THE MACROECONOMICS OF BIGTECH

Dan Su

CKGSB

2024 ASSA Annual Meeting Investment and Technological Change Session

NEW FINANCIAL INTERMEDIARIES

- **FinTech**: digital lending facilitated by online platforms (e.g., P2P, ...)
- **BigTech/TechFin**: large tech companies lend in the credit markets (e.g., Ant Group, WeBank, ...)

NEW FINANCIAL INTERMEDIARIES

- ▶ **FinTech**: digital lending facilitated by online platforms (e.g., P2P, ...)
- **BigTech/TechFin**: large tech companies lend in the credit markets (e.g., Ant Group, WeBank, ...)
- ► a growing empirical literature, but theoretical implications?

Research Question: Role of BigTech in Macroeconomy

• Existing macro-finance literature: banks

• Existing macro-finance literature: banks

• **key characteristic**: collateral-based borrowing constraint ("financial frictions")

- **•** Existing macro-finance literature: banks
 - key characteristic: collateral-based borrowing constraint ("financial frictions")
 - implications: aggregate productivity losses; financial accelerator mechanism

- **•** Existing macro-finance literature: banks
 - **key characteristic**: collateral-based borrowing constraint ("financial frictions")
 - implications: aggregate productivity losses; financial accelerator mechanism
- ► This paper

Research Question: Role of BigTech in Macroeconomy

- **•** Existing macro-finance literature: banks
 - **key characteristic**: collateral-based borrowing constraint ("financial frictions")
 - implications: aggregate productivity losses; financial accelerator mechanism

► This paper

1. key difference between banks and BigTech in lending behaviors?

Research Question: Role of BigTech in Macroeconomy

• Existing macro-finance literature: banks

- **key characteristic**: collateral-based borrowing constraint ("financial frictions")
- implications: aggregate productivity losses; financial accelerator mechanism

► This paper

- 1. key difference between banks and BigTech in lending behaviors?
- 2. different implications with BigTech? (e.g., a similar financial accelerator mechanism)

• Existing macro-finance literature: banks

- **key characteristic**: collateral-based borrowing constraint ("financial frictions")
- implications: aggregate productivity losses; financial accelerator mechanism

► This paper

- 1. key difference between banks and BigTech in lending behaviors?
- 2. different implications with BigTech? (e.g., a similar financial accelerator mechanism)

why BigTech instead of FinTech: BigTech is more bank-like (Stulz, 2019; King, 2019)

- **Banking sector: collateral**-based borrowing constraint
- **BigTech sector**: (expected-)earnings-based borrowing constraint

- Banking sector: collateral-based borrowing constraint
- **BigTech sector**: (expected-)earnings-based borrowing constraint
- Microfoundation of incomplete-collateralization contract:
 - 1. *technology story*: tech/data advantages \rightarrow reduced cost of state verification
 - 2. *intangible capital story*: intangible capital \rightarrow low liquidation value

- Banking sector: collateral-based borrowing constraint
- **BigTech sector**: (expected-)earnings-based borrowing constraint
- **•** Empirical evidence:
 - 1. Gambacorta et al. (2023): ★ local business conditions and house prices; ✔ firm-specific characteristics
 - 2. Beck et al. (2022): liquidation cost decreasing in asset tangibility

- **Banking sector: collateral**-based borrowing constraint
- **BigTech sector**: (expected-)earnings-based borrowing constraint
- Other possible difference: fast data processing ability (Fuster et al., 2019); new credit-sorting models (Gambacorta et al., 2019); different maturities (Liu, Lu and Xiong, 2022)...

$MACROFIN \Rightarrow MACROBIGTECH$

• A macro model with three key elements:

- 1. heterogeneous agent model with incomplete markets
- 2. two types of borrowing constraints
- 3. defaultable debt

$MacroFin \Rightarrow MacroBigTech$

MECHANISM

Key feature: **convex** relationship between (expected) productivity and wealth growth rate

- advantage: rely less on collateral, which is unrelated to *individual* productivity
- disadvantage: depend on the accuracy of predicting *individual* earnings
- expected-earnings-based borrowing constraint

$MACROFIN \Rightarrow MACROBIGTECH$

- Main conclusions on the rise of BigTech
 - 1. efficiency-instability trade-off: smaller aggregate productivity losses but more financial instability in the steady state
 - 2. different financial accelerator: amplification and propagation of second-moment uncertainty shocks
 - 3. extensions: algorithm bias; optimal BigTech development; pricing effect; non-M.I.T. shocks

Related Literature

- FinTech/BigTech: Gambacorta et al. (2023); Tang (2019); Hau et al. (2018); Cornelli et al. (2023); Huang (2022); Manea, Fiore and Gambarcorta (2023); Liu, Lu and Xiong (2022)...
- Financial frictions and macroeconomy: Kiyotaki and Moore (1997); Bernanke and Gertler (1989); Brunnermeier and Sannikov (2014); Di Tella (2017); He and Krishnamurthy (2013); Fernandez-Villaverde, Hurtado and Nuno (2019); ...
- Distributional macro: Moll (2014); Fernandez-Villaverde, Hurtado and Nuno (2019); Achdou et al. (2022); ...
- Earnings-based borrowing constraint: Lian and Ma (2021); Greenwald (2019); Drechsel (2023); Drechsel and Kim (2022); ...

Model

- ► Infinite-horizon, continuous-time economy
- **Two types of entrepreneurs** + Homogeneous hand-to-mouth workers (S = 1 in baseline)

i 1 continuum of entrepreneurs borrowing from the banking sector B

ii S continuum of entrepreneurs borrowing from the BigTech sector F

- **Preference:** $\mathbb{E}_0 \int_0^\infty e^{-\rho t} \log c(t) dt$
- **Production function**: $y = zk^{\alpha}l^{1-\alpha}$

• Stochastic productivity process: $dz = \frac{1}{\theta} (\bar{\mu} - z) dt + \sigma \sqrt{\frac{1}{\theta}} dW$

• **Expected productivity** ($\gamma = 0$ in baseline):

$$\tilde{\mathbb{E}}\left[z\right] = \tilde{\mathbb{E}}\left[\tilde{z} + dz\right] = \underbrace{\frac{1}{\theta}\left[\bar{\mu} + \left(\theta - 1\right)\tilde{z}\right]}_{\text{rational expectation}} + \underbrace{\frac{\gamma\left(\tilde{z} - \bar{\mu}\right)}_{\text{algorithm bias}}$$

- γ : degree of bias
- extrapolative expectation literature (e.g., Bordalo, Gennaioli and Shleifer, 2018)

• **Expected productivity** ($\gamma = 0$ in baseline):

$$\tilde{\mathbb{E}}[z] = \tilde{\mathbb{E}}[\tilde{z} + dz] = \underbrace{\frac{1}{\theta} \left[\bar{\mu} + (\theta - 1)\tilde{z} \right]}_{\text{rational expectation}} + \underbrace{\gamma \left(\tilde{z} - \bar{\mu} \right)}_{\text{algorithm bias}}$$

• γ : degree of bias

- extrapolative expectation literature (e.g., Bordalo, Gennaioli and Shleifer, 2018)
- **Timing**: form expectation \rightarrow borrow, rent, hire \rightarrow productivity realize \rightarrow default or not

• **Expected productivity** ($\gamma = 0$ in baseline):

$$\tilde{\mathbb{E}}\left[z\right] = \tilde{\mathbb{E}}\left[\tilde{z} + dz\right] = \underbrace{\frac{1}{\theta}\left[\bar{\mu} + (\theta - 1)\tilde{z}\right]}_{\text{rational expectation}} + \underbrace{\frac{\gamma\left(\tilde{z} - \bar{\mu}\right)}_{\text{algorithm bias}}$$

- γ : degree of bias
- extrapolative expectation literature (e.g., Bordalo, Gennaioli and Shleifer, 2018)
- **Timing**: form expectation \rightarrow borrow, rent, hire \rightarrow productivity realize \rightarrow default or not

$$\pi\left(a,z,\tilde{z}\right) = \pi\left(a,z,\tilde{\mathbb{E}}\left[z\right]\right) \equiv zk\left(a,\tilde{\mathbb{E}}\left[z\right]\right)^{\alpha}l\left(a,\tilde{\mathbb{E}}\left[z\right]\right)^{1-\alpha} - (r+\delta)k\left(a,\tilde{\mathbb{E}}\left[z\right]\right) - wl\left(a,\tilde{\mathbb{E}}\left[z\right]\right)$$

• **Expected productivity** ($\gamma = 0$ in baseline):

$$\tilde{\mathbb{E}}\left[z\right] = \tilde{\mathbb{E}}\left[\tilde{z} + dz\right] = \underbrace{\frac{1}{\theta}\left[\bar{\mu} + \left(\theta - 1\right)\tilde{z}\right]}_{\text{rational expectation}} + \underbrace{\frac{\gamma\left(\tilde{z} - \bar{\mu}\right)}_{\text{algorithm bias}}$$

- γ : degree of bias
- extrapolative expectation literature (e.g., Bordalo, Gennaioli and Shleifer, 2018)
- **Timing**: form expectation \rightarrow borrow, rent, hire \rightarrow productivity realize \rightarrow default or not

$$\pi\left(a, \mathbf{z}, \tilde{\mathbf{z}}\right) = \pi\left(a, \mathbf{z}, \tilde{\mathbb{E}}\left[z\right]\right) \equiv \mathbf{z}k\left(a, \tilde{\mathbb{E}}\left[z\right]\right)^{\alpha}l\left(a, \tilde{\mathbb{E}}\left[z\right]\right)^{1-\alpha} - (r+\delta)k\left(a, \tilde{\mathbb{E}}\left[z\right]\right) - wl\left(a, \tilde{\mathbb{E}}\left[z\right]\right)$$

"Costless" default (in the baseline): focus on exogenous borrowing constraints

• **Expected productivity** ($\gamma = 0$ in baseline):

$$\tilde{\mathbb{E}}\left[z\right] = \tilde{\mathbb{E}}\left[\tilde{z} + dz\right] = \underbrace{\frac{1}{\theta}\left[\bar{\mu} + (\theta - 1)\,\tilde{z}\right]}_{\text{rational expectation}} + \underbrace{\frac{\gamma\left(\tilde{z} - \bar{\mu}\right)}_{\text{algorithm bias}}$$

• γ : degree of bias

- extrapolative expectation literature (e.g., Bordalo, Gennaioli and Shleifer, 2018)
- **Timing**: form expectation \rightarrow borrow, rent, hire \rightarrow productivity realize \rightarrow default or not

$$\pi\left(a, \mathbf{z}, \tilde{\mathbf{z}}\right) = \pi\left(a, \mathbf{z}, \tilde{\mathbb{E}}\left[z\right]\right) \equiv \mathbf{z}k\left(a, \tilde{\mathbb{E}}\left[z\right]\right)^{\alpha}l\left(a, \tilde{\mathbb{E}}\left[z\right]\right)^{1-\alpha} - (r+\delta)k\left(a, \tilde{\mathbb{E}}\left[z\right]\right) - wl\left(a, \tilde{\mathbb{E}}\left[z\right]\right)$$

- "Costless" default (in the baseline): focus on exogenous borrowing constraints
- **State of the economy:**

$$\{\omega_F(t,a,z,\tilde{z}),\omega_B(t,a,z,\tilde{z})\}$$

Two Types of Borrowing Constraints

Banking sector: collateral-based borrowing constraint

$$k - a \le \lambda_B k \Rightarrow \frac{k \le 1}{1 - \lambda_B} a$$

Two Types of Borrowing Constraints

Banking sector: collateral-based borrowing constraint

$$k-a \leq \lambda_B k \Rightarrow \frac{1}{1-\lambda_B}a$$

BigTech sector: earnings-based borrowing constraint

$$k - a \leq \lambda_F \tilde{\mathbb{E}}\left[\pi\right] \Rightarrow \frac{k}{k} \leq \frac{1}{1 + \lambda_F \left[\frac{r + \delta}{\alpha} - \zeta \tilde{\mathbb{E}}\left[z\right]\right]^a}$$

where $\zeta \equiv \left(\frac{(1-\alpha)(r+\delta)}{\alpha w}\right)^{1-\alpha}$

SIMILARITY AND DIFFERENCE I

Similarity: corporate debt capacity depends on (expected) net worth

debt capacity = $\phi \times$ **net worth**

- ? "With cash flow-based lending and EBCs, we find that asset price feedback through firms' balance sheets could diminish significantly." (Lian and Ma, 2021)
- "This evidence implies that a greater use of big tech credit could reduce the importance of collateral in credit markets and potentially weaken the financial accelerator mechanism." (Gambacorta et al., 2023)

SIMILARITY AND DIFFERENCE II

Difference: (expected) productive firms get to use more leverage in BigTech

$$egin{array}{rcl} k & \leq & \displaystylerac{1}{1-\lambda_B}a \ k & \leq & \displaystylerac{1}{1+\lambda_F\left[rac{r+\delta}{lpha}-\zeta \widetilde{\mathbb{E}}\left[z
ight]
ight]}a \end{array}$$

asymmetric wealth growth rate for firms with different (expected) productivity

Key Mechanism: Convexity + Uncertainty

PARAMETRIZATION

Parameter	Description	Value	Source/Reference
ρ	rate of time preference	0.05	
α	capital share	0.33	Moll (2014)
\mathcal{L}	labor market size	1.0	
δ	capital depreciation rate	0.06	BEA-FAT
γ	algorithm bias	0.4	match the default probability
S	size of BigTech	1.0	
$\overline{\mu}$	log idiosyncratic productivity mean	0.0	
θ	autocorrelation $e^{-\theta}$	0.16 (corr = 0.85)	Asker, Collard-Wexler and Loecker (2014)
σ	log idiosyncratic productivity s.d.	0.56	

1. steady state analysis

2. business cycles with M.I.T shocks

3. extensions

EFFICIENCY-INSTABILITY TRADE-OFF

• BigTech cannot fully replace the role of traditional banks

EFFICIENCY-INSTABILITY TRADE-OFF

• BigTech cannot fully replace the role of traditional banks

BUSINESS CYCLES: FIRST-MOMENT SHOCKS

BUSINESS CYCLES: SECOND-MOMENT SHOCKS

BigTech lending is sensitive to uncertainty shocks

Amplification and Persistence

AMPLIFICATION AND PERSISTENCE

Fig. 1

Figure. Kiyotaki and Moore (1997)

ON FINANCIAL ACCELERATOR MECHANISM

- Different from the classical one (e.g., Kiyotaki and Moore, 1997; Bernanke and Gertler, 1989) in three aspects
 - primitive shock: micro uncertainty instead of aggregate productivity
 - **financial friction**: earnings-based borrowing constraint instead of collateral-based borrowing constraint
 - feedback loops: between net worth inequality, instead of net worth level, and asset prices

ON FINANCIAL ACCELERATOR MECHANISM

- Different from the classical one (e.g., Kiyotaki and Moore, 1997; Bernanke and Gertler, 1989) in three aspects
 - primitive shock: micro uncertainty instead of aggregate productivity
 - **financial friction**: earnings-based borrowing constraint instead of collateral-based borrowing constraint
 - feedback loops: between net worth inequality, instead of net worth level, and asset prices

Macroeconomics of BigTech: a different financial accelerator mechanism

EXTENSIONS

- Algorithm Bias: $\gamma \neq 0$
- **• Optimal BigTech Development:** $S \neq 1$

A

$$\mathcal{U}\left(\mathcal{S}\right) = \mathcal{Z}^{\iota}\left(\mathcal{S}\right) - \eta \mathcal{P}\left(\mathcal{S}\right)$$

Risky Bond:

$$qb' = \frac{\mathbb{E}\left\{\mathbf{1}_{V' \ge 0}b' + \mathbf{1}_{V' < 0}\left(\chi_k k + \chi_\pi \pi\right)\right\}}{1 + r}$$

Non-M.I.T. Shocks:

$$dz = \frac{1}{\theta} (\bar{\mu} - z) dt + \sigma \sqrt{\frac{1}{\theta}} d\mathcal{W}$$

$$\bar{\mu} \in \{\bar{\mu}_L, \bar{\mu}_H\}, \text{ where } Pr(\bar{\mu}' = \bar{\mu}_l | \bar{\mu} = \bar{\mu}_k) = \zeta_{kl}$$

$$\sigma \in \{\sigma_L, \sigma_H\}, \text{ where } Pr(\sigma' = \sigma_l | \sigma = \sigma_k) = \chi_{kl}$$

Igorithm Bias • Optimality • Risky Debt • Non-MIT Shock

CONCLUSION

- **Research question**: introduce BigTech into the existing macro-finance literature
- Key take-aways: BigTech v.s. Bank as two types of borrowing constraints
 - efficiency-instability trade-off
 - a different financial accelerator
- **Extensions**:
 - algorithm bias
 - optimal BigTech development

REFERENCES I

- Achdou, Yves, Jiequn Han, Jean-Michel Lasry, Pierre-Louis Lions, and Benjamin Moll. 2022. "Income and Wealth Distribution in Macroeconomics: A Continuous-Time Approach." *Review of Economic Studies*, 89(1): 45–86.
- Asker, John, Allan Collard-Wexler, and Jan De Loecker. 2014. "Dynamic Inputs and Resource (Mis)Allocation." Journal of Political Economy, 122(5): 1013–1063.
- Beck, Thorsten, Robin Döttling, Thomas Lambert, and Mathijs A. Van Dijk. 2022. "Liquidity Creation, Investment, and Growth." *Journal of Economic Growth*. https://doi.org/10.1007/s10887-022-09217-1.
- Bernanke, Ben, and Mark Gertler. 1989. "Agency Costs, Net Worth, and Business Fluctuations." American Economic Review, 79(1): 14–31.
- Bordalo, Pedro, Nicola Gennaioli, and Andrei Shleifer. 2018. "Diagnostic Expectations and Credit Cycles." *Journal of Finance*, 73: 199–227.
- Brumm, Johannes, and Simon Scheidegger. 2017. "Using Adaptive Sparse Grids to Solve High-Dimensional Dynamic Models." *Journal of Machine Learning Research*, 85(5): 1575–1612.
- Brunnermeier, Markus K., and Yuliy Sannikov. 2014. "A Macroeconomic Model with a Financial Sector." American Economic Review, 104(2): 379–421.
- Caselli, Francesco, and Nicola Gennaioli. 2013. "Dynastic Management." Economic Inquiry, 51(1): 971–996.
- **Chen, Hui, Antoine Didisheim, and Simon Scheidegger.** 2021. "Deep Structural Estimation: With an Application to Option Pricing."
- **Cornelli, Giulio, Jon Frost, Leonardo Gambacorta, Raghavendra Rau, Robert Wardrop, and Tania Ziegler.** 2023. "Fintech and Big Tech Credit: Drivers of the Growth of Digital Lending." *Journal of Banking and Finance*, 148: 106742.
- **Di Tella, Sebastian.** 2017. "Uncertainty Shocks and Balance Sheet Recessions." *Journal of Political Economy*, 125(6): 2038–2081.

REFERENCES II

- Drechsel, Thomas. 2023. "Earnings-Based Borrowing Constraints and Macroeconomic Fluctuations." American Economic Journal: Macroeconomics, 15: 1–34.
- **Drechsel, Thomas, and Seho Kim.** 2022. "Macroprudential Policy with Earnings-Based Borrowing Constraints." Unpublished working paper.
- Fernandez-Villaverde, Jesus, Galo Nuno, George Sorg-Langhans, and Maximilian Vogler. 2020. "Solving High-Dimensional Dynamic Programming Problems using Deep Learning." Unpublished working paper.
- Fernandez-Villaverde, Jesus, Samuel Hurtado, and Galo Nuno. 2019. "Financial Frictions and the Wealth Distribution." NBER Working Paper No. 26302.
- Fuster, Andreas, Matthew Plosser, Philipp Schnabl, and James Vickery. 2019. "The Role of Technology in Mortgage Lending." *Review of Financial Studies*, 32: 1854–1899.
- Gambacorta, Leonardo, Yiping Huang, Han Qiu, and Jingyi Wang. 2019. "How do Machine Learning and Non-traditional Data Affect Credit Scoring? New Evidence from a Chinese Fintech Firm." BIS Working Paper No. 834.
- Gambacorta, Leonardo, Yiping Huang, Zhenhua Li, Han Qiu, and Shu Chen. 2023. "Data versus Collateral." *Review of Finance*, 27(2): 369–398.
- Greenwald, Daniel. 2019. "Firm Debt Covenants and the Macroeconomy: The Interest Coverage Channel." MIT Sloan Research Paper No. 5909-19.
- Han, Jiequn, and Weinan E. 2016. "Deep Learning Approximation for Stochastic Control Problems." NIPS workshop.
- Hau, Harald, Yi Huang, Hongzhe Shan, and Zixia Sheng. 2018. "FinTech Credit and Entrepreneurial Growth." Unpublished Working Paper.
- **He, Zhiguo, and Arvind Krishnamurthy.** 2013. "Intermediary Asset Pricing." *American Economic Review*, 103(2): 732–770. **Huang, Jing.** 2022. "Fintech Expansion." Unpublished working paper.

REFERENCES III

- King, Michael R. 2019. "The Competitive Threat from TechFins and BigTech in Financial Services." The Technological Revolution in Financial Services.
- Kiyotaki, Nobuhiro, and John Moore. 1997. "Credit Cycles." Journal of Political Economy, 105(2): 211-248.
- Lian, Chen, and Yueran Ma. 2021. "Anatomy of Corporate Borrowing Constraints." *Quarterly Journal of Economics*, 136: 229–291.
- Liu, Lei, Guangli Lu, and Wei Xiong. 2022. "The Big Tech Lending Model." NBER Working Paper No. 30160.
- Manea, Cristina, Fiorella De Fiore, and Leonardo Gambarcorta. 2023. "Big Techs and the Credit Channel of Monetary Policy Transmission." BIS Working Papers No. 1088.
- Moll, Benjamin. 2014. "Productivity Losses from Financial Frictions: Can Self-Financing Undo Capital Misallocation?" American Economic Review, 104(10): 3186–3221.
- Raissi, M., P. Perdikaris, and G. E. Karniadakis. 2019. "Physics-informed neural networks: A deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations." *Journal of Computational Physics*, 378(1): 686–707.
- Stulz, Rene M. 2019. "FinTech, BigTech, and the Future of Banks." Journal of Applied Corporate Finance, 31(4): 86–97.
- Tang, Huan. 2019. "Peer-to-Peer Lenders versus Banks: Substitutes or Complements?" *Review of Financial Studies*, 32(5): 1900–1938.

OPTIMAL POLICY FUNCTIONS (BACK)

• Banking sector

$$k^{B}\left(a,z,\tilde{z}\right) = \begin{cases} \frac{a}{1-\lambda_{B}} & \tilde{\mathbb{E}}\left[z\right] \geq \tilde{\underline{z}}\\ 0 & \tilde{\mathbb{E}}\left[z\right] < \tilde{\underline{z}} \end{cases}$$

$$k^{F}(a, z, \tilde{z}) = \begin{cases} \frac{1}{1 + \lambda_{F}\left(\frac{r+\delta}{\alpha} - \zeta \tilde{\mathbb{E}}[z]\right)} a & \tilde{\mathbb{E}}[z] \geq \tilde{\underline{z}} \\ 0 & \tilde{\mathbb{E}}[z] < \tilde{\underline{z}} \end{cases}$$

where $\underline{\tilde{z}} = \left(\frac{r+\delta}{\alpha}\right)^{\alpha} \left(\frac{w}{1-\alpha}\right)^{1-\alpha}$

WEALTH DYNAMICS (BACK)

$$da_{B} = \left\{ 1_{\tilde{\mathbb{E}}[z] \geq \tilde{z}} \times \left[\frac{\zeta z - \frac{r+\delta}{\alpha}}{1 - \lambda_{B}} + r - \rho \right] + 1_{\tilde{\mathbb{E}}[z] < \tilde{z}} \times (r - \rho) \right\} a_{B} dt$$

$$da_{F} = \left\{ 1_{\tilde{\mathbb{E}}[z] \geq \tilde{z}} \times \left[\frac{\zeta z - \frac{r+\delta}{\alpha}}{1 + \lambda_{F} \left[\frac{r+\delta}{\alpha} - \zeta \left(\frac{1}{\theta} - \gamma \right) \bar{\mu} - \frac{\zeta(\theta - 1 + \theta\gamma)}{\theta} \tilde{z} \right]} + r - \rho \right] + 1_{\tilde{\mathbb{E}}[z] < \tilde{z}} \times (r - \rho) \right\} a_{F} dt$$

Low productivity firms

- constant net worth growth rate
- low-productivity entrepreneurs do not operate and lend all their net worth to good firms

High productivity firms

- net worth growth rate is higher than its actual productivity: leverage effect
- BigTech: most-productive firm's net worth grows even faster

JOINT DISTRIBUTION DYNAMICS (BACK)

$$\frac{\partial \omega^{j}(t,a,z,\tilde{z})}{\partial t} = -\frac{\partial \left[\Gamma^{j}(t,z,\tilde{z}) a \omega^{j}(t,a,z,\tilde{z})\right]}{\partial a} - \frac{\partial \left[\frac{1}{\theta}\left(\overline{\mu}-z\right) \omega^{j}\left(t,a,z,\tilde{z}\right)\right]}{\partial z} - \frac{\partial \left[\frac{1}{\theta}\left(\overline{\mu}-\tilde{z}\right) \omega^{j}\left(t,a,z,\tilde{z}\right)\right]}{\partial \tilde{z}} + \frac{\sigma^{2}}{2\theta} \frac{\partial^{2}\left[\omega^{j}\left(t,a,z,\tilde{z}\right)\right]}{\partial \tilde{z}^{2}} + \frac{\sigma^{2}}{2\theta} \frac{\partial^{2}\left[\omega^{j}\left(t,a,z,\tilde{z}\right)\right]}{\partial z^{2}} \text{ where } j \in \{\mathcal{B},\mathcal{F}\}$$

- X wealth share approach: Caselli and Gennaioli (2013); Moll (2014); ...
- X (adaptive) sparse grid approach: Brumm and Scheidegger (2017); ...
- ✓ **deep learning approach**: Han and E (2016); Raissi, Perdikaris and Karniadakis (2019); Fernandez-Villaverde et al. (2020); Chen, Didisheim and Scheidegger (2021); ...

EXTENSION: ALGORITHM BIAS (BACK)

► fragile booms

BIGTECH: OVERBORROWING AND FINANCIAL INSTABILITY (BACK)

overlending issues

BIGTECH: OVERBORROWING AND FINANCIAL INSTABILITY

overlending issues

Financial markets are *less* efficient in booms than in recessions:

- Minsky's financial instability hypothesis: economic prosperity encourages borrowers and lender to be reckless
- Greenspan/Shiller's irrational exuberance: overheated economy generates bubbles

EXTENSION: OPTIMAL BIGTECH DEVELOPMENT (BACK)

assume that the government cares about both efficiency and financial stability

$$\mathcal{U}\left(\mathcal{S}\right) = \mathcal{Z}^{\iota}\left(\mathcal{S}\right) - \eta \mathcal{P}\left(\mathcal{S}\right)$$

EXTENSION: RISKY BOND •BACK

EXTENSION: NON-MIT SHOCKS (BACK)

