger than the budget for all

federal weather forecasting in the US in 2015 (Congressional Research Service, 2015).

Overall, our paper adds to a sparse and relatively new literature on environmental fore-

casts. Two early papers estimated the value of forecasts for California raisin farmers and

shipping in the Great Lakes, Lave (1963); Craft (1998). More recently, Shrader (2021) pro-

vides a new method for estimating damages accounting for adaptation and finds that El

Niño-Southern Oscillation (ENSO) forecasts have major effects in the North Pacific albacore

tuna fishery. Other papers have shown routine precipitation forecasts are valuable to con-

struction firms (Downey et al., 2023), and for avoiding winter automobile accidents (Anand,

2022). Closest to our paper is a set Shrader (2021), Shrader, Bakkensen and Lemoine (2023)

and Barwick, Li, Lin and Zou (2020), which evaluate the impact of El Niño-Southern Os-

cillation (ENSO) forecasts in the fishing sector, routine temperature forecasts in the US,

and air pollution monitoring in China. Two recent papers on pollution and temperature

are closest to ours in spirit. Barwick, Li, Lin and Zou (2020) estimates the value of air

pollution monitoring in China – accounting for some adaptation costs by directly estimating

them – and finds that the benefits of the monitoring system exceed the costs by an order

of magnitude. Shrader, Bakkensen and Lemoine (2023) evaluates the benefits of improving

routine temperature forecasts – inclusive of protective costs – and finds that cutting errors

in half would save thousands of lives per year, generating benefits of billions of dollars.

We contribute to this literature in several ways. First, we provide a novel overall assess-

ment of the US hurricane forecast system and the improvements in its accuracy.4 Second,

we provide a general method to value any kind of hazard forecast, inclusive of all ex ante

adaptation or protective costs. Our approach only requires data on the forecast, the real-

ization of the forecast variable, and the realized ex post costs like damages and recovery

spending. The appeal of our approach is that we do not need to observe ex ante protective

actions, and yet we can still recover the marginal value of improving the forecast. Third,

our approach can value arbitrary improvements in forecast systems. This allows us to go

beyond aggregate cost-benefit analysis and do marginal analyses that can speak to valuing

historical improvements and determining optimal investment levels to improve a forecast.

4Martinez (2020) seeks to perform a similar exercise for 12 hour ahead forecasts of hurricane track, but
using less than 100 observations of outcomes aggregated to the hurricane level. Our study improves on this
effort by explicitly considering the spatial and temporal variation of a storm across its attributes, and using
these characteristics to derive a closed-form estimate of the value associated with an improvement in the
forecast. Qualitatively, however, both studies support the notion that hurricane forecasts are valuable and
have generated billions for dollars in net benefits over the past decades.
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This paper also contributes to a broader literature on the economic impacts of hurricanes

and natural disasters. Hurricanes and tropical cyclones have been shown to be strongly asso-

ciated with negative impacts on industrial production, national income, municipal financing,

and welfare (Noy, 2009; Hsiang, 2010; Strobl, 2011; Hsiang and Jina, 2014; Bakkensen and

Barrage, Forthcoming; Auh, Choi, Deryugina and Park, 2022; Jerch, Kahn and Lin, 2023).

Historically, the US has suffered abnormally high damages due to hurricanes, and climate

change is expected to amplify them while also making hurricane forecasting more difficult

(Mendelsohn et al., 2012; Emanuel, 2017; Kossin et al., 2020).5 Recent research suggests

that damages caused by storms like hurricanes significantly magnify the impacts of climate

change (Bilal and Rossi-Hansberg, 2023), but that third of the climate change-induced dam-

ages in the US could be offset by appropriate investments into long-run adaptation capital

(Fried, 2022).

We add to this literature by studying the role of hurricane information. Because the

US has made only limited long-run hurricane adaptation investments, accurate forecasts are

even more critical to reduce the impacts of hurricanes. 6 Good forecasts help households and

governmental agencies better allocate the necessary adaptive resources in the short window

of time between the formation of a hurricane and its landfall. Our theoretical results indicate

that as forecasting becomes increasingly harder under climate change, future improvements

will also become more valuable on the margin. Our empirical results suggest the avoided

costs from the actual hurricane forecast improvements since 2007 are half the size of the

avoided climate change-induced costs from optimal long-run adaptive capital investments

(Fried, 2022).

Finally, our findings also add to a limited stated-preference literature, which finds that, in

the aggregate, households in hurricane-vulnerable areas value recent forecast improvements

to be worth between $300 and $400 million per year (Molina et al., 2021). Using data on

actual damages we find the value of hurricane forecast improvements is significantly larger.

The paper proceeds as follows. Section 1 provides background information on hurricane

forecasts. Section 2 describes the data we use in our analysis. Section 3 presents our methods

and results. Section 4 concludes.

5Hurricanes have recently been both moving slower across space while also intensifying much more rapidly
(Kossin, 2018; Bhatia et al., 2019), potentially leading to their observed rising destructiveness in recent
decades (Emanuel, 2005; Grinsted et al., 2019).

6One possible adaptation mechanism would be to no longer rebuild high risk areas following a hurricane
and instead incentivize households to move to safer areas. For a variety of reasons, including federal and
state monetary incentives that lower the costs of coastal infrastructure and reduce the costs of rebuilding
after disasters, this typically is not the case (Young, 2022).
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1 Background

Officially sanctioned forecasts for hurricanes in the US date back to the late 1800s. Initially,

forecasts and warnings were the responsibility of the US Weather Bureau, which relied on

land-based weather stations and observations from vessels along the Atlantic coast and in the

Gulf of Mexico (DeMaria, 1996). The detection of hurricanes and the ability to predict their

paths significantly improved following World War II, with advances in the understanding

of atmospheric processes, and access to aircraft reconnaissance and radar. These advances

eventually led to the establishment of the Miami Hurricane Warning Office to provide yearly

hurricane season summaries for the US (Norton, 1951).

Further federal commitment to hurricane forecasts came after a series of devastating

storms in the 1954 and 1955 seasons, which led Congress to create the National Hurricane

Research Project in 1956 (DeMaria, 1996). The eventual coordination and collocation of

the Research Project, the Warning Office, and Aircraft Operations resulted in what is now

known as the National Hurricane Center (Sheets, 1990).

The advent of computer modeling and meteorological satellites resulted in significant im-

provements in forecasting capabilities after 1970, thereby setting the foundation for modern

forecasts (Sheets, 1990). Nonetheless, and while forecasts of hurricane tracks continued to

improve gradually over the years, generating reliable forecasts of wind speed remained a

challenge. These limitations became evident to US policy makers when the country expe-

rienced 13 hurricane landfalls during the 2002-2005 hurricane seasons – 10 of them in 2004

and 2005. The 2004 and 2005 hurricanes alone were responsible for at least 5,200 deaths and

$229 billion in damages, underscoring the need for more aggressive forecast improvements

(Czajkowski et al., 2011; Strobl, 2011).7

Following these catastrophic seasons, Congress mandated the creation of the Hurricane

Forecast Improvement Project (HFIP) in 2007 by the National Oceanic and Atmospheric

Administration (NOAA). The goal of the HFIP was to improve both storm track and wind

intensity forecasts through coordinated efforts from the research and operational communities

(Gall et al., 2013). Initially, the project was intended to continue for 10 years. It funded

research and operations, and made significant investments in high-performance computing

to support both these aims. The original 10-year goals were to reduce average track errors

by 50%, and to reduce average wind speed errors by 50%. In addition, the project was also

expected to improve the prediction of rapid intensification of hurricanes by increasing the

probability of detection, reducing the false-alarm rate, and extending the forecast lead time

7Hurricane Charley, which struck in 2004, was the strongest hurricane to reach land in the US since 1992.
In 2005, Katrina struck, becoming one of the costliest hurricanes in US history. That same year, Rita and
Wilma (two of the strongest Atlantic storms ever recorded at that time) also struck.
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from five to seven days.

In 2017 the project was given a new name, the Hurricane Forecast Improvement Program,

and funding was renewed and extended through at least 2024. The goals of the extension

include an emphasis on an advanced, unified-modeling system, probabilistic-hazard guidance,

and improved communication of risk and uncertainty (Marks and Brennan, 2019). From 2009

to 2019, the HFIP budget for research and operations totaled approximately $250 million.

By any measure, these recent efforts to improve forecasts have been successful. Figure 1

shows that prior to the HFIP in 2007, hurricane wind speed forecast errors were declining by

0.03 meters per second each year, or about a 0.4% annual improvement. Since the inception

of the HFIP in 2007, there has been a dramatic increase in the quality of the forecasts.

Hurricane wind speed forecasts errors have been declining by 0.21 m/s each year since 2007,

or 3% annually.8

2 Data

Our analysis focuses on a county-hurricane as the unit of observation (e.g., Kings County,

NY and Hurricane Sandy), and it uses data on hurricane forecasts, protective spending,

recovery spending, and damages at the county-level for landfalling hurricanes from 2005 to

2020. Our data cover 18 out of the 29 total hurricanes from 2005–2020.

2.1 Forecasts

For our analysis, we reconstruct the National Hurricane Center (NHC) forecast products

from their raw data and models to replicate the official National Oceanic and Atmospheric

Administration (NOAA) contemporaneous forecast. Here, we roughly outline the data con-

struction procedure. The forecast wind swath model starts from the contemporary base

NHC forecast, which reports predictions of storm track (storm center) and its maximum

wind speed beginning one, two, and three days prior to landfall. We then follow the official

forecast product method, documented by DeMaria et al. (2009) and DeMaria et al. (2013),

which samples 1,000 time series of track errors from the previous 5-year forecast history and

adds them to the current track forecast to produce a distribution of potential storm tracks.

The process allows for serial correlation by linking errors over time within each time series

through an AR(1) process that relies on the 5 year forecast error history, as well as the

8Historically, it has been much more difficult to forecast the intensity a storm will have than to forecast
the track it will follow (Resnick, 2018). This is due to a combination of many factors, including previously
poor computational resolutions, and difficulties in predicting which storms will go under rapid intensification
as they near landfall (Enten, 2017; Norcross, 2018).
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residuals of the estimated AR(1) process. We then generate 1,000 forecasts of the hurri-

cane’s maximum wind speed using a nearly identical Monte Carlo approach. The primary

difference is that for maximum wind speed, the AR(1) process for the errors also accounts

for other factors such as the previously realized wind speed and distance inland. Finally, we

generate 1,000 wind speed forecast swaths (i.e., raster grids) by combining the 1,000 forecasts

of track and maximum wind speed with the radii-climatological and persistence (CLIPER)

model. Given a storm’s maximum wind speed, the distance of that maximum from the

center of the storm, and a storm’s translational speed and location, CLIPER generates wind

speed forecasts at different radii from the storm’s center. These predictions are potentially

asymmetrical about the center of the storm. For the purpose of this study, we focus on the

maximum sustained wind in a county, which is defined as the maximum average wind speed

over one minute. From here on, we call this measure “wind speed.”

This process generates 1,000 swaths of wind speed forecasts across the entire US, where

the variability across the swaths captures errors and uncertainties that are specific to each

storm because of the recent history of forecast accuracy, the hurricane’s movement and

location, and the local climate.9 The forecast wind speed mean and standard deviation are

then calculated across all 1,000 swaths for forecasts one, two, and three days prior to landfall

and are identical to the official contemporaneous NOAA predictions for the storms in our

sample.

Observed wind speed is obtained by evaluating the observed storm track and wind speed

in the wind swath model above. Forecast errors are thus the difference between observed

wind speed and the forecast ensemble mean. The standard deviation of the forecast error is

the same as the standard deviation of the forecast itself. For each hurricane, we aggregate

these forecast statistics and errors to the county-level.

Precipitation is handled similarly to Molina et al. (2021). Using the same Monte Carlo

ensembles as those for wind speed, we create 1,000 rainfall forecast swaths for each lead time

and hurricane using the probabilistic version of the Parametric Hurricane Rainfall Model

(PHRaM) (Lonfat et al., 2007; Marks et al., 2020). These predictions are also essentially

identical to the contemporaneous NOAA forecast for the storms in our sample. We then

use the European Centre for Medium-Range Weather Forecasts fifth generation atmospheric

reanalysis of the global climate data set to create the observed precipitation swath (Muñoz-

Sabater et al., 2021).10 To match observed precipitation with the forecast, only rainfall within

9Most environmental economics research only uses aggregated forecast data instead of the full distribution.
For example, previous work has used probabilities of hurricane force winds (Kruttli et al., 2021) or fluctuations
in the ENSO phenomenon (Downey et al., 2023).

10While the data from the National Center for Environmental Prediction (NECP) would be the default
choice for observed precipitation, the National Weather Service radar network experiences significant outages
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500 km of the storm center is considered. As with wind speed, precipitation is aggregated

up to the county-hurricane level.

Our final dataset reports forecasts, realizations, and errors for wind speed and precipita-

tion by county-hurricane pairs one, two, and three days prior to landfall.11 For our analysis,

we use the average forecast over this three day lead period. Some protective actions, like

temporary levees, may take more than 1 day to complete, while others, like flying in genera-

tors for hospitals, may be able to be done on shorter notice. Averaging the forecasts allows

us to pick up how forecasts affect the different protective actions parsimoniously.

Panels A-C in Figure 1 plot an example of our forecast data for hurricane Katrina. The

black dashed line is the storm track that was forecast 72 hours before landfall, while the blue

line is the actual storm track. Panels A, B, and C map the average wind speed forecast, its

ex ante standard deviation, and the average differences between the predicted and actual

wind speeds.

The figure shows that Katrina’s 72 hour forecast was most uncertain around the predicted

point of landfall, because of uncertainty about the degree of intensification before the storm’s

arrival. The forecast had errors in both directions because of the track prediction error,

however, the underestimates are larger than the overestimates because Katrina also grew to

be stronger than expected.

Finally, panel D in Figure 1 shows a time series of the annual average wind speed error

for all hurricanes since 1990. The trend shows improvement over time, with a significant

change in the rate of progress around 2007. This coincides with the year that Congress

mandated the creation of the Hurricane Forecast Improvement Project (HFIP) due to the

catastrophic 2004 and 2005 hurricane seasons. Prior to the HFIP in 2007, hurricane wind

speed forecast errors were declining by 0.3 meters per second each year, or about a 0.4%

annual improvement. Since 2007, hurricane wind speed forecasts errors have been declining

by 0.21 m/s each year since 2007, or 3% annually, leading to a nearly 50% decline in wind

speed errors. In our valuation exercises, we will estimate the value of this change in the rate

of forecast improvement.

Appendix D contains several additional figures highlighting the distribution of forecast

outcomes. There, we show that errors are correlated with intensity, that wind speed and

precipitation are positively correlated, and that the ex ante uncertainty in the forecast is

highly correlated with the ex post error. Appendix D also shows that our data cover a wide

range of intensities of wind speeds – from no wind to nearly category 5 winds.

during some landfalling hurricanes that result in incomplete or poor NECP data coverage (e.g., radar stations
KLIX during Katrina 2005, KMHX during Florence 2018, and KLCH during Laura 2020).

11We note that we do not explicitly study storm track forecasts, but track prediction, and its progress
over the sample period, directly affects both wind and precipitation forecasts.
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2.2 Expenditures for Pre-Storm Protection and Post-Storm Re-

covery

Using a Freedom of Information Act (FOIA) request, we obtain data on measures and

funding for public protection under the Public Assistance Grant Program (PAGM). PAGM

is administered by the Federal Emergency Management Agency (FEMA) and provides grant

assistance for eligible disasters (Kousky et al., 2016), thereby supporting efforts such as

removal of debris, establishment of shelters and temporary levees, and emergency power

generation. These funds are for efforts prior to a hurricane’s landfall, and they are aimed at

reducing overall storm impacts. We call these kinds of expenditures protective expenditures.

PAGM also assists with rebuilding areas after a disaster. For example, it funds the repair,

replacement, or restoration of disaster-damaged, publicly-owned facilities and facilities owned

by certain nonprofit organizations, as well as the administrative expenses associated with

these grants. These funds are provided for restoring an already damaged area so we call

them recovery expenditures.

Typical beneficiaries of the PAGM include local governments and nonprofit organizations.

The federal government provides a minimum of 75% of the cost of eligible assistance for these

entities, and from FY2000 to FY2013, more than 90% of major disaster declarations received

some assistance through the PAGM.

2.3 Economic Damages

Data on hurricane damages come from the Spatial Hazards Event and Losses Database for

the United States (SHELDUS). SHELDUS provides county-level information on the year and

month of the hurricane, and the direct losses that stem from fatalities, injuries, and damages

to property and crops. Following the Environmental Protection Agency’s guidelines, we

estimate the losses from deaths using a value of a statistical life of $9.39 million in 2019

dollars (US EPA, 2022). Because we do not observe the type of injuries incurred, and have

no way to clearly monetize them, we ignore injuries in our analysis. SHELDUS obtains the

storm data from National Centers for Environmental Information (NCEI) and the estimates

of mortality, injuries, and losses to crops and properties from various authorities, including

insurance companies, the US Geological Survey, and the US Department of Agriculture

(USDA). All damages are in 2019 dollars.

SHELDUS is widely-used, and is typically thought of as the best available dataset for

measuring damages at a county-level (Gallagher, 2021; Auh et al., 2022). One concern with

SHELDUS, however, is that it may under-report whether a county was affected by an extreme

weather event (Gallagher, 2014), although misreporting error seems to be less of an issue
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for the most extreme events (Gallagher, 2021; Auh et al., 2022). For example, Gallagher

(2014) shows that SHELDUS is missing records for over 90% of flooding events that had a

presidential disaster declaration (PDD). PDDs are essentially a sufficient condition for there

being damage. For our set of hurricanes, we find that SHELDUS contains records for every

PDD listed by FEMA, which helps assuage concerns about data quality. Section A in the

appendix further explores the robustness of using data from SHELDUS, where we show that

for our hurricanes, SHELDUS under-reports damages by about 11%, and deaths by about

2%.

2.4 Summary Statistics

Table 1 shows summary statistics for the 18 storms in our sample. Note that these statistics

are generated using only counties that experienced positive wind from the hurricane. The

wind speed and precipitation columns are averages across all counties with the standard

deviation in parentheses, while the damages and expenditures columns are summed across

all counties. The table shows that there is substantial heterogeneity in mean wind speed,

precipitation, and forecast errors across storms, and also across counties within the same

storm. Compared to wind speed, precipitation tends to be more variable within a given

storm relative to its mean, and precipitation forecasts tend to have larger relative errors.

The total costs from the losses associated with all storms is half a trillion dollars, which

highlights the economic importance of hurricanes in the continental US. Total emergency

spending is about $30 billion, which is under one-tenth of the reported damages. Notably,

for virtually every storm, recovery spending exceeds protective spending.

3 Methods and Results

We present our results in three steps. First, we show that FEMA, the federal agency respon-

sible for allocating protective emergency funding, responds to hurricane forecasts. Second,

we provide evidence that the forecasts generated economic value by showing that larger un-

derestimates of storm intensity lead to larger damages and recovery costs, conditional on

the actual storm intensity. Third, we develop a theoretical model to guide estimation of the

ex ante value of reducing uncertainty in hurricane forecasts, which gives us the value of a

forecast improvement.
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3.1 Does FEMA Respond to Forecasts?

First, we estimate how FEMA’s pre-landfall, protective emergency expenditures respond to

the wind speed forecast.12 We use the following flexible model for our main results:

f (Protective FEMA Spendingcsh) =
∑
b∈Bw

βwb 1(Wind Forecastcsh ∈ b)

+
∑
b∈Bp

βpb 1(Precip Forecastcsh ∈ b)

+ γc + ηsh + εcsh. (1)

f (Protective FEMA Spendingcsh) is either protective FEMA spending, protective FEMA

spending as a share of county GDP, or protective FEMA spending per capita. The latter

two outcomes adjust for how protective spending may be directed toward areas with larger

economies or more people. Bw is a set of 5 m/s bins of wind speed forecasts up to 35 m/s,

with forecasts of 0-5 m/s as the omitted category. Bp is a set of 20 mm bins of precipitation

forecasts up to 200 mm, where forecasts of 0-20 mm are the omitted category. Recall that

these forecasts are averages of the 1-3 day prior to landfall forecasts. We include both wind

and precipitation forecasts in the same regression as they are positively correlated (Appendix

D), and omitting one may result in omitted variable bias.

All of our specifications for our main results in Section 3 use county fixed effects, γc, and

state-by-hurricane fixed effects, ηsh. γc controls for time-invariant factors that vary across

counties that may drive protective spending and forecast hurricane intensity, like distance to

the coast or elevation. ηsh addresses factors that vary across states for the same hurricane,

such as the political composition of the state government, and whether states used emergency

declarations to marshall local resources. Following other papers in the literature (Hsiang,

2010; Deryugina, 2017), we compute spatial heteroskedasticity and autocorrelation consistent

(HAC) standard errors using the approach documented by Conley (1999). Our standard

errors account for arbitrary serial correlation within a county, and spatial correlation across

all other counties that are within 400 km of a county’s centroid. We note that this radius is

about double the values used in this prior literature, and thus more conservative. The area

traced out by this radius is larger than Florida, Georgia, and Alabama combined. Figure

1 Panel C plots this radius along with an additional 600 km radius we use as a robustness

12One channel through which FEMA spending is able to respond rapidly to new forecast information is
the Hurricane Liaison Team (HLT). Its purpose is to connect local and federal officials with scientists and
meteorologists at the National Hurricane Center. The HLT assists with properly communicating the forecast
in order to better guide response operations, including evacuations, sheltering, and mobilizing manpower and
equipment (Cannon, 2008).
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check in Appendix C.3. In Section C.3 of the appendix, we show that our results are robust

to spatial cutoffs of up to around 600 km, which would allow for spatial correlation across

most of the eastern US.

Figure 2 plots the wind speed estimates from equation (1). 13 Panel A shows the effect of

wind speed forecasts on pre-landfall protective expenditures. The results indicate that the

effects of the wind speed forecast are negligible until above 20 m/s and increase rapidly up

to 35 m/s, about the threshold for category 1 hurricane winds. Relative to counties forecast

to have winds of 0-5 m/s, counties predicted to experience wind speeds of 30-35 m/s receive

$30 million more, while counties predicted to only experience wind speeds of 20-25 m/s –

a low-end tropical storm forecast – receive only $4 million more. Overall, these estimates

show that protective emergency spending increases monotonically with the anticipated wind

speed, and that protective expenditures are targeted toward storms believed to become a

hurricane.

Panels B and C plot estimates for spending as a share of GDP and per capita. Relative

to 15-20 m/s or lower forecasts, spending increases by 0.1% of GDP or $30/person for wind

speed forecasts of 25-30 m/s, and by over 0.5% of GDP or $200 per person for hurricanes

forecast above 30 m/s. Locations with forecasts of 15-20 m/s receive additional protective

expenditures equal to about 0.01% of GDP, however locations forecast to have speeds of

35-40 m/s receive additional funding equal to nearly 1% of local GDP.

Unlike wind speed, neither set of estimates for precipitation show a clear pattern. These

results suggest that pre-storm federal emergency expenditures do not consistently respond

to precipitation forecasts. One plausible explanation for this finding is the use of wind

speed as the main proxy for hurricane damages in public and technical circles (Murnane and

Elsner, 2012). The estimations for the effect of precipitation on protective expenditures are

in Appendix C.

3.2 Does Forecast Accuracy Matter?

Next, we test whether forecast errors affect hurricane damages and after-landfall recovery

expenditures. Following the results above and as in Figure 1, we define forecast error as how

much the forecast underestimated realized wind speeds. We estimate the effect of forecast

13Table C.1 in the appendix shows results for different choices of fixed effects in tabular form.
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errors on damages and FEMA recovery spending using the following flexible model:

f (Ycsh) =
∑
b∈Ew

βwb 1(Wind Errorcsh ∈ b) +
∑
b∈Ep

βpb 1(Precip Errorcsh ∈ b)

+
∑
b∈Ewi

γwb 1(Wind Realizationcsh ∈ b) +
∑
b∈Epi

γpb 1(Precip Realizationcsh ∈ b)

+ γc + ηsh + εcsh. (2)

f (Ycsh) is the same set of functions as in equation (1). Ycsh is either damages caused by the

hurricane, or FEMA’s post-landfall spending aimed at recovering the damaged area. Ew and

Ep are sets of bins of forecast errors (realization minus forecast) and Ewi and Epi are sets of

bins of intensity realizations. The omitted error bin categories are (-2,0] for wind and (-20,0]

for precipitation. We flexibly control for hurricane realizations to ensure we are picking up

the effect of forecast errors and not just that more intense storms tend to have larger errors

as shown in Figure D.1 in the Appendix. The fixed effects and standard errors are identical

to equation (1).

Figure 3 plots the results. Panels A and D plot the effect of wind speed forecast under-

estimates on damages and after-landfall recovery spending, Panels B and E plot the effect

in terms of share of county GDP, while panels C and F plot the effects in per capita terms.

All six panels show an increasing relationship between the outcome and wind speed under-

estimates. County damages are $200 million higher if wind speed is underestimated by 6

m/s, and over $500 million higher if underestimated by 10 m/s.14 In GDP or per capita

terms, a 10 m/s underestimate increases damages by 40% of GDP or $15,000/person. The

effects on recovery spending follow the same pattern: underestimating wind speed by 6 m/s

increases recovery spending by $10 million, while underestimating by 10 m/s increases recov-

ery spending $30 million. The latter error is equivalent to an increase spending by 0.75% of

GDP or $400/person. We also find that overestimates reduce damages relative to a perfect

forecast, but the magnitude of the effect of overestimates is significantly smaller than that

of underestimates.

3.3 What is the Ex Ante Value of Improving Hurricane Forecasts?

In the previous set of results, figures 2 and 3 provide evidence for how the information in

forecasts generates social value. Figure 2 shows that higher forecasts marshall more (costly)

adaptive resources to an area. Figure 3 shows that, conditional on realized storm intensity,

overestimating intensity (through higher forecasts) reduces ex post costs. In this section,

14A 10 m/s error would result in misclassifying a storm by 1-2 categories.
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we now formalize the ex ante value of improving hurricane forecasts accounting for both of

these forces on total costs. We motivate the problem from a theoretical perspective, and

then derive an empirical estimator using our data on forecasts, expenditures and damages.

3.3.1 Theoretical Foundation

Suppose a risk-neutral representative agent faces a future hurricane with total after-landfall

costs from damages and recovery spending D(x, a, i, t). To be concise, we will call D damages

from hereon. x is the hurricane’s intensity (e.g., wind speed, precipitation); x̃ is the forecast

of this intensity; a is the agent’s continuous choice of before-landfall protective actions to

reduce damages (e.g., sandbags, evacuations, structure hardening), which is a function of

the forecast and has an associated continuous and increasing cost function C(a); i is a vector

of time-invariant features of the agent’s location i (e.g., elevation, proximity to the coast,

long-lived capital structures); and t is a vector of common features across locations in period

t. D is continuous and decreasing in a. The agent has access to a forecast x̃ of the realized

storm intensity x at time t, specific to location i. The forecast is a noisy signal with normally

distributed error: e ∼ N (µ, σ). We can write the intensity as a function of forecast and its

error: x = x̃+ e.

The agent’s objective is to minimize their total expected costs:

C(x̃, µ, σ, i, t) = min
a

E

[
D(x̃+ e︸ ︷︷ ︸

x

, a, i, t)

]
+ C (a) .

We define the value of a forecast improvement as the reduction in minimized expected total

cost — inclusive of both before-landfall protective spending, and after-landfall damages and

recovery spending – from a marginal reduction in the standard deviation of forecast error.

Proposition 1 provides an intuitive closed-form expression for this quantity.

Proposition 1 The value of a forecast improvement is:

dC(x̃, µ, σ, i, t)
dσ

=
1

σ3
cov

(
D(x̃+ e, a∗, i, t), (e− µ)2

)
(3)

= 2σβ2. (4)

Where a∗ is the optimized protective action choice, and β2 is the coefficient from a regres-

sion of observed damages D(x̃+ e, a∗, i, t) on the observed squared demeaned intensity error

(e− µ)2.

Proof: See Appendix B.1. �
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Proposition 1 shows that the marginal value of a forecast improvement is proportional to a

covariance between realized damages at the optimized protective actions and the the squared

demeaned forecast error.15 The value of an improvement and the covariance is positive if

damages tend to be higher when the squared demeaned error is higher. Figure 3 provides

evidence the covariance is positive: damages are increasing and convex in errors, conditional

on intensity. Better forecasts help the agent reduce the difference between the ex ante

optimized level of protective spending and the protective spending they would have chosen

if they could observe realized hurricane intensity when making their decision.

The second line of Proposition 1 shows the value of a forecast improvement, inclusive of

any protective actions, can be recovered by regressing total after-landfall costs on squared

demeaned errors, and evaluating it at some reference forecast standard deviation. A higher

standard deviation baseline, reflecting more ex ante uncertainty, tends to raise the value of a

forecast improvement. Unlike prior work, our dataset reports the standard deviation of the

forecast and forecast error, which turns out is a necessary piece of data to properly calculate

the value of a forecast improvement.

In the empirical analysis, we derive estimates of β2 with the following model:

f(Dcsh) = βw2 (ewcsh − µwcsh)
2 + βp2 (epcsh − µ

p
csh)

2

+
∑
b∈Ewi

γwb 1(xcsh ∈ b) +
∑
b∈Epi

γpb 1(pcsh ∈ b)

+ γc + ηsh + εcsh. (5)

f is the same set of functions as above, and Dcsh is observed damages. (ewcsh − µwcsh)
2 is the

observed squared demeaned error in wind speed, and (epcsh − µ
p
csh)

2 is the observed squared

demeaned error in precipitation. On the second line, we flexibly control for realizations

with bins, so the identifying variation is driven by forecasts conditional on storm intensity as

with equation (2). The theoretical model assumes that the forecast distributional parameters

were constant, but Figure D.1 shows that errors increase in storm intensity. Including flexible

binned intensity controls ensures we do not confound the effect of higher-error forecasts with

purely stronger storms. The fixed effects and standard errors follow the previous results.

We note that we would obtain similar theoretically-grounded estimating equations given

objectives of minimizing costs as a share of GDP or minimizing costs per person. We will

explore these alternative objectives in our empirical analysis.

It is important to highlight the key assumption that makes this approach work: forecast

errors are normally distributed. This parametric assumption on beliefs lets us quantify how

15Section B.2 in the appendix formalizes a version of the result for a risk-averse agent.
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beliefs change as σ changes.16 Appendix B.3 shows this is a reasonable assumption.

3.3.2 Estimation Results

Table 2 reports our results corresponding to Proposition 1. The first panel shows the results

assuming the planner is minimizing total costs, while the second and third panels show

results if the agent is minimizing costs as a share of GDP or per capita costs. Within each

panel, we report the coefficient estimate on squared demeaned wind errors. The sample

average forecast standard deviation is 1.5, so the marginal value of an improvement of the

average forecast is three times the coefficient. Because this is the main contribution of the

paper, we show robustness of our results to a variety of specification choices. These include

county-by-month of year effects which address county-specific seasonality in exposure or

forecastability, county-by-year effects which controls for things like prior hurricane experience

and damage that may change how forecast errors affect current damages, as well as linear

forecast errors. Our preferred specification is in column 7, which has our base fixed effects

along with controls for intensity realizations and linear forecast errors. This specification

allows for heterogeneous effects for hurricane versus sub-hurricane force winds in a county,

reflecting how protective expenditures increase significantly at this level in Figure 2.

The first panel shows that a one unit increase in the squared error of wind speed increases

damages. For the sample average σ, the value of a forecast improvement is $30 million

per county in our preferred specification, but only for counties experiencing hurricane-force

winds. A forecast improvement of 0.035 standard deviations, about 2% of the sample mean

and an improvement that occurs just over every year in our sample, reduces total costs by

$700,000 for the average county hit with hurricane-force winds. This result suggests that

every year, forecast improvements are generating tens of millions of dollars of benefits per

hurricane.

The second and third panels show that the value of a 1 standard deviation forecast

improvement is over 3% of county GDP, or $1,000 in per-person terms. Using the same

thought experiment as in the top panel, the annual average forecast improve reduces costs

by 0.08% of GDP, or $25 per person. The estimates in Column 7 also demonstrate that the

value of improvements comes entirely from places experiencing hurricane-force winds.

16Since forecast errors are often substantial for wind speed, we make a distributional assumption instead
of using local approaches like Taylor approximations (e.g., Shrader et al., 2023).
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3.4 The Value of Historical Forecast Improvements

We now use our estimates in Table 2 to value historical improvements in forecast accuracy.

Specifically, we estimate the value of the sudden increase in the rate of forecast improvement

in 2007, as depicted in Figure 1.17 For each of the 14 storms after 2007, we compute its

counterfactual forecast uncertainty if forecasts had continued to follow only the pre-HFIP

0.4% annual improvement, and then use the estimate in Column 7 of the top panel of Table

2 to value the increase in costs compared to the actual forecast uncertainty.

Our findings suggest that accelerated improvements in forecast accuracy since 2007 re-

duced hurricane costs – damages, recovery spending, and protective spending – by 19% or $5

billion per hurricane. How large is this value? $5 billion is nearly the entire NOAA budget,

five times the 2015 budget of the National Weather Service, the weather forecasting arm of

NOAA; and more than ten times cumulative budget of the HFIP since its inception in 2007,

which was tasked with accelerating forecast improvements.

3.5 Robustness

Section C contains a number of robustness checks of our main results that we summarize

here. First, we show all of our results are robust to the inclusion of additional fixed effects.

Second, we show that our significance levels are robust to using a conservative 600 km radius

for spatial correlation. Third, we show our results are robust to restricting our sample to

only states on the Atlantic coast and Gulf of Mexico, and to dropping counties that were

reported as having no damage in SHELDUS, but were in states that declared emergencies

in order to receive recovery funding. Fourth, we show that our results are robust to using

the inverse hyperbolic sine transformation. Fifth, we show that forecasting errors increase

all three types of damage, but mostly property damage.

We also replicate the analysis for precipitation forecasts, for which results tend to be less

robust. Plausibly, the discrepancy between wind speed and precipitation may be because

the widely-used Saffir-Simpson categories for classifying hurricanes are based entirely on

wind speed, and they are also the way in which hurricane strength has historically been

communicated and acted upon (Kantha, 2006; Murnane and Elsner, 2012).

17Note that Figure 1 shows the decline in absolute wind speed error which is not quite the same as wind
speed uncertainty. The wind speed standard deviation shows a 7% annual decline since the first storm in
our dataset.
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4 Conclusion

In this paper we estimate the economic impact of hurricane forecasts and the value of im-

proving them. We find forecasts are major determinants of the allocation of emergency

resources, both before and after the storm. Counties projected to face the strongest wind

speeds receive millions more in protective funding, while those that experienced the largest

forecast underestimates had several times higher after-landfall recovery spending. We also

find that forecasts affect hurricane damages. Conditional on realized intensity, an under-

forecast increases damages by hundreds of millions of dollars compared to an accurate one.

These results suggest that forecasts direct valuable protective resources and actions.

Our main contribution is an estimate of the marginal value of reducing forecast uncer-

tainty, inclusive of observed hurricane damages, observed after-landfall recovery costs, and

unobserved before-landfall protective costs. Per-hurricane benefits from forecast improve-

ments since 2007 amount to $5 billion – a figure that exceeds the total budget for all federal

weather forecasting.

Our results also show that hurricane forecasts are more valuable than has been suggested

previously (Lazo and Waldman, 2011; Martinez, 2020; Molina et al., 2021). We take a suf-

ficient statistics approach that accounts for damages, after-landfall recovery expenditures,

and pre-landfall protective actions. As such, our methodology provides a credible, robust,

and flexible approach for quantifying the social value of future hurricane forecasting improve-

ments, and also for valuing forecasts of other hazards for which ex ante decision making is

crucial.

We conclude with several limitations that we leave for future work. First, our data

do not capture all forms of damage and recovery costs. Accounting for these additional

factors, such as longer-run social insurance costs (Deryugina, 2017), would only increase the

value of a forecast improvement. Second, our estimates in the main text only cover the

value generated by wind speed forecasts. While wind speed is arguably one of the leading

attributes when it comes to hurricane damage (Murnane and Elsner, 2012), flooding and

storm surge are important as well. Storm surge forecasting is in its infancy and likely less

accurate compared to predicting storm track and wind speed, so there may be significant

gains from further forecasting improvements along these additional dimensions of a hurricane.

18



19

Figure 1: Forecasts, Forecast Uncertainty, and Forecast Errors for Hurricane Katrina 72 Hours Before Landfall.

Note: Panels A, B, and C show Hurricane Katrina’s 1-3 day ahead average landfall forecast wind speed, the forecast’s ex ante standard deviation,
and the forecast’s errors. Positive values in Panel C are underestimates of the actual wind speed. The dotted circles in Panel C display radii of 400
km and 600 km. For our empirical results we use Conley Spatial HAC standard errors with a distance radius of 400 km. In the appendix we show
robustness of our main results to the alternative radius. Panel D shows the absolute values of forecasting errors for wind speed, averaged across 1, 2,
and 3 day ahead forecasts for all Atlantic tropical cyclones in a given year using aggregate data reported by the National Hurricane Center. Dotted
lines are the best linear fits to the time series before and after 2007. The vertical dashed line is when the Hurricane Forecast Improvement Program
was implemented in 2007, which expanded funding for forecast research and development. The archive for official historical records data is available
at: https://www.nhc.noaa.gov/verification [Last visited on July 26, 2022].
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Table 1: Summary Statistics by Hurricane.

Hurricane Year Wind Speed Wind Speed Error Precipitation Precipitation Error Total Damage Protective Exp. Recovery Exp.

Dennis 2005 6.03 (4.95) 1.73 (1.31) 23.81 (23.94) 13.19 (13.59) 2.35 0.02 0.13
Katrina 2005 8.88 (6.45) 2.82 (2.78) 30.42 (35.79) 23.81 (25.82) 214.83 1.46 11.39
Rita 2005 7.07 (4.89) 2.33 (2.01) 27.68 (35.46) 22.19 (23.06) 34.65 0.14 0.42
Wilma 2005 10.85 (9.37) 3.04 (5.16) 24.16 (36.09) 16.64 (26.36) 13.87 0.17 1.11
Ike 2008 11.33 (6.22) 6.9 (5.63) 17.05 (26.28) 14.58 (20.44) 37.39 0.24 1.18
Sandy 2012 10.61 (6.63) 2.66 (2.54) 29.25 (30.61) 18.22 (20.41) 58.22 1.19 3.63
Harvey 2017 9.92 (8.29) 1.76 (2.82) 76.48 (108.21) 60.84 (85.09) 94.24 0.44 1.79
Irma 2017 6.92 (6.51) 1.99 (1.58) 39.23 (44.98) 23.03 (29.47) 11.05 0.41 1.77
Florence 2018 7.23 (5.52) 0.8 (0.76) 25.23 (55.8) 15.11 (29.39) 5.15 0.15 0.53
Michael 2018 12.82 (8.8) 2.83 (3.68) 29.09 (30.1) 20.44 (22.44) 42.17 0.21 1.29
Barry 2019 6.34 (5.17) 1.76 (1.38) 25.83 (38.42) 17.82 (22.38) 0.02 0.02 0.02
Dorian 2019 10.46 (4.94) 0.41 (0.33) 13.9 (28.71) 8.24 (12.19) 0.04 0.05 0.13
Delta 2020 6.55 (5.42) 1.22 (0.84) 20.93 (27.49) 12.54 (16.94) 7.08 0.02 0.02
Hanna 2020 9.36 (6.42) 0.91 (2.15) 17.3 (30.64) 14.39 (20.09) 0.25 0.00 0.00
Isaias 2020 13.56 (7.7) 4.74 (4.69) 19.2 (24.58) 17.46 (21.6) 0.20 0.01 0.08
Laura 2020 7.48 (6.45) 2.29 (2.3) 15.47 (24.99) 10.83 (14.41) 24.57 0.21 0.60
Sally 2020 8.43 (5.28) 3.06 (2.82) 42.12 (52.78) 41.7 (42.33) 1.21 0.02 0.26
Zeta 2020 10.5 (7.33) 3.41 (3.86) 14.6 (12.64) 10.62 (8.58) 7.08 0.00 0.00

Note:
Wind speed, precipitation, and their associated errors are averaged across counties that experienced positive wind speeds only. Standard deviations for
these variables are reported in parentheses. Damages and expenditures are summed across counties for each storm. “Precip” is short for precipitation,
and “Exp” is short for Expenditure. Wind speed is the maximum sustained wind speed in meters per second (m/s).
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Figure 2: FEMA Protective Spending Responses to Forecasts.

Note: The estimates correspond to equation (1). Points are point estimates and the bars are the 95% confidence intervals. The omitted category for
each panel is [0,5]. All panels control for bins for the precipitation forecast, and for county and state-by-hurricane fixed effects. Standard errors are
Conley Spatial HAC with a distance radius of 400 km for spatial correlation and arbitrary autocorrelation within counties. The number of observations
is 55,332.
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Figure 3: Forecast Errors, Damages, and After-Landfall Recovery Spending.

Note: The points are point estimates, and the bars are the 95% confidence intervals. The omitted category is (−2, 0]. All panels control for binned
precipitation errors, binned realized wind speed, binned realized precipitation, and for county and state-by-hurricane fixed effects. Standard errors are
Conley Spatial HAC with a distance radius of 400 km for spatial correlation and arbitrary autocorrelation within counties. The number of observations
is 55,332.
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Table 2: The Value of a Wind Speed Forecast Improvement.

(1) (2) (3) (4) (5) (6) (7)

Damages + Recovery Spending (million $)

β2 : (e− µ)2 8.67** 8.58** 6.94** 6.73*** 9.15*** 9.33***
(3.54) (3.52) (2.70) (2.50) (3.54) (3.24)

Hurricane β2 : (e− µ)2 10.23**
(4.23)

Sub-Hurricane β2 : (e− µ)2 -0.69
(0.98)

(Damages + Recovery Spending) / GDP (%)

β2 : (e− µ)2 0.87*** 0.88*** 0.79*** 0.79*** 0.79*** 0.78***
(0.33) (0.34) (0.29) (0.26) (0.30) (0.25)

Hurricane β2 : (e− µ)2 1.12***
(0.35)

Sub-Hurricane β2 : (e− µ)2 0.02
(0.03)

Damages + Recovery Spending Per Capita ($/person)

β2 : (e− µ)2 294.85*** 299.15*** 258.76*** 269.63*** 295.28*** 311.75***
(84.21) (84.45) (68.82) (65.95) (81.57) (76.89)

Hurricane β2 : (e− µ)2 368.09***
(87.85)

Sub-Hurricane β2 : (e− µ)2 4.67
(9.94)

Observations 55,332 55,332 55,332 55,332 55,332 55,332 55,332

Realized Wind/Precip Bins X X X X X X
Level Wind/Precip Error X X X X X
State-Hurricane FE X X X X X X X
County FE X X X X
County-Month of Year FE X X
County-Year FE X X

* p < 0.1, ** p < 0.05, *** p < 0.01 Standard errors are Conley Spatial HAC with a distance radius of 400 km
for spatial correlation and arbitrary autocorrelation within counties.
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Appendix

A SHELDUS Data Quality

Previous work has raised concerns about the quality of the damages data reported in SHEL-

DUS for earlier versions of the dataset (Gallagher, 2014), particularly for smaller events.

Here we probe whether SHELDUS has quality issues in more recent versions of the data and

for large hazards like hurricanes.

First, we compare SHELDUS to an alternative dataset provided by the National Center

for Environmental Information (NCEI) at the National Oceanic and Atmospheric Admin-

istration (NOAA). The NCEI data reports estimates of damages for disasters where the

estimated damage is over $1 billion. NCEI’s damages include property damage, damage

to agriculture, as well as time costs like business interruptions. Figure A.1 plots the raw

SHELDUS property damage against the NCEI estimated damage for each hurricane. The

figure shows that there is a very strong correspondence between the two data sets. When

aggregating over all hurricanes in our sample, SHELDUS reports $530 billion in damage and

2,700 deaths while NCEI reports $596 billion in damage and 2,645 deaths. All monetary

values are in 2019 dollars. This amounts to an 11% underestimate in aggregate property

damages and 2% overestimate in aggregate deaths.

Figure A.1 shows that SHELDUS appears to do a relatively good job of measuring dam-

ages compared to NCEI. Another second way to probe data quality is to test the importance

of counties that are not reported as having damage in SHELDUS, but were in states that

issued a Presidential Disaster Declaration (PDD). These are counties that may have been

erroneously coded as zero damage in SHELDUS. In Section C below, we test the sensitivity

of our results to dropping these “error counties.” We find that dropping these data points

does not meaningfully affect our results.

One last point to note is that after Gallagher (2014) was published, the SHELDUS

metadata shows significant retroactive corrections to the data and inclusion of additional

records of damages. Each annual update to the database, there are typically several prior

years which are retroactively updated. In some years, there are tens of thousands of records

added and the corrections adjust annual damages by tens of billions of dollars, which helps

to explain the difference in data quality we observe from the earlier literature.
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Figure A.1: Aggregate Hurricane Damages and Deaths: SHELDUS Versus NCEI.

The y axis aggregates the county-level SHELDUS property damages (left) and deaths (right) to the hurricane-
level for all hurricanes in our dataset. The x axis is the hurricane-level point estimates reported by the NCEI.
Hurricane Barry is omitted since it is not reported in the NCEI data.

B Theoretical Foundation

B.1 Proof of Proposition 1

An agent is aiming to minimize the total costs of an incoming hurricane which consist of

protective spending before the storm, and uncertain damages and recovery costs after the

storm. The agent has access to a forecast x̃ of the realized storm intensity x. The forecast

is a noisy signal with error e = x − x̃ where we can write the intensity as the deviation

from the forecast: x = x̃ + e. As in Figure 3, the error e measures how much the forecast

underestimates the actual intensity. We assume that forecast errors are normally distributed:

e ∼ N (µ, σ2). We denote the probability density function as a function: Φ(e, µ, σ).

The agent uses the forecast to choose their level of protective actions, a, that mitigate

hurricane damage and reduce recovery costs. Protective actions have a cost C(a) which is

increasing and convex. Damages and recovery costs are a function D of realized intensity, the

chosen level of protective actions, and location-specific and time-specific factors: D(x, a, i, t).

D is decreasing in protective actions. Our agent’s objective is to minimize their expected

total costs:

C(x̃, µ, σ, i, t) = min
a

E

[
D(x̃+ e︸ ︷︷ ︸

x

, a, i, t)

]
+ C(a)

29



where the expectation is only over damages since protective actions are determined before

the hurricane intensity realizes. We are interested in the reduction in the minimized expected

total cost from a marginal decrease in the standard deviation of the forecast error:

dC(x̃, µ, σ, i, t)
dσ

=
∂C(x̃, µ, σ, i, t)

∂σ
. (B.1)

The envelope theorem gives us that:

∂C(x̃, µ, σ, i, t)
∂σ

=

∫
D(x̃+ e, a∗, i, t)

∂Φ(e, µ, σ)

∂σ
de,

where a∗ is the optimized protective action that is a function of the intensity forecast but

not intensity realization. Taking the partial derivative inside the integral then gives:

∂C(x̃, µ, σ, i, t)
∂σ

=

∫
D(x̃+ e, a∗, i, t)

[
(e− µ)2 − σ2

σ3

]
Φ (e, µ, σ) de.

Since the normal density is still in the expression, it can go back into expectation notation

as:

∂C(x̃, µ, σ, i, t)
∂σ

= E
{
D(x̃+ e, a∗, i, t)

[
(e− µ)2 − σ2

σ3

]}
,

where the expectation is again with respect to e. We can get a closed form solution by using

the covariance identity:

∂C(x̃, µ, σ, i, t)
∂σ

=E
{
D(x̃+ e, a∗, i, t)×

[
(e− µ)2 − σ2

σ3

]}
=

1

σ3
E
{
D(x̃+ e, a∗, i, t)×

[
(e− µ)2 − σ2

]}
=

1

σ3

[
cov

(
D(x̃+ e, a∗, i, t), (e− µ)2

)
+ E {D(x̃+ e, a∗, i, t)}E

{
(e− µ)2 − σ2

}︸ ︷︷ ︸
=0

]

=
1

σ3
cov

(
D(x̃+ e︸ ︷︷ ︸

x

, a∗, i, t), (e− µ)2

)
, (B.2)

where we use e ∼ N (µ, σ) so that E{(e− µ)2} = σ2. This result proves the first part of the

proposition.
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Next, we return to the last line in equation (B.2):

dC(x̃, µ, σ, i, t)
dσ

=
1

σ3
cov

(
D(x̃+ e, a∗, i, t), (e− µ)2

)
.

First, compute the variance of (e− µ)2:

var
(
(e− µ)2

)
= E

[(
(e− µ)2 − E

[
(e− µ)2

])2]
= E

[(
(e− µ)2 − σ2

)2]
= E

[
(e− µ)4

]
− 2σ4 + σ4

= 3σ4 − 2σ4 + σ4

= 2σ4, (B.3)

where the last line uses the fact that the fourth central moment of a normal variable x is

3σ4.

Use this to result to rewrite the last line in equation (B.2) as:

dC(x̃, µ, σ, i, t)
dσ

=2σ
cov (D(x̃+ e, a∗, i, t), (e− µ)2)

var ((e− µ)2)
. (B.4)

The covariance-variance ratio term is just a coefficient from a regression of damages on the

squared demeaned error in wind speed. Denote this regression coefficient as β2. The final

expression is:
dC(x̃, µ, σ, i, t)

dσ
= 2σβ2. (B.5)

The marginal value of a forecast improvement is the product of this regression coefficient and

the standard deviation of forecast errors at which we want to evaluate the marginal value.

Note that this result depends on assuming that the forecast error distribution has constant

parameters that do not depend on the actual hurricane intensity. Figure D.1 shows that this

is unlikely to be the case: forecast errors and squared demeaned forecast errors are both

correlated with realized intensity. This means that we need to flexibly condition on storm

intensity when performing the regression over our full dataset, otherwise the coefficient on

squared errors may just be picking up the fact that stronger storms cause more damage

regardless of the forecast error.
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B.2 Risk Averse Agent

Suppose that now the agent is risk-averse with some continuous, increasing, and concave

utility function U . The agent’s utility is over their total income Y , less the costs of protective

actions C(a), and damages D(x, a, i, t). The agent maximizes their expected utility:

V (x̃, µ, σ, Y, i, t) = max
a

E

{
U

(
Y −D(x̃+ e︸ ︷︷ ︸

x

, a, i, t)− C(a)

)}
.

To simplify notation, let U(x̃+ e, a, Y, i, t) ≡ U (Y −D(x̃+ e, a, i, t)− C(a)). The value

of a forecast improvement is:

−dV (x̃, µ, σ, Y, i, t)

dσ
= −∂V (x̃, µ, σ, Y, i, t)

∂σ
. (B.6)

First, note that here we use a decrease in the standard deviation since we are maximizing

utility instead of minimizing costs. Second, note that since the agent has a utility function

over their (random) payoff, the value of a forecast improvement is in units of utility and

will need to be translated back into dollar terms if one wishes to monetize the value of an

improvement.

The envelope theorem gives us that:

∂V (x̃, µ, σ, Y, i, t)

∂σ
=

∫
U(x̃+ e, a∗, Y, i, t)

∂Φ(e, µ, σ)

∂σ
de

recalling that x = x̃− e.
The rest of the proof follows identically to Proposition 1 except where D(x, a∗, i, t) is

replaced by U(x̃ + e, a∗, Y, i, t). We can get a closed form solution by using the covariance

identity:

−∂V (µ, σ, Y, i, t)

∂σ
=− E

{
U(x̃+ e, a∗, Y, i, t)×

[
(e− µ)2 − σ2

σ3

]}
=− 1

σ3
E
{
U(x̃+ e, a∗, Y, i, t)×

[
(e− µ)2 − σ2

]}
=− 1

σ3

[
cov

(
U(x̃+ e, a∗, Y, i, t), (e− µ)2

)
+ E {U(x̃+ e, a∗, Y, i, t)}E

{
(e− µ)2 − σ2

}︸ ︷︷ ︸
=0

]

=− 1

σ3
cov

(
U(x̃+ e, a∗, Y, i, t), (e− µ)2

)
. (B.7)
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If errors and utility are negatively correlated, then a decrease in the forecast standard de-

viation increases maximized utility. Since we do not observe utility like we do damages, to

compute ∂V (µ,σ,Y,i,t)
∂σ

we will need to observe protective actions.
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B.3 Model Assumption

The assumption in our theoretical model is that the hurricane intensity errors should be

normally distributed. Figure B.1 plots the empirical distribution of wind speed and precipi-

tation errors. Both appear to be roughly normal, although with a slight right skew indicating

that the average forecast slightly underestimates intensity. For wind, the average error is

only 0.08 m/s.

Figure B.1: The Distribution of Realized Wind Speeds and Precipitation.

Note: Panel A shows the observed distribution of the realized wind speed error by county-hurricane. Panel
B shows the observed distribution of the realized precipitation error by county-hurricane.
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C Robustness Checks

Here we show robustness checks for all three sets of results: how forecasts affect emergency

protective spending by FEMA, how forecast errors drive damages and emergency recovery

spending by FEMA, and the value of a forecast improvement. The three sets of robustness

checks largely follow the same pattern. First, we show robustness to different sets of fixed

effects in tabular form. Second, we show robustness to a more conservative, 600 km spatial

cutoff for computing Conley standard errors. This allows for spatial correlation over an area

as large as the entire Southeastern US.18 Third, we show our results are robust to dropping

what we call “error counties.” These are counties that are in a state that issued a presidential

disaster declaration but did not have any reported damages in SHELDUS. Fourth, we show

the results still hold even when focusing only on Atlantic and Gulf Coast states instead of

the entire US. Fifth, we show robustness to the inverse hyperbolic sine transformation of the

outcome variables for protective spending, damages, and recovery spending. Sixth, we show

that forecast underestimate impact results are robust estimating impacts on property, crop,

and mortality damages separately. Seventh, we show results for precipitation which tend to

be less robust than wind speed. Finally, we show some additional robustness checks for the

value of a forecast improvement results.

C.1 Does FEMA Respond to Forecasts?

Table C.1 presents estimates of the effect of the forecast wind speed and precipitation on

before-landfall protective FEMA spending. Our binned estimates in Figure 2 are highly

convex, so we include a quadratic term here to capture the convexity. The first column

corresponds to the fixed effects in our main results. The second column adds county-by-

month-of-year fixed effects to account for potential location-specific seasonality. The third

column adds county-by-year effects to flexibly account for variables trending over time but

differentially across counties. The fourth column adds both of these additional fixed effects.

Consistent with Figure 2, we find that given a sufficiently high wind forecast, protective

spending is increasing and convex in the forecast. Precipitation estimates are inconsistent

and either small or noisy.

Figure C.1 increases our Conley cutoff to 600 km, allowing for spatial correlation over an

area over twice as large. This has little effect on our standard errors.

Figures C.2 and C.3 replicate Figure 2 but where we drop “error counties” or only include

18For example, the area of Alabama, Florida, Georgia, Kentucky, Mississippi, North Carolina, South
Carolina, Tennessee, Virginia, and West Virginia is 1,026,065 km2 while the area traced out by our 600 km
cutoff is 1,130,972 km2.
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Atlantic and Gulf Coast states. These different sample restrictions have essentially no effect

on our results.

Figure C.4 shows protective spending results, for wind speed and precipitation, when

using an inverse hyperbolic sine transformation. Using this alternative outcome, we still find

that forecasts of higher wind speeds spur more protective funding. This functional form also

suggest greater precipitation forecasts increase protective funding as well.

Figure C.5 replicates Figure 2 but for precipitation. The plots show mixed, noisy results.

Given the lack of a clear relationship between precipitation forecasts and emergency spend-

ing, we may not expect to find consistent effects for precipitation forecast errors or for the

value of improving precipitation forecasts.
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Table C.1: The Effect of Forecast Attributes on Before-Landfall FEMA Protective Spending.

(1) (2) (3) (4)

Protective Spending (million $)

Wind Forecast (m/s) -0.4908** -0.5299*** -0.4631* -0.4861**
(0.2236) (0.1968) (0.2674) (0.2403)

Wind Forecast2 0.0371*** 0.0380*** 0.0336** 0.0344**
(0.0124) (0.0123) (0.0142) (0.0142)

Precip Forecast (mm) -0.0256 -0.0181 -0.0207 -0.0165
(0.0373) (0.0321) (0.0273) (0.0266)

Precip Forecast2 -0.0001 -0.0001 -0.0000 -0.0001
(0.0002) (0.0002) (0.0002) (0.0002)

Protective Spending / GDP (%)

Wind Forecast (m/s) -0.0093** -0.0098*** -0.0084** -0.0082**
(0.0038) (0.0038) (0.0039) (0.0037)

Wind Forecast2 0.0007*** 0.0008*** 0.0007*** 0.0007***
(0.0003) (0.0003) (0.0003) (0.0002)

Precip Forecast (mm) -0.0013** -0.0012* -0.0014** -0.0015*
(0.0006) (0.0007) (0.0006) (0.0008)

Precip Forecast2 0.0000* 0.0000 0.0000** 0.0000**
(0.0000) (0.0000) (0.0000) (0.0000)

Protective Spending / Person ($)

Wind Forecast (m/s) -5.6299* -6.1069* -5.7773 -6.1489
(3.2148) (3.1703) (3.6887) (3.9200)

Wind Forecast2 0.3606** 0.3610*** 0.3957** 0.3655**
(0.1494) (0.1331) (0.1781) (0.1504)

Precip Forecast (mm) -0.1400 -0.0238 -0.3615 -0.1773
(0.4413) (0.5226) (0.3830) (0.5957)

Precip Forecast2 0.0005 0.0005 0.0016 0.0027
(0.0025) (0.0025) (0.0020) (0.0022)

Observations 55,332 55,332 55,332 55,332

State-Hurricane FE X X X X
County FE X
County-Month of Year FE X X
County-Year FE X X

* p < 0.1, ** p < 0.05, *** p < 0.01 Standard errors are Conley Spatial
HAC with a distance radius of 400 km for spatial correlation and arbitrary
autocorrelation within counties.
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Figure C.1: FEMA Protective Spending Responses to Forecasts: 600 km Conley Cutoff.

Note: The estimates correspond to equation (1). Points are point estimates and the bars are the 95% confidence intervals. The omitted category for
each panel is [0,5]. All panels control for bins for the precipitation forecast, and for county and state-by-hurricane fixed effects. Standard errors are
Conley Spatial HAC with a distance radius of 600 km for spatial correlation and arbitrary autocorrelation within counties.
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Figure C.2: FEMA Protective Spending Responses to Forecasts: PDD Robustness.

Note: The estimates correspond to equation (1). Points are point estimates and the bars are the 95% confidence intervals. The omitted category for
each panel is [0,5]. All panels control for bins for the precipitation forecast, and for county and state-by-hurricane fixed effects. Standard errors are
Conley Spatial HAC with a distance radius of 400 km for spatial correlation and arbitrary autocorrelation within counties. The plots drop all “error
counties” with a PDD but zero damage.
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Figure C.3: FEMA Protective Spending Responses to Forecasts: Coastal States.

Note: The estimates correspond to equation (1). Points are point estimates and the bars are the 95% confidence intervals. The omitted category
for each panel is [0,5]. All panels control for bins for the precipitation forecast, and for county and state-by-hurricane fixed effects. Standard errors
are Conley Spatial HAC with a distance radius of 400 km for spatial correlation and arbitrary autocorrelation within counties. Only the following
states are included in the sample: Texas, Louisiana, Mississippi, Alabama, Georgia, Florida, South Carolina, North Carolina, Virginia, Maryland,
New Jersey, Pennsylvania, Connecticut, Delaware, New York, Rhode Island, Massachusetts, New Hampshire, and Maine.
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Figure C.4: FEMA Protective Spending Responses to Forecasts: Inverse Hyperbolic Sine.

Note: The estimates correspond to equation (1). Points are point estimates and the bars are the 95% confidence intervals. The omitted category
for wind speed is [0,5] and for precipitation is [0,20]. The estimates from both panels are from a single regression. All panels control for county
and state-by-hurricane fixed effects. Standard errors are Conley Spatial HAC with a distance radius of 400 km for spatial correlation and arbitrary
autocorrelation within counties.
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Figure C.5: FEMA Protective Spending Responses to Forecasts: Precipitation.

Note: The estimates correspond to equation (1). Points are point estimates and the bars are the 95% confidence intervals. The omitted category for
each panel is [0,20]. All panels control for bins for the wind speed forecast, and for county and state-by-hurricane fixed effects. Standard errors are
Conley Spatial HAC with a distance radius of 400 km for spatial correlation and arbitrary autocorrelation within counties.
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C.2 Does Forecast Accuracy Matter?

Table C.2 presents estimates of the effect of the forecast errors on damages and recovery

spending. We sum the two after-landfall costs together to have more concise results. The

columns correspond to the same sets of fixed effects as in Table C.1. All specifications show

that wind speed underestimates increase damages and recovery spending conditional on the

realization of wind speed and precipitation. These cost are substantial: for a 1 m/s worse

underestimate in a county, costs increase by almost $75 million per county, or $2,000 per

person. Precipitation estimates are noisy and the sign of the effect changes depending on

the specification.

Table C.3 reports the same estimates as Table C.2 but where we also interact the wind

speed forecast error with an indicator variable for whether the wind speed was hurricane-

force, or sub-hurricane-force. This tests whether errors are more costly for higher-intensity

storms. Across all specifications the interaction terms are positive: forecast errors are more

costly for hurricane-force winds than for sub-hurricane-force winds.

Figure C.6 shows that these estimates are robust to the more conservative 600 km Conley

spatial cutoff. Figures C.7 and C.8 show our wind speed forecast error results are robust to

dropping “error counties” or only including Atlantic and Gulf Coast states, while Figure C.9

shows the wind speed results are robust to using an inverse hyperbolic sine transformation.

Figure C.10 shows that wind speed forecast underestimates increase all of property damage,

crop damage, and mortality damage independently in addition to increasing the aggregate

cost. The plot makes clear that aggregate damage is driven by property losses.

Figure C.11 replicates our main results but for precipitation. Precipitation shows no

strong pattern. This is consistent with our finding that precipitation forecasts do not have

a consistent effect on protective expenditures. This may be because hurricane strength has

historically been communicated through its wind speed (Kantha, 2006; Murnane and Elsner,

2012).
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Table C.2: The Effect of Underestimating Wind and Precipitation on Damages and FEMA
Recovery Spending.

(1) (2) (3) (4)

Damages + Recovery Spending (million $)

Wind Forecast Underestimate (m/s) 76.54** 77.97*** 85.22* 82.16**
(34.76) (28.10) (48.01) (36.32)

Precip Forecast Underestimate (mm) 0.72 0.28 -0.15 -0.95
(2.06) (1.85) (2.29) (2.30)

(Damages + Recovery Spending) / GDP (%)

Wind Forecast Underestimate (m/s) 5.59** 5.67** 5.61** 5.49***
(2.71) (2.39) (2.62) (2.04)

Precip Forecast Underestimate (mm) -0.11 -0.12 -0.14 -0.12*
(0.09) (0.08) (0.10) (0.07)

(Damages + Recovery Spending) / Person ($)

Wind Forecast Underestimate (m/s) 2013.05** 2066.95*** 2257.71** 2254.32***
(801.98) (729.16) (936.47) (790.59)

Precip Forecast Underestimate (mm) -42.36 -47.87** -58.41* -63.16*
(26.71) (23.29) (33.11) (32.23)

Observations 55,332 55,332 55,332 55,332

Realized Wind/Precip Bins X X X X
State-Hurricane FE X X X X
County FE X
County-Month of Year FE X X
County-Year FE X X

* p < 0.1, ** p < 0.05, *** p < 0.01 Standard errors are Conley Spatial HAC with
a distance radius of 400 km for spatial correlation and arbitrary autocorrelation within
counties.
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Table C.3: The Marginal Effect of Underestimating Wind and Precipitation on Damages and FEMA Recovery Spending As a
Function of Hurricane Intensity.

(1) (2) (3) (4)

Damages + Recovery Spending (million $)

Wind Forecast Underestimate (m/s): Hurricane 165.52** 168.19*** 165.76** 168.47***
(65.36) (53.18) (82.10) (61.98)

Wind Forecast Underestimate (m/s): Sub-Hurricane -6.73 -6.30 -7.30 -12.19
(9.52) (7.52) (10.86) (10.14)

(Damages + Recovery Spending) / GDP (%)

Wind Forecast Underestimate (m/s): Hurricane 10.52** 10.54*** 9.62** 9.50***
(4.19) (3.69) (3.96) (3.12)

Wind Forecast Underestimate (m/s): Sub-Hurricane 0.97 1.11* 1.00 1.10*
(0.63) (0.62) (0.66) (0.61)

(Damages + Recovery Spending) / Person ($)

Wind Forecast Underestimate (m/s): Hurricane 3867.68*** 3950.59*** 3946.12*** 4024.30***
(1280.35) (1170.46) (1477.50) (1252.86)

Wind Forecast Underestimate (m/s): Sub-Hurricane 277.20* 307.37** 318.25* 319.70**
(159.83) (148.86) (181.73) (158.32)

Observations 55,332 55,332 55,332 55,332

Precipitation Underestimate X X X X
Realized Wind/Precip Bins X X X X
State-Hurricane FE X X X X
County FE X
County-Month of Year FE X X
County-Year FE X X

* p < 0.1, ** p < 0.05, *** p < 0.01 Standard errors are Conley Spatial HAC with a distance radius of 400
km for spatial correlation and arbitrary autocorrelation within counties.
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Figure C.6: Forecast Errors, Damages, and Ex Post Recovery Spending: 600 km Conley Cutoff.

Note: The estimates correspond to equation (2). The points are point estimates, and the bars are the 95% confidence intervals. The omitted category
is (−1, 1]. All panels control for binned precipitation errors, binned realized wind speed, binned realized precipitation, and for county and state-by-
hurricane fixed effects. Standard errors are Conley Spatial HAC with a distance radius of 600 km for spatial correlation and arbitrary autocorrelation
within counties.
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Figure C.7: Forecast Errors, Damages, and Ex Post Recovery Spending: Coastal States.

Note: The estimates correspond to equation (2). The points are point estimates, and the bars are the 95% confidence intervals. The omitted category
is (−1, 1]. All panels control for binned precipitation errors, binned realized wind speed, binned realized precipitation, and for county and state-by-
hurricane fixed effects. Standard errors are Conley Spatial HAC with a distance radius of 400 km for spatial correlation and arbitrary autocorrelation
within counties. Only the following states are included in the sample: Texas, Louisiana, Mississippi, Alabama, Georgia, Florida, South Carolina,
North Carolina, Virginia, Maryland, New Jersey, Pennsylvania, Connecticut, Delaware, New York, Rhode Island, Massachusetts, New Hampshire,
and Maine.
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Figure C.8: Forecast Errors, Damages, and Ex Post Recovery Spending: PDD Robustness.

Note: The estimates correspond to equation (2). The points are point estimates, and the bars are the 95% confidence intervals. The omitted category
is (−1, 1]. All panels control for binned precipitation errors, binned realized wind speed, binned realized precipitation, and for county and state-by-
hurricane fixed effects. Standard errors are Conley Spatial HAC with a distance radius of 400 km for spatial correlation and arbitrary autocorrelation
within counties. The plots drop all “error counties” with a PDD but zero damage. Dropping error counties results in omitting the lowest bin.
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Figure C.9: Forecast Errors, Damages, and Ex Post Recovery Spending: Inverse Hyperbolic Sine.

Note: The estimates correspond to equation (2). The points are point estimates, and the bars are the 95% confidence intervals. The omitted category
is (−1, 1] for wind speed and (−20, 0] for precipitation. All panels control for binned precipitation errors, binned realized wind speed, binned realized
precipitation, and for county and state-by-hurricane fixed effects. Standard errors are Conley Spatial HAC with a distance radius of 400 km for spatial
correlation and arbitrary autocorrelation within counties.
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Figure C.10: Forecast Errors, Damages, and Ex Post Recovery Spending: By Damage Type.

Note: The estimates correspond to equation (2). The points are point estimates, and the bars are the 95% confidence intervals. The omitted category
is (−1, 1] for wind speed and (−20, 0] for precipitation. All panels control for binned precipitation errors, binned realized wind speed, binned realized
precipitation, and for county and state-by-hurricane fixed effects. Standard errors are Conley Spatial HAC with a distance radius of 400 km for spatial
correlation and arbitrary autocorrelation within counties.
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Figure C.11: Forecast Errors, Damages, and Ex Post Recovery Spending: Precipitation.

Note: The estimates correspond to equation (2). The points are point estimates, and the bars are the 95% confidence intervals. The omitted category
is (−20, 0]. All panels control for binned wind speed errors, binned realized wind speed, binned realized precipitation, and for county and state-by-
hurricane fixed effects. Standard errors are Conley Spatial HAC with a distance radius of 400 km for spatial correlation and arbitrary autocorrelation
within counties.
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C.3 What is the Ex Ante Value of Improving Hurricane Fore-

casts?

The fixed effects in each column again follow the previous sections. All specifications include

binned wind speed and precipitation realizations as well as first-order forecast error terms.

Table C.4 shows our results using the alternative 600 km Conley cutoff. The results are all

still statistically significant. Tables C.5 and C.6 show our results are robust to the PDD

and coastal county samples. Table C.7 performs the same exercise as Figure C.10 where

we estimate impacts on different types of damage. The value of a forecast improvement is

positive for all three, but it is driven by property damage, consistent with Figure C.10. Table

C.9 shows our estimates when we do not demean the error. Not demeaning biases estimates

toward zero.

Figure C.12 plots the t-statistic from the estimate in Column 3 of Table 2, but when we

smoothly vary the distance cutoff for the Conley standard errors. The figure shows that our

estimates are significant at the 95% level while allowing for spatial correlation up to over

1000 km away from the county centroid.

Figure C.13 shows the distribution of estimates corresponding to Column 1 of Table

2, but where we drop hurricanes from the sample, one-by-one. Most of the estimates are

tightly clustered around the full sample estimate which is given by the dashed line. The

large estimate is when we drop Michael, and the low estimate is when we drop Katrina.
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Table C.4: The Value of a Wind Speed Forecast Improvement: Conley Robustness.

(1) (2) (3) (4) (5)

Damages + Recovery Spending (million $)

β2 : (e− µ)2 6.94** 6.73** 9.15** 9.33***
(2.87) (2.66) (3.83) (3.38)

Hurricane β2 : (e− µ)2 10.23**
(4.43)

Sub-Hurricane β2 : (e− µ)2 -0.69
(1.01)

(Damages + Recovery Spending) / GDP (%)

β2 : (e− µ)2 0.79*** 0.79*** 0.79** 0.78***
(0.30) (0.27) (0.32) (0.25)

Hurricane β2 : (e− µ)2 1.12***
(0.36)

Sub-Hurricane β2 : (e− µ)2 0.02
(0.03)

Damages + Recovery Spending Per Capita ($/person)

β2 : (e− µ)2 258.76*** 269.63*** 295.28*** 311.75***
(74.68) (70.15) (93.44) (83.17)

Hurricane β2 : (e− µ)2 368.09***
(94.21)

Sub-Hurricane β2 : (e− µ)2 4.67
(10.44)

Observations 55,332 55,332 55,332 55,332 55,332

Realized Wind/Precip Bins X X X X X
Level Wind/Precip Error X X X X X
State-Hurricane FE X X X X X
County FE X X
County-Month of Year FE X X
County-Year FE X X

* p < 0.1, ** p < 0.05, *** p < 0.01 Standard errors are Conley Spatial HAC with
a distance radius of 600 km for spatial correlation and arbitrary autocorrelation within
counties.
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Table C.5: The Value of a Wind Speed Forecast Improvement: PDD Robustness.

(1) (2) (3) (4) (5)

Damages + Recovery Spending (million $)

β2 : (e− µ)2 6.95** 6.11*** 9.01** 7.84***
(2.73) (2.16) (3.53) (2.82)

Hurricane β2 : (e− µ)2 10.06**
(4.25)

Sub-Hurricane β2 : (e− µ)2 -0.86
(1.05)

(Damages + Recovery Spending) / GDP (%)

β2 : (e− µ)2 0.83*** 0.84*** 0.82*** 0.79***
(0.30) (0.27) (0.31) (0.28)

Hurricane β2 : (e− µ)2 1.15***
(0.35)

Sub-Hurricane β2 : (e− µ)2 0.01
(0.03)

Damages + Recovery Spending Per Capita ($/person)

β2 : (e− µ)2 267.51*** 273.85*** 301.74*** 263.53***
(69.20) (64.69) (82.98) (66.91)

Hurricane β2 : (e− µ)2 373.63***
(89.31)

Sub-Hurricane β2 : (e− µ)2 1.43
(11.18)

Observations 54,595 54,595 54,595 54,595 54,595

Realized Wind/Precip Bins X X X X X
Level Wind/Precip Error X X X X X
State-Hurricane FE X X X X X
County FE X X
County-Month of Year FE X X
County-Year FE X X

* p < 0.1, ** p < 0.05, *** p < 0.01 Standard errors are Conley Spatial HAC with
a distance radius of 400 km for spatial correlation and arbitrary autocorrelation within
counties. Counties issued a Presidential Disaster Declaration but without reported SHEL-
DUS damage are dropped from the sample.
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Table C.6: The Value of a Wind Speed Forecast Improvement: Coastal States.

(1) (2) (3) (4) (5)

Damages + Recovery Spending (million $)

β2 : (e− µ)2 6.65** 6.31** 8.81*** 8.92***
(2.70) (2.50) (3.39) (3.13)

Hurricane β2 : (e− µ)2 9.25**
(4.01)

Sub-Hurricane β2 : (e− µ)2 0.53
(1.14)

(Damages + Recovery Spending) / GDP (%)

β2 : (e− µ)2 0.79*** 0.80*** 0.78*** 0.77***
(0.28) (0.25) (0.29) (0.24)

Hurricane β2 : (e− µ)2 1.11***
(0.35)

Sub-Hurricane β2 : (e− µ)2 0.05
(0.04)

Damages + Recovery Spending Per Capita ($/person)

β2 : (e− µ)2 259.06*** 269.76*** 292.08*** 309.05***
(65.99) (63.75) (78.85) (75.20)

Hurricane β2 : (e− µ)2 361.50***
(86.40)

Sub-Hurricane β2 : (e− µ)2 18.13
(13.92)

Observations 19,674 19,674 19,674 19,674 19,674

Realized Wind/Precip Bins X X X X X
Level Wind/Precip Error X X X X X
State-Hurricane FE X X X X X
County FE X X
County-Month of Year FE X X
County-Year FE X X

* p < 0.1, ** p < 0.05, *** p < 0.01 Standard errors are Conley Spatial HAC with a dis-
tance radius of 400 km for spatial correlation and arbitrary autocorrelation within coun-
ties. Only the following states are included in the sample: Texas, Louisiana, Mississippi,
Alabama, Georgia, Florida, South Carolina, North Carolina, Virginia, Maryland, New
Jersey, Pennsylvania, Connecticut, Delaware, New York, Rhode Island, Massachusetts,
New Hampshire, and Maine.
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Table C.7: The Value of a Wind Speed Forecast Improvement by Damage Type.

(1) (2) (3) (4) (5)

Property Damages (million $)

β2 : (e− µ)2 5.76** 5.51** 7.88** 8.01***
(2.59) (2.40) (3.32) (3.01)

Hurricane β2 : (e− µ)2 8.50**
(4.03)

Sub-Hurricane β2 : (e− µ)2 -0.61
(0.93)

Crop Damages (million $)

β2 : (e− µ)2 0.76* 0.76** 0.66 0.63*
(0.41) (0.36) (0.42) (0.34)

Hurricane β2 : (e− µ)2 1.07**
(0.53)

Sub-Hurricane β2 : (e− µ)2 0.04
(0.04)

Mortality Damages (million $)

β2 : (e− µ)2 0.22 0.24 0.30 0.35
(0.17) (0.16) (0.24) (0.23)

Hurricane β2 : (e− µ)2 0.33
(0.27)

Sub-Hurricane β2 : (e− µ)2 -0.05
(0.06)

Observations 55,332 55,332 55,332 55,332 55,332

Realized Wind/Precip Bins X X X X X
Level Wind/Precip Error X X X X X
State-Hurricane FE X X X X X
County FE X X
County-Month of Year FE X X
County-Year FE X X

* p < 0.1, ** p < 0.05, *** p < 0.01 Standard errors are Conley Spatial
HAC with a distance radius of 400 km for spatial correlation and arbitrary
autocorrelation within counties.
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Table C.8: The Value of a Precipitation Forecast Improvement.

(1) (2) (3) (4) (5)

Damages + Recovery Spending (million $)

β2 : (e− µ)2 0.00 0.00 -0.00 0.01
(0.01) (0.00) (0.01) (0.01)

Hurricane β2 : (e− µ)2 -0.01
(0.02)

Sub-Hurricane β2 : (e− µ)2 0.00
(0.00)

(Damages + Recovery Spending) / GDP (%)

β2 : (e− µ)2 -0.00 -0.00 -0.00* -0.00
(0.00) (0.00) (0.00) (0.00)

Hurricane β2 : (e− µ)2 -0.00
(0.00)

Sub-Hurricane β2 : (e− µ)2 -0.00
(0.00)

Damages + Recovery Spending Per Capita ($/person)

β2 : (e− µ)2 -0.12 -0.11 -0.24** -0.13
(0.08) (0.07) (0.10) (0.12)

Hurricane β2 : (e− µ)2 -0.44
(0.46)

Sub-Hurricane β2 : (e− µ)2 -0.08
(0.09)

Observations 55,332 55,332 55,332 55,332 55,332

Realized Wind/Precip Bins X X X X X
Level Wind/Precip Error X X X X X
State-Hurricane FE X X X X X
County FE X X
County-Month of Year FE X X
County-Year FE X X

* p < 0.1, ** p < 0.05, *** p < 0.01 Standard errors are Conley Spatial
HAC with a distance radius of 400 km for spatial correlation and arbitrary
autocorrelation within counties.
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Table C.9: The Value of a Wind Speed Forecast Improvement without Demeaning.

(1) (2) (3) (4) (5)

Damages + Recovery Spending (million $)

β2 : (e− µ)2 3.30** 3.25** 5.96** 6.19***
(1.48) (1.31) (2.73) (2.24)

Hurricane β2 : (e− µ)2 6.51**
(2.70)

Sub-Hurricane β2 : (e− µ)2 -0.84
(0.72)

(Damages + Recovery Spending) / GDP (%)

β2 : (e− µ)2 0.31* 0.30** 0.43** 0.45***
(0.17) (0.15) (0.20) (0.16)

Hurricane β2 : (e− µ)2 0.52**
(0.22)

Sub-Hurricane β2 : (e− µ)2 0.02
(0.04)

Damages + Recovery Spending Per Capita ($/person)

β2 : (e− µ)2 93.31** 95.74** 152.18*** 166.33***
(42.37) (37.20) (56.48) (44.68)

Hurricane β2 : (e− µ)2 170.45***
(55.65)

Sub-Hurricane β2 : (e− µ)2 -6.13
(16.20)

Observations 55,332 55,332 55,332 55,332 55,332

Realized Wind/Precip Bins X X X X X
Level Wind/Precip Error X X X X X
State-Hurricane FE X X X X X
County FE X X
County-Month of Year FE X X
County-Year FE X X

* p < 0.1, ** p < 0.05, *** p < 0.01 Standard errors are Conley Spatial HAC with a
distance radius of 400 km for spatial correlation and arbitrary autocorrelation within
counties. The squared error terms are not demeaned.
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Figure C.12: Conley Spatial HAC Distance Cutoff and Conley Spatial HAC T-Statistics.

The figure plots t-statistics of the hurricane-force coefficient estimate from Table 2 Column 8, but using
Conley (1999) standard errors that account for arbitrary autocorrelation within counties and spatial corre-
lation up to 1,050 km in 100 km steps. Dashed lines correspond to 10%, 5%, and 1% levels of statistical
significance.
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Figure C.13: The Value of a Wind Speed Forecast Improvement Dropping Individual Hur-
ricanes.

Note: The figure plots a histogram of the distribution of estimates of the value of a forecast improvement for
hurricane-force winds corresponding to Column 8 of Table 2 but where we drop individual hurricanes. The
lowest value comes from dropping Katrina while the highest values come from dropping Ike and Michael.
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D Additional Results

D.1 Correlations and Distributions

Figure D.1 presents correlations between storm and forecast attributes. Panels A and B

show that higher-intensity storms tend to be under-forecast, while lower-intensity storms

were over-forecast but to a lesser extent. Panels C and D show that this results in higher

intensity storms having larger squared demeaned forecast errors, which is why we flexibly

control for realized storm intensity in valuing forecast improvements. Panel E shows that

more uncertain forecasts, in terms of the ex ante standard deviation, tend to result in larger

ex post forecast errors. This provides evidence for why reductions in the forecast standard

deviation will result in more accurate forecasts ex post. Panel F shows that realized wind

speed and realized precipitation are highly positively correlated. Thus, omitting one from a

regression may result in omitted variable bias.

Figure D.2 plots the distribution of realizations and forecasts of wind speed in panel A

and precipitation in panel B. The distributions are only over those with strictly positive

values. The plots show that our data cover a large range of intensities. Most forecasts and

realizations fall in the “tropical depression” category with wind speeds under 17 m/s. This

is because most counties are not near the coast and end up not experiencing hurricane-force

winds. However, our data do include counties experiencing wind speeds of up to 67 m/s,

which would correspond to a high-end category 4 storm. Even though our dataset does not

cover every hurricane, it still covers nearly the entire range of potential intensities.

Figure D.3 shows additional information about the hurricane forecast. Panel A plots the

realized wind speed against the forecast wind speed using a 5 percentile binscatter. All the

points are essentially on the 45 degree line: forecasts are quite accurate on average. Panel

B plots the distribution of wind speed forecast errors. The average forecast error is only

0.08 m/s with a standard deviation of 2.82. The distribution is right-skewed: there are

slightly more underestimates of wind speed than overestimates, likely driven by difficulties

with forecasting rapidly intensifying storms.
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Figure D.1: Relationships Between Different Forecast Attributes and Storm Attributes.

Note: Panel A plots the absolute error in the wind speed forecast (actual wind speed minus predicted wind
speed) against the realized wind speed. Panel B plots the absolute error in the precipitation forecast against
the realized precipitation. Panel C plots the squared demeaned error in the wind speed forecast against
the realized wind speed. Panel D plots the squared demeaned error in the precipitation forecast against
the realized precipitation. Panel E plots the absolute value of the wind speed forecast’s error against the
forecast’s standard deviation. Panel F plots realized precipitation against realized wind speed. For all panels,
each point is the mean of the x and y-axis variable within each viginile of the x-axis variable (i.e. a 20 bin
binscatter).
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Figure D.2: The Distribution of Realized Wind Speeds and Precipitation.

Note: Panel A shows the observed distribution of the realized and forecast wind speed by county-hurricane.
Panel B shows the observed distribution of the realized and forecast precipitation by county-hurricane. The
red dashed line is the distribution of the forecast and the blue line is the distribution of the realization.
Values of 0 are omitted for clarity.

Figure D.3: The Distribution of Wind Speed Errors.

Note: Panel A plots a 20 bin binscatter of realized wind speed against the wind speed forecast. The dotted
line is the 45 degree line. Panel B plots the underestimate of wind speed by a forecast. We omit observations
where the forecast was for zero wind speed and the realized wind speed was zero.
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