Outline

Sources of Return Predictability

Beata Gafka¹ Pavel Savor² Mungo Wilson³

 1 Ivey Business School, University of Western Ontario 2 Kellstadt Graduate School of Business, DePaul University 3 Said Business School, University of Oxford

January 2024

Outline

- Excess (residual) volatility present on N- but absent on A-days
 - variance-in-mean relationship present on A-days
 - reversal present on N-days
- ② Justifies separating predictors into "variance-in-mean" and "reversal" ones
- 3 Why the dichotomy? One (our) answer: disagreement

Excess volatility puzzle (Shiller, 1981) [1]

For efficient markets DDM model to hold:

$$P_t = \sum_{k=1}^{\infty} \gamma^k E_t D_{t+k},\tag{1}$$

where: P_t is time-t real price, D_t is time-t real dividend paid, and γ is a *constant* real discount factor.

Similarly, for detrended¹ time series :

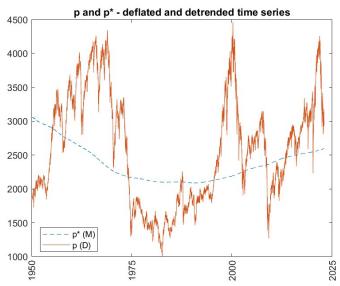
$$\rho_t = \sum_{k=1}^{\infty} \overline{\gamma}^k E_t d_{t+k}, \tag{2}$$

where $\overline{\gamma} \equiv \lambda \gamma$ is the constant discount factor appropriate for the detrended time series of p_t and d_t .

¹restated as proportion of long-run exponential growth factor () + ()

Excess volatility puzzle (Shiller, 1981) [2]

Each of the relationships can be re-written in terms of *ex-post* rational (detrended) price series P_t^* (p_t^*) as the present value of actual subsequent (detrended) dividends:


$$P_t^* = \sum_{k=1}^{\infty} \gamma^k D_{t+k} \qquad \left(p_t^* = \sum_{k=1}^{\infty} \overline{\gamma}^k d_{t+k} \right)$$
 (3)

Subject to the choice of terminal value of the ex-post rational price, p_T^* , the entire time series can be determined recursively by

$$P_{t}^{*} = \gamma \left(P_{t+1}^{*} + D_{t+1}^{*} \right) \qquad \left(p_{t}^{*} = \overline{\gamma} \left(p_{t+1}^{*} + d_{t+1}^{*} \right) \right)$$

and working backwards from the base year.

Excess volatility puzzle (Shiller, 1981) [3]

Q: Are markets excessively volatile on all days?

• Log change in deflated (detrended) fundamental value (FV):

$$Y_{t+1} = log(P_{t+1}^*) - log(P_t^*)$$

$$Y_{t+1} = log(p_{t+1}^*) - log(p_t^*)$$

Does it justify A-day (N-day) price movements?

$$Y_{t+1} = \beta_0 + \beta_1 r A_t + \beta_2 r N_t$$

- Particularly, is $\beta_1 > \beta_2$?
 - $Y_{t+1} = \delta_0 + \delta_1(rA_t + rN_t) + \delta_2(rA_t rN_t)$
 - $\beta_1 > \beta_2$ if and only if $\delta_2 > 0$

Q: Are markets excessively volatile on all days? A: NO! [1]

Forecasting changes in fundamental value using real ex-post rational price P_{t+1}^* as its proxy (FV: 1953 – 2010)

Outline

	$Y_{t+1} = \beta_0$	$+\beta_1 r_t^A$	$+ \beta_2 r_t^N$			$Y_{t+1} = \delta_0 + \delta_1(r_t^A + r_t^N) + \delta_2(r_t^A - r_t^N)$							
β_0	β_1	β_2	Adj.R ²	N		δ_0	δ_1	δ_2	Adj.R ²	N			
		Panel 2A	: Monthl	ly data									
0.003	0.004	-0.003	0.08%	695		0.003	0.001	0.003	0.08%	695			
[31.49]	[0.85]	[-1.37]				[31.49]	[0.26]	[1.30]					
1	Panel 1B:	Quarterl	y data			Panel 2B: Quarterly data							
0.008	0.014	-0.001	0.61%	231		0.008	0.006	0.008	0.61%	231			
[34.61]	[1.81]	[-0.53]				[34.61]	[1.56]	[1.82]					
	Panel 10	C: Annual	data				Panel 20	C: Annua	rly data 0.61% 231				
0.030	0.046	-0.012	3.72%	57		0.030	0.017	0.029	3.72%	57			
[16.02]	[1.70]	[-1.16]				[16.02]	[1.19]	[1.99]					

- N-day price movements are "too big to be justified by future dividends"... [excess vol.]
- ... but A-day price movements are not! [NO excess vol.]

Q: Are markets excessively volatile on all days? A: NO! [2]

Forecasting changes in fundamental value using *detrended* real ex-post rational price p_{t+1}^* as its proxy (FV: 1953 – 2010)

	$Y_{t+1} = \beta_0$	$0 + \beta_1 r_t^A$	$+\beta_2 r_t^N$		$Y_{t+1} =$	$\delta_0 + \delta_1$	$r_t^A + r_t^N$	$+\delta_2(r_t^A -$	$-r_t^N$			
β_0	β_1	β_2	$Adj.R^2$	N	δ_0	δ_1	δ_2	Adj.R ²	N			
	Panel 1A	: Monthl	y data		Panel 2A: Monthly data							
0.000	0.003	-0.002	0.07%	695	0.000	0.001	0.003	0.07%	695			
[-4.34]	[0.83]	[-1.36]			[-4.34]	[0.24]	[1.28]					
	Panel 1B	: Quarter	ly data		F	Panel 2B	: Quartei	ly data				
-0.001	Panel 1B 0.010	: Quarter -0.001	ly data 0.56%	231	-0.001	Panel 2B 0.005	: Quarter 0.006	rly data 0.56%	231			
			,	231			_ •	,	231			
-0.001	0.010	-0.001	,	231	-0.001	0.005	0.006	y data 0.07% 695 y data 0.56% 231				
-0.001	0.010 [1.80]	-0.001	0.56%	231	-0.001	0.005 [1.57]	0.006	0.56%	231			
-0.001	0.010 [1.80]	-0.001 [-0.46]	0.56%	231	-0.001	0.005 [1.57]	0.006 [1.78]	0.56%				

- N-day price movements are "too big to be justified by future dividends"... [excess vol.]
- ... but A-day price movements are not! [NO excess vol.]

Q: Is excess volatility concentrated in N-days?

Realizing that

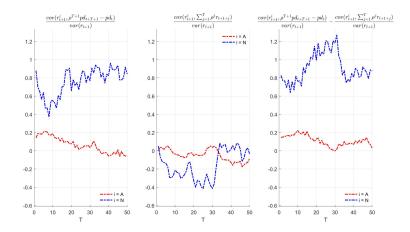
$$r_{t+1} = r_{t+1}^A + r_{t+1}^N$$

and building on the Campbell-Shiller variance decomposition:

$$r_{t+1} = \frac{1 - \rho^{T+1}}{1 - \rho} k + \sum_{j=0}^{T} \rho^{j} \Delta d_{t+1+j} - \sum_{j=1}^{T} \rho^{j} r_{t+1+j} + (\rho^{T+1} p d_{t+T+1} - p d_{t})$$

$$\overline{pd} = E[pd_t] \quad \rho = (1 + \exp(-\overline{pd}))^{-1} \quad k = -\ln \rho - (1-\rho)\ln(1/\rho - 1),$$

we derive the contribution of A-day and N-day returns to the total stock market volatility.


Excess volatility relative to the Div Discount Model

For a high value of T, the share of excess (with respect to DDM) volatility of returns under each regime is given by

$$S_{EV}^{A} = \frac{Cov\left[r_{t+1}^{A}, \rho^{T+1}pd_{t+T+1} - pd_{t}\right]}{Var[r_{t+1}]} - \frac{Cov\left[r_{t+1}^{A}, \sum_{j=1}^{T} \rho^{j} r_{t+1+j}\right]}{Var[r_{t+1}]}$$

$$S_{EV}^{N} = \frac{Cov\left[r_{t+1}^{N}, \rho^{T+1}pd_{t+T+1} - pd_{t}\right]}{Var[r_{t+1}]} - \frac{Cov\left[r_{t+1}^{N}, \Sigma_{j=1}^{T}\rho^{j}r_{t+1+j}\right]}{Var[r_{t+1}]}.$$

Q: Is excess volatility concentrated in N-days? A: YES!

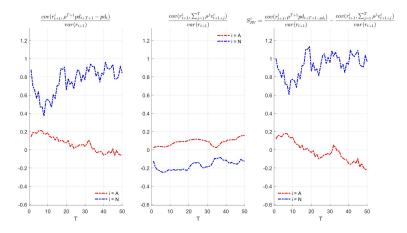
 The excess volatility (relative to the DDM) is almost entirely due to N-day returns.

Residual volatility relative to the Conditional CAPM

- If you believe Conditional CAPM, returns responding to changes in risk-free rates and measures of stock market variance is not *irrational*
- CCAPM benchmark can vary across regimes

$$r_{t+1}^d = r_{t,t+1}^d + \gamma^d Var_t[r_{t+1}] + v_{t+1}^d \quad d = A, N$$

- It's the residual volatility (v_{t+1}^d) that requires explanation.
- Is it (also) concentrated in N-day returns?


Residual volatility relative to the Conditional CAPM

At a high value of T, the share of residual (with respect to CCAPM) volatility of returns under each regime is given by

$$S_{RV}^{A} = \frac{\textit{Cov}\left[r_{t+1}^{A}, \rho^{T+1} p d_{t+T+1} - p d_{t}\right]}{\textit{Var}[r_{t+1}]} - \frac{\textit{Cov}\left[r_{t+1}^{A}, \sum_{j=1}^{T} \rho^{j} v_{t+1+j}^{A}\right]}{\textit{Var}[r_{t+1}]}$$

$$S_{RV}^{N} = \frac{\textit{Cov}\left[r_{t+1}^{N}, \rho^{T+1} p d_{t+T+1} - p d_{t}\right]}{\textit{Var}[r_{t+1}]} - \frac{\textit{Cov}\left[r_{t+1}^{N}, \Sigma_{j=1}^{T} \rho^{j} v_{t+1+j}^{N}\right]}{\textit{Var}[r_{t+1}]}.$$

Residual volatility: A-day & N-day returns

• The residual volatility (relative to the CCAPM) is also almost entirely due to N-day returns.

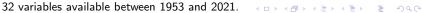
A- and N-day returns – why the difference?

Savor and Wilson (2013) results suggest:

- A-days: variance in mean
- N-days: reversal

This motivates separating predictors into "variance-in-mean" and "reversal" ones.

Variables I


t-bill end price ratio ividend payout ings price ratio t return spread ılt yield spread	Campbell Campbell, Shiller Campbell, Shiller Campbell, Shiller Fama, French Fama, French
ividend payout ings price ratio t return spread ult yield spread	Campbell, Shiller Campbell, Shiller Fama, French
ings price ratio t return spread ult yield spread	Campbell, Shiller Fama, French
t return spread ult yield spread	Fama, French
ılt yield spread	·
	Fama French
	i ailia, i ielicii
ng govt return	Fama, French
long govt yield	Fama, French
term spread	Fama, French
nvstmt/capital	Cochrane
b/m	Kothari, Shanken
sm, wlth, incm	Lettau, Ludvigson
σ^2	Guo
g/consumption	Piazzesi, Schneider, Tuzel
equity issuance	Boudoukh, Michaely, Richardson, Roberts
	Driesprong, Jacobsen, Maat
2	b/m b/m, with, incm σ^2 g/consumption

Continued on next slide

Variables II

OurName	Descr	Authors
GWZ_M_wtexas	oil price changes	Driesprong, Jacobsen, Maat
GWZ_M_{ogap}	prdctn-output gap	Cooper, Priestley
GWZ_M_avgcor	acvg corr stock returns	Pollett, Wilson
GWZ_M_dtoat	to Dow all-time high	Li, Yu
GWZ_M_dtoy	to Dow 52-week high	Li, Yu
GWZ_M_ygap	stock-bond yield gap	Maio
GWZ_M_fbm	b/m x-sect factor	Kelly, Pruitt
GWZ_Q_govik	public sector investmt	Belo, Yu
GWZ_A_gip	yearend econ growth	Møller, Rangvid
GWZ_A_gpce	yearend econ growth	Møller, Rangvid
GWZ_M_{tail}	x-sect tail risk	Kelly, Jiang
GWZ_M_{tchi}	14 technical indicators	Neely, Rapach, Tu, Zhou
GWZ_M_rdsp	stock return dispersion	Maio
GWZ_S_skew	skewness	Colacito, Ghysels, Meng, Siwasarit
GWZ_M_{Izrt}	9 illiq measures	Chen, Eaton, Paye
GWZ_M_skvw	avg stock skewness	Jondeau, Zhang, Zhu
GWZ_Q_pce	consumption/trend	Atanasov, Møller, Priestley

Univariate Regressions I

Outline

$$r_{t+1}^{i} = \alpha + \beta x_{t}, \quad i = (A\&N, A, N),$$

	Qι	ıarterly reti	ırns	A-day	quarterly r	eturns	N-day quarterly returns				
Variable	β	t(β)	R ²	β	t(β)	R ²	β	t(β)	R ²		
	Panel A: Announcement day return predictors										
dfy	1.36	[1.18]	0.1%	0.79	[1.90]	0.9%	0.57	[0.55]	-0.3%		
svar	0.90	[1.94]	1.0%	0.58	[3.54]	4.0%	0.32	[0.76]	-0.2%		
GWZ_M_wtexas	0.02	[0.33]	-0.3%	0.04	[1.77]	0.8%	-0.02	[-0.35]	-0.3%		
GWZ_M_dtoy	-0.14	[-2.05]	1.2%	-0.06	[-2.42]	1.7%	-0.08	[-1.32]	0.3%		

Univariate Regressions II

Outline

$$r_{t+1}^{i} = \alpha + \beta x_{t}, \quad i = (A\&N, A, N),$$

	Quarterly returns			A-day	A-day quarterly returns			N-day quarterly returns		
Variable	β	t(β)	R ²	β	t(β)	R ²	β	t(β)	R ²	
		Panel B:	Non-anno	uncement	day return	predictors	5			
logPD	-0.02	[-1.42]	0.4%	0.00	[0.45]	-0.3%	-0.02	[-1.78]	0.8%	
lty	-0.30	[-1.74]	0.7%	0.01	[0.19]	-0.4%	-0.31	[-2.03]	1.1%	
tbl	-0.38	[-2.39]	1.7%	-0.01	[-0.22]	-0.3%	-0.36	[-2.59]	2.0%	
tms	0.63	[1.78]	0.8%	0.11	[0.87]	-0.1%	0.52	[1.64]	0.6%	
ltr	0.22	[2.40]	1.7%	0.01	[0.30]	-0.3%	0.21	[2.57]	2.0%	
ik	-5.31	[-3.34]	3.6%	0.17	[0.29]	-0.3%	-5.48	[-3.89]	4.9%	
GWZ_M_ogap	-0.31	[-4.25]	5.9%	0.00	[-0.17]	-0.4%	-0.30	[-4.73]	7.2%	
GWZ_Q_pce	-0.47	[-3.49]	4.0%	-0.06	[-1.11]	0.1%	-0.41	[-3.45]	3.9%	
GWZ_S_skew	-0.01	[-1.39]	0.3%	0.00	[0.70]	-0.2%	-0.01	[-1.84]	0.9%	
GWZ_A_gpce	-3.62	[-3.57]	4.2%	-0.28	[-0.76]	-0.2%	-3.34	[-3.70]	4.5%	
GWZ_A_gip	-0.91	[-3.49]	4.0%	-0.03	[-0.32]	-0.3%	-0.88	[-3.80]	4.7%	

Outline

Univariate Regressions III

$$r_{t+1}^{i} = \alpha + \beta x_{t}, \quad i = (A\&N, A, N),$$

	Quarterly returns			A-day	quarterly r	eturns	N-day quarterly returns		
Variable	β	t(β)	R ²	β	t(β)	R ²	β	t(β)	R ²
	Panel C:	Announcer	nent and i	non-annoι	incement d	ay return	predictors		
GWZ_M_dtoat	-0.15	[-2.87]	2.6%	-0.03	[-1.77]	0.8%	-0.11	[-2.49]	1.9%
GWZ_M_avgcor	0.18	[4.17]	5.6%	0.05	[3.00]	2.8%	0.13	[3.41]	3.7%

Univariate Regressions IV

Outline

$$r_{t+1}^{i} = \alpha + \beta x_{t}, \quad i = (A\&N, A, N),$$

	Quarterly returns			A-da	y quarterly	returns	N-day quarterly returns				
Variable	β	t(β)	R ²	β	t(β)	R ²	β	t(β)	R ²		
Panel D: Variables not predicting either announcement or non-announcement returns											
cayGW	-0.03	[-0.23]	-0.35%	0.04	[0.92]	-0.06%	-0.08	[-0.63]	-0.22%		
ntis	-0.25	[-0.99]	-0.01%	-0.04	[-0.39]	-0.31%	-0.22	[-0.95]	-0.04%		
dfr	0.08	[0.40]	-0.31%	-0.04	[-0.54]	-0.26%	0.12	[0.67]	-0.20%		
bm	0.01	[0.26]	-0.34%	0.00	[-0.59]	-0.24%	0.01	[0.53]	-0.26%		
logSP500d12e12	0.02	[1.25]	0.20%	0.01	[1.62]	0.59%	0.01	[0.74]	-0.16%		
logSP500e12p	0.00	[0.26]	-0.34%	-0.01	[-1.34]	0.29%	0.01	[0.83]	-0.11%		
GWZ_M_{lzrt}	-0.01	[-0.51]	-0.27%	-0.01	[-0.91]	-0.06%	0.00	[-0.20]	-0.35%		
GWZ_M_skvw	-0.06	[-0.61]	-0.23%	-0.01	[-0.14]	-0.36%	-0.06	[-0.62]	-0.22%		
GWZ_M_{tail}	0.13	[1.41]	0.36%	0.00	[0.12]	-0.36%	0.13	[1.53]	0.49%		
GWZ_M_fbm	0.02	[0.38]	-0.31%	0.02	[1.06]	0.04%	0.00	[-0.01]	-0.37%		
GWZ_M_ygap	0.01	[0.44]	-0.30%	-0.01	[-1.37]	0.32%	0.01	[1.05]	0.04%		
GWZ_M_rdsp	-0.06	[-0.15]	-0.36%	0.18	[1.21]	0.17%	-0.24	[-0.66]	-0.20%		
GWZ_M_tchi	0.00	[0.46]	-0.29%	0.00	[-0.67]	-0.20%	0.00	[0.79]	-0.14%		
GWZ_Q_govik	0.24	[0.33]	-0.33%	-0.16	[-0.59]	-0.24%	0.40	0.61	-0.23%		
GWZ_A_house	0.60	[1.12]	0.10%	-0.11	[-0.56]	-0.25%	0.71	[1.49]	0.45%		

Possible explanation? Disagreement. I

Building on Andrei, Cujean, and Wilson (2023), we can show:

$$Var_{i,t}[\widetilde{R}_{M,t+1}^e] = Var_t[\widetilde{R}_{M,t+1}^e] - Var_t[\overline{E}[\widetilde{R}_{M,t+1}^e]] - Var_t[E_i[\widetilde{R}_{M,t+1}^e] - \overline{E}[\widetilde{R}_{M,t+1}^e]],$$

where:

 $Var_{i,t}[\widetilde{R}_{M,t+1}^e]$: variance of the market given agent's i information set $F_{i,t}$ $Var_t[\widetilde{R}_{M,t+1}^e]$: unconditional date-t variance $Var_t[\overline{E}[\widetilde{R}_{M,t+1}^e]$: conditional variance of consensus returns $Var_t[E_i[\widetilde{R}_{M,t+1}^e] - \overline{E}[\widetilde{R}_{M,t+1}^e]]$: cross-sectional variance of expected market returns

Possible explanation? Disagreement. II

Suppose a conditional CAPM holds with respect to each agent's information set $F_{i,t}$:

$$E_i[\widetilde{R}_{M,t+1}^e] = \gamma Var_{i,t}[\widetilde{R}_{M,t+1}^e].$$

Then with respect to consensus beliefs:

$$\overline{E}[\widetilde{R}^e] = \frac{1}{N} \sum_{i=1}^{N} E_i[\widetilde{R}^e] = \frac{\gamma}{N} \sum_{i=1}^{N} Var_{i,t}[\widetilde{R}^e_{M,t+1}] = \gamma Var_{i,t}[\widetilde{R}^e_{M,t+1}]$$

Possible explanation? Disagreement. III

Plugging in from the previous slide we get:

$$\overline{E}[\widetilde{R}^e] = \gamma \textit{Var}_t[\widetilde{R}^e_{M,t+1}] - \gamma \textit{Var}_t[\overline{E}[\widetilde{R}^e_{M,t+1}]] - \gamma \textit{Var}_t[E_i[\widetilde{R}^e_{M,t+1}] - \overline{E}[\widetilde{R}^e_{M,t+1}]].$$

- Standard tests for a variance-in-mean relation for market returns include only the first term on the RHS but not the second two.
- In small time intervals (monthly or quarterly data):
 - second term is unlikely to be large
 - third term is likely to be large when there is dispersion of beliefs, and also somewhat variable over time

Crucially for our results: when agents observe dispersed signals $F_{i,t}$ the last term is likely to be much larger than when they observe a common signal.

Dispersion of beliefs

How to measure $Var_t[E_i[\widetilde{R}^e_{M,t+1}] - \overline{E}[\widetilde{R}^e_{M,t+1}]$?

- This is the variance of time-t deviations of brokers' expected returns on the market from the consensus expectation of the return on the market
- We compute it using IBES expected price data; forecast length = 12 months ahead; lookback period = 6 months;
- We focus on brokers covering at least 100 stocks but results are robust to other cut-offs

Results I

Regress returns on market variance and disagreement:

$$r_{t+1}^{type} = \alpha + \beta_1 Var_t[\widetilde{R}_{M,t+1}^e] + \beta_2 Var_t[E_i[\widetilde{R}_{M,t+1}^e] - \overline{E}[\widetilde{R}_{M,t+1}^e]]$$

Panel A: Returns accrued on all days Annual Semiannual Quarterly -0.01 0.16 0.18 0.01 0.07 0.08 0.01 0.03 0.03 α -0.11 1.80 2.49 0.36 2.21 2.45 0.92 1.43 1.41 17.43 58.64 1.24 11.30 -2.57 -1.31 β_1 0.92 3.10 0.21 1.77 -0.96-0.45 β_2 -121.24 -271.91 -58.80 -89.32 -22.30 -19.05 -3.49 -2.19 -2.85 -1.38 -1.62-1.07Ν 38 76 19 19 19 38 38 76 76 $R^{2}(\%)$ -0.918.31 39.08 -2.659.27 14.32 -0.091.18 0.10

Results II

Regress returns on market variance and disagreement:

$$\mathit{r}_{t+1}^{\mathit{type}} = \alpha + \beta_1 \mathit{Var}_t[\widetilde{R}_{M,t+1}^e] + \beta_2 \mathit{Var}_t[E_i[\widetilde{R}_{M,t+1}^e] - \overline{E}[\widetilde{R}_{M,t+1}^e]]$$

	Panel B: Returns accrued on A-days Annual Semiannual Quarterly										
		Annual				Quarterly					
α	-0.01	0.00	0.00	-0.01	0.00	0.01	-0.01	0.00	0.00		
	-0.62	-0.08	0.08	-0.78	0.18	0.47	-1.05	-0.40	-0.33		
β_1	11.88		15.70	5.62		7.72	3.17		3.35		
	1.64		1.67	2.22		2.56	2.76		2.65		
β_2		15.14	-25.21		2.22	-18.63		5.55	-2.73		
		0.48	-0.65		0.17	-1.26		0.75	-0.35		
N	19	19	19	38	38	38	76	76	76		
$R^{2}(\%)$	8.63	-4.49	5.42	9.56	-2.70	11.02	8.09	-0.58	6.98		

	Panel C: Returns accrued on N-days									
		Annual			Semiannua	al		Quarterly		
α	0.01	0.16	0.18	0.02	0.07	0.07	0.02	0.03	0.03	
	0.13	2.15	2.67	0.75	2.28	2.31	1.61	1.85	1.82	
β_1	5.55		42.94	-4.38		3.58	-5.74		-4.67	
	0.32		2.46	-0.80		0.58	-2.53		-1.89	
β_2		-136.37	-246.70		-61.02	-70.69		-27.85	-16.32	
		-2.13	-3.44		-2.44	-2.33		-1.97	-1.07	
N	19	19	19	38	38	38	76	76	76	
$R^{2}(\%)$	-5.26	16.49	35.66	-0.98	11.77	10.11	6.72	3.70	6.92	

Summary

- Develop an approach to determine whether predictors represent proxies for fundamental risk (i.e. linked to new information about economic conditions) or excess volatility
- Show that (with few exceptions) predictors forecast returns on either announcement or non-announcement days
 - Commonly used predictors are not fundamentals-based ...
 - ... but are rather forecasting excess volatility of the market.

References

Daniel Andrei, Julien Cujean, and Mungo Wilson. The Lost Capital Asset Pricing Model. *The Review of Economic Studies*, page rdad013, 02 2023. ISSN 0034-6527. doi: 10.1093/restud/rdad013. URL https://doi.org/10.1093/restud/rdad013.

Pavel Savor and Mungo Wilson. How much do investors care about macroeconomic risk? Evidence from scheduled economic announcements. *Journal of Financial and Quantitative Analysis*, 48(2):343–375, 2013.