# Inference on quantile processes with a finite number of clusters

Andreas Hagemann

Stephen M. Ross School of Business University of Michigan



# (Personal) motivation

■ Uniform inference on quantile treatment effect in Project STAR

# (Personal) motivation

- Uniform inference on quantile treatment effect in Project STAR
- Control units only, no effect, 5% nominal level, 16 clusters

|          | bootstrap     | analy | analytical methods |      |  |
|----------|---------------|-------|--------------------|------|--|
|          | H ('17, JASA) | (1)   | (2)                | (3)  |  |
| % reject | 9.1           | 21.2  | 31.8               | 37.9 |  |

•

# (Personal) motivation

- Uniform inference on quantile treatment effect in Project STAR
- Control units only, no effect, 5% nominal level, 16 clusters

|          | CRK          | bootstrap     | analy | analytical methods |      |  |
|----------|--------------|---------------|-------|--------------------|------|--|
|          | H ('23, JoE) | H ('17, JASA) | (1)   | (2)                | (3)  |  |
| % reject | 4.3          | 9.1           | 21.2  | 31.8               | 37.9 |  |

■ This presentation: **CRK** (cluster-randomized Kolmogorov) test

## **Contribution of this paper**

■ I establish validity of randomization inference with sign changes for quantile-like objects with finitely many large and arbitrarily heterogenous clusters

## **Contribution of this paper**

- I establish validity of randomization inference with sign changes for quantile-like objects with finitely many large and arbitrarily heterogenous clusters
- Includes method to avoid matching clusters as in Canay, Romano, and Shaikh (2017, Ecma)

# Contribution of this paper

- I establish validity of randomization inference with sign changes for quantile-like objects with finitely many large and arbitrarily heterogenous clusters
- Includes method to avoid matching clusters as in Canay, Romano, and Shaikh (2017, Ecma)
- Technical contribution: new results on randomization inference when limiting experiment is vector of heterogeneous Gaussian processes

■ Parameter of interest is quantile or quantile-like scalar function  $u \mapsto \delta(u)$ 

- Parameter of interest is quantile or quantile-like scalar function  $u \mapsto \delta(u)$
- *q* clusters (villages, firms, states)

- Parameter of interest is quantile or quantile-like scalar function  $u \mapsto \delta(u)$
- *q* clusters (villages, firms, states)
- lacksquare  $\delta$  is identified in each cluster separately (for now)

- Parameter of interest is quantile or quantile-like scalar function  $u \mapsto \delta(u)$
- q clusters (villages, firms, states)
- lacksquare  $\delta$  is identified in each cluster separately (for now)
- lacksq q independent estimates  $\hat{\delta}=(\hat{\delta}_1,\ldots,\hat{\delta}_q)$  of  $\delta$

- Parameter of interest is quantile or quantile-like scalar function  $u \mapsto \delta(u)$
- q clusters (villages, firms, states)
- lacksquare  $\delta$  is identified in each cluster separately (for now)
- lacksq q independent estimates  $\hat{\delta}=(\hat{\delta}_1,\ldots,\hat{\delta}_q)$  of  $\delta$
- Want to test  $H_0$ :  $\delta(u) = \delta_0(u)$  for all  $u \in \mathcal{U} \subset (0,1)$ , e.g.,  $\delta_0 \equiv 0$

Notation: experiment with 2q villages, first q of 2q get new technology, predetermined pairs (j, j + q). View pair as cluster.

- Notation: experiment with 2q villages, first q of 2q get new technology, predetermined pairs (j, j + q). View pair as cluster.
- Each pair identifies QTE  $u \mapsto \delta(u) = F_{Y(1)}^{-1}(u) F_{Y(0)}^{-1}(u)$

- Notation: experiment with 2q villages, first q of 2q get new technology, predetermined pairs (j, j + q). View pair as cluster.
- Each pair identifies QTE  $u \mapsto \delta(u) = F_{Y(1)}^{-1}(u) F_{Y(0)}^{-1}(u)$
- Each pair provides separate estimate  $u \mapsto \hat{\delta}_j(u) = \hat{F}_{Y_j}^{-1}(u) \hat{F}_{Y_{j+q}}^{-1}(u)$  of QTE

- Notation: experiment with 2q villages, first q of 2q get new technology, predetermined pairs (j, j + q). View pair as cluster.
- Each pair identifies QTE  $u \mapsto \delta(u) = F_{Y(1)}^{-1}(u) F_{Y(0)}^{-1}(u)$
- Each pair provides separate estimate  $u \mapsto \hat{\delta}_j(u) = \hat{F}_{Y_j}^{-1}(u) \hat{F}_{Y_{j+q}}^{-1}(u)$  of QTE
- Same idea works if we run quantile regressions

- Notation: experiment with 2q villages, first q of 2q get new technology, predetermined pairs (j, j + q). View pair as cluster.
- Each pair identifies QTE  $u \mapsto \delta(u) = F_{Y(1)}^{-1}(u) F_{Y(0)}^{-1}(u)$
- lacksquare Each pair provides separate estimate  $u\mapsto \hat{\delta}_j(u)=\hat{F}_{Y_j}^{-1}(u)-\hat{F}_{Y_{j+q}}^{-1}(u)$  of QTE
- Same idea works if we run quantile regressions
- $\blacksquare$  If q stays fixed but sample grows large, standard asymptotics don't apply

- Notation: experiment with 2q villages, first q of 2q get new technology, predetermined pairs (j, j + q). View pair as cluster.
- Each pair identifies QTE  $u \mapsto \delta(u) = F_{Y(1)}^{-1}(u) F_{Y(0)}^{-1}(u)$
- lacksquare Each pair provides separate estimate  $u\mapsto \hat{\delta}_j(u)=\hat{F}_{Y_j}^{-1}(u)-\hat{F}_{Y_{j+q}}^{-1}(u)$  of QTE
- Same idea works if we run quantile regressions
- $\blacksquare$  If q stays fixed but sample grows large, standard asymptotics don't apply
- $\blacksquare$   $\sqrt{n}(\hat{\delta}-\delta \mathbf{1}_q)$  converges to nice Gaussian process, covariances unknowable

 $\blacksquare g = (g_1, \dots, g_q)$  is operation of attaching + or -, and  $\mathcal G$  set of all g

- $\blacksquare g = (g_1, \dots, g_q)$  is operation of attaching + or -, and  $\mathcal G$  set of all g
- Vector of data  $X = (X_1, ..., X_q)$ , some statistic T(X) like mean or t-stat

- $\blacksquare g = (g_1, \dots, g_q)$  is operation of attaching + or -, and  $\mathcal G$  set of all g
- Vector of data  $X = (X_1, ..., X_q)$ , some statistic T(X) like mean or t-stat
- Ordered values of T(gX) over  $\mathcal{G}$ :  $T^{(1)}(X,\mathcal{G}) \leq \cdots \leq T^{(|\mathcal{G}|)}(X,\mathcal{G})$ .

- $\blacksquare g = (g_1, \dots, g_g)$  is operation of attaching + or -, and  $\mathcal G$  set of all g
- Vector of data  $X = (X_1, ..., X_q)$ , some statistic T(X) like mean or t-stat
- Ordered values of T(gX) over  $\mathcal{G}$ :  $T^{(1)}(X,\mathcal{G}) \leq \cdots \leq T^{(|\mathcal{G}|)}(X,\mathcal{G})$ .
- lacktriangle Classical randomization hypothesis: if  $X \sim gX$  for every  $g \in \mathcal{G}$ , then

$$P(T(X) > T^{1-\alpha}(X, \mathcal{G})) \le \alpha,$$
 where  $T^{1-\alpha}(X, \mathcal{G}) := T^{(|\mathcal{G}|(1-\alpha))}(X, \mathcal{G})$ 

- $\blacksquare g = (g_1, \dots, g_g)$  is operation of attaching + or -, and  $\mathcal G$  set of all g
- Vector of data  $X = (X_1, ..., X_q)$ , some statistic T(X) like mean or t-stat
- Ordered values of T(gX) over  $\mathcal{G}$ :  $T^{(1)}(X,\mathcal{G}) \leq \cdots \leq T^{(|\mathcal{G}|)}(X,\mathcal{G})$ .
- lacktriangle Classical randomization hypothesis: if  $X \sim gX$  for every  $g \in \mathcal{G}$ , then

$$P(T(X) > T^{1-\alpha}(X, \mathcal{G})) \le \alpha,$$
 where  $T^{1-\alpha}(X, \mathcal{G}) := T^{(|\mathcal{G}|(1-\alpha))}(X, \mathcal{G})$ 

■ If X is a stochastic process, then  $X \sim gX$  does not make sense. What now?

5 | 8

(AN)  $\sqrt{n}(\hat{\delta} - \delta 1_q) \rightsquigarrow X = (X_1, \dots, X_q)$  independent Gaussian processes on  $\mathcal{U}$  with continuous sample paths

- (AN)  $\sqrt{n}(\hat{\delta} \delta \mathbf{1}_q) \rightsquigarrow X = (X_1, \dots, X_q)$  independent Gaussian processes on  $\mathcal{U}$  with continuous sample paths
  - Covariances unknown and not assumed to be estimable

(AN)  $\sqrt{n}(\hat{\delta} - \delta \mathbf{1}_q) \rightsquigarrow X = (X_1, \dots, X_q)$  independent Gaussian processes on  $\mathcal U$  with continuous sample paths

- Covariances unknown and not assumed to be estimable
- $T(X) = \sup_{u \in \mathcal{U}} \frac{1}{q} \sum_{j=1}^{q} X_j(u)$ . Have  $X(u) \sim gX(u)$  at every  $u \in \mathcal{U}$ . Is that enough?

- (AN)  $\sqrt{n}(\hat{\delta} \delta 1_q) \rightsquigarrow X = (X_1, \dots, X_q)$  independent Gaussian processes on  $\mathcal{U}$  with continuous sample paths
  - Covariances unknown and not assumed to be estimable
  - $T(X) = \sup_{u \in \mathcal{U}} \frac{1}{q} \sum_{j=1}^{q} X_j(u)$ . Have  $X(u) \sim gX(u)$  at every  $u \in \mathcal{U}$ . Is that enough?
  - Yes! If X is smooth enough to rule out ties and T is a sup-statistic.

- (AN)  $\sqrt{n}(\hat{\delta} \delta 1_q) \rightsquigarrow X = (X_1, \dots, X_q)$  independent Gaussian processes on  $\mathcal{U}$  with continuous sample paths
  - Covariances unknown and not assumed to be estimable
  - $T(X) = \sup_{u \in \mathcal{U}} \frac{1}{q} \sum_{i=1}^{q} X_j(u)$ . Have  $X(u) \sim gX(u)$  at every  $u \in \mathcal{U}$ . Is that enough?
  - Yes! If X is smooth enough to rule out ties and T is a sup-statistic.

#### THEOREM (SIZE)

If **(AN)** holds and  $P(X_i(u) = -X_i(u')) = 0$  for all  $u, u' \in \mathcal{U}$  and  $1 \le j \le q$ , then

$$P(T(\hat{\delta} - \delta \mathbf{1}_q) > T^{1-\alpha}(\hat{\delta} - \delta \mathbf{1}_q, \mathcal{G})) \to P(T(X) > T^{1-\alpha}(X, \mathcal{G})) \le \alpha$$

■ Draw treated and control cluster matches so that each cluster is used only once. Randomize and repeat many times.

- Draw treated and control cluster matches so that each cluster is used only once. Randomize and repeat many times.
- $T(X) > T^{1-\alpha}(X, \mathcal{G})$  if and only if p-value  $p(X, \mathcal{G}) \leq \alpha$

- Draw treated and control cluster matches so that each cluster is used only once. Randomize and repeat many times.
- $T(X) > T^{1-\alpha}(X, \mathcal{G})$  if and only if p-value  $p(X, \mathcal{G}) \leq \alpha$
- Take average p-value  $\bar{p}$ , satisfies Rüschendorf's inequality asymptotically

/

- Draw treated and control cluster matches so that each cluster is used only once. Randomize and repeat many times.
- $T(X) > T^{1-\alpha}(X, \mathcal{G})$  if and only if p-value  $p(X, \mathcal{G}) \leq \alpha$
- Take average p-value  $\bar{p}$ , satisfies Rüschendorf's inequality asymptotically

#### **THEOREM (SIZE)**

Under slightly strenghted conditions,

$$\limsup_{n\to\infty} P(\bar{p} \le \alpha/2) \le \alpha$$

■ Test have local and global power, explicit lower bounds on local power

- Test have local and global power, explicit lower bounds on local power
- More complex quasi-experimental setups

- Test have local and global power, explicit lower bounds on local power
- More complex quasi-experimental setups
- What if # of treated and untreated clusters not equal?

- Test have local and global power, explicit lower bounds on local power
- More complex quasi-experimental setups
- What if # of treated and untreated clusters not equal?
- **■** Thank you!