Jackknife Standard Errors for Clustered Regression

Bruce E. Hansen University of Wisconsin

December 2023

Bruce Hansen (University of Wisconsin)

Jackknife Standard Errors

This paper

- Studies variance estimation and confidence interval coverage
 - Clustered regression model
- Bias
 - Standard estimators have arbitrarily large bias
 - Jackknife estimator is conservative never downward biased
- Confidence intervals
 - Standard intervals have coverage rates arbitrarily close to 0
 - Jackknife interval has coverage bounded by Cauchy distribution
- Theory holds under minimal assumptions, allowing arbitrary cluster sizes, regressor leverage, within-cluster correlation, heteroskedasticity, regression with a single treated cluster, fixed effects, and delete-cluster invertibility failures
- Adjusted critical values
 - Data-based d.o.f. can approximately control size

Model: Clustered Regression

 \bullet Cluster-level stacked observations $(\mathbf{Y}_g,\mathbf{X}_g)$

•
$$\mathbf{Y}_g$$
 is $n_g \times 1$

- \mathbf{X}_g is $n_g \times k$,
- G clusters
- Regression model

$$\mathbf{Y}_g = \mathbf{X}_g eta + \mathbf{e}_g$$
 $\mathbb{E}\left[\mathbf{e}_g
ight] = 0$

- Fixed regressors (conditional)
- Cross-section regression when $n_g = 1$
- Least squares estimation

Cluster Covariance Matrices

• $\mathbb{E}\left[\mathbf{e}_{g}\mathbf{e}_{g}'\right] = \Sigma_{g}, \qquad n_{g} \times n_{g}$

- Varies by cluster g
- Can depend on regressors.
- Allows unconditional and conditional heteroskedasticity.
- Includes heteroskedastic regression in non-clustered $(n_g = 1)$ case.
- Popular model in contemporary econometrics.
 - Σ_g is treated as unknown and unstructured.
 - Covers both clustered and panel settings.

Least Squares Estimation Variance

•
$$\mathbf{V} = \left(\mathbf{X}'\mathbf{X}\right)^{-1} \left(\sum_{g=1}^{G} \mathbf{X}'_{g} \mathbf{\Sigma}_{g} \mathbf{X}_{g}\right) \left(\mathbf{X}'\mathbf{X}\right)^{-1}$$

• Cluster-Robust Variance Estimator (CRVE)

$$\widehat{\mathbf{V}}_{1} = \frac{G\left(n-1\right)}{\left(G-1\right)\left(n-k\right)} \left(\mathbf{X}'\mathbf{X}\right)^{-1} \left(\sum_{g=1}^{G} \mathbf{X}'_{g} \widehat{\mathbf{e}}_{g} \widehat{\mathbf{e}}'_{g} \mathbf{X}_{g}\right) \left(\mathbf{X}'\mathbf{X}\right)^{-1}$$

- Liang and Zeger (1986), Arellano (1987), Stata
- In the absence of clustering, $\widehat{\mathbf{V}}_1$ simplies to HC₁.
- CRVE₁ and HC₁ dominate empirical practice.

CRVE₂

• Bell and McCaffrey (2002), Imbens and Kolesar (2016)

•
$$\widehat{\mathbf{V}}_2 = \left(\mathbf{X}'\mathbf{X}\right)^{-1} \left(\sum_{g=1}^G \mathbf{X}'_g \mathbf{M}_g^{+1/2} \widehat{\mathbf{e}}_g \widehat{\mathbf{e}}'_g \mathbf{M}_g^{+1/2} \mathbf{X}_g\right) \left(\mathbf{X}'\mathbf{X}\right)^{-1}$$

- \bullet Motivation: Unbiased when errors are i.i.d. and \mathbf{M}_g are invertible
- \bullet Pseudoinverse allows $\widehat{\textbf{V}}_2$ to be calculated under invertibility failures
 - Kolesar (2022)
- Implemented in Stata 18

Jackknife Variance Estimator

Delete-one-cluster estimators

$$\widehat{eta}_{-g} = \left(\sum_{j
eq g} \mathbf{X}_j' \mathbf{X}_j
ight)^{-1} \left(\sum_{j
eq g} \mathbf{X}_j' \mathbf{Y}_j
ight)$$

• Jackknife variance estimators (Tukey, 1958)

$$\begin{split} \widehat{\mathbf{V}}_{3} &= \frac{G-1}{G} \sum_{g=1}^{G} \left(\widehat{\beta}_{-g} - \overline{\beta} \right) \left(\widehat{\beta}_{-g} - \overline{\beta} \right)' \\ \overline{\beta} &= \frac{1}{G} \sum_{g=1}^{G} \widehat{\beta}_{-g} \\ \widehat{\mathbf{V}}_{4} &= \frac{G-1}{G} \sum_{g=1}^{G} \left(\widehat{\beta}_{-g} - \widehat{\beta} \right) \left(\widehat{\beta}_{-g} - \widehat{\beta} \right)' \end{split}$$

• Cluster version of HC_3 (MacKinnon and White, 1985)

Invertibility Failures

- Jackknife variance undefined if there is a cluster g for which $\mathbf{X}'\mathbf{X} \mathbf{X}'_g\mathbf{X}_g$ is noninvertible
 - Identical to context where \mathbf{M}_g is noninvertible
- Occurs when X includes
 - Fixed effects
 - Treatment dummy with a single treated cluster
 - One component of X_g non-zero only for a single cluster
 - Saturated regressions with sparse cell proportions
- Commonplace in empirical applications
- Common Solution (e.g. Stata)
 - Drop noninvertible clusters
 - Similar to dropping noninvertible designs in bootstrap
 - We adopt this definition for \widehat{V}_3 & \widehat{V}_4 : noninvertible clusters dropped
 - Properties previously unexplored

(日) (同) (三) (三)

Recommended Jackknife Estimator

• Generalized delete-one-cluster estimators

$$\widetilde{\boldsymbol{\beta}}_{-g} = \left(\sum_{j \neq g} \mathbf{X}_{j}' \mathbf{X}_{j}\right)^{+} \left(\sum_{j \neq g} \mathbf{X}_{j}' \mathbf{Y}_{j}\right)$$
$$\widehat{\mathbf{V}}_{5} = \sum_{g=1}^{G} \left(\widetilde{\boldsymbol{\beta}}_{-g} - \widehat{\boldsymbol{\beta}}\right) \left(\widetilde{\boldsymbol{\beta}}_{-g} - \widehat{\boldsymbol{\beta}}\right)'$$

• Differs from $\widehat{\bm V}_3$ and $\widehat{\bm V}_4$ in three respects, leading to $\widehat{\bm V}_5 > \widehat{\bm V}_4 > \widehat{\bm V}_3$

- $\widehat{\mathbf{V}}_5$ does not drop noninvertible clusters
- $\widehat{\mathbf{V}}_5$ is centered at $\widehat{\beta}$
- ▶ $\widehat{\mathbf{V}}_5$ does not have degree-of-freedom correction (G-1)/G
- Properties are explored in this paper.

Variance Estimation Bias

- Classical variance estimators are unbiased under classical assumptions.
- What we now show
 - Proposed jackknife estimator is never downward biased.
 - Existing estimators can have arbitrarily large bias.
- We focus on downward bias as this is the issue which causes undercoverage of confidence intervals and oversized tests.

Jackknife Variance Estimator is Conservative

Theorem 1: In a linear regression with full rank ${f X}$

$$\mathbb{E}\left[\widehat{\mathbf{V}}_{5}
ight] \geq \mathbf{V}$$

- This holds in any clustered regression setting
- Minimal assumptions
- Allows clusterwise noninvertibility (e.g. fixed effects)

- Focus on individual coefficients $\theta = R'\beta$ and their standard errors \hat{v}_i
- Sets of Models for fixed G and k
 - *F* is the class of all regressor and covariance matrices (X, Σ) such that
 X is full rank, Σ has finite elements, and ν² > 0.
 - $\mathcal{F}^* \subset \mathcal{F}$ is the subset where **X** satisfies clusterwise invertibility.
 - $\mathcal{F}_0 \subset \mathcal{F}$ and $\mathcal{F}_0^* \subset \mathcal{F}^*$ are the subsets where $\Sigma = I_n \sigma^2$.

Theorem 2: Variance estimators can be arbitrarily biased

 $\inf_{(\boldsymbol{X},\boldsymbol{\Sigma})\in\mathcal{F}_{n}^{*}}\frac{\mathbb{E}\left[\widehat{v}_{1}^{2}\right]}{v^{2}} \ = \ 0$ $\inf_{(\boldsymbol{X},\boldsymbol{\Sigma})\in\mathcal{F}^*}\frac{\mathbb{E}\left[\widehat{\boldsymbol{v}}_2^2\right]}{\boldsymbol{v}^2} \ = \ 0$ $\inf_{\substack{(\mathbf{X}, \mathbf{\Sigma}) \in \mathcal{F}^*}} \frac{\mathbb{E}\left[\widehat{v}_3^2\right]}{v^2} = \left(\frac{G-1}{G}\right)^2 < 1$ $\inf_{\substack{(\mathbf{X}, \Sigma) \in \mathcal{F}^*}} \frac{\mathbb{E}\left[\widehat{v}_4^2\right]}{\nu^2} = \frac{G-1}{C} < 1$ $\inf_{(\boldsymbol{X},\boldsymbol{\Sigma})\in\mathcal{F}_0}\frac{\mathbb{E}\left[\widehat{v}_3^2\right]}{v^2} \ = \ 0$ $\inf_{(\boldsymbol{X},\boldsymbol{\Sigma})\in\mathcal{F}_{n}}\frac{\mathbb{E}\left[\widehat{\nu}_{4}^{2}\right]}{\nu^{2}} \ = \ 0$

Bruce Hansen (University of Wisconsin)

通 ト イヨ ト イヨ ト ・ ヨ ・ ク Q ()

Summary of Theorem 2

- CRVE₁ standard error has arbitrary large downward bias (*fully downward biased*) even under i.i.d. errors and clusterwise invertibility. Severe bias can arise from extreme regressor leverage, including unbalanced cluster sizes.
- CRVE₂ standard error has full downward bias when we allow general covariance matrices (heteroskedasticity and correlation).
- Conventional jackknife standard errors \hat{v}_3 and \hat{v}_4 are downward biased under clusterwise invertibility.
- Conventional jackknife standard errors \hat{v}_3 and \hat{v}_4 are fully downward biased under clusterwise noninvertibility.
 - This shows that the "solution" of deleting noninvertible clusters is a non-solution.
- Recommended standard errors \hat{v}_5 are never downward biased.
 - Allows heteroskedasticity, correlation, clusterwise noninvertibility.

(日) (同) (三) (三)

Confidence Intervals

Given a critical value c, a confidence interval for θ is

$$\widehat{\mathcal{C}}_j(c) = \widehat{ heta} \pm c \widehat{ extsf{v}}_j$$

Theorem 3: If $\mathbf{e}_g \sim \mathrm{N}\left(\mathbf{0}, \mathbf{\Sigma}_g\right)$, then for any $1 \leq c < \infty$

$$\inf_{(\mathbf{X}, \mathbf{\Sigma}) \in \mathcal{F}} \mathbb{P}\left[\theta \in \widehat{C}_{5}(c)\right] \geq F(c; 1, 1)$$

where $F(x; k_1, k_2)$ is the F distribution.

Interpretation: The jackknife confidence interval has coverage bounded by the Cauchy distribution.

Implication: Size distortion (using the jackknife) is bounded.

Uncoverage of Standard Intervals

Theorem 4: If $\mathbf{e}_g \sim \mathrm{N}\left(\mathbf{0}, \mathbf{\Sigma}_g
ight)$, for any $\mathbf{0} \leq c < \infty$

$$\inf_{\substack{\mathbf{X}\in\mathcal{F}_{0}^{*}\\ (\mathbf{X},\mathbf{\Sigma})\in\mathcal{F}^{*}}} \mathbb{P}\left[\theta\in\widehat{C}_{1}(c)\right] = 0$$
$$\inf_{\substack{(\mathbf{X},\mathbf{\Sigma})\in\mathcal{F}_{0}\\ (\mathbf{X},\mathbf{\Sigma})\in\mathcal{F}_{0}}} \mathbb{P}\left[\theta\in\widehat{C}_{2}(c)\right] = 0$$
$$\inf_{\substack{(\mathbf{X},\mathbf{\Sigma})\in\mathcal{F}_{0}\\ (\mathbf{X},\mathbf{\Sigma})\in\mathcal{F}_{0}}} \mathbb{P}\left[\theta\in\widehat{C}_{4}(c)\right] = 0$$

Interpretation: Intervals can have coverage arbitrarily close to zero.

(日) (周) (三) (三)

Improved Inference

- In highly leverage settings t-ratios are non-normally distributed.
- Can we improve on t_{G-1} critical values?
- Bell and McCaffrey (2002) suggested an adjustment.
 - They made this suggestion for HC₂ and CRVE₂.
 - Endorsed by Imbens and Kolesar (2016), coded in Stata 18.
 - We extend this suggestion to the jackknife.

Approximate F Inference

Theorem 5: If $\mathbf{e}_g \sim N(\mathbf{0}, \mathbf{\Sigma}_g)$,

$$\mathbb{P}\left[\theta\in\widehat{C}_{5}(c)\right]\gtrsim F\left(a^{2}x;1,K\right)$$

where a and K are functions of the regressors X and covariance matrix Σ .

- The bound uses a Satterthwaite (1946) approximation.
- Interpretation: The jackknife t-ratio is approximately t with a non-standard scale a and d.o.f. K.

Unknown Constants

- The constants a and K depend on the unknown variance matrices Σ_g .
 - ▶ If they were known, then *a* and *K* could be calculated
 - But they are unknown
- Bell-McCaffrey suggest using the reference model $\Sigma_g = I_{n_g} \sigma^2$.
- **Theorem 5**: When $\Sigma_g = I_{n_g} \sigma^2$, computationally convenient [but lengthy] algebraic expressions for *a* and *K* are given in the paper.
- They are functions only of X and selector vector R.

Adjusted Confidence Intervals

Our recommend adjusted $100(1-\alpha)\%$ confidence interval for θ is

$$\widetilde{\mathcal{C}}_5 = \widehat{ heta} \pm rac{t_{\mathcal{K}}^{1-lpha/2} \widehat{ extsf{v}}_5}{a}.$$

where

- $t_K^{1-\alpha/2}$ is the $1-\alpha/2$ quantile of the student t distribution with K degrees of freedom.
- \hat{v}_5 is our recommended jackknife standard error.
- R code posted, Stata code forthcoming.

Simulation Evidence

• Baseline model $\mathbf{Y}_g = \alpha + \mathbf{X}_g \beta + \mathbf{e}_g$

Design 1

$$\begin{array}{l} \blacktriangleright \ \mathbf{X}_g \sim \mathrm{N}(\mathbf{0}, \mathbf{I}_g + \mathbf{1}_g \mathbf{1}'_g) \\ \blacktriangleright \ \mathbf{e}_g \sim \mathrm{N}(\mathbf{0}, \mathbf{I}_g + \mathbf{1}_g \mathbf{1}'_g + \mathbf{h}_g \mathbf{h}'_g) \text{ where } \mathbf{h}'_g \mathbf{1}_g = 0 \\ \blacktriangleright \ n_g = 10 \text{ for all } g \end{array}$$

• Design 2:
$$\mathbf{X}_g \sim rac{\sqrt{2}}{\exp(2)} \exp\left(\mathbf{N}(\mathbf{0}, \mathbf{I}_g + \mathbf{1}_g \mathbf{1}'_g)\right)$$

- Design 3: ng heterogeneous
- Designs 4, 5, and 6: $\mathbf{e}_g \sim \mathrm{N}(\mathbf{0}, \mathbf{I}_g + \mathbf{X}_g \mathbf{X}_g')$
- 95% Confidence intervals for β
- Number of clusters $G = \{6, 12, 40, 100\}$
- Simulation replications: 20,000

Confidence Interval Methods

- $\widehat{\beta} \pm t_{G-1}^{.975} \widehat{v}_1$
- $\widehat{\beta} \pm t_{G-1}^{.975} \widehat{v}_2$
- $\widehat{\beta} \pm t_{G-1}^{.975} \widehat{v}_3$
- $\widehat{\beta} \pm t_{G-1}^{.975} \widehat{v}_4$
- $\mathbf{S} \ \widehat{\boldsymbol{\beta}} \pm t_{G-1}^{.975} \widehat{\boldsymbol{v}}_5$
- $\widehat{eta}\pm t_{G-1}^{.975}\widehat{v}_6$, where \widehat{v}_6 is from nonparametric pairs cluster bootstrap
- Bell-McCaffrey: $\hat{\beta} \pm t_{K}^{.975} \hat{v}_{2}$
- **O** Adjusted $t_K : \widehat{\beta} \pm t_K^{.975} \widehat{v}_5 / a$
- ${f 0}$ Nonparametric pairs cluster bootstrap symmetric percentile-t using $\widehat{
 u_1}$
- ${f 0}$ Nonparametric pairs cluster bootstrap symmetric percentile-t using $\widehat{
 u}_5$
- $oldsymbol{0}$ Wild cluster bootstrap symmetric percentile-t using $\widehat{
 u_1}$
- 🛽 Wild cluster bootstrap symmetric percentile-t using $\widehat{
 u}_5$

	Conventional t_{G-1}							Adjusted		Boot		Wild	
s.e.	\widehat{v}_1	\widehat{v}_2	v ₃	\widehat{v}_4	\widehat{v}_5	\widehat{v}_6	\hat{v}_2	\widehat{v}_5	\widehat{v}_1	\widehat{v}_5	\widehat{v}_1	\widehat{v}_5	
G = 6													
D1	.91	.93	.95	.95	.96	.94	.95	.96	.96	.96	.94	.94	
D2	.85	.91	.95	.96	.97	.98	.99	.99	.93	.96	.97	.96	
D3	.83	.90	.95	.95	.96	.99	.99	.99	.93	.97	.96	.95	
D4	.89	.91	.93	.93	.95	.90	.94	.94	.95	.96	.95	.95	
D5	.60	.72	.87	.87	.89	.91	.90	.93	.80	.92	.85	.91	
D6	.57	.70	.87	.87	.89	.92	.90	.93	.78	.92	.86	.91	
G = 40													
D1	.94	.94	.95	.95	.95	.94	.95	.95	.95	.95	.95	.95	
D2	.86	.90	.93	.93	.93	.96	.97	.98	.89	.92	.95	.96	
D3	.80	.88	.94	.94	.94	.95	.98	.98	.90	.95	.94	.96	
D4	.93	.93	.94	.94	.94	.93	.94	.94	.95	.95	.95	.95	
D5	.71	.79	.88	.88	.89	.84	.93	.95	.90	.94	.94	.94	
D6	.63	.74	.87	.87	.87	.83	.92	.95	.86	.93	.91	.93	

Bruce Hansen (University of Wisconsin)

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > ○ < ○

Model with Noninvertibility

- $\mathbf{Y}_g = \alpha + \mathbf{X}_g \beta + \mathbf{D}_g \gamma + \mathbf{e}_g$
- **D**_g is cluster-level dummy variable
- Confidence intervals for β

	Conventional t_{G-1}							Adjusted		Boot		Wild	
s.e.	\widehat{v}_1	\widehat{v}_2	v ₃	\widehat{v}_4	\widehat{v}_5	\widehat{v}_6	\hat{v}_2	\widehat{v}_5	\widehat{v}_1	\widehat{v}_5	\widehat{v}_1	\widehat{V}_5	
G = 6													
D1	.91	.93	.93	.94	.96	.94	.95	.96	.96	.97	.94	.94	
D2	.85	.91	.92	.93	.97	.98	.99	.99	.93	.97	.96	.96	
D3	.83	.90	.87	.89	.96	.99	.99	.99	.93	.97	.96	.96	
D4	.89	.91	.91	.91	.95	.91	.94	.94	.95	.95	.95	.95	
D5	.60	.72	.80	.82	.89	.91	.91	.94	.81	.93	.88	.92	
D6	.59	.71	.74	.76	.89	.93	.91	.93	.80	.92	.90	.93	
G = 40													
D1	.94	.94	.95	.95	.95	.94	.95	.95	.95	.95	.95	.95	
D2	.86	.90	.93	.93	.93	.96	.97	.98	.89	.92	.95	.96	
D3	.82	.88	.91	.91	.94	.96	.98	.98	.89	.94	.94	.96	
D4	.93	.93	.94	.94	.94	.93	.94	.94	.95	.95	.95	.95	
D5	.71	.79	.88	.88	.89	.84	.93	.95	.90	.94	.94	.93	
D6	.65	.75	.79	.79	.88	.84	.93	.95	.87	.93	.92	.93	

ruce Hansen (University of Wisconsin)

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > ○ < ○

Model with Noninvertibility

- $\mathbf{Y}_g = \alpha + \mathbf{X}_g \beta + \mathbf{D}_g \gamma + \mathbf{e}_g$
- **D**_g is cluster-level dummy variable
- $\bullet\,$ Confidence intervals for $\gamma\,$

	Conventional t_{G-1}							Adjusted		Boot		Wild	
s.e,	\widehat{v}_1	\widehat{v}_2	v ₃	\widehat{v}_4	\widehat{v}_5	\widehat{v}_6	\hat{v}_2	\widehat{v}_5	\widehat{v}_1	\widehat{v}_5	\widehat{v}_1	\widehat{v}_5	
G = 6													
D1	.64	.66	.68	.68	1.0	1.0	.73	1.0	1.0	1.0	.98	.99	
D2	.64	.66	.66	.67	1.0	1.0	.72	1.0	1.0	1.0	.99	.99	
D3	.60	.64	.68	.69	1.0	1.0	.76	1.0	1.0	1.0	.94	.95	
D4	.71	.75	.76	.77	1.0	1.0	.82	1.0	1.0	1.0	.95	.96	
D5	.66	.70	.72	.73	1.0	1.0	.75	1.0	1.0	1.0	.99	.99	
D6	.71	.77	.79	.80	1.0	1.0	.86	1.0	1.0	1.0	.96	.96	
G = 40													
D1	.28	.28	.28	.28	1.0	.77	.29	1.0	1.0	1.0	1.0	1.0	
D2	.26	.26	.26	.26	1.0	.75	.27	1.0	1.0	1.0	1.0	1.0	
D3	.33	.38	.43	.43	1.0	.74	.43	1.0	1.0	1.0	.85	.88	
D4	.44	.44	.45	.45	1.0	.87	.45	1.0	1.0	1.0	1.0	1.0	
D5	.35	.38	.43	.43	1.0	.79	.39	1.0	1.0	1.0	1.0	1.0	
D6	.50	.58	.60	.61	1.0	.85	.64	1.0	1.0	1.0	.92	.93	

Bruce Hansen (University of Wisconsin)

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > ○ < ○

Summary of Simulations

- For any inference method (conventional, adjusted, pairs bootstrap, wild bootstrap)
 - Coverage is best with jackknife \hat{v}_5
- Conventional jackknife interval with t_{G-1} criticals works reasonably well.
- Conventional standard errors can work poorly.
 - Especially under noninvertibility
- Pairs/wild bootstrap with \hat{v}_5 works well
 - But not better than adjusted intervals
 - Adjusted intervals computationally much simpler!

Summary Recommendation

- In linear regression use jackknife standard errors.
 - > Do not discard noninvertible clusters, rather use pseudoinverse
- Use adjusted student t critical values
 - Developing Stata and R code.
- Be wary when regressors are leveraged
 - Saturated dummy variable models
 - log-normal regressors