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Contaminated Control Variables
in 2SLS Models

Abstract

Despite guidance in the theoretical literature that there needs to be as many exogenous instruments
as endogenous variables for identification when using 2SLS, many papers in empirical finance in-
strument only the key variable of interest but then include, as though exogenous, an assortment
of control variables that may themselves also be endogenous. We discuss the tradeoff between
the omitted variable bias associated with not including these variables versus the bias created by
including endogenous control variables. We suggest a new diagnostic test when thinking about
this tradeoff in a 2SLS setting and suggest a way to calculate the maximum possible bias in the
coefficient of interest coming from the control variables. Using simulated data and an empirical
example from the diversification discount literature, we show how the new test and bias calcula-
tions can help researchers better understand and troubleshoot their 2SLS models.
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1 Introduction

In the presence of endogeneity it is challenging to identify the causal effect that a key variable of
interest has on a specific outcome. A common empirical approach in this setting uses instrumental
variables in two-stage-least-squares (2SLS) models to address the endogeneity. Standard practice
often leads researchers to include an assortment of control variables in addition to the key variable
of interest on the right-hand-side of the equation to mitigate the potential for omitted variable bias.
The instrument(s) are typically well motivated in the various papers’ discussions of the relevancy
and exclusion conditions insofar as the instrument(s) relate specifically to the key endogenous
variable of interest and the error term. But, in almost all of these papers, minimal consideration
is given to the possibility that the other control variables might also be endogenous and hence
also correlated with the error term. This ignored correlation—what we are calling contaminated
controls—can have a direct and strong effect on the researcher’s ability to draw inference from the
2SLS results if the endogenous control variables are also correlated with the instrument(s) used
with the key variable of interest.

The idea that endogenous control variables create problems for identification is not new. The
theoretical literature and various econometric textbooks clearly indicate that there needs to be at
least as many excluded instruments as there are endogenous variables in order for the parameters
in a system to be identiﬁedE] But it is clear from a survey of even recent empirical work that
there is ongoing disagreement in practice about how best to operationalize this point with many
researchers either including multiple control variables in 2SLS models with minimal discussion of
their potential endogeneity or other researchers simply dropping the control variables altogether.
Indeed, of the approximately 400 papers using 2SLS models we surveyed in the Journal of Finance,
Journal of Financial Economics, and the Review of Financial Studies from 2010 - 2023 almost

70 percent of them provide minimal or no discussion of the potential endogeneity of the control

IFor examples of several textbooks and papers that discuss this point see chapter 5 of Wooldridge (2002), chapter
8 of |[Davidson and MacKinnon| (2004)), Murray| (2006)), or section 3 of Roberts and Whited| (2012).



variables or simply assert that the controls are exogenous without any supporting discussionEI Of
the remaining 30 percent, most of these papers either don’t tabulate the first-stage results or appear
to simply drop all control variables from both stages. Thus, while the ideal is clearly to have at least
as many excluded instruments as there are endogenous variables, the challenge in finding even one
good instrument is apparently leading empirical researchers to compromise with a narrow focus on
the key variable of interest while ignoring the effects that the other potentially endogenous control
variables might have on the inference around the key variable of interest.

The above discussion highlights several questions that empirical researchers using 2SLS con-
front. For example, if the research focus is on one key variable of interest and there exists both
a strong instrument for that specific variable as well as a set of potentially endogenous control
variables that might also relate to the outcome of interest, is the researcher better off estimating the
overall 2SLS model with or without the other control variables®| What effect does the inclusion
of the other endogenous control variables have on the 2SLS estimate of the key variable of interest
given a strong instrument for that one variable that itself is not correlated with the error term? Is
it possible to quantify the potential bias in the estimated marginal effect of interest coming from
the inclusion of specific control variables? Is there information to be gained by estimating the key
2SLS result both with and without the other control variables in the system and then comparing
the results? If so, then what does the comparison reveal? Is there a statistical test that reveals
whether specific control variables are endogenous and might be affecting the inference around the
key variable of interest Is there a cost to using multiple instruments in an overidentified system

if some of the instruments are correlated with the control variables? And, if more than one strong

The set of papers using 2SLS in these journals were identified using Google Scholar searches and the following
search strings: “two-stage”, “two stage”, “first-stage”, “first stage”, “2sls”, “tsls”, “exclusion”, and “instrument(s)”.
This set of papers was then reviewed in more detail to ensure the paper used 2SLS. Not every paper that used these
terms reported first-stage results or tabulated all of the control variables. Thus the summary numbers and percentages
reported above are approximate based on the information provided.

3Note that this question is not about whether to drop the control variables from the first stage alone. Rather the
question is about whether to drop the potentially endogenous control variables from the overall system of equations.

“Note that this question is not about whether the key variable of interest is endogenous. Rather it is about whether

or not a control variable in the system might be creating bias in the 2SLS estimate for the key variable of interst.



instrument is available, but different instruments lead to different inferences for the key variable
of interest, how should one decide which instrument should be used? Given that literally hundreds
of papers at top finance journals have used 2SLS methods in recent years combined with (1) the
widespread lack of consideration of the potential endogeneity of the control variables, (2) the im-
plicit disagreement in practice evidenced by the existence of many recent papers that either include
or exclude the control variables from the analysis, and (3) the common use of multiple instruments
in overidentified 2SLS systems, there is obviously a need in the literature for a paper that discusses
the exact tradeoffs involved in these decisions and provides clear practical advice for empirical
researchers.

Our paper adds to the literature by addressing these questions and makes several contributions.
First, we draw attention to a common problem affecting inference with 2SLS that has been largely
ignored in recent empirical work. Given the prevalence of this problem, with literally hundreds of
recent examples in top journals, a discussion of the issues and consequences of the inclusion or ex-
clusion of contaminated controls for inference with 2SLS seems important. In exploring this issue
we provide intuition from both analytical expressions for the bias related to endogenous control
variables as well as simulation exercises. Second, we propose a new diagnostic test that allows re-
searchers to directly test whether the contaminated controls problem might exist in their data. Thus,
unlike the exclusion condition, which is not directly testable, it is possible to ascertain whether the
inclusion of specific endogenous controls might be affecting the key estimate in specific models.
As part of this discussion we also provide a formula for the maximum possible bias (MPB) in
the main coefficient of interest coming from each endogenous control variable. The combination
of the new statistical test together with the new MPB calculation will not only help researchers
better understand how robust their 2SLS inferences are for their main variable of interest but will
also direct their attention to which specific control variables need further consideration. To our
knowledge, we are the first to propose both the test and the MPB calculations when thinking about

inference in a 2SLS system. Third, using simulation studies we address the question of whether the



key 2SLS estimate is better estimated with or without the inclusion of the potentially endogeneous
control variables. Although not contended in theory, this question is clearly contended in practice
given many recent examples of papers that either include or drop the control variables. As part of
this discussion we explore practical suggestions for what to do if the control variables are contam-
inated and show how using multiple instruments can lead to bias if some are correlated with the
other control variables. The ability to test for possible contaminated control bias and to estimate
the maximum size of the bias as a function of specific instruments and control variables provides
a new and detailed way to evaluate which among several instruments in an overidentified system
are likely providing the least biased 2SLS estimate for the key variable of interest, provides an
explanation for why different instruments that are each “strong” may sometimes point to different
2SLS results, and it highlights a potential issue with using an overidentified model-as is common
in practice if the researcher has more than one instrument—if one of the instruments is strongly
correlated with the control variables.

In addition to the analytical and simulation-based results, we also provide an empirical example
of our test based on a paper from the diversification discount literature published in the Journal of
Finance. For this example, we first show 2SLS results using our sample that are similar to results
published in the earlier paper suggesting that firms with multiple divisions experience a valuation
premium rather than the diversification discount commonly reported in this literature. We then
show that this unexpected result can be explained by the contaminated controls in the model and
that using the diagnostic test and MPB calculations proposed in this paper would have identified
the issue. We then use this example as the basis of a discussion for how researchers can explore
their 2SLS results if they find possible evidence of contaminated control bias.

The paper is organized as follows. In Section 2] we describe the 2SLS estimator under ideal
conditions and then provide a detailed description of how the inclusion of endogenous control vari-
ables affect these estimates. In Section (3| we propose a test for contaminated controls, and derive

the relevant distribution for the test statistic. As part of this discussion we show the magnitude of



the problem using simulated data. In Section 4|, we suggest a way to calculate the maximum pos-
sible bias that can occur in the key variable of interest due to the observed correlations. In Section
[5] we run a series of simulations to validate the proposed test, and show the effect of contaminated
controls on 2SLS estimates of the key variable of interest. In Section, [6] we present an empirical

example to illustrate the use of our test and the expression for the bias. In Section [/, we conclude.

2 OLS and 2SLS estimates

To facilitate the discussion of how contaminated control variables affect 2SLS estimation, it is
helpful first to briefly review the equations involved. In this section, we start with a general regres-
sion model and show the form of the bias created when using OLS to estimate marginal effects in
the presence of endogeneity. The setting we consider is general and could be motivated using omit-
ted variables, measurement error, or simulteneity (e.g., see discussion in section 4.1 Wooldridge
(2002)). For our purposes we model the endogeneity as coming from an omitted variable in the
discussion below. After showing the omitted variable bias in an OLS setting, we show the form
of the bias in a 2SLS setting and demonstrate how the 2SLS bias is affected by the inclusion of

endogenous controls. Finally, we present the relevant expressions for the general case of endo-

geneity

2.1 Bias in OLS estimates

Suppose we are interested in explaining the effect that a particular explanatory variable x| has on

the outcome of interest y. Assume the data generating process for y is a function of xp, x, and x;,

SThroughout this paper, when we use the term bias, we are referring to the asymptotic or large sample bias,
computed using the probability limit of the estimator. We note that 2SLS estimators are known to be biased in finite
samples but can be consistent in large samples (e.g., see |Angrist and Krueger| (2001) and chapter 5 of Wooldridge
(2002)). Hence the focus in the literature on the large sample properties of 2SLS estimators.



as shown in equation |1{ with E(u|x},x2,x,) = 0.

y:B0+ﬁ1xl+B2x2+ﬁmxm+u (D

As is common in empirical research, assume the data generating process is only partially ob-
servable with x,, being omitted in this example. Thus the estimable model has an error term,
w = Buxm + u.

y=PBo+Bixi+Boxa+w (2)

The OLS estimate of B is biased and inconsistent if E(w|x1,x3) # 0. In a multivariate setting,
the formula for the OLS estimate of 3; measures the partial effect that x; has on y after netting
out x,. By application of the Frisch-Waugh-Lovell theorem the OLS estimate of 3, is equivalent
to a regression of y* on xj, which represent the residuals from regressions of y and x; on the other
explanatory variables from the model (in this case just x;), respectively. ﬁ Thus x7 is xy after
partialling out the effects of the other control variables; xj is the portion of x; uncorrelated with
the other control variables; y* is the portion of y uncorrelated with the other control variables (not
including the key variable of interest x1). Substituting the full model for y, from equation[I] into the
ﬁl formula highlights the factors that affect the bias in the OLS estimate as shown in the equations
below. We will use this “double residual regression” notation for the coefficients throughout the

paper because this approach lends itself to intuitive analytical expressions for the bias that exists

For a more detailed discussion of the multivariate OLS coefficient formula and the Frisch-Waugh-Lovell theorem
see|Wooldridge|(2003) pages 78-79, Davidson and MacKinnon|(2004) section 2.4, |Greene| (2003)) page 27, and |Lovell
(1963). Using an astericks to identify the residual is similar to the notation used by Greene but written without the
matrix notation. See Greene pg 27 for a matrix version of this formula. This idea is sometimes discussed as “the
double residual regression” (e.g., see section 17.3 in|Goldberger| (1991) for example).



in the key 2SLS coefficient of interest.

cov(x},y*) B cov(x},y)

plim 31,0LS =

var(xt)  var(x})
_ Bicov(x],x1) + Bacov(x],x2) + B3cov(xy, xm) + cov(xy, u)
B var(x})
cov(x7,x
= B+ S ) 3)
var(x})
bias

The OLS omitted variable bias is a function of 3 factors: (1) the marginal effect of the omitted
variable f3,,, (2) the covariance of the omitted variable, x,,, with the portion of the key variable of
interest that is uncorrelated with the other controls, and (3) the variance in xj. Intuitively, the size
of the bias is increasing in the magnitude of the omitted marginal effect and in the covariance of
the partial effect of the variable of interest with the omitted variable. The bias can be either positive
or negative depending on the sign of the omitted marginal effect and the covariance between the

variable of interest and the omitted variable.

2.2 Bias in 2SLS estimates with one control and one instrument

Empirical researchers often rely on instruments in a 2SLS framework to address the omitted vari-
able bias. The first stage in the 2SLS model is a regression of the endogeneous variable of interest

x1 on the instrument z and control variable x;. From this, we compute the fitted values x;.

X1 =Y+Nz+Yx2+te

1=+ Nhzt+px 4)

"In simplifying the ﬁl expression, cov(xj,x2) = O given that the residuals x] are orthogonal to x»,
cov(xy,x1)/var(x}) = 1, and cov(x},u) is assumed to be 0 given that E(u|x1,x2,X,) = 0.



The second stage in 2SLS is a regression of y on X1 and x;.

y=Po+ i1+ Poxa +v (5)

The theoretical literature is clear on the conditions required for the 2SLS estimate of f; to
be consistent. These conditions are discussed in econometric textbooks (e.g., see Wooldridge
(2002), |Angrist and Pischke (2009)) as well as in various well-known papers (e.g., see |Bound
et al. (1995), |Angrist and Krueger| (2001)), Murray| (2006), and Roberts and Whited| (2012)) and
typically focus on the relevancy and exclusion conditions. The relevancy condition requires that
the instrument (strongly) correlate with the endogenous variable after controlling for the effects of
the other variables, i.e §; # 0 in the first stage equation. The exclusion condition requires that the
first stage regressors (the instrument and control variable) not be correlated with the error term,
that is, cov(z,v) = 0 and cov(x,,v) = 0. The exclusion condition is not directly testable and hence
is motivated based on logic and theory. The relevancy and exclusion conditions together ensure
that the E(v|£1,x2) = 0 in the second stage model.

Most of the empirical papers we surveyed in top finance journals in recent decades tend to
discuss the exclusion condition solely in terms of whether the instrument for the key variable of
interest is correlated with the error term, and not whether the other controls may also be correlated
with the error. We will refer to this as the “narrow exclusion restriction” (i.e. cov(z,v) = 0) to
distinguish it from the complete set of exclusion conditions noted in the econometric textbooks
and methodology papers. A researcher’s empirical focus is often on a single key variable of inter-
est, and most of the papers we surveyed discussed endogeneity and instrument(s) in terms of the
focus variable only while the rest of the variables are carried along as “controls” without careful
consideration of their potential correlation with either the error term or with the instruments. In-
deed, of the almost 400 papers that use instrumental variables with 2SLS in the Journal of Finance,

the Journal of Financial Economics, and the Review of Financial Studies between 2010 and 2023,



a large majority of them include various control variables with minimal or no discussion of the
potential endogeneity of the control variables.

The potential bias due to endogeneity in the 2SLS estimate of f3; is of similar form as in
Equation [3| but with both %; and £] used in place of x; and x]. Consistent with the astericks
notation used above, £] represents the portion of X; uncorrelated with the other controls.

o
plim B 215 = %

_ Bicov(£],x1) + Bacov(X],x2) + Bucov(R], xm) + cov(£}, u)
var()?’f)

cov(X},xp)

=Pi+Bn— (6)

var(X7)
bias

Given the widespread inclusion of other control variables in 2SLS models in the literature
without corresponding discussion of the control variables’ potential correlation with the error term,
a common implicit assumption in the literature must be that if an instrument z for the key variable
of interest x| satisfies the narrow exclusion condition, i.e. if cov(z,v) = 0 or cov(z,x,,) = 0, then
cov(X7],x,) = 0. But this is not necessarily true. Indeed, in the discussion below we show that even
if the narrow exclusion condition is satisfied with the cov(z,v) = 0 the bias in the main variable of
interest can be non-zero if the controls are endogenous. In the above expressions, £7 is the residuals
from the regression of £; on the control variables (i.e., x; in this example), and hence is orthogonal
to whatever control variables are included in the model. The relation between X and £] is shown

below for a model with a single control variable x,.

X1 =)»1+12)C2+5

= 11 + izXz —I—ff (7)
To facilitate understanding for how the 2SLS bias in Equation [6]is directly affected by endoge-

10



nous controls we rewrite ] as a function of the control variable x, and instrument z. To do this we

set the two expressions for £; from Equations [4]and [7|equal and solve for £7.

W+ P12+ foxz = A + hoxy + £

=00 —M)+ Nzt (B —)x (8)

We now substitute Equation [§] into Equation [6] to show how the 2SLS bias is affected by en-

dogenous controls — even in the case that the cov(z,x,,) = 0.

oA cov(X7,x
plim By o525 = B1 + ﬁmM

var(%7)
cov(Nz,x . A cov(xp,x
= B+ B ST (g ) V82 ) ©)
var(X7) var(%7)
bias ;eflated bias rt;lrated to

to the narrow endogenous controls
exclusion condition

The bias in the 2SLS estimate is a function of several factors: Focusing on the narrow exclusion
condition related term, the bias is increasing in the magnitude of the covariance of the instrument z,
with the the omitted variable x,,. Focusing on the relevancy condition, the size of the denominator
in the bias expression is increasing in the strength of the instrument. To see this note that the
var(£]) = cov(%],x1) = cov(f(z),x1). Thus the size of the denominator in the bias expression is
increasing in |(cov(z,x1)|. The second term on the right side of Equation [9] shows mechanically
how both the exclusion and relevancy conditions affect the bias with weak instruments causing
the denominator to be close to 0, and exclusion condition violations causing the numerator to
be far different from zero. The last term in Equation [9] shows how the bias is also related to
the covariance of the control variables with the omitted variable and hence highlights the cost of
including endogenous control variables in a 2SLS model. Like the bias that comes from violations
of the narrow exclusion condition, the bias in the key coefficient of interest that comes from the

inclusion of endogenous control variables is also exacerbated by weak instruments.
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There are two situations where the bias in Bl,ZSLS from the control variables will be zero.
The first situation occurs if the control variables are exogenous and hence cov(x,x,,) = 0. This
outcome is not testable for the same reason that the exclusion condition is not testable: x;, is not
observed. In contrast, the second situation is empirically testable and occurs when cov(z,x;) = 0;
when the instrument is not correlated with the control variable, $» = 4> in Equation @, causing the
last term in the bias expression to be zero. Researchers can check whether their key estimate is
possibly affected by endogenous control variable bias by checking whether ({» — /ﬁtz) is close to
0. The new diagnostic test we propose in this paper is based on this intuition. If this difference
is close to zero then the bias from the contaminated controls is small. In Section 3l we discuss the

details of how to use this difference as a diagnostic test for contaminated control bias.

2.3 Bias in 2SLS estimates with multiple controls and instruments

We now generalize the results to the case of multiple control variables and instruments. In the
case of multiple instruments, we assume again that x; is the key variable of interest and is the
only variable being instrumented in a first stage equation. Suppose we have a vector of J controls
x2 = (x21,...,xy)" and K instruments z = (z1,...,zx)". Let B2 = (Ba1,-..,B2y). Generalizing

Equations [[]and 2] the data generating process and estimable model are given by:

y = PBo+ Bix1 + B2 + Buxm +u

y=Bo+Bixi +Box2+w (10)

Let A2 = (A21,.--,420), v2 = (%21,-- -, 1), and v1 = (Y11, - - -, Yik)'- Generalizing equations

12



and[5] the first and second stage estimates are given by:

X1 =Y%+y12+v5w2+e
£1 = +12z +Ao2

y=Bo+ Bif1 +Box2+v (11)

Generalizing Equations and we solve for £7. Note that £] now partials out the effects of all

control variables ax2.

X =;LI+A'2332+§
= Zl —+ 5\/25132 +)?T
A%k

o+ 412 + Ao = At + Npxo + £

5 =—A) +Az+ (G2 — A2) x2 (12)

Generalizing Equation [9] the expression for the bias is given by:

cov(X],Xm)

Biasts = P14+ Bn——n—
var(%})

bias

cov(,z,x3) o ycov(xa,xy)

=Bi+Bn— o B (Y2 —A2) — 13)

var(x}) var(£})

bias ;erlated bias rf?lrated to

to the narrow endogenous controls

exclusion condition

Thus the overall bias in the ; estimate coming from endogenous controls can come from as
many channels as there are control variables, with some channels potentially increasing whereas
others potentially decreasing the overall bias. Being able to test whether bias in the key variable
of interest might be coming from each of the control variables could be useful in understanding

the model. Alternatively it may be useful for applied researchers to perform a single test of the

13



net effect of all the control variables together. Either can be accomplished by testing whether the
difference (§2 — 5\2) is close to zero using a Wald test, with varying restrictions depending on the
set of control variables to be tested. We note that this test is for a necessary condition for bias from
contaminated controls and not for a sufficient condition; i.e, showing the difference is statistically
different from zero signals that there may be contaminated control bias in the 2SLS estimate of
interest whereas showing that the difference is not statistically different than zero indicates that
there is negligible bias from the control variables even if they are also endogenous. Later in the

paper we provide an analytical expression for the maximum possible size of this bias.

2.4 Bias in 2SLS estimates with no control variables

The implication from the above discussion is that even if an instrument is strongly correlated with
the key endogenous variable of interest and even if the instrument itself is not correlated with
the error term, the inclusion of other endogenous control variables in the system can cause the
2SLS estimate for the main variable of interest to be biased. Given the widespread inclusion of
potentially endogenous control variables in 2SLS specifications even in recent applied work in top
journals, this point has not been fully appreciated in the empirical literature.

One natural reaction to the prior discussion is to drop the potentially endogenous controls from
the model. This can lead to other problems. The tradeoff is that dropping the controls can lead to
omitted variable bias but including them leads to contaminated control bias that is exacerbated by
weak instruments. This issue is contended in practice with some researchers actively advocating
the inclusion of as many controls as possible whereas others implicitly disagreeing with this logic
by showing their results without controls. So the question we consider in this section is if the
control variables are possibly endogenous, then is it better to drop the controls from the 2SLS
system?

We derive the analytical expression for the bias when the control variable is dropped, beginning

with the case of a single control variable. Omitted variable bias is driven by the correlation between

14



the fitted values (X; — now estimated without controls) used in the second stage model and the error
term which now includes the effects of the omitted controls. Because the second stage model is
now estimated without control variables, the 31 expression from Equation@would include X rather
than )?*1‘ Unlike ff which is orthogonal to x,, X1 can be correlated with x,, which is now part of

the second stage error term. The expression for the bias is given by:

cov(R1,y)

var(xy)
_ Bicov(x1,x1) + Bacov(Xy,x2) + Bucov(Er, xm) 4 cov(Xy, u)
B var(%;)

plim By o575 withourx, =

cov(X1,x cov(X1,Xx
= By 4 L T) | g coV(Er, ) (14)
var(%) var(%)

bias

If the narrow exclusion restriction is satisfied, the last term is zero. The second term is zero
only if x, is uncorrelated with the instrument z in which case x| would be uncorrelated with x;.
Comparing the bias expressions in Equations[9]and[14] dropping the controls from the 2SLS system
of equations does not guarantee in any way that the 2SLS estimate will be less biased without the
endogenous controls than it is with the endogenous controls in the model. Indeed, without knowing
the signs or sizes of By, cov(X1,xm), cov(1z,Xm), and cov(xz,x,), all of which are unobservable, it
is impossible to know whether dropping the endogenous control variable(s) results in an increase

or decrease in the overall bias.

cov(Viz,x A cov(xy,x cov(X1,x cov(X1,Xx
B cov(iz, n) - ) + B (o — lz)—( 21* n) versus [32—( L 2) m—( L n) (15)

var(x7y) ar(x7y) var(%;) var(x)

bias including\crontrol variable bias not includir?gr control variable

It is worth noting that if both the narrow exclusion condition holds (or is almost satisfied) for
the instrument on the key variable of interest and (» — iz) is close to zero then the overall bias
is likely smaller in the 2SLS estimate with controls than in the estimate without controls. It is

also worth noting that one cannot conclude that the 2SLS estimate for f3; estimated with controls

15



is biased based simply on whether the 2SLS estimate changes after dropping the controls from
the system because the resulting change could be entirely attributable to omitted variable bias
associated with the dropped variable(s) which were accounted for when the controls were included
as part of the model but are not accounted for when estimating the model without controls. In the

case of multiple control variables and instruments, Equations [14] and [I5] generalize to:

. A cov(X1,xo cov(X1,Xx
plim f1 525 wirhoutws = B + B2 ( " ) B ( . )
ar (%) var(X1)
bias
cov(¥z,xm) .o ycov(xza,xy) , cov(R1,x2) cov(X1,Xm)
Bn———a +Bu (2 — A2) ——— - versus (35 = m - (16)
var(X7) var(x7) ) var(%) var(%;) )
bias including zgntrol variables bias not includingcontrol variables

It is possible for individual control variables to have opposite effects on the bias for estimates
with and without control variables. As in the single control variable case, if the narrow exclusion
condition holds for the key variable of interest, and (%2 — 5\2) is close to zero, the bias is likely

smaller in the 2SLS estimate with controls than in the estimate without controls

2.5 Bias for the general case of endogeneity

In this section, we derive the expressions for the general case of endogeneity, rather than the
specific case of omitted variable bias. In the case of a single control variable, suppose the data

generating process is given by Equation 2} where the error term w is potentially correlated with the
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x1 and x;. Generalizing Equation[9} the bias is given by:

oA cov(XT,w
plim By 2515 = 1 + covldi, )

var(%7)
bias
cov(f1z,w) .2 cov(xa,w)
= —_—r — ) ———= 17
Bi + var (@) +(h—A2) var(E) (17)
bias ;glated bias reTated to
to the endogenous controls

exclusion condition

With multiple control variables and instruments, suppose the data generating process is given
by Equation where the error term w is potentially correlated with the x; and x5. Generalizing
Equation [I3] the bias is given by:

N cov(X7,w
plim B 2515 = B1 + covlfy, w) L )
var(x})

bias
B+ cov(¥yz,w) (A —A ),cov(acz,w) (18)
s var(%}) 2T A2 var(%7)
bias ?{gated bias rglzted to
to the endogenous controls

exclusion condition

The relevant statistic for testing the impact of the endogeneous control variables is the same
as when we derived the expressions for the specific case of omitted variable bias. Last, we derive
the expression for the bias with and without control variables for the general case of endogeneity.

Generalizing Equations [I5]and [T6}

cov(fiz,w) . cov(xa,w) cov(®1,x2)  cov(Xy,w)

— X)) —————= versus 19
. var(x7) +(h—4) var(x7) . versus. B var(X}) var(X}) ) (19
bias including‘crontrol variable bias not includir?gr control variable
cov(Fyz,w) .« cov(xa,w) , cov(R1,x2)  cov(Xy,w)
— t — —————= versus 20
var(x}) (52 = A2) var(%7) P2 var(X;) var(%;) 20
bias includingzgntrol variables bias not includin?g,control variables
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3 Testing for contaminated controls

In this section, we present our proposed test of contaminated controls, and derive the relevant test
statistic. Our test is motivated by expressions for the bias derived in the previous section. The test
is related to the concept of coefficient stability, i.e. the effect of the inclusion of instruments on
first stage control variable coefficients in the first stage regression. In related work, Altonji et al.
(2005) and |Oster (2019) propose methods to estimate omitted variable bias based on coefficient
movements after the inclusion of control variables in OLS regressions. Our test differs, in part, in
that it examines coefficient stability in the first stage regression of a 2SLS system.

We begin with the case of one control variable and one instrument. We then proceed to the
general case of multiple control controls. The test statistic focuses on the quantity (» — ;12) from
Equation@ or (2 — 5\2) from Equationif there are multiple control variables, and tests whether
this term is significantly different from zero. Under the null hypothesis, the expression is equal to
zero and there is no contamination control bias in the estimate for the key coefficient of interest. If
the null hypothesis is rejected, the term is different from zero, suggesting contamination, and the

possibility of bias coming from endogenous control variables.

3.1 One control and one instrument

We need the distribution of ({» — iz) to be able to determine whether the difference is statistically
different from zero. To find the distribution of (}» — ;12) we need an estimate of the covariance
between }» and 2>. This can be derived by estimating the coefficients jointly, using a modified
version of the technique of seemingly unrelated regressions (SUR) of Zellner (1962). The SUR
setup consists of a set of independent regression equations with correlated error terms. While the
equations can be estimated independently using OLS, the original SUR method proposes estimat-
ing the regression equations jointly using feasible GLS to get more efficient parameter estimates.

For our purposes, both 4, and 2, can be viewed as OLS parameter estimates of two regression
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equations with correlated error terms. The correlation structure between the error terms can be
derived analytically, allowing us to obtain the joint distribution of 9% and 2>. Thus, we employ the
SUR setup, but estimate the regressions individually by OLS.

First, in the case of one instrument and one control variable, we note that the OLS estimate
2> can be computed by regressing x; on x; and a constant, rather than by regressing X; on x; and
a constant. Let é denote the residual from the first stage regression, as per Equation {] so that
x1 = X1 +é. The two approaches are numerically identical since é is orthogonal to x;. To derive
the correct distribution of 12, we use x| rather than X; as the dependent variable. Using X; removes

variation from the residual and results in standard errors that are too small.

Cov(x1,x2)  Cov(%1+é,x2) Cov(k1,x2)

lim A, = = = 21
pHm /2 Var(x;) Var(x;) Var(xy) 1)
The SUR model stacks the observations of two regressions, and is set up as follows:
10
N
Xq 1 z x» 0 O e
- 7|+ 22)
X1 00 0 1 x £
A
_2/2_

Suppose N is the sample size. Let X denote the matrix consisting of the observed data as per
the model above, where the first N rows of X correspond to the first regression, and the second N

rows to the second regression. The covariance matrix of the OLS estimates X is given by:

r=(X'X)'x'ox(x'x)"! (23)

Assuming that the errors in each regression are homoskedastic, letting Iy denote the identity
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matrix of order N, and noting that Cov(e,€) = Var(e)ﬂ

o_ Var(e)Iy  Cov(e,€)ly _ Var(e)Iy Var(e)Iy o4

Cov(e,e)ly Var(e)ly Var(e)l, Var(e)ly

Let £ denote the estimated covariance matrix, computed as the sample analog of X. Using a
Wald test, under the null hypothesis that 15 = A,, the test statistic follows a chi-square distribution

with one degree of freedom.

(RO)(RER)'(RO) ~ x*(1)
0= (0,71, %, A1, 42’

R [0 010 —1] (25)

3.2 Multiple controls and instruments

We now derive and present the test statistic for multiple controls and instruments. Generalizing

Equation 22} the two stacked regressions are as follows:

0
gat
X1 1 2z, 0 0 e
- |+ 6)
| {00 0 1 & £
M

The structure for the covariance matrix is identical to the single control variable case. The
joint distribution of (42 — 5\2) asymptotically follows a chi-square distribution with J degrees of

freedom. This quantity is a joint test that each y»; = Ao j» where j =1,...,J. Let 0; denote a

8Cov(e,€) = Cov(e,x; — A — Aaxz) = Cov(e,x1) = Cov(e, Yo + Y121 + X2 +e) = Var(e)
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column vector of zeros of length J, 0;x denote a (J by K) matrix of zeros (K is the number of
instruments), and /; the identity matrix of order J. Generalizing Equation [25] the test statistic for

all of the control variables considered together is given by:

(R6)(RER')"'(RO) ~ x*(J)

A

0 = (f0,91, 92, A1, Xp)'
R= 0y Oy Iy Oy —I (27)

Rather than performing one joint test across all control variables, researchers can also test
individual control variables within a multivariate setting or subsets of control variables using the
following test statistics. Suppose we wish to test an individual control variable j. Let R; denote

the j™ row of the matrix R. The test statistic is given by:
(R;j0) (RER))™(R;6) ~ x*(1) (28)

To test subsets of control variables, let k denote the number of control variables to be tested,
and k denote the row indices corresponding to the k control variables to be jointly tested. Let Ry

denote the R matrix with the relevant k£ rows. The test statistic is given byﬂ

(Ri0) (RkERy,) ' (Ri.H) ~ x*(k) (29)

%A note on computing ¥: The dimension of X is [2N by (2J + K +2)]. Var(e) and Var(€) can be estimated by
computing the variance of the residuals using the first half and the second half of the observations from the SUR
regression, respectively. Due to the high dimension of € (2N by 2N), it is computationally preferable to directly
compute the matrix X'€2X, which is [(2J + K +2) by (2J + K +2)]. Let X3 = (1,2',x5) and Xa = (1,25), where

. . , _|Var(e) X1 X1 Var(e) X1 X2
X7 is [Nby J+ K+ 1] and X5 is [N by (J+1)]. Then X'QX = Var(e) X4 X, Var(e) X, Xa|"
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4 Maximum Possible Bias

4.1 Single Instrumented Variable

The diagnostic test derived in Section[3]allows researchers to test whether the correlations between
the instruments and the non-instrumented control variables are large enough to potentially cause
bias in the 2SLS estimate on the key variable of interest. This test is valid when a single endogenous
variable is being instrumented. In this section we derive a formula to show how large the potential
bias could be. Subtracting f; from both sides of Equation [9] provides an expression for bias in the
2SLS coefficient related to both the violation of the narrow exclusion condition and the presence
of endogenous control variables. If we assume that the narrow exclusion condition holds, then the
bias can be written a function of the endogenous controls as shown below Let 0}, 0y, 0y, and
o, denote the standard deviation of x,;, w, v, and y, respectively, and let p; denote the correlation
between x,; and v.

Biasts—Bi = (2 — Az )/M

var(x7)
. o ycov(xza,v)
= — o) 2=
(92 — A2) —re
'}72] /12] O;0yP;
var(%})

”M\

—12))0;0,p;
var(%})

B 2s1s — B < Z (P (30)
=1

To calculate the maximum possible bias coming from each control variable j (i.e., MPB}), we
make the simplifying assumption that the other control variables are not correlated with the error

term. Let 63 denote the least squares estimate of 6. To derive an analytical expression for MPB |

10The bias can be written equivalently using the error term v from the second stage regression.
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we start by first deriving the following expression relating sz and 63@

52 = 62 — Cov(x,v) Var(x) " 'Cov(z,v) 31)

Under the assumption that control variable j is correlated with the error term and the other
controls are not, Cov(xi,v) = $»;Cov(xz;,v). Let }pj be a [(J+ 1) by 1] vector with »; the first
element, 1 the (j+ 1) element, and O the remaining elements. This implies that the second part

of Equation [31]can be written as follows:

Cov(z,v)' Var(z) ' Cov(z,v) = (p;0;0,%;)*

X = \/féjVar(a:)_lffzj (32)

Next, if we assume that the control variables in the model explain some of the variation in the

dependent variable we can assume that o, > O'VE This assumption allows the correlation to be

ULetx = (%,25) and B = (B1,55)". Let ¥, Bo and 3 denote the least squares estimates of v, By and 3, respectively.

y=Ppo+Bz+v

y= 30 + B'a} +7

o; = ' Var(z)3+28'Cov(z,v) + o7

3 = 3'Var(z)3+ 467>

= [Var(x)~'Cov(,y)) Var(z)[Var(z) "' Cov(x, y)] + 62

62 = [+ Var(z) ' Cov(z,v)] Var(z)[8 + Var(x) ~'Cov(z,v)] + 62
62 = 3'Var(x) B+ 28'Cov(z,v) 4+ Cov(x,v) Var(x) ~'Cov(x,v) + 62

\S)

[

~

62 = 62 + Cov(z,v) Var(x) ' Cov(x,v)
52 = 62 — Cov(x,v) Var(x) " 'Cov(z, v)

12This rules out certain cases of severe correlation between the error term and the regressors.
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bounded as follows:

pj| < (0y0;%;) "/ 02— 62 (33)

If we then substitute Equation [33] into Equation [30| we can bound the total bias and thereby

define the maximum possible bias MPB; as follows:

(?Zj—ij)\/ o} — 67

var(X7) X

Biasts — Bi| < = MPB; (34)

4.2 Multiple Instrumented Variables

Thus far in the paper, we have assumed 2SLS system includes a single instrumented endogenous
variable. In this section, we allow for multiple instrumented endogenous variables and derive
expressions for both the bias coming from contaminated controls and the maximum possible bias.
Future research is needed to be able to define the appropriate test statistic in a setting with multiple
first stages. The appropriate test statistic in this type of setting would be nonlinear and different
from the test proposed in this paper for a single endogenous variable.

Let 3 denote an endogenous (G by 1) vector of control variables that are instrumented with
a vector of instruments. xg = (x31,...,x36)’ E Note that K > G+ 1. Suppose the true DGP and

estimable model are given by:

y = Bo+ Bixi + Byx2 + Bsx3 + Puxm +u

y = Bo+Pixi + Baxa + Bsxs +w (35)

3The remaining variables have identical definitions as in previous sections.
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The first stage regressions and estimates for x| are given by:

X1 =+712+v5T2 +ei

£ =P +912+Ax2 (36)

Let dg be a (G by 1) vector, d; be a (G by K) matrix, and d2 be a (G by J) matrix, of parameters.

eg is a (G by 1) vector of errors. The first stage regressions and estimates for 3 are given by:

T3 = 504—(5124—(52&2‘2—‘;—63

&3 = 60+ 012+ daxp (37)
Let A3 be a (G by 1) vector of parameters. X] is the portion of X; uncorrelated with &2 and £3.
£1 = A + Moo + Ag@is + & = Ay + Nyg + Mgz + £ (38)

Equating Equations [36|and 38] we solve for £7.

W+ 912 +Foxa = M + Nyxo + Ng#z + £}

£ =—4)+H12+ (32— A2) T2 — Ny (39)
Substituting using Equation 37, we solve for X7 as a function of z, 2, and the parameters.

£ =Po—M)+312+ (32— Xo)'xa — N5 (8o + 812 + b22)

= (Jo— A1 — 8pAs) + (51 — 81 A3) 2+ (§2 — A2 — 04 A3) 2 (40)
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The second stage estimates and expression for the bias are given by:

PN COVI(Xq,X,
Brases = Pr+Bn—— o~ (& )
var(X7)
bias
cov[(31 — 0. Xg) 2, x3 s s o cov(To,X
By AN ] g 5, S, Ry AT )
var(%}) var(£]
Vv Vv
bias related bias related to
to the narrow endogenous controls

exclusion condition

For the general case of endogeneity, the bias is given by:

cov 5)\3 Z,W R - 5 o cov(xa,w
Biasts = B + (tn f ] +(F2 — A2 — 5/2>\3)/(—A;)
var(x7) var(£})
bias ;glated bias rc;lzted to
to the narrow endogenous controls

exclusion condition

(41)

(42)

A test for contaminated controls would focus on the quantity (2 — 5\2 — 5’25\3). Unlike the

case of a single instrumented variable, this quantity is nonlinear in the parameters, and would

require a different and more complex test. We leave this as an area of future research.

Last, we derive the maximum possible bias, defined in the same way as the previous section.

Let 52 j denote the j’h column of 32. % jisnow a [(J+ G+ 1) by 1] vector with §, the first element,

1 the (j+ 1) element, 5> ;j the last G elements, and O the remaining elements. Generalizing

Equations [30|and [34] the maximum possible bias is given by:

B _§A ,cov(x2,w)
,BIZSLS ﬁl ( 2 3) var()?’l‘)
J N PO T\ . ,
(%2j — A2j — 03;A3)0;0yp;
Bl oss —Pr < ; var(£h)
(’}72'—12'—55-5\3) o2 — 62
mpBj=|— L TN T
var(X7) X;
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5 Simulation

We use simulated data to assess the performance of our proposed test, and examine how the in-
clusion of contaminated controls affects the bias of the 2SLS of the key variable of interest. We
start with a simple case and then consider a variety of extensions and robustness checks. We vary
the magnitude of the correlations and the instrument strength in the simulations to provide better

understanding for what matters in practice.

5.1 Baseline

We start the simulation exercise considering a setting similar to that observed in empirical work,
as described in Equation |1} with one key endogenous variable of interest x;, one control variable
X, one omitted variable x,,, and an exogenous instrument z for x;. In generating the data, the
instrument z is constructed to be correlated with x; but not correlated with the omitted factor(s);
the instrument thus satisfies the narrow exclusion condition. We set 1, 2, and 3, equal to 1, and
X1, X2, Xm, 2, and u are all created as standard normal distributions with the correlation structure
shown in Table|1ll Consistent with real-world data, we allow low-level correlations to exist between
x1 and x; as well as between z and x,. We consider multiple correlation values in some tests, and
hence some cells shown below contain multiple values. The sample size is 10,000 and we run
100,000 simulations for each specification.

Table 1: Correlations: one instrument one control

X1 X2 Xim Z u
X1 1 0.1/0.3 0.3 01/03 O
xy | 0.1/0.3 1 01/03 00/02 0
Xim 0.3 0.1/0.3 1 0 0
z 101/03 0.0/0.2 0 1 0
u 0 0 0 0 1

This table reports the correlation matrix for the baseline simulation with one instrument and and one control.

Table [2] reports the simulation results for one control variable. Figures [I]and [2] plot the distri-
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bution of the test statistic, and Figures [3] and 4] plot the distribution of the 2SLS estimate of f;.
For each simulation, we report the fraction of times the null hypothesis is rejected, for tests at the
10%, 5%, and 1% levels. When there is no correlation between x, and z, this number should be
approximately equal to the significance level. When there is a nonzero correlation between x, and
zZ, this is equal to the power of the test, with higher fractions indicating better performance. We also
report the bias in the estimate of 31, when the control variable is included, and when it is excluded.
When there is no correlation between x, and z, the bias should be approximately equal to zero.
Finally, we report the maximum possible bias, computed as the average across all simulations.

Table 2: Simulation results: one instrument one control

Model Specification (1) ) 3) 4) 5) 6)

Pxaz Pxiz Pxixy  Pxyxm Ro.10 Roos Rool bias bias,, mpb

(1) | 0.0 0.1 0.1 0.1 |0.097 0.046 0.008 -0.004 -0.005 0.097

2) | 0.0 0.1 0.1 0.3 [0.096 0.046 0.007 -0.003 -0.004 0.113

3) | 0.0 0.1 0.3 0.1 |0.096 0.047 0.008 -0.003 -0.007 0.113

4 | 0.0 0.1 0.3 0.3 [0.096 0.046 0.008 -0.002 -0.006 0.129

5) | 0.0 03 0.1 0.1 | 0.100 0.050 0.010 -0.000 -0.000 0.033

6) | 0.0 03 0.1 0.3 |0.102 0.050 0.010 -0.000 -0.000 0.038

(7 | 0.0 03 0.3 0.1 |0.099 0.049 0.010 -0.000 -0.001 0.038

@8 | 0.0 03 0.3 0.3 [0.099 0.049 0.009 -0.000 -0.001 0.043

© | 02 0.1 0.1 0.1 1.000 1.000 1.000 -0.258 2.016 2.989

(10) | 0.2 0.1 0.1 0.3 1.000 1.000 1.000 -0.766 2.016 3.483

(11| 02 0.1 0.3 0.1 (0996 0990 0.954 -0.552 2.014 7.328

12) | 02 0.1 0.3 03 (099 0990 0.954 -1.617 2.014 8.370

(13) | 02 03 0.1 0.1 1.000 1.000 1.000 -0.072 0.667 0.861

(14)| 02 03 0.1 0.3 1.000 1.000 1.000 -0.215 0.667 0.994

(15 ] 0.2 0.3 0.3 0.1 1.000 1.000 1.000 -0.085 0.666 1.160

(16) | 0.2 03 0.3 0.3 1.000 1.000 1.000 -0.251 0.667 1.317
This table reports basline simulation results for one instrument and one control variable. The first four
columns determine the model specification. The next three columns report the rejection rate at the 10%,
5%, and 1% levels, respectively. The next two columns report the bias in the 2SLS estimate of f8; with and
without (nc) the inclusion of the control variable. The last column reports the maximum possible bias.

In the models reported in the first half of Table [2] there is no correlation between the control
variable x; and the instrument in the simulated data. Hence rejection rates should be equal the

significance level of the test, and the bias should be zero with and without controls. Our results
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Figure 1: Test statistic: p(x2,z) = 0 (no contamination)

(b) p(x1,2) =0.1, p(x1,x2) = 0.1, p(x2,%) = 0.3
weak instrument, less relevant control, high endogeneity

(a) p(x1,2) =0.1, p(x1,x2) = 0.1, p(x2,x) = 0.1
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(©) p(x1,2) = 0.1, p(x1,x2) = 0.3, p(x2,%,,) = 0.1
weak instrument, more relevant control, low endogeneity
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The figures plot the distribution of the test statistic when the instrument is uncorrelated with the control
variable. The vertical dashed red line is the critical value for a 5% significance level hypothesis test.
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Figure 2: Test statistic: p(x2,z) = 0.2 (contaminated control)

(@) p(x1,2) =0.1, p(x1,x2) = 0.1, p(x2,%) = 0.1
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The figures plot the distribution of the test statistic when the instrument is correlated with the control vari-
able. The vertical dashed red line is the critical value for a 5% significance level hypothesis test.
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Figure 3: 2SLS estimate: p(x;,z) = 0 (no contamination)

(@) p(x1,2) = 0.1, p(x1,x2) = 0.1, p(x2,2) = 0.1 (b) p(x1,2) =0.1, p(x1,x2) = 0.1, p(x2,xs) = 0.3
weak instrument, less relevant control, low endogeneity weak instrument, less relevant control, high endogeneity
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The figures plot the distribution of the 2SLS estimate of 8; when the instrument is uncorrelated with the
control variable, with (solid black) and without (dashed blue) the inclusion of the control variable in the
regression. The vertical dashed red line is the true value of 3;.
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(@) p(x1,2) = 0.1, p(x1,x2) = 0.1, p(x2,%,) = 0.1
weak instrument, less relevant control, low endogeneity

Figure 4: 2SLS estimate: p(x;,z) = 0.2 (contaminated control)
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The figures plot the distribution of the 2SLS estimate of 3; when the instrument is correlated with the control
variable, with (solid black) and without (dashed blue) the inclusion of the control variable in the regression.

The vertical dashed red line is the true value of 3.
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indicate rejection rates close to significance levels. When the instrument is weak, the rejection rates
are modestly lower than significance levels, but always within half a percentage point. The bias is
small and negative when the instrument is weak, though very close to zero. When the instrument
is strong, rejection rates are equal to their significance levels and the bias is zero regardless of
whether the control variable is included. There is no variation in results when the correlation
between the control variable and the key variable of interest changes, or when the correlation
between the control and the omitted variables changes. Figure [I] plots the distribution of the test
statistic. The distribution of the test statistic appears close to a chi-square distribution with one
degree of freedom for all specifications, in line with the theory. Figure [3| plots the distribution of
P1 for all specifications, with and without the inclusion of the control variable. In all cases, the
distribution of f; is narrower when the control variable is included, indicating a more efficient
estimate.

In the models reported in the second half of Table [2] there is a nonzero correlation between
the control variable and the instrument and hence the bias is expected to be nonzero. Given the
known bias in the simulated data, our test should reject the null hypothesis. Higher rejection
rates indicate greater power and better performance of the test. The results indicate rejection rates
equal to or very close to one. A small fraction of non rejections occur when the instrument is
weak and the control variable is strongly correlated with the variable of interest. The bias varies
depending on the specification, but is substantial in all cases. The bias is worse in magnitude when
the control variable is not included. The bias is also worse in magnitude when the instrument is
weaker, and when the correlation between the control variable and the key variable of interest is
stronger@ In Figure [2| the test statistics have a bell-shaped distribution that varies in location and
scale depending on the speciﬁcation A weaker instrument (top four plots) reduces the mean of

the test statistic. Increased correlation between the control variable and the key variable of interest

14The patterns regarding the bias are specific to this particular example, and should not be assumed to hold more
generally.
SThe theoretical distribution of the test statistic is unknown under the alternative hypothesis.
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(second and fourth row) modestly reduces both the mean and the variance of the test statistic.
Figure 4| plots the distribution of B; with and without the control variable. The distribution is
generally further away from the true value when the control is not included, indicating generally
better performance when the control variable is included.

As expected, the maximum possible bias is generally much larger than the actual bias, with the
actual bias being no more than a quarter of the theoretical maximum in the simulated data. This
result is expected because the MPB formula is based on a series of assumptions that are intended
to calculate the maximum possible bias and hence provides intuition about the worst-case scenario
rather than an estimate of the actual bias.

Overall, the results indicate that the test statistic has an accurate rejection rate when the null
hypothesis is true, and almost always rejects when the null hypothesis is false. The results also
indicate, even when using relatively small real-world-level correlations, that in the presence of
contaminated controls, the bias in the variable of interest is substantial, regardless of whether the

control variable is included in the regression.

5.2 Extensions

We consider a series of extensions to the baseline simulation results. To save space, we omit the

figures for all extensions considered, and only report the tables.

5.2.1 Small sample

First, we consider the impact of a smaller sample size. We repeat the earlier baseline simulation
but this time using a sample size of 1000. The results are reported in Table (3| The small sample
impacts the performance of the test primarily when the instrument is weak. In the first four rows,
the rejection rates are well below their significance levels. In rows nine through twelve the rejection
rates are well below one, indicating lower power of the test. When the instrument is strong (rows

five through eight and thirteen through sixteen) there is little difference in the results compared
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with the baseline larger sample.

Table 3: Simulation results: one instrument one control, small sample

Model Specification (D) 2) 3) “4) 5 (6)

Prxz: Pxiz Prxxs  Pux. | Roto  Roos Rooi bias bias, mpb

() { 0.0 0.1 0.1 0.1 |0.048 0.014 0.001 -0.036 -0.089 0.379

2 | 0.0 0.1 0.1 0.3 |0.049 0.015 0.001 -0.041 -0.067 0.443

3) | 00 0.1 0.3 0.1 |0.052 0.016 0.001 -0.046 -0.097 0.427

4 | 00 0.1 0.3 0.3 |0.051 0.015 0.000 0.012 -0.117 0.520

G| 00 03 0.1 0.1 |0.095 0.047 0.007 -0.003 -0.004 0.105

6) | 00 03 0.1 0.3 [0.095 0.045 0.007 -0.003 -0.005 0.122

(7 | 00 03 0.3 0.1 0.098 0.047 0.008 -0.003 -0.007 0.122

@ | 00 03 0.3 0.3 |0.096 0.047 0.008 -0.002 -0.006 0.139

© | 02 0.1 0.1 0.1 |[0813 0.702 0.408 -0.843 2.271 5.801

(10) | 0.2 0.1 0.1 0.3 |[0813 0.702 0411 -1.002 2.393 5.678

11y | 0.2 0.1 0.3 0.1 |[0364 0.240 0.071 -1.000 1.660 35.032

12) | 0.2 0.1 0.3 0.3 (0364 0.240 0.071 -2.502 2.185 44.310

(13) | 0.2 03 0.1 0.1 1.000 1.000 1.000 -0.075 0.670 0.872

(14)| 0.2 03 0.1 0.3 1.000 1.000 1.000 -0.219 0.671 1.007

(15) | 0.2 0.3 0.3 0.1 1.000 1.000 1.000 -0.090 0.667 1.179

(16) | 0.2 0.3 0.3 0.3 1.000 1.000 1.000 -0.257 0.667 1.338
This table reports simulation results for one instrument and one control variable, with a small sample size
The first four columns determine the model specification. The next three columns report the rejection rate at
the 10%, 5%, and 1% levels, respectively. The next two columns report the bias in the 2SLS estimate of 3
with and without (nc) the inclusion of the control variable. The last column reports the maximum possible
bias.

5.2.2 High impact of omitted variable

In this section, we set 3,, = 3 in the simulation. This change increases the impact of the omitted
variable on y compared to the previous simulation, such that a greater fraction of y is now explained
by the omitted variable. The results are reported in Table [4]

The test statistic performs about as well as the baseline case. As expected, the bias is larger
across all specifications. In some cases, the bias is larger when the control variable is included
relative to when the control variable is not included. The ratio of the actual bias to the maximum

possible bias is larger, and in some cases it gets close to one-half.
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Table 4: Simulation results: one instrument one control, high impact of omitted variable

Model Specification (1) 2) 3) “4) (5) 6)

Pxyz Pxiz Pxixa Pxyom Ro.10  Roos Rool bias biasy mpb

() { 0.0 0.1 0.1 0.1 |0.095 0.045 0.008 -0.009 -0.011 0.113

2) | 0.0 0.1 0.1 0.3 [0.095 0.046 0.008 -0.007 -0.008 0.162

3) | 00 0.1 0.3 0.1 |0.097 0.047 0.008 -0.008 -0.012 0.129

4 | 0.0 0.1 0.3 0.3 |0.095 0.045 0.008 -0.007 -0.013 0.177

G | 00 03 0.1 0.1 |0.099 0.050 0.010 -0.001 -0.001 0.038

6) | 0.0 03 0.1 0.3 |0.099 0.049 0.010 -0.001 -0.001 0.054

(7 | 00 03 0.3 0.1 |0.101 0.050 0.010 -0.000 -0.001 0.043

@& | 00 03 0.3 0.3 |0.103 0.050 0.010 -0.000 -0.001 0.059

© | 02 0.1 0.1 0.1 1.000 1.000 1.000 -0.775 2.009 3.482

10) | 0.2 0.1 0.1 0.3 | 1.000 1.000 1.000 -2.298 2.012 4.986

(11)| 02 03 0.1 0.1 1.000 1.000 1.000 -0.215 0.667 0.994

12) | 0.2 0.3 0.1 0.3 | 1.000 1.000 1.000 -0.645 0.665 1.403

(13) | 0.2 0.1 0.3 0.1 (0996 0990 0.954 -1.661 2.008 8.371

(14) ] 0.2 0.1 0.3 0.3 0995 0989 0954 -4.854 2.008 11.547

(15)] 0.2 03 0.3 0.1 1.000 1.000 1.000 -0.252 0.666 1.317

(16) | 0.2 0.3 0.3 0.3 | 1.000 1.000 1.000 -0.752 0.666 1.800
This table reports simulation results for one instrument and one control variable, with a high impact of the
omitted variable. The first four columns determine the model specification. The next three columns report
the rejection rate at the 10%, 5%, and 1% levels, respectively. The next two columns report the bias in the
2SLS estimate of ; with and without (nc) the inclusion of the control variable. The last column reports the
maximum possible bias.

5.2.3 Additional control variables

In this section, we add an additional control variable but otherwise retain the same structure as the
first simulation. For this section, let 2 = (x21,x22)" be control variables and let B2 = (21, 22)’.
In the data generating process we set 1, B21, B2, and B, equal to 1, and xy, x21, X22, X, 2, and u
are all created as standard normal distributions with the correlation structure shown in Table[8l For
certain cells, we consider multiple values for the correlation. In all simulations, the sample sizes
are 10,000.

For each simulation, we run three tests. The first is a joint test that the controls are contami-
nated. The second and third are tests of whether each of the two controls are individually contam-

inated. As before, we report the fraction of times the null hypothesis is rejected, for tests at the
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Table 5: Correlations: one instrument two controls

X1 X21 X22 Xm 2 u

X 1 0.2 0.2 03 01/03 0
X721 0.2 1 00/02 02 00/02 O
X0 0.2 0.0/0.2 1 02 00/01 O
X 0.3 0.2 0.2 1 0 0
z [01/03 0.0/02 00/01 O 1 0
u 0 0 0 0 0 1

This table reports the correlation matrix for the simulation with two control variables.

10%, 5%, and 1% levels, and we report the bias in the estimate of f3;, when the control variables
are included, and when they are excluded. Finally, we report the maximum possible bias coming
from each control variable.

In the simulation, both controls are positively correlated with the omitted variable. When both
controls are uncorrelated with the instrument, there will be no contamination and no bias. If either
or both controls are correlated with the instrument, then there is contamination and nonzero bias.
In the simulation, when the controls are correlated with the instrument, the first control variable is
calibrated to have a high correlation with the instrument (high correlation control), and the second
control is calibrated to have a low correlation with the instrument (low correlation control).

When testing each control individually, the test will show contamination if that control is cor-
related with the instrument, or if that control is correlated with the other control that is correlated
with the instrument. Thus, for the individual control variable tests, there are two channels by which
a control can be contaminated. The first is via a direct correlation with the instrument, and the sec-
ond is via correlation with another control variable that is itself correlated with the instrument.

Table [6]reports the results from the joint test. Table[7|reports the results for each control variable
individually. In both tables, in rows one through four, given the assumptions used to create the data
there should be no contamination and the bias should be close to zero. Rejection rates should be
close to or equal to their nominal levels. The results reported in the tables show the contaminated

control test has higher power when the instrument is stronger.
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Table 6: Simulation results: one instrument two controls, joint test

Model Specification @)) 2) 3) 4 &) (6) (7
Pxriz Pxmz  Pxiz Propxn RO. 10 RO.OS RO.OI bias biaSnC mpbl mpb2

(1) | 0.0 00 0.1 0.0 |0.091 0.042 0.007 -0.002 -0.007 0.160 0.160
2| 00 00 0.1 0.2 |0.089 0.042 0.006 -0.002 -0.006 0.166 0.167
3 | 00 00 03 0.0 |0.100 0.050 0.010 -0.000 -0.000 0.053 0.053
4 | 00 00 03 0.2 |0.098 0.049 0.010 -0.000 -0.001 0.056 0.056
6) | 00 01 0.1 0.0 1.000 1.000 1.000 -0.257 1.003 0.200 2.501
6) | 00 01 0.1 0.2 1.000 1.000 1.000 -0.207 1.003 0.516 2.553
(7) | 00 0.1 03 0.0 1.000 1.000 1.000 -0.072 0.333 0.057 0.711
@ | 00 01 03 0.2 1.000 1.000 1.000 -0.059 0.333 0.151 0.748
@ | 02 00 01 0.0 1.000 1.000 1.000 -0.690 2.013 6.636 0.265
10y 02 00 0.1 0.2 1.000 1.000 1.000 -0.516 2.012 6322 1.291
ar | 02 00 03 0.0 1.000 1.000 1.000 -0.154 0.667 1.504 0.060
12y} 02 00 03 0.2 1.000 1.000 1.000 -0.125 0.667 1.560 0.319
13y 02 01 0.1 0.0 |0983 0965 0.887 -1.621 3.025 10.378 5.271
14), 02 01 0.1 02 ]0999 0.998 0987 -1.049 3.024 7.760 2.626
(15 02 01 03 0.0 1.000 1.000 1.000 -0.251 1.000 1.626 0.825
(16| 02 01 03 0.2 1.000 1.000 1.000 -0.201 1.000 1.502 0.508

This table reports simulation results for two control variables. The first four columns determine the model
specification. The next three columns report the rejection rate of the joint test at the 10%, 5%, and 1%
levels, respectively. The next two columns report the bias in the 2SLS estimate of f3; with and without (nc)
the inclusion of the control variable. The last two columns report the maximum possible bias for the first
and second control variable.

In rows five through eight, the low correlation (second) control is contaminated and we would
expect the contaminated control test to reject the null. As reported, the rejection rates for both
the joint and individual tests are equal to one for these rows. For the uncontaminated control,
as expected the rejection rates are close to their nominal levels when it is not correlated with the
contaminated control, and closer to one when it is correlated. In rows nine through twelve, the
high-correlation (first) control is contaminated. The pattern of results in these rows is similar to
the previous four rows, with improved power on individual tests of the uncontaminated control. In
rows thirteen through sixteen, both controls are contaminated. Rejection rates are close to or equal
to one for all tests.

Across all specifications, the bias is worse when control variables are not included, regardless
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Table 7: Simulation results: one instrument two controls, individual tests

Model Specification (D) 2) 3) ) ®)) (6)
Pxyiz Priz Pxiz Puoixn | Rioio Rioos Rioor Rooio Ropos Rroo1

(1 0.0 0.0 0.1 0.0 0.097 0.046 0.008 0.096 0.046 0.008

) 0.0 0.0 0.1 0.2 0.094 0.045 0.008 0.096 0.046 0.008

3) 0.0 0.0 03 0.0 0.098 0.049 0.010 0.100 0.050 0.010

4) 0.0 0.0 03 0.2 0.099 0.049 0.010 0.099 0.049 0.010

(®)) 0.0 0.1 0.1 0.0 0.094 0.044 0.007 1.000 1.000 1.000

(6) 0.0 0.1 0.1 0.2 0.646 0513 0.257 1.000 1.000 1.000

7 0.0 0.1 0.3 0.0 0.099 0.050 0.010 1.000 1.000 1.000

(8) 0.0 0.1 0.3 0.2 0.659 0.536 0.296 1.000 1.000 1.000

) 0.2 0.0 0.1 0.0 1.000 1.000 1.000 0.088 0.039 0.005

(10) | 0.2 0.0 0.1 0.2 1.000 1.000 1.000 0.993 0.983 0.915

(11) | 0.2 0.0 03 0.0 1.000 1.000 1.000 0.098 0.049 0.010

(12) | 0.2 0.0 03 0.2 1.000 1.000 1.000 0.994 0.986 0.943

(13) | 0.2 0.1 0.1 0.0 0.995 0989 0954 0.995 0.989 0.947

(14) | 0.2 0.1 0.1 0.2 1.000 1.000 0.997 1.000 0.999 0.992

(15) | 0.2 0.1 0.3 0.0 1.000 1.000 1.000 1.000 1.000 1.000

(16) | 0.2 0.1 0.3 0.2 1.000 1.000 1.000 1.000 1.000 1.000
This table reports simulation results for two control variables. The first four columns determine the model
specification. The next three columns report the rejection rate of the individual test for the first control
variable at the 10%, 5%, and 1% levels, respectively. The last three columns report the rejection rate of the
individual test for the second control variable at the 10%, 5%, and 1% levels, respectively.

of whether they are contaminated. The bias is worst when both controls are contaminated, followed
by when the high correlation control is contaminated, followed by when the low correlation control
is contaminated. The bias is zero whether neither control is contaminated. As expected, a weaker
instrument always results in greater bias. When the control variables are correlated, the bias is
marginally smaller.

Overall, the simulation results indicate that the contaminated control test has the correct size
when there is no contamination, and adequate power to detect contamination when contaminated

control bias exists. The results hold for a wide variety of specifications.
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5.2.4 Additional instrument

We now consider a simulation with an additional instrument and a single control variable, so that
z = (z21,22). In the data generating process we set 1, B2, and B, equal to 1, and x1, x2, X, 21, 22
and u are all created as standard normal distributions with the correlation structure shown in Table
For certain cells, we consider multiple values for the correlation, which are reported below
separated by a forward slash. In all simulations, the sample sizes are 10,000.

Table 8: Correlations: two instruments one controls

X1 X2 Xm 21 22 u
X1 1 0.1/0.3 0.3 0.1/03 0.1/03 0
x2 |1 0.1/0.3 1 0.1/0.3 0.2 0 0
Xm 0.3 0.1/0.3 1 0 0 0
z1 10.1/0.3 0.2 0 1 0.2 0
722 1 0.1/0.3 0 0 0.2 1 0
u 0 0 0 0 0 1

This table reports the correlation matrix for the simulation with two instrumental variables.

In this setting, the first instrument z; is correlated with the control variable x;, while the second
instrument z is uncorrelated. The first set of results are reported in Table[9] In addition to reporting
the rejection rates, bias, and maximum possible bias, we also report the 5% rejection rate of the
Sargan J-test, as the model is overidentified.

Since the first instrument is correlated with the control in the simulated data, we have contam-
ination in all the model specifications. As reported in the table, the rejection rates for the con-
taminated control test are equal to one whenever the first instrument is strong (rows nine through
sixteen). When the first instrument is weak and the second is strong (rows five through eight), the
power of the test is substantially reduced. This is however not a cause for concern, as the actual
bias (and the mpb) are both very close to zero in these cases. When both instruments are weak
(rows one through four), the test has good power when the control is less relevant (rows one and
two) and less power when the control is more relevant (rows three and four). Again, our test has

low power generally when the bias itself is economically small and hence unlikely, with or with-
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Table 9: Simulation results: two instruments one control, overidentified model

Model Specification (1) (2) 3) 4) (5) (6) 7
Pxizi Prxizz Prixa Pux, | Roio Roos Rooir  bias  bias,e mpb  Ryoos
(1) 0.1 0.1 0.1 0.1 1.000 1.000 0.999 -0.094 1.000 1.123 0.341
(2) 0.1 0.1 0.1 0.3 | 1.000 1.000 0.999 -0.281 1.000 1.307 0.980
3) 0.1 0.1 0.3 0.1 |0.622 0498 0.264 -0.041 1.001 0.590 0.316
4) 0.1 0.1 0.3 0.3 | 0618 0494 0.260 -0.125 1.000 0.672 0.993
5) 0.1 0.3 0.1 0.1 |0.335 0.228 0.086 -0.005 0.091 0.065 0.316
(6) 0.1 0.3 0.1 0.3 |0.333 0.227 0.085 -0.015 0.091 0.075 0.995
(7 0.1 0.3 0.3 0.1 | 0338 0.231 0.087 0.005 0.091 0.075 0.316
(8) 0.1 0.3 0.3 0.3 |0.338 0.230 0.087 0.014 0.091 0.085 0.995
9) 0.3 0.1 0.1 0.1 1.000 1.000 1.000 -0.068 0.636 0.818 0.554
(10) | 0.3 0.1 0.1 0.3 | 1.000 1.000 1.000 -0.203 0.636 0.943 0.821
(11) | 0.3 0.1 0.3 0.1 1.000 1.000 1.000 -0.076 0.637 1.065 0.513
(12) | 0.3 0.1 0.3 0.3 | 1.000 1.000 1.000 -0.229 0.636 1.209 0.844
(13) | 0.3 0.3 0.1 0.1 1.000 1.000 1.000 -0.034 0.333 0417 0.354
(14) | 0.3 0.3 0.1 0.3 | 1.000 1.000 1.000 -0.101 0.333 0479 0.978
(15) | 0.3 0.3 0.3 0.1 1.000 1.000 1.000 -0.031 0.333 0.448 0.343
(16) | 0.3 0.3 0.3 0.3 | 1.000 1.000 1.000 -0.094 0.333 0.507 0.984
This table reports simulation results for two instruments and one control variable. In all models p,, ;,, = 0.2
and py, ;, = 0. The first four columns determine the model specification. The next three columns report
the rejection rate at the 10%, 5%, and 1% levels, respectively. The next two columns report the bias in the
2SLS estimate of 8; with and without (nc) the inclusion of the control variable. The next column reports the
maximum possible bias. The last column reports the rejection rate of the Sargan test at the 5% level.

out being able to detect the bias, to change the inference on the key coefficient estimate. In most
specifications, the Sargan test tends to have lower power when the correlation between the control
variable and the omitted variable is low, and vice versa. The contaminated control test and the
Sargan test capture different features of the data and are complementary in their usefulness. The
Sargan test is only possible in overidentified models.

The second set of results are reported in Table @} Here, we estimate two just identified models
using each instrument one at a time. Rejection rates at the 5% levels, bias, and maximum possible
bias are reported for each model.

Our test performs well across all specifications with the just identified models. Rejection rates

are close to the significance level when we use the second instrument that is not correlated with the
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Table 10: Simulation results: two instruments one control, just identified models

Model Specification (D 2) 3) @) ®)) (6)
Pxizi Pxiz Py Pox. | R100s Ropos biasy  bias;  mpb; mpb,
() 0.1 0.1 0.1 0.1 1.000 0.046 -0.258 -0.003 2.990 0.097
2) 0.1 0.1 0.1 0.3 1.000 0.046 -0.766 -0.003 3.485 0.113
3) 0.1 0.1 0.3 0.1 0.990 0.046 -0.552 -0.003 7.349 0.113
4) 0.1 0.1 0.3 0.3 0.989 0.046 -1.612 -0.002 8.403 0.129
&) 0.1 0.3 0.1 0.1 1.000 0.049 -0.258 -0.000 2.987 0.033
(6) 0.1 0.3 0.1 0.3 1.000 0.049 -0.766 -0.001 3.483 0.038
@) 0.1 0.3 0.3 0.1 0.990 0.049 -0.554 -0.000 7.323 0.038
8) 0.1 0.3 0.3 0.3 0.989 0.050 -1.619 -0.000 8.384 0.043
9) 0.3 0.1 0.1 0.1 1.000 0.046 -0.072 -0.003 0.861 0.097
(10) | 0.3 0.1 0.1 0.3 1.000 0.046 -0.215 -0.003 0.994 0.113
(11) | 0.3 0.1 0.3 0.1 1.000 0.047 -0.084 -0.002 1.160 0.114
(12) | 0.3 0.1 0.3 0.3 1.000 0.046 -0.250 -0.003 1.317 0.129
(13) | 0.3 0.3 0.1 0.1 1.000 0.051 -0.072 -0.000 0.861 0.033
(14) | 03 0.3 0.1 0.3 1.000 0.050 -0.215 -0.000 0.994 0.038
(15) | 0.3 0.3 0.3 0.1 1.000 0.050 -0.084 -0.000 1.160 0.038
(16) | 0.3 0.3 0.3 0.3 1.000 0.050 -0.251 -0.000 1.317 0.043
This table reports simulation results for two instruments and one control variable. In all models p,, ;,, = 0.2
and py, -, = 0. The first four columns determine the model specification. The next two columns report the
rejection rate at the 5% levels for the two just identified models. The next two columns report the bias in
the 2SLS estimate of B; for the two just identified models. The last two columns report the bias in the 2SLS
estimate of B for the two just identified models.

control. Rejection rates are close to one when we use the first instrument that is correlated with the

control.

6 Empirical Example

The results in Section 5 were based on simulated data. That discussion was important to show how
the contaminated control test and MPB calculations performed as expected when the differences
between the observed model and true data generating process were known. That exercise was also
important to show empirically how the power of the test and the usefulness of the MPB calculation

can be affected by weak instruments. In this section, we leave the simulated data aside and illustrate
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the use of the new contaminated control test together with the MPB formula with a well-known
empirical example based on a paper by Campa and Kedia published in the Journal of Finance in

2002.

6.1 Illustration of how to use the new contaminated control test and MPB

calculations with an empirical example

The Campa and Kedia (2002) paper is part of a large literature that explores the diversification
discount of multi-division firms and includes publications in both economics and finance journals
across several decades. Across these years different studies have utilized different samples and
econometric approaches to explore the diversification discount, and depending on the specific sam-
ple and approach used, have reported varying levels of a discount with many papers in this literature
finding at least some evidence of a discount consistent with a multi-divisional firm’s market value
being less than the sum of the imputed values of its individual segments if they had each existed
outside the conglomerate. Various explanations for the discount have been suggested including the
idea that corporate diversification could be associated with inefficient investment and/or internal
capital market policies (e.g., Shin and Stulz (1998); Rajan et al. (2000), Ozbas and Scharfstein
(2009)), lower acquisition market reactions and/or lower valued target firms (e.g./Morck et al.
(1990); Graham and Wolf] (2002))), and agency and governance issues (e.g., Denis et al.| (1997);
Hoechle et al.|(2012); [Ellis et al.| (2018]); |/ Andreou et al.| (2019)).

For our purposes we are interested in a result reported by Campa and Kedia (2002) suggesting
a diversification premium rather than a discount. This paper called attention to the fact that the
decision to diversify is endogenous and suggested several instrumental variables to account for
the endogeneity. In their empirical approach they include the various instruments in a pre-first-
stage probit model and then use the predicted probability from this model as a single generated

instrument in the first stage equation of a 2SLS system. The dependent variable in the second
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stage is a measure of the excess value at the firm compared to the sum of the imputed values of
the firm’s segments. The dependent variable in the first stage in the 2SLS system is an indicator
variable for whether the firm is diversified in that year (D=1). We use this setting to illustrate how
the diagnostic test and MPB formula suggested in this paper can help researchers explore 2SLS
results in important ways.

To facilitate the discussion and to streamline the example, we make some simplifying assump-
tions for the empirical approach. The first change we make is to drop the probit model that was
used in advance of the first stage equation in |(Campa and Kedial (2002). Rather than using the
instruments in a pre-first-stage model to generate a single instrument, we include the instruments
directly in the first stage to instrument D and then estimate a traditional 2SLS system of equa-
tions. This change allows us to model the effect of different instruments individually rather than
altogether as part of a single generated instrument and recasts the three-equation approach using a
simpler two-equation approachm The second change we make is to include each control variable
once in the model rather than including the controls along with their respective lagged values. This
change makes the example more parsimonious and eliminates control variables that are highly
correlated.

The simplified 2SLS system of equations we use is shown below. Following Campa and Kedia
(2002) and Berger and Ofek! (1995) we estimate a firm’s excess value each year as the log of the

ratio of the firm’s total capital to the firm’s imputed Value D is the key variable of interest and

16Campa and Kedial (2002) suggest multiple firm-level, year-level, and industry-year level instruments that are all
included in their pre-first-stage probit model. In our approach, we include year and industry controls in the first stage
equation and hence do not include the various year and industry-level instruments used in their paper in our first stage
model. Of the remaining instruments suggested by Campa and Kedia we include (exclude) only the subset of strong
instruments that have F-statistics from just-identified first stage models above (below) 10. This approach leads to 3
strong instruments (PNDIV, PSDIV, and MAJOREX). In our model we include indicator variables for which country
the firm is incorporated in rather rather than using whether the firm is incorporated outside the US as an instrument.

17The firm’s excess value each year is measured as the log of the ratio of the firm’s total capital to the firm’s imputed
value. A positive (negative) ratio suggests the firm is trading at a premium (discount) compared to what it would trade
if its various segments existed as separate entities. To calculate the imputed value, a sales multiplier is calculated
for each industry each year as the median total capital-to-sales ratio based only on US single segment firms in that
industry. The sales multiplier is then used to find the imputed value of segments that are in the same industry by
multiplying the segment sales by the sales multiplier. The firm’s overall imputed value in a given year is the sum of the
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is an indicator for the firm having more than one business division in a given year. The control
variables x2 are similar to the control variables used by |Campa and Kedial (2002) and include the
capital expenditure-to-sales ratio, the EBIT-to-sales ratio, book leverage, the log of assets, and an
indicator for whether the firm is one of the largest 500 US firms by market value each year. Fixed
effects are included to control for year, industry, and country of incorporation. The first and second

stage equations are shown below.

ExcessValue = By + B1D + Bz +w
D=1+71z+73%2+e (44)

To create our sample we follow the approach described in /Campa and Kedia (2002)) but using
more recent data from 1986 through 202 Using this sample we obtain 2 empirical results that
are similar to the 2002 paper. First, in untabulated results using the second stage equation above
as a simple OLS model rather than as a two-stage model, we obtain a | ors estimate of -0.133.
This result is similar to the OLS result reported in (Campa and Kedia (2002) and is also broadly
consistent with earlier papers in this literature that used similar methods and report evidence of a
diversification discount. Second, and as reported in Table [I1] we find a positive and significant
coefficient on D using the 2SLS approach described above with several of the instruments from

the Campa and Kedia (2002) paper. This second result shows that we obtain a similar outcome

imputed segment values. (Campa and Kedial (2002)) use both a sales multiplier and an asset multiplier in their analysis.
For the purpose of demonstrating the effect that contaminated controls may have on the 2SLS results we focus only
on the sales-based calculation.

8To create our sample we start with the full Compustat segment database and then generally follow the sample
creation criteria described in |Campa and Kedial (2002) and Berger and Ofek| (1995) using data starting in 1986 and
extending forward through 2022. This means we eliminate segments that do not report sales information, are missing
a SIC code, or that are not identified as business segments. Following these earlier papers we also eliminate any
firm-year if the overall sales are less than $20 million, if the firm reports segments in the financial sector (SIC 6000-
6999), if the sum of the segment sales is more than 1% different than the overall sales reported for the firm, or if the
inputs to calculate total capital are missing. Total capital is calculated as the sum of Compustat’s market value of
equity, long-term debt, current portion of long-term debt, and preferred stock. The preferred stock is assumed to be 0
if missing. Following these earlier papers we eliminate any firm-year where the estimated excess firm value is above
1.386 or below -1.386. Control variables are winsorized at the 1% level. If a firm appears in the main Compustat file
but not in the segments database, we assume it is a single segment firm.
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as reported in Campa and Kedia suggesting a diversification premium using our simplified 2SLS
model and updated sample.

Given the various other papers in this literature that document a discount rather than a premium,
it is worth exploring whether contaminated control bias could explain this unexpected result. It is
important to note that Campa and Kedia’s identification strategy, and indeed the empirical approach
embraced by most finance papers that utilize 2SLS models, critically requires that the other con-
trol variables included in the 2SLS system either be exogenous variables or that they at least not
be correlated with the specific instrument(s) being used in conjunction with the key endogenous
variable of interest. We use the contaminated control test and MPB formula proposed in this paper
(1) to show that the instruments used in the Campa and Kedia (2002) model are correlated with
the control variables and hence the potential for contaminated control bias in the key coefficient of
interest exists in this model, (2) to estimate the potential size of the bias coming from the contam-
inated controls using the MPB formula described above, and (3) to illustrate how the above tools
can help a researcher explore the robustness of their 2SLS results.

In column 1 of Table[IT| we report the second stage results from an overidentified 2SLS model
where D (the dependent variable of the fist stage) has been instrumented with the PNDIV, PSDIV,
and MAJOREX instruments described in Campa and Kedia (ZOOZjT_gI Similar to Campa and Kedia,
we find that the coefficient on D is positive after using a 2SLS approach. In untabulated tests, the
p-values associated with the contaminated control test statistics for each of the control variables
for the model reported in column 1 of Table [I 1| were each less than 1% indicating that in each
case we reject the null hypothesis of no contaminated control bias for each of these variables.

Given the strength of the instruments in our example, and the simulation results in this paper, the

19Following Campa and Kedial (2002), PNDIV is intended to capture the attractiveness of a firm being diversified
and is defined as the “fraction of all firms in the industry which are conglomerates” that year. PSDIV provides similar
information but is defined as the fraction of sales by other firms in the industry accounted for by diversified firms”
that year. (Campa and Kedial (2002) argue that firms are more likely to diversify if they are more visible to investors
due to a reduction in information asymmetries and that being listed on the NYSE, Nasdaq, or AMEX exchanges would
lead to this visibility. MAJOREX is a indicator variable for whether a firm is on one of these exchanges in a given
year.
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Table 11: Diversification Discount Empirical Example

ey (2) 3) 4) &) (6) (7N
3IVs MPBin Just Identified Models 31Vs 21Vs
1 End Bp PNDIV ~ PSDIV MAJOREX | 2 End 1 End
D 0.062** -0.099***  -0.003 2.062*** | -0.177"* -0.101***
(0.029) (0.001)  (0.963) (0.000) (0.000)  (0.000)
Log(Assets) 0.043*** 0.229 | 0.050*** 0.046™**  -0.047*** | 0.198"* 0.050***
(0.000) (0.000)  (0.000) (0.000) (0.000)  (0.000)
CAPX/Sales 0.770*** 0.098 | 0.741** 0.758**  1.121"** 0.621***  0.741***
(0.000) (0.000)  (0.000) (0.000) (0.000)  (0.000)
EBIT/Sales 0.073***  0.053 | 0.080*** 0.076** -0.008 -0.062***  0.080***
(0.000) (0.000)  (0.000) (0.628) (0.000)  (0.000)
Leverage 0.029***  0.031 | 0.034*** 0.031*** -0.029 -0.2117**  0.034***
(0.002) (0.000)  (0.001) (0.130) (0.000)  (0.000)
SP500 0.198** 0.099 | 0.196*** 0.197**  0.232*** | -0.247*** 0.195***
(0.000) (0.000)  (0.000) (0.000) (0.000)  (0.000)
Constant -0.780** -0.775***  -0.778** -0.847 -1.458***  -0.775***
(0.013) (0.008)  (0.011) (0.190) (0.000)  (0.008)
Year FE Yes Yes Yes Yes Yes Yes
Industry FE Yes Yes Yes Yes Yes Yes
Country FE Yes Yes Yes Yes Yes Yes
Observations 108,782 108,782 108,782 108,782 108,782 108,782
Ist Stage F 631.982 1,715.891 300.179 149.281 740.933  859.826
Sargan y? 341.053 20.341 2.641
Sargan p-value <.001 <.001 0.104

The second stage dependent variable is a measure of excess firm value calculated as the log of the ratio of
the firm’s total capital to the firm’s imputed value. Column 1 reports the second stage results from an overi-
dentified 2SLS model that instruments the endogenous variable D using all 3 instruments (PNDIV, PSDIV,
and MAJOREX). Column 2 reports the maximum possible bias (MPB) that could exist in the coefficient on
D in column 1 due to the contaminated control bias coming from each control variable. Columns 3 - 5 re-
port the 2SLS results from just identified models with the instruments listed in the column headers. Column
6 reports the 2SLS results from an overidentified model that uses the 3 instruments to instrument both D
and Log(Assets). Column 7 reports the 2SLS results from an overidentified model that uses 2 instruments
(PNDIV, PSDIV) to instrument D. P-values are shown below the coefficients in parenthesis. Significance is
shown at the 1%, 5% and 10% levels using ***, ** and * superscripts, respectively. Industry controls are
defined using 2-digit SICs. |Sargan| (1958)) and Basmann| (1960) chi-squared overidentification test results
are reported for the overidentified models.

contaminated control tests should have sufficient power in this setting. Column 2 of Table [I1]

reports the maximum possible bias that could be affecting the B 57 estimate in column 1 from
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each control variable. Comparing the size of the MPB for each control variable with the size of the
B 2s1s estimate helps clarify whether the bias could be large enough to possibly change the sign
on the key coefficient. This is shown visually in Panel B of Figure [5|where the f 2575 estimate +
the MPB crosses zero in the first model for 3 of the control variables.

So what should a researcher do in a situation like this when one or more of the control variables
fails the contaminated control test and the MPB is large enough to change the sign on the key 2SLS
estimate?

First, the contaminated control test derived in Section 3 identifies control variables that may be
creating bias in the 2SLS coefficient of interest if the control variables are indeed also correlated
with an omitted variable. In current practice, authors that use 2SLS already spend time discussing
the (narrow) exclusion condition as it applies to the instrument(s) on the key variable of interest.
If one or more of the control variables fails the contaminated control test then the researcher may
still be able to use the 2SLS result if they can argue that the flagged control variable is likely to
have little or no correlation with the error. In this sense, the diagnostic test developed in this paper
helps researchers know which control variables need to be discussed in terms of their possible
endogeneity. In our example, it would not be plausible to argue that the affected controls are
exogenous given that assets, CAPX, earnings, leverage, and firm size are all plausibly related to
firm valuation and are also likely co-determined with other factors not included in the model that
are in the error term.

In exploring the 2SLS system, if the control variables are not plausibly exogenous then it is
important to examine whether the MPB is large enough to change the sign on the main 2SLS
coefficient. As noted above, the MPB is the maximum possible bias rather than actual bias and
hence represents the worst possible scenario. Based on the simulation results, it may be reasonable
to assume in practice that the actual bias is likely less than half the MPB. This would suggest that a
researcher may still be able to use the inference from the 2SLS result if the sign on the key variable

of interest remains unchanged after adjusting the coefficient £+ 0.5¥MPB. On the other hand, there
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Figure 5: Maximum Possible Bias

(A) Comparison of Maximum Possible Bias in (B) Range of Values for 3, Coefficient Assuming Maximum
B+ Coefficient Across Models Possible Bias From Each Control Variable
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Maximum Possible Bias Relative to Each Model's 8: Estimate © B+ Estimate + MPB Model: 11V (PNDIV) for D

Panel A plots the maximum possible bias coming from each of the control variables in the different models
listed in the legend. In this figure if the horizontal bands are close to O (e.g., the small = MPB bands shown
for Leverage in the 2IVs model) this means the maximum possible bias in the B 2575 estimate for that model
coming from that specific control variable is close to 0. In contrast, if the horizontal bands are large, for
example the + 2.12 MPB bands shown in the just identified MAJOREX model, then the possible bias in
the B 2515 estimate for that model could be on the order of & 2.12 which is much larger than the size of the
Bi 2scs estimate for that model. The 3IVs, PNDIV, PSDIV, MAJOREX, 31Vs-2End, and 2IVs models in the
figure refer to the same models also described in columns 1, 3, 4, 5, 6, and 7 in Table[TT] respectively. The
circles plotted in the center of the bands in Panel B represent the B 2575 estimates for the models listed at
the bottom of the figure. The bands show how different the true f; »575 estimate could be based on the MPB
calculation for each control variable. The 31Vs, 3IVs 2 Endogenous, 2IVs, and 11V models refer to the same
models reported in columns 1, 6, 7, and 3 in Table@, respectively.

may be contaminated control bias coming from more than one control variable and together the
bias may still be large enough to potentially create problems when drawing strong inference around
the key variable of interest if the size of the MPB is relatively large for multiple control variables@

Another possible way forward would be to find a different instrument that is less correlated with
the control variables. Or, if the 2SLS system is already overidentified, then researchers can either
explore which of their instruments creates the least bias and use that instrument in a just identified
model, or choose to use the various instruments to instrument not only the key endogenous variable
of interest but also the control variable with the largest possible bias using two first stages in a
2SLS system. In the empirical example reported in column 1 of Table the 2SLS system was

overidentified with 3 strong instruments so we use both of these approaches and re-estimate the

20The MPB calculation is done variable-by-variable assuming in each case that the other variables are not contami-
nated. This means that the MPB is not additive across variables.
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2SLS results using 3 separate just identified models (columns 3 - 5 of Table and estimate an
overidentified model with 2 endogenous variables (column 6 of Table[IT). Given that the MPB was
largest for the Log(Assets) control variable in the model reported in column 1, we use the same 3
instruments in column 6 to instrument both Log(Assets) and D in a new 2SLS model. As reported
in column 6 of Table [11] after addressing the variable with the largest possible bias, the B 2515
estimate turns negative and, as shown in Figure[5] the MPB values for this model are considerably
smaller than the possible bias values calculated for column 1 suggesting that the reason for the
original positive coefficient on D was in fact due to bias.

To better understand our system we also estimate just identified models. As reported in columns
3 - 5 each of the 3 instruments is strong based on the F-statistic from the first stage but the estimated
marginal effect of D on a firm’s excess value ranges from a -0.099 in column 3 to a positive 2.06
in column 5 suggesting that at least one of these instruments is invalid. The conclusion that at least
one of the instruments is invalid is also supported by the Sargan overidentification test in column 1.
To find out which of the 3 instruments is likely invalid we compute the MPB for each of the control
variables in each of the just identified models reported in columns 3 - 5 of Table [IT} The MPB
values for these models are shown side-by-side in Panel A of Figure[5| As shown in the figure the
MPB values associated with the control variables in the MAJOREX just identified model are much
larger than the possible bias associated with the other instruments suggesting that MAJOREX is
the problematic instrument. This conclusion is also supported by 3 other observations: (1) the
marginal effect of D reported in column 5 of Table|l 1|is too large given the range of values in the
dependent variable, (2) MAJOREX is the only instrument that suggests a diversification premium
instead of a discount and this result contradicts many other studies, and (3) in column 7 of Table
[LT] we report the 2SLS results from a model that uses only PNDIV and PSDIV to instrument D
and find that the Sargan overidentification test does not fail suggesting again that MAJOREX was
the instrument creating validity issues in column 1. The logic and discussion above suggests the

2SLS models in columns 3, 6, and 7 of Table [I[ 1| would be better for finding the marginal effect
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of diversification on excess firm value compared to the other 2SLS models in that these models
exhibit less contaminated control bias. Panel B of Figure [5|presents this same information visually
showing that (1) the B 2575 estimate in each of these models is negative, and (2) the MPB values in
these models are too small to flip the sign positive. From this analysis we conclude that the B 255
estimate is likely negative, or possibly zero, but not positive suggesting a diversification discount

and not a premium.

7 Conclusion

Identifying a causal relationship between variables is often difficult given the many unobservable
factors that relate to most financial topics. In recent years, many researchers have used instrumental
variables in a 2SLS setting to deal with the endogeneity. A survey of the use of 2SLS in papers at
the Journal of Finance, Journal of Financial Economics, and the Review of Financial Studies over
recent years indicates that hundreds of papers have used 2SLS as part of their analysis and that
almost all of them provide minimal or no discussion of the potential endogeneity of the control
variables included in the model. Indeed, standard practice appears to be to discuss the relevancy
and exclusion conditions for a given instrument as far as these conditions relate specifically to the
key variable of interest and then to include, as though exogenous, an assortment of other control
variables that may themselves also be endogenous. Many of these papers simply assert or assume
that the control variables are exogenous.

Yet, despite these assertions and the general lack of discussion around the potential endogene-
ity of the control variables, it is likely that most of these empirical settings have at least weakly
endogenous control variables. Our paper shows analytically, and via simulation, that ignoring the
low-level correlations that can exist between the control variables and the error term can have a
direct and strong effect on the researcher’s ability to draw inference from the 2SLS results if the

control variable(s) are also correlated with the instrument for the key variable of interest.
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Along these lines, our paper provides guidance related to the following 4 questions: First, what
effect does the inclusion of potentially endogenous control variables have on the 2SLS estimate for
the key variable of interest given a strong instrument for the key variable that itself is not correlated
with the error term? Answer: Including endogenous control variables can generate large bias in
the 2SLS estimate of interest even if the instrument for that key variable is strong and is itself
not correlated with the error term. The bias that comes from the inclusion of endogenous control
variables only affects the 2SLS estimate on the key variable interest if the control variables are
both endogenous and correlated with the instrument for the key variable of interest. Contaminated
control variable bias is exacerbated by weak instrument(s) for the key variable of interest. The
contaminated control test and the MPB formula introduced in this paper can help researchers assess
whether the size of the bias is likely large enough to affect the inference on the main variable of
interest.

Second, is the 2SLS bias for the key variable of interest made larger or smaller with or without
including the other potentially endogenous control variables in the system of equations? Answer:
It is not possible to say whether the 2SLS bias will increase or decrease when dropping the en-
dogenous control variables from the system. In some settings the bias increases whereas in others
it decreases. However, based on the analytical form of the bias discussed in Section 2, if both (1)
the narrow exclusion condition holds (or is almost satisfied) for the instrument on the key variable
of interest and (2) the difference described in this paper, ({5 - 12), is close to zero then the overall
bias is likely smaller in the 2SLS estimate for the key variable of interest with the controls included
than in the estimate without controls.

Third, what information can be inferred from estimating the 2SLS estimate both with and
without the control variables and then comparing the estimates? Answer: Dropping an important
variable (endogenous or not) from the system creates the potential for omitted variable bias in the
key estimate if the dropped variable is correlated with the other control variables and the instru-

ment(s). Thus estimating the 2SLS estimate both with and without control variables is trading

52



off potential bias from the inclusion of endogenous control variables that are correlated with the
instrument against overall omitted variable bias. Hence, observing a large change in the 2SLS es-
timate when comparing the key result with and without the control variables need not indicate that
the 2SLS estimate with controls is biased given that the change could be attributable to omitted
variable bias created when dropping the control variables. However, observing little or no change
in the 2SLS estimate both with and without the control variables provides corroborating evidence
that the 2SLS estimate is not largely affected by bias from the control variables.

And, fourth, is there a test that would reveal whether the 2SLS estimate for the key variable
of interest could be affected by contaminated controls? Answer: Yes. In order for the inclusion
of other control variables to affect the key 2SLS estimate, two conditions have to occur: (1) the
control variable(s) must be endogenous, and (2) the control variable(s) must be correlated with the
instrument for the key variable of interest. It is not possible to ascertain the first condition but the
second is testable. We propose testing whether (4o — 5\2) is statistically different from zero when
investigating this bias. Failing to reject the null hypothesis of this test statistic being equal to 0
supports the conclusion that the control variables are not creating material bias in the key variable
of interest. This test has the advantage of being able to rule out the presence of contaminated
control bias but is limited in that it rules out a necessary but not a sufficient condition for this type
of bias.

As highlighted in Section [6] with the diversification discount example, this paper suggests an
approach for researchers using 2SLS to first test for the possibility of contaminated control bias in
specific control variables and then to calculate the maximum possible bias in the key coefficient
coming from the flagged variables. Using the new contaminated control test together with the
proposed MPB calculations will allow researchers in the future to examine whether their 2SLS
results are robust or whether contaminated control bias may be affecting the results in a material
way. As noted above, hundreds of recent papers in top finance journals have previously simply

assumed that the control variables in their 2SLS systems are not biasing their key 2SLS result, but
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this assumption is unlikely true in many if not most cases. The tools and approaches proposed in
this paper will allow researchers to examine this assumption in detail.

The discussion in Section [f] also provides practical advice for how to explore 2SLS results in
the event that one or more control variables are flagged by the contaminated control test. If specific
control variables fail the proposed test, and the MPB on those variables is relatively large compared
to the key coefficient of interest, the researcher can either instrument those variables or explain why
they are unlikely to be endogenous using arguments similar to the literature’s current approach
when motivating the narrow exclusion condition for the instrument on the key variable of interest.
The proposed test and MPB calculations will help researchers understand which control variables
may need additional discussion. One of the advantages of using this approach in an overidentified
model is that the researcher can check whether specific instruments worsen the potential bias.
Researchers often use the Sargan overidentification test to identify validity issues in 2SLS models,
but this test is only possible in overidentified models and does not identify which of the instruments
is invalid. The MPB calculations proposed in this paper provide an alternative way to identify
potential problems with validity and have the added benefit of allowing researchers to assess which
of several instruments is likely causing the problem and being available in both just identified and
overidentified models.

In summary, the diagnostic test derived in this paper and the related MPB calculations will help
researchers know when they need to explore their 2SLS system of equations in more detail, know
which control variables need specific consideration, be able to choose between specific instruments
to minimize bias if the different instruments are suggesting different inferences, and be able to
assess the robustness of their main 2SLS results and whether the inference is likely affected by

contaminated control bias.
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