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The “Virtue of Complexity” in Asset Pricing

Building the “Case” for Financial ML

▶ Finance lit: Rapid advances in return prediction/portfolio choice using ML

▶ Large empirical gains over simple models

▶ Little theoretical understanding of why (and healthy skepticism)

“Virtue of Complexity in Return Prediction” (Kelly, Malamud, Zhou, forthcoming JF)

▶ Main theoretical result: Out-of-sample univariate timing strategy performance generally increasing in

model complexity (# of parameters). Bigger models are better. Verified in data.

This Paper: ML in Cross-sectional Asset Pricing

▶ Main theoretical result: SDF performance generally increasing in model complexity

▶ Higher portfolio Sharpe ratio
▶ Smaller pricing errors

▶ Prior evidence of empirical gains from ML are what we should expect

▶ Direct empirical support for theory
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Complexity in the Cross Section: A Brief History

SDF representable as managed portfolios: M⋆
t+1 = 1−

∑n
i=1 w(Xt)

′Ri,t+1, s.t. Et [M
⋆
t+1Ri,t+1] = 0 ∀i

▶ Cross-sectional asset pricing is about wt = w(Xt)

▶ Fundamental challenge in cross-sectional asset pricing: w must be estimated

▶ This is a high-dimensional (complex) problem
▶ We know: In-sample tangency portfolio behaves horribly out-of-sample

▶ Standard solution: Restrict w ’s functional form

▶ E.g., Fama-French: wi,t = b0 + b1Sizei,t + b2Valuei,t (Brandt et al. 2007 generalize)
▶ Reduces parameters, implies factor model: Mt+1 = 1− b0MKT − b1SMB − b2HML
▶ “Shrinking the cross-section” Kozak et al. (2020) — use a few PCs of anomaly factors
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Complexity in the Cross Section: Machine Learning Perspective
SDF representable as M⋆

t+1 = 1−
∑n

i=1 w(Xt)
′Ri,t+1, s.t. Et [M

⋆
t+1Ri,t+1] = 0 ∀i

Rather than restricting w(Xt)....

▶ ...expand parameterization, saturate with conditioning information

▶ Approximate w with neural network: ŵ(Xi,t , λ) ≈ λ′Si,t with a linear family

▶ P × 1 vector Si,t is known nonlinear function of original predictors Xi,t

wi,t=λ′Si,t

Si,t=f (Xi,t )

Xi,t

▶ Implies that empirical SDF is a high-dimensional factor model with factors Ft+1 :

M⋆
t+1 ≈ Mt+1 = 1− λ′S ′

tRt+1

= 1 −
∑
i

(λ′Si,tRi,t+1) = 1 − λ′
∑
i

Si,tRi,t+1︸ ︷︷ ︸
=Ft+1 ∈ RP×1

= 1− λ′Ft+1 (1)
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▶ Approximate w with neural network: ŵ(Xi,t , λ) ≈ λ′Si,t with a linear family

▶ P × 1 vector Si,t is known nonlinear function of original predictors Xi,t

wi,t=λ′Si,t

Si,t=f (Xi,t )

Xi,t

▶ Implies that empirical SDF is a high-dimensional factor model with factors Ft+1 :

M⋆
t+1 ≈ Mt+1 = 1− λ′S ′

tRt+1

= 1 −
∑
i

(λ′Si,tRi,t+1) = 1 − λ′
∑
i

Si,tRi,t+1︸ ︷︷ ︸
=Ft+1 ∈ RP×1

= 1− λ′Ft+1 (1)



Complexity in the Cross Section: Machine Learning Perspective

True SDF: M⋆
t+1 = 1− w(Xt)

′Rt+1 Empirical Model: Mt+1 = 1− λ′Ft+1︸ ︷︷ ︸
P params

The Objective:

▶ Maximize out-of-sample Sharpe ratio (equivalently, minimize out-of-sample pricing errors) of SDF

The Choice:

▶ Fix T data points. Decide on “complexity” (number of factors P) to use in approximating model

The Tradeoff:

▶ Simple SDF (P << T ) has low variance (thanks to parsimony) but is a poor approximator of w

▶ Complex SDF (P > T ) is good approximator but may behave poorly (and requires shrinkage)

The Central Research Question:

▶ Which P should the researcher opt for? Does the benefit of more factors justify their cost?

Answer:

▶ Use the largest factor model (largest P) that you can compute Illustration
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Theory Environment
Model

▶ n assets with returns Rt+1

▶ Empirical SDF Mt+1 = 1− λ′S ′
tRt+1

▶ Think of St as “generated features” in neural net with input Xt

▶ P × 1 vector of instruments, St (i.e., P factors Ft+1)

▶ (Ridge-penalized) objective

Max Sharpe Ratio Min Pricing Error (HJ-distance)

minλ E [(1− λ′S ′
tRt+1)

2] + zλ′λ or minλ E [MF ]′E [FF ′]−1E [MF ] + zλ′λ

Solution:

λ̂(z) =
(
zI + 1

T

∑
t FtF

′
t

)−1 1
T

∑
t Ft

▶ Goal: Characterize out-of-sample behaviors, contrast simple (small P) models vs. complex models

▶ Tools: Joint limits as numbers of observations and parameters are large, T ,P →∞, RMT
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Complexity and the SDF
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1. SDF variance

▶ As c → 1, λ variance blows up
▶ When c > 1, variance drops with

model complexity! Why?
▶ Many λ’s exactly fit training data,

ridge selects one with a small variance

2. SDF expected returns

▶ Low for c ≈ 0 due to poor

approximation of the true model
▶ Monotonically increases with model

complexity



Complexity and the SDF
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Main theory result

▶ If model is mis-spec, model performance

increases with complexity

▶ Approximation benefits dominate

costs of heavy parameterization
▶ Complexity is a virtue

▶ Other theory results



Empirical Analysis

▶ Analyze empirical analogs to theoretical comparative statics

▶ Study conventional setting with conventional data

▶ Monthly return of US stocks from CRSP 1963–2021
▶ Conditioning info (Xi,t): 130 stock characteristics from Jensen, Kelly, and Pedersen (2022)

▶ Out-of-sample performance metrics are:

▶ SDF Sharpe ratio
▶ Mean squared pricing errors (nonlinear factors as test assets)



Empirical Analysis
Random Fourier Features

▶ Empirical model: Mt+1 = 1− λ′S ′
tRt+1

▶ Need framework to smoothly transition from low to high complexity

▶ Adopt ML method known as “random Fourier features” (RFF)

▶ Let Xi,t be 130× 1 predictors. RFF converts Xi,t into

Sℓ,i,t = [sin(γ′
ℓXi,t), cos(γ

′
ℓXi,t)], γℓ ∼ iidN(0, γI )

▶ Sℓ,i,t : Random lin-combo of Xi,t fed through non-linear activation

▶ For fixed inputs can create an arbitrarily large (or small) feature set

▶ Low-dim model (say P = 1) draw a single random weight
▶ High-dim model (say P = 10,000) draw many weights

▶ In fact, RFF is a two-layer neural network with fixed weights (γ) in

the first layer and optimized weights (λ) in the second layer

Si,t =

sin(γ′Xi,t )
cos(γ′Xi,t )

Xi,t

wi,t =

λ′Si,t
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Empirical Analysis
Training and Testing

▶ We estimate out-of-sample SDF with:

i. Thirty-year rolling training window (T = 360)

ii. Various shrinkage levels, log10(z) = −12, ..., 3
iii. Various complexity levels P = 102, ..., 106

▶ For each level of complexity c = P/T , we plot

i. Out-of-sample Sharpe ratio of the kernels and

ii. Pricing errors on 106 “complex” factors: Ft+1 = S ′
tRt+1

▶ Also report Sharpe ratio and pricing errors of FF6 to benchmark our results



Out-of-sample SDF Performance
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Main Empirical Result

▶ OOS behavior of ML-based SDF closely matches

theory

▶ High complexity models

▶ Improve over simple models by a factor of 3

or more
▶ Dominate popular benchmarks like FF6
▶ Dominate low-rank rotation of complex

factors PCA

▶ Mktcap groups



Conclusions

▶ We provide new, rigorous theoretical insight into the behavior of ML models/portfolios

▶ Contrary to conventional wisdom: Higher complexity improves model performance

Virtue of Complexity: Performance of ML portfolios can be improved by pushing model parameterization

far beyond the number of training observations

In canonical empirical problem—pricing the cross section of returns—we find

▶ OOS Sharpe rise by factor of 4 relative to FF6 model, pricing errors reduced by a factor of 3

To empirical AP researchers, we recommend

i. including all plausibly relevant predictors

ii. using rich non-linear models rather than simple linear specifications

▶ Doing so confers prediction/portfolio benefits, even when training data is scarce and particularly when

accompanied by shrinkage
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Complexity in the Cross Section: Machine Learning Perspective

Traditional Approach Machine Learning Approach
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▶ Restrict specification so P/T ≈ 0

▶ Aligns IS and OOS performance

▶ May get lucky with spec, but can’t be

lucky on average

▶ Like shrinking before seeing data

▶ P/T → ∞ eliminates specification error

▶ IS overfit improves OOS performance

▶ Loss due to limits on learning

(breakdown of LLN, high variance)

▶ Mitigate with shrinkage after seeing data

▶ Back
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Complexity and the SDF: Other Theoretical Results

1. “Complexity wedge” = IS Performance – Expected OOS Performance

“Complexity wedge” = IS – True︸ ︷︷ ︸
“Overfit”

+ True – OOS︸ ︷︷ ︸
“Limits to Learning”

▶ Quantifiable based on training data

▶ Can infer performance of true SDF and how far you are from it, but

cannot recover it!
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2. Show how to infer optimal shrinkage, z∗, from training data

3. There is no low-rank rotation of complex factors that preserves model performance (cf. Kozak, Nagel,

and Santosh, 2020)

▶ Back



SDF Performance in Restricted Samples: Sharpe Ratio
Market Capitalization Subsamples
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SDF Performance in Restricted Samples: Pricing Errors
Market Capitalization Subsamples Back

M
eg

a
L
ar
g
e

S
m
a
ll

M
ic
ro



What About “Shrinking” With PCA?
Back

K = 5 K = 25
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