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Abstract

The widely used approach to testing spatial correlation is to formulate a hypothesis

on a homogenous spatial coefficient in spatial models. This paper proposes a novel test

for spatial correlation in spatial panel data models with heterogeneous spatial autore-

gressive coefficients. In small reciprocal interactions, the proposed test asymptotically

follows a standard normal distribution when both n and T tend to infinity jointly. The

power under local alternatives is investigated. We show that the traditional test may

lose power when spatial effects are heterogeneous in nature. Monte Carlo simulations

demonstrate that our proposed test has better power compared to the traditional one

in these types of networks. We provide an empirical example to illustrate that the

proposed and traditional tests can draw different conclusions on spatial correlation.
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1 Introduction

A natural first step in the spatial economic analysis is a test for spatial correlation. The

standard econometric approach is to formulate a hypothesis as a restriction on the spatial

coefficient in spatial models. For cross-sectional data, the most popular procedure is the

Moran I test, which dates back to Moran (1950) and is further advanced by Cliff and Ord

(1973). Burridge (1980) explores the Lagrange multiplier (LM) interpretation of the Moran

I test. Kelejian and Prucha (2001) derive the asymptotic distribution of Moran I type test

statistics by introducing the central limit theorem (CLT) for linear-quadratic forms.

Over the last decades, the spatial econometrics literature has extended the models from

cross-section data to spatial panels. Along with these advances in the estimation of various

spatial models, numerous contributions to hypothesis testing have been made. Among the

classical approaches, the LM tests are popular in spatial settings because they only require

restricted estimates and can be computationally simpler. One seminal contribution of spatial

panels is Yu et al. (2008). Consider the following spatial dynamic panel data model:

Ynt = λ0WnYnt + γ0Ynt−1 + ρ0WnYnt−1 +Xntβ0 + cn0 + Vnt, t = 1, ..., T (1)

where Ynt = (y1t, ..., ynt)
′ is an n× 1 vector of a dependent variable for all units in period t,

Wn is an n× n spatial weights matrix, Xnt is an n× kx matrix of nonstochastic regressors,

cn0 is an n× 1 vector of individual fixed effects, and Vnt = (ε1t, ..., εnt)
′ is an n× 1 vector of

disturbance terms. The LM tests for the hypotheses of λ0 = 0, γ0 = 0, and/or ρ0 = 0 can

be found in Bera et al. (2019)1.

However, in almost all contributions, the hypotheses are formulated on the scalar spatial

autoregressive or autocorrelation coefficient2. Consider a special case of (1), the pure spatial

1For recent surveys of LM tests in the spatial literature, see Baltagi et al. (2003, 2007), Debarsy and
Ertur (2010), Yang (2010), Born and Breitung (2011), Qu and Lee (2012), Baltagi and Yang (2013a, 2013b),
Robinson and Rossi (2014), Yang (2015), Cheng and Lee (2017), among others.

2In conventional spatial models, spatial spillover or network effects are assumed to be homogeneous across
economic units.

2



autoregressive (SAR) panel data model:

Ynt = λ0WnYnt + cn0 + Vnt

=


λ0 0 0 . . . 0

0 λ0 0 . . . 0

0 0 λ0 . . . 0

...
...

...
. . .

...

0 0 0 . . . λ0




w11 w12 w13 . . . w1n

w21 w22 w23 . . . w2n

w31 w32 w33 . . . w3n

...
...

...
. . .

...

wn1 wn2 wn3 . . . wnn




y1t

y2t

y3t

...

ynt

+ cn0 + Vnt, t = 1, ..., T
(2)

where λ0 is the spatial autoregressive (lag) parameter. To testH0 : λ0 = 0 againstH1 : λ0 ̸= 0

for (2), one may use a standard normal test, M =

1
σ̃2

1√
T

∑T
t=1 Ỹ

′
ntWnỸnt√

tr(W ′
nWn +W 2

n)
when both n and

T are large, derived in Appendix D. We refer to this underlying statistic of the traditional

approach as the M test.

Recently, some interest has been in the heterogeneous version of the standard SAR models

(LeSage and Chih, 2016; LeSage et al., 2017; Geniaux and Martinetti, 2018; Aquaro et al.,

2021). LeSage and Chih (2016) point out that allowing for heterogeneous coefficients holds

a natural appeal when contrasted with conventional spatial models3. Aquaro et al. (2021)

discuss the estimation and inference of the spatial panel data models with fully heterogeneous

coefficients in the sense that the assumption of a homogeneous spatial coefficient is likely to

be restrictive when the time dimension T is large. Consider the heterogeneous version of (2):

Ynt = Ψ0WnYnt + cn0 + Vnt

=


δ10 0 0 . . . 0

0 δ20 0 . . . 0

0 0 δ30 . . . 0

...
...

...
. . .

...

0 0 0 . . . δn0




w11 w12 w13 . . . w1n

w21 w22 w23 . . . w2n

w31 w32 w33 . . . w3n

...
...

...
. . .

...

wn1 wn2 wn3 . . . wnn




y1t

y2t

y3t

...

ynt

+ cn0 + Vnt, t = 1, ..., T

(3)

where Ψ0 = diag(δ10, ..., δn0).

3LeSage et al. (2017) apply the heterogeneous coefficients spatial panel data model to explore retail fuel
pricing. Geniaux and Martinetti (2018) consider the spatial model with spatially varying coefficients due to
the misspecification of explanatory variables or the unknown structure of the spatial weights matrix.
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In many empirical applications, we have data, but we do not know the true model. If one

believes that the spatial spillover or network effects are heterogeneous, the widely used M

test is not applicable4. Before going into estimation and inference for panel data, one might

be interested in testing whether the spatial correlation exists or not in this heterogeneous

setting of (3). Our hypothesis of interest is H0 : δi0 = 0 for all i = 1, ..., n against H1 : δi0 ̸= 0

for a non-zero fraction of units. Furthermore, some econometrics literature discusses that

the power of the Cliff-Ord type tests can be very low or vanish under certain circumstances

(Krämer, 2005; Martellosio, 2010, 2012; Preinerstorfer and Pötscher, 2017; Preinerstorfer

2023)5. The analysis in this paper will also provide a new perspective on how the power of

the traditional tests may be low or vanish.

In the case of fixed n and large T , one may test the hypothesis formulated in (3) following

a recent discussion. Elhorst et al. (2021) show a spatial econometric model can be viewed

as a special case of a GVAR model and propose the likelihood ratio (LR) test to choose the

homogeneous coefficient (SAR) in (2) against the heterogeneous coefficients (GVAR) in (3).

However, this test procedure is theoretically only valid for fixed n, which implies that n should

be notably smaller than T in practice. In particular, spatial empirical applications typically

focus on large n cases; this existing test procedure may not apply to many microeconomic

questions because n is often large in micro-datasets. This small n issue can be more severe

when the number of observations over time periods is limited.

To the best of our knowledge, there are few formal tests of spatial correlation for spatial

panel data models with heterogeneous spatial lag coefficients, especially when both n and T

are large. If n is growing, theoretical challenges arise because the dimension of a standard test

statistic increases6. Outside of the spatial econometrics literature, Pesaran and Yamagata

4Section 5.1 discusses theM test may lose power when the spatial effects are heterogeneous in nature and
the sample size is small. Monte Carlo results in Section 5.2 are shown to be in line with these key findings.
Section 6 offers an empirical application to illustrate our discussions.

5The similar discussion for the Durbin-Watson test in time series regression can be found in the early
contribution of Krämer (1985).

6For example, an n× 1 vector of the score function for the LM test and its corresponding n× n variance
matrix will have an infinite length.
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(2008) propose the test of slope homogeneity for panel data models with strictly exogenous

regressors when n could be larger relative to T . We will follow their approach to propose a

test statistic because they formulate a hypothesis on fully heterogeneous slope coefficients

and derive the asymptotic results of the test when both n and T are large. However, more

considerations are required for our setting due to the presence of endogenous regressors Ynt

in (3). Therefore, the hypothesis test about a set of n restrictions in (3), when n is large in

addition to T , is essential in theoretical and empirical perspectives.

In this sense, this paper aims to fill these gaps by proposing the test statistic for spatial

correlation in the pure SAR panel data models with heterogeneous coefficients when both n

and T are large. We begin by constructing an LM test statistic for large T asymptotics7. The

most important reason for deriving the LM test in our case is that such models with hetero-

geneous spatial lag coefficients in (3) raise intractable difficulties at the level of identification

and estimation (Elhorst, 2014). To avoid the issue of identification of (3), we use the LM

principle. We then propose a standardized version of the LM test, denoted by S, following

Pesaran and Yamagata (2008). The proposed tests are not based on the assumption that

the error terms are normally distributed. This quasi-maximum likelihood framework yields

robust tests for error distributions.

This paper is organized as follows. In Section 2, we introduce the model specification

and its likelihood function. Section 3 derives the LM test for large T asymptotics. Using Le

Cam’s theory, we analyze the power of the LM test under local alternatives. In Section 4, we

propose the S test and derive the limiting distributions of S under the null hypothesis and

local alternatives when both n and T tend to infinity jointly. Section 5 discusses the power

properties and finite sample properties of the proposed S test compared to the traditional

M test. Section 6 presents an empirical example to illustrate the usefulness of our proposed

S test. Some basic lemmas are provided in Appendix A. All proofs are given in Appendix

C. The asymptotic results of the M test are shown in Appendix D.

7If n is fixed, there is no dimensionality issue on the test statistic. This LM test can be used for empirical
cases when T is notably larger than n.
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2 The model and concentrated likelihood function

2.1 The heterogeneous SAR panel data model

Define si as an n×1 vector of zeros, except for one at the ith element for i = 1, ..., n8. Using

sis
′
i for all i, we rewrite (3) as

Ynt = Ψ0WnYnt + cn0 + Vnt

=
( n∑
i=1

δi0sis
′
i

)
WnYnt + cn0 + Vnt, t = 1, ..., T

(4)

where Ynt = (y1t, ..., ynt)
′ and Vnt = (ε1t, ..., εnt)

′ are n × 1 vectors, Wn is an n × n spatial

weights matrix, and cn0 is an n× 1 vector of individual fixed effects9.

Define Sn(ψ) = In − ΨWn where Ψ =
n∑
i=1

δisis
′
i for any ψ = (δ1, ..., δn)

′. At the true

parameter, Sn(ψ0) = In − Ψ0Wn. Then, presuming Sn(ψ0) is invertible, (4) can be written

as Ynt = (In −Ψ0Wn)
−1(cn0 + Vnt) = Sn(ψ0)

−1(cn0 + Vnt).

2.2 The concentrated likelihood function

Denote θ = (ψ′, σ2)′ and ζ = (ψ′, c′n)
′ where ψ = (δ1, ..., δn)

′. At the true value, θ0 = (ψ′
0, σ

2
0)

′

and ζ0 = (ψ′
0, c

′
n0)

′ where ψ0 = (δ10, ..., δn0)
′. The likelihood function of (4) is

lnLnT (θ, cn) = −nT
2
ln(2π)− nT

2
ln(σ2) + T ln|Sn(ψ)| −

1

2σ2

T∑
t=1

Vnt(ζ)
′Vnt(ζ) (5)

where Vnt(ζ) = (In −ΨWn)Ynt − cn = Sn(ψ)Ynt − cn. Thus, Vnt = Vnt(ζ0).

For analytical purposes, it is convenient to concentrate cn out in (5). We define Ỹnt =

Ynt − ȲnT for t = 1, ..., T , where ȲnT =
1

T

T∑
t=1

Ynt. Similarly, Ṽnt = Vnt − V̄nT . Using the first

order condition that
∂lnLnT (θ, cn)

∂cn
=

1

σ2

T∑
t=1

Vnt(ζ) from (5), the concentrated likelihood

8Then, sis
′
i is an n× n matrix of zeros, except for one at the (i,i)th element.

9For the elements of Vnt, we assume that εit is i.i.d. across i and t with zero mean and variance σ2
0 .
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function is

lnLnT (θ) = −nT
2
ln(2π)− nT

2
ln(σ2) + T ln|Sn(ψ)| −

1

2σ2

T∑
t=1

Ṽnt(ψ)
′Ṽnt(ψ) (6)

where Ṽnt(ψ) = (In −ΨWn)Ỹnt = Sn(ψ)Ỹnt.

Define Gn(ψ) = Wn(In − ΨWn)
−1 = WnSn(ψ)

−1 for any ψ = (δ1, ..., δn)
′. From (6), the

first and second order derivatives of the concentrated likelihood function can be derived: see

Appendix B for their expressions10:

3 Test statistic for large T asymptotics

In this section, we derive an LM test statistic, asymptotically chi-square distributed with n

degrees of freedom for large T asymptotics. To analyze the asymptotic properties of the LM

test, we need the following assumptions:

Assumption 1. The spatial weights matrix Wn is time-invariant and its diagonal elements

satisfy wii = 0 for i = 1, ..., n.

Assumption 2. The disturbances εit, i = 1, ..., n and t = 1, ..., T , are i.i.d. across i and t

with zero mean, finite variance σ2
0 > 0, and E|εit|4+η <∞ for some η > 0.

Assumption 3. Sn(ψ) is invertible for all ψ in a small neighborhood around zero.

Assumptions 1-2 are the standard regularity conditions used in the spatial econometrics

literature11. Assumption 3 is needed to show the asymptotic power under local alternatives.

3.1 LM test

Consider the first order derivative with respect to ψ = (δ1, ..., δn)
′ in (B.2). Under H0

(Ψ = 0n×n), Ṽnt(ψ) = (In − 0n×nWn)Ỹnt = Ỹnt and Gn(ψ) = Wn(In − 0n×nWn)
−1 = Wn such

10Detailed derivation steps are available in the supplementary material.
11See Lee (2004), Yu et al. (2008), and Yu and Lee (2010), among others.
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that ψ = (0, ..., 0)′. Therefore, the LM test statistic is based on the n× 1 vector of

∂lnLnT (0, ..., 0, σ
2)

∂ψ
=



∂lnLnT (0, ..., 0, σ
2)

∂δ1
∂lnLnT (0, ..., 0, σ

2)

∂δ2
...

∂lnLnT (0, ..., 0, σ
2)

∂δn


=



1

σ2

T∑
t=1

(
Ỹ ′
nts1s

′
1WnỸnt − σ2s′1Wns1

)
1

σ2

T∑
t=1

(
Ỹ ′
nts2s

′
2WnỸnt − σ2s′2Wns2

)
...

1

σ2

T∑
t=1

(
Ỹ ′
ntsns

′
nWnỸnt − σ2s′nWnsn

)


(7)

where si is an n × 1 vector of zeros, except for one at the ith element. Define gnT (σ
2) ≡

∂lnLnT (0, ..., 0, σ
2)

∂ψ
. Also, denote gnT,i(σ

2) as the ith element of gnT (σ
2).

Let σ̃2 be the restricted QML estimator with the restriction ψ = (0, ..., 0)′ imposed, so

σ̃2 = maxσlnL
c
nT (σ

2) where

lnLcnT (σ
2) = −nT

2
ln(2π)− nT

2
ln(σ2)− 1

2σ2

T∑
t=1

Ỹ ′
ntỸnt (8)

From (8), we derive σ̃2 =
1

nT

T∑
t=1

Ỹ ′
ntỸnt.

Proposition 1. Under H0 and Assumption 2, as T → ∞,

σ̃2 p−→ σ2
0 and hence

σ2
0

σ̃2

p−→ 1.

We now investigate the asymptotic distribution of gnT (σ̃
2) under H0. From (7) evaluated

at σ̃2 under H0 (Ỹnt = Ṽnt) and Assumption 1 (s′iWnsi = wii = 0 for all i), we have

gnT (σ̃
2) =



1

σ̃2

T∑
t=1

Ṽ ′
nts1s

′
1WnṼnt

1

σ̃2

T∑
t=1

Ṽ ′
nts2s

′
2WnṼnt

...

1

σ̃2

T∑
t=1

Ṽ ′
ntsns

′
nWnṼnt


=
σ2
0

σ̃2



1

σ20

T∑
t=1

Ṽ ′
nts1s

′
1WnṼnt

1

σ20

T∑
t=1

Ṽ ′
nts2s

′
2WnṼnt

...

1

σ20

T∑
t=1

Ṽ ′
ntsns

′
nWnṼnt


=
σ2
0

σ̃2
gnT (σ

2
0) (9)
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where Ṽnt = Vnt − V̄nT and
σ2
0

σ̃2

p−→ 1 by Proposition 1. Thus, the limiting result of gnT (σ̃
2) is

the same as that of gnT (σ
2
0) under H0.

To show the asymptotic distribution of
1√
T
gnT (σ

2
0) under H0, we consider

1√
T
gnT (σ

2
0) =

1

σ2
0

1√
T

T∑
t=1


V ′
nts1s

′
1WnVnt

V ′
nts2s

′
2WnVnt
...

V ′
ntsns

′
nWnVnt

− 1

σ2
0

√
T


V̄ ′
nT s1s

′
1WnV̄nT

V̄ ′
nT s2s

′
2WnV̄nT
...

V̄ ′
nT sns

′
nWnV̄nT

 (10)

where the first term is denoted as
1√
T

∂lnL∗
nT (0, ..., 0, σ

2
0)

∂ψ
and the second term is Op(

1√
T
)

by Lemmas A.3 and A.412. The mean and variance of the first term in (10) are µg,n = 0 and

Σg,n =


s′1WnW

′
ns1 s′1Wns2s

′
2Wns1 . . . s′1Wnsns

′
nWns1

s′2Wns1s
′
1Wns2 s′2WnW

′
ns2 . . . s′2Wnsns

′
nWns2

...
...

. . .
...

s′nWns1s
′
1Wnsn s′nWns2s

′
2Wnsn . . . s′nWnW

′
nsn

 (11)

where Σi,i
g,n = s′iWnW

′
nsi =

n∑
j=1

w2
ij and Σi,j

g,n = s′iWnsjs
′
jWnsi = wijwji for all i, j13. Note

that Σg,n takes the same form regardless of shapes of εit.

Under Assumptions 1 and 2, V ′
ntsis

′
iWnVnt is i.i.d. across t with E(V ′

ntsis
′
iWnVnt) = 0,

E(V ′
ntsis

′
iWnVnt)

2 = σ4
0s

′
iWnW

′
nsi <∞ and E(V ′

ntsis
′
iWnVnt)(V

′
ntsjs

′
jWnVnt) = σ4

0s
′
iWnsjs

′
jWnsi

<∞. By the central limit theorem (Multivariate Lindeberg-Levy CLT), we have
1√
T
gnT (σ

2
0)

d−→

N(0,Σg,n). To derive the LM test, we need the following assumption on Σg,n.

12 1√
T

∂lnL∗
nT (0, ..., 0, σ

2
0)

∂ψ
can also be derived from (B.5) in Appendix B with the restriction ψ = (0, ..., 0)′

imposed (under H0). Also, we have |
√
T V̄ ′

nT sis
′
iWnV̄nT | ≤ |

√
T V̄ ′

nT sis
′
iWnV̄nT − E(

√
T V̄ ′

nT sis
′
iWnV̄nT )| +

|E(
√
T V̄ ′

nT sis
′
iWnV̄nT )| = Op(

1√
T
) for all i by Lemmas A.3 and A.4.

13Σg,n can also be derived from (B.8) in Appendix B with the restriction ψ = (0, ..., 0)′ imposed (under

H0). Thus, we have E(
1

T

∂2lnL∗
nT (0, ..., 0, σ

2
0)

∂ψ∂ψ′ ) = −Σg,n.
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Assumption 4. For the elements in Σg,n, either (1) or (2) is satisfied:

(1)
n∑
j=1

w2
ij >

n∑
j=1

|wijwji| for all i.

(2)
n∑
j=1

w2
ij ≥

n∑
j=1

|wijwji| and wij > 0 for all i, j.

Assumption 4(1) does not hold when Wn is symmetric because of
n∑
j=1

w2
ij =

n∑
j=1

|wijwji|.

However, any symmetric Wn can satisfy Assumption 4(2) as long as all off-diagonal entries

of Wn are positive. Under Assumptions 1 and 4(1), Σg,n is a strictly diagonally dominant

matrix because
n∑
j=1

w2
ij >

n∑
j=1

|wijwji| ≥ 0 where
n∑
j=1

|wijwji| =
n∑
j ̸=i

|wijwji| is each row sum

of all off-diagonal entries in absolute value14. Under Assumptions 1 and 4(2), Σg,n is a

diagonally dominant matrix.

Proposition 2. Under Assumptions 1 and 4,

Σg,n is positive definite.

Based on the limiting results of
1√
T
gnT (σ̃

2) under H0 and the condition on Σg,n, we can

find the asymptotic distribution of the quadratic form,
1

T
gnT (σ̃

2)′Σ−1
g,ngnT (σ̃

2) in Theorem 1.

Theorem 1. Under H0 and Assumptions 1, 2 and 4, as T → ∞,

1

T
gnT (σ̃

2)′Σ−1
g,ngnT (σ̃

2)
d−→ χ2

n.

For the empirical cases where T is notably larger than n, one may use this LM test

shown in Theorem 115. Hence, the conclusions on whether a spatial correlation exists or not,

when T is large, can be drawn based on the value of
1

T
gnT (σ̃

2)′Σ−1
g,ngnT (σ̃

2) where gnT (σ̃
2) =

(
1

σ̃2
1√
T

T∑
t=1

Ỹ ′
nts1s

′
1WnỸnt, ...,

1

σ̃2
1√
T

T∑
t=1

Ỹ ′
ntsns

′
nWnỸnt)

′.

14A square matrix is said to be diagonally dominant if, for every row, the magnitude of the diagonal entry
in a row is larger than or equal to the sum of the magnitudes of all off-diagonal entries in that row. That

is, the matrix A = (aij) is diagonally dominant if |aii| ≥
∑
j ̸=i

|aij |. Furthermore, it is strictly diagonally

dominant if strict inequality holds for all i.
15The advantage of the LM tests over the other approaches, such as the Wald and LR tests, is that it only

requires the restricted estimate, σ̃2.
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3.2 Local power of the LM test

For the asymptotic local power of the LM test, we consider the following local alternatives:

H1,T : δi0 =
∆i

T 1/2
for i = 1, ..., n (12)

where ∆i is a fixed constant (∆i ̸= 0). Denote ∆ = (∆1, ...,∆n)
′, an n × 1 vector of

constants. To investigate the asymptotic properties of the LM test under H1,T , we utilize Le

Cam’s theory, following Qu and Lee (2013) and Cheng and Lee (2017) for spatial models.

Consider qnT = lnLnT (∆1/T
1/2, ...,∆n/T

1/2, σ2
0)−lnLnT (0, ..., 0, σ2

0). By the second order

Taylor series expansion, we have

qnT =
1

T 1/2
∆′∂lnLnT (0, ..., 0, σ

2
0)

∂ψ
+

1

2T
∆′∂

2lnLnT (∆̄1, ..., ∆̄n, σ
2
0)

∂ψ∂ψ′ ∆ (13)

where ∆̄i lies between ∆i/T
1/2 and 0 for all i = 1, ..., n. Thus, ∆̄i

p−→ 0 as T → ∞ for all i.

From the previous results in Section 3.1, we have

qnT =
1

T 1/2
∆′∂lnLnT (0, ..., 0, σ

2
0)

∂ψ
+

1

2T
∆′∂

2lnLnT (∆̄1, ..., ∆̄n, σ
2
0)

∂ψ∂ψ′ ∆

= ∆′ 1√
T

∂lnL∗
nT (0, ..., 0, σ

2
0)

∂ψ
+

1

2
∆′E(

1

T

∂2lnL∗
nT (0, ..., 0, σ

2
0)

∂ψ∂ψ′ )∆ + op(1)

(14)

where
1√
T

∂lnL∗
nT (0, ..., 0, σ

2
0)

∂ψ

d−→ N(0,Σg,n) under H0 and E(
1

T

∂2lnL∗
nT (0, ..., 0, σ

2
0)

∂ψ∂ψ′ ) =

−Σg,n, provided that
1

T

∂2lnLnT (∆̄1, ..., ∆̄n, σ
2
0)

∂ψ∂ψ′ − E(
1

T

∂2lnL∗
nT (0, ..., 0, σ

2
0)

∂ψ∂ψ′ ) = op(1).

Lemma 1. Under Assumptions 1-3,

1

T

∂2lnLnT (∆̄1, ..., ∆̄n, σ
2
0)

∂ψ∂ψ′ − E(
1

T

∂2lnL∗
nT (0, ..., 0, σ

2
0)

∂ψ∂ψ′ ) = op(1).

Hence, qnT
d−→ N(−1

2
∆′Σg,n∆,∆

′Σg,n∆) under H0 and this result implies that Le Cam’s

first lemma holds. Denote σ∗2 = ∆′Σg,n∆. From (9), (10) and (14), we obtain the asymptotic

11



covariance of
1√
T
gnT (σ̃

2) and qnT as

Cov
( 1√

T

∂lnL∗
nT (0, ..., 0, σ

2
0)

∂ψ
,∆′ 1√

T

∂lnL∗
nT (0, ..., 0, σ

2
0)

∂ψ

)
= V ar

( 1√
T

∂lnL∗
nT (0, ..., 0, σ

2
0)

∂ψ

)
∆ = Σg,n∆

(15)

Denote τ = Σg,n∆. Then, using the Cramer-Wold device, we can find the joint asymptotic

distribution of
1√
T
gnT (σ̃

2) and qnT under H0 as

(
1√
T
gnT (σ̃

2), qnT ) → N
( 0

−1

2
σ∗2

,
Σg,n τ

τ ′ σ∗2

) (16)

Hence, by Le Cam’s third lemma,
1√
T
gnT (σ̃

2)
d−→ N(τ,Σg,n) under H1,T .

Theorem 2. Under H1,T and Assumptions 1-4, as T → ∞,

1

T
gnT (σ̃

2)′Σ−1
g,ngnT (σ̃

2)
d−→ χ2

n(µ) where µ = ∆′Σg,n∆ is a noncentrality parameter.

Theorem 2 implies that the LM test has power against local alternatives if ∆i ̸= 0 for

some i due to µ > 0 since Σg,n is positive definite by Proposition 2.

4 Test statistic when both n and T are large

In this section, we propose the S test when both n and T are large based on the quadratic

form derived in Section 3. We first derive the limiting distribution of S under H0 when both

n and T tend to infinity jointly in the special case where social interactions or networks

are completely non-reciprocal. We then extend our discussion to general interactions or

networks. Lastly, we derive the limiting result of the S test under local alternatives.

12



4.1 S test

We propose a standardized version of the LM test, S =
1√
2n

( 1
T
gnT (σ̃

2)′Σ−1
g,ngnT (σ̃

2)−n
)
, for

(3) when both n and T are large. Under H0, the proposed S test takes the following form:

S =
1√
2n

( 1
T
gnT (σ̃

2)′Σ−1
g,ngnT (σ̃

2)− n
)

=
1√
2n

( 1
T


gnT,1(σ̃

2)

gnT,2(σ̃
2)

...

gnT,n(σ̃
2)


′

s′1WnW
′
ns1 s′1Wns2s

′
2Wns1 . . . s′1Wnsns

′
nWns1

s′2Wns1s
′
1Wns2 s′2WnW

′
ns2 . . . s′2Wnsns

′
nWns2

...
...

. . .
...

s′nWns1s
′
1Wnsn s′nWns2s

′
2Wnsn ... s′nWnW

′
nsn


−1

gnT,1(σ̃
2)

gnT,2(σ̃
2)

...

gnT,n(σ̃
2)

− n
)

(17)

where gnT,i(σ̃
2) =

1

σ̃2

T∑
t=1

Ṽ ′
ntsis

′
iWnṼnt.

Theorem 1 shows that
1

T
gnT (σ̃

2)′Σ−1
g,ngnT (σ̃

2)
d−→ χ2

n as T → ∞ under H0. For sequential

asymptotics (T → ∞, then n → ∞), it is readily shown that the S test asymptotically

follows a standard normal distributionN(0, 1) underH0 since S
d−→ 1√

2n

(
χ2
n−n

)
as n→ ∞16.

However, our main interest is to analyze the limiting result of S under joint asymptotics. For

the asymptotic properties of the S test when both n and T are large, we need the following

assumptions:

Assumption 5. Wn is uniformly bounded in row and column sums in absolute value.

Assumption 6. sup
n

sup
i

∑n
j=1 |wijwji|∑n

j=1w
2
ij

< 1.

Assumption 7. T is an increasing function of n and n goes to infinity.

Assumption 5 is the standard regularity condition forWn used in the spatial econometrics

literature. This uniform boundedness of Wn, originated by Kelejian and Prucha (1998), is a

condition to limit spatial correlations to a manageable degree (Lee 2004). Under Assumption

5, ith diagonal element of Σg,n,
n∑
j=1

w2
ij ≤ max

i,j
|wij|(max

i

n∑
j=1

|wij|) <∞ for all n. Assumption

16For χ2
n, E(χ2

n) = n and V ar(χ2
n) = 2n. For more details, see de Jong and Bierens (1994).
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6 is a condition for the nonsingularity of Σg,n for all n. Assumption 6 implies that the strictly

diagonally dominant property of Σg,n holds uniformly in n because the diagonal element is

strictly greater than the sum of all off-diagonal entries in that row for all i and n. Assumption

7 allows one case; T → ∞ as n→ ∞ where both n and T are large.

The crucial part of this analysis is to apply the appropriate limit theorems to the proposed

S test that contains the n-dimensional quadratic form where n is growing. To this end, we

first need the analytical form of the inverse of Σg,n in (11). We note that all elements of Σg,n

depend on Wn specified by some social interactions or network structures. In this sense, we

begin by discussing the limiting result of S under a special interaction in Section 4.2.

4.2 The limiting result of S in a special case

Consider the non-reciprocal interactions or networks in the form of Assumption 8:

Assumption 8. The reciprocities wijwji of Wn is zero, i.e., wijwji = 0 for all i and j.

Assumption 8 implies that the interactions or networks are completely non-reciprocal in

the sense that either wij or wji, or both is zero for all i and j. Under Assumptions 1 and

8, we have
wijwji√∑n

j=1w
2
ij

√∑n
i=1w

2
ji

= 0 for all i, j and n. Assumption 8 is strong in practice;

however, these types of interactions or networks can be found in the econometrics literature.

Bramoullé et al. (2009) illustrate a special social network where each unit is influenced only

by his or her left-hand friend. An example of their weights matrix G is:

Wn =



0 0 0 0 . . . 0 1

1 0 0 0 . . . 0 0

0 1 0 0 . . . 0 0

0 0 1 0 . . . 0 0

...
...

...
...

. . .
...

...

0 0 0 0 . . . 0 0

0 0 0 0 . . . 1 0


(18)
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This is a simple case of the non-reciprocal interactions or networks17. In the case of (18),

Σg,n = In. Also, interactions are likely to be non-reciprocal when a small number of units

affect many others dominantly. Pesaran and Yang (2021) illustrate the following interaction:

Wn =



0 w12 0 0 . . . 0 0

w21 0 w23 0 . . . 0 0

w31 0 0 w34 . . . 0 0

w41 0 0 0 . . . 0 0

...
...

...
...

. . .
...

...

wn-11 0 0 0 . . . 0 wn-1n

wn1 0 0 0 . . . 0 0


(19)

where the first unit is the dominant unit18. This example can be the non-reciprocal network,

additionally assuming w21 = 0. In the case of (19), Σg,n is a simple block diagonal matrix.

In the remaining subsection, we consider the non-reciprocal interactions or networks but

do not specify a particular form of Wn
19. Then, under Assumption 8, all off-diagonal entries

of Σg,n are zero because s′iWnsjs
′
jWnsi = wijwji = 0 for all i, j, and Σg,n becomes a block

diagonal matrix20. Denote ΣD
g,n, the structure of Σg,n under Assumption 8, as

ΣD
g,n =



s′1WnW
′
ns1 0 0 . . . 0

0 s′2WnW
′
ns2 0 . . . 0

0 0 s′3WnW
′
ns3 . . . 0

...
...

...
. . .

...

0 0 0 . . . s′nWnW
′
nsn


(20)

and denote Snr =
1√
2n

( 1
T
gnT (σ̃

2)′ΣD−1
g,n gnT (σ̃

2)− n
)
for S under Assumption 8.

17We may think of a generalized version of the Bramoullé et al. (2009). For instance, each unit is influenced
by all left-hand friends.

18Pesaran and Yang (2021) discuss estimation and inference in spatial models with dominant units.
19We consider the conventional weights matrices where neighboring units are only a few adjacent ones.
20The advantage of the block diagonal matrix is that its inverse can be easily derived; the inverse of any

block-diagonal matrix is given by replacing the diagonal elements with their reciprocals.
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Using the property of a block diagonal matrix and Ṽnt = Vnt − V̄nT , we have

Snr =
1√
2n

( 1
T
gnT (σ̃

2)′ΣD−1
g,n gnT (σ̃

2)− n
)

=
1√
2n

( 1
T


gnT,1(σ̃

2)

gnT,2(σ̃
2)

...

gnT,n(σ̃
2)


′

(s′1WnW
′
ns1)

−1 0 . . . 0

0 (s′2WnW
′
ns2)

−1 . . . 0

...
...

. . .
...

0 0 . . . (s′nWnW
′
nsn)

−1




gnT,1(σ̃

2)

gnT,2(σ̃
2)

...

gnT,n(σ̃
2)

− n
)

=
1√
2n

( 1
T

n∑
i=1

gnT,i(σ̃
2)(s′iWnW

′
nsi)

−1gnT,i(σ̃
2)−

n∑
i=1

1
)

=
1√
2n

n∑
i=1

( 1
T
gnT,i(σ̃

2)(s′iWnW
′
nsi)

−1gnT,i(σ̃
2)− 1

)
(21)

where gnT,i(σ̃
2) =

1

σ̃2

T∑
t=1

Ṽ ′
ntsis

′
iWnṼnt =

σ2
0

σ̃2
(
1

σ2
0

T∑
t=1

V ′
ntsis

′
iWnVnt−

1

σ2
0

T V̄ ′
nT sis

′
iWnV̄nT ). This

can be rewritten as

Snr =
1√
2n

n∑
i=1

(( 1√
T
gnT,i(σ̃

2))2

s′iWnW ′
nsi

− (
σ20
σ̃2

)2 + (
σ20
σ̃2

)2 − 1
)

= (
σ20
σ̃2

)2
1√
2n

n∑
i=1

(( 1
σ2
0

1√
T

∑T
t=1 V

′
ntsis

′
iWnVnt − 1

σ2
0

√
T V̄ ′

nT sis
′
iWnV̄nT )

2

s′iWnW ′
nsi

− 1
)
+

1√
2n

n∑
i=1

(
(
σ20
σ̃2

)2 − 1
)

= (
σ20
σ̃2

)2
1√
2n

n∑
i=1

(( 1
σ2
0

1√
T

∑T
t=1 V

′
ntsis

′
iWnVnt)

2

s′iWnW ′
nsi

− 1
)
+ (

σ20
σ̃2

)2
1√
2n

n∑
i=1

( 1
σ2
0

√
T V̄ ′

nT sis
′
iWnV̄nT )

2

s′iWnW ′
nsi

− (
σ20
σ̃2

)2
2√
2n

n∑
i=1

( 1
σ2
0

1√
T

∑T
t=1 V

′
ntsis

′
iWnVnt)(

1
σ2
0

√
T V̄ ′

nT sis
′
iWnV̄nT )

s′iWnW ′
nsi

+
1√
2n

n∑
i=1

(
(
σ20
σ̃2

)2 − 1
)

= (
σ20
σ̃2

)2
1√
2n

n∑
i=1

(
(

1
σ2
0

1√
T

∑T
t=1 V

′
ntsis

′
iWnVnt√

s′iWnW ′
nsi

)2 − 1
)
+

1√
2
(
σ20
σ̃2

)2
√
n

T

1

n

n∑
i=1

(

1
σ2
0
T V̄ ′

nT sis
′
iWnV̄nT√

s′iWnW ′
nsi

)2

− 2√
2
(
σ20
σ̃2

)2
√
n

T

1

n

n∑
i=1

(

1
σ2
0

1√
T

∑T
t=1 V

′
ntsis

′
iWnVnt√

s′iWnW ′
nsi

)(

1
σ2
0
T V̄ ′

nT sis
′
iWnV̄nT√

s′iWnW ′
nsi

) +
1√
2n

n∑
i=1

(
(
σ20
σ̃2

)2 − 1
)

(22)

Proposition 3. Under H0 and Assumptions 2 and 7,

σ̃2 p−→ σ2
0 and hence

σ2
0

σ̃2

p−→ 1, and
σ2
0

σ̃2
− 1 = OP (

1√
nT

).
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Define the random variable zi,nT and ri,nT over i = 1, ..., n as

zi,nT ≡ (

1
σ2
0

1√
T

∑T
t=1 V

′
ntsis

′
iWnVnt√

s′iWnW ′
nsi

)2 = (

1
σ2
0

1√
T

∑T
t=1 εit

∑n
j=1wijεjt√∑n

j=1w
2
ij

)2 (23)

ri,nT ≡ (

1
σ2
0
T V̄ ′

nT sis
′
iWnV̄nT√

s′iWnW ′
nsi

)2 = (

1
σ2
0
T ϵ̄iT

∑n
j=1wij ϵ̄jT√∑n
j=1w

2
ij

)2 (24)

where ϵ̄iT =
1

T

T∑
t=1

εit. Let z̃i,nT =

1
σ2
0

1√
T

∑T
t=1 V

′
ntsis

′
iWnVnt√

s′iWnW ′
nsi

and r̃i,nT =

1
σ2
0
T V̄ ′

nT sis
′
iWnV̄nT√

s′iWnW ′
nsi

.

Thus, zi,nT = (z̃i,nT )
2 and ri,nT = (r̃i,nT )

2. Under Assumptions 1 and 2, zi,nT , ri,nT and

z̃i,nT r̃i,nT are spatially correlated (dependent heterogeneous) random variables with finite

means and variances. That is, as shown in Appendix E, we have

E(zi,nT ) = 1 (25)

V ar(zi,nT ) = 2 +
1

σ8
0

1

T

µ4(µ4 − 3σ4
0)
∑n

j=1w
4
ij

(
∑n

j=1w
2
ij)

2
+

3(µ4 − σ4
0)

σ4
0

1

T
(26)

Cov(zi,nT , zj,nT ) =
(µ4)

2 − 2µ4σ
4
0 + (σ4

0)
2

σ8
0

1

T

w2
ijw

2
ji

(
∑n

j=1w
2
ij)(
∑n

i=1w
2
ji)

+
µ4 − σ4

0

σ4
0

1

T

w2
ji∑n

i=1w
2
ji

+
µ4 − σ4

0

σ4
0

1

T

w2
ij∑n

j=1w
2
ij

+
2

T

(
∑n

l=1wilwjl)
2

(
∑n

j=1w
2
ij)(
∑n

i=1w
2
ji)

+
µ4 − 3σ4

0

σ4
0

1

T

∑n
l=1w

2
ilw

2
jl

(
∑n

j=1w
2
ij)(
∑n

i=1w
2
ji)

+
4(µ3)

2

σ6
0

1

T

wijwji(
∑n

l=1wilwjl)

(
∑n

j=1w
2
ij)(
∑n

i=1w
2
ji)

+
2(µ3)

2

σ6
0

1

T

wji(
∑n

l=1w
2
ilwjl)

(
∑n

j=1w
2
ij)(
∑n

i=1w
2
ji)

+
2(µ3)

2

σ6
0

1

T

wij(
∑n

l=1w
2
jlwil)

(
∑n

j=1w
2
ij)(
∑n

i=1w
2
ji)

(27)

E(ri,nT ) = 1 (28)

E(z̃i,nT r̃i,nT ) =
1√
T

(29)

where µs = E(εsit) for s = 3, 4. Note that Assumption 8 is not needed to obtain the results

above. Thus, (25)-(29) hold for any Wn.
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Denote QnT =
1√
2n

n∑
i=1

(
zi,nT − E(zi,nT )

)
, PnT =

1

n

n∑
i=1

(
ri,nT − E(ri,nT )

)
and UnT =

1

n

n∑
i=1

(
z̃i,nT r̃i,nT −E(z̃i,nT r̃i,nT )

)
. Then, the mean and variance of QnT , µQnT

= E(QnT ) and

ΣQnT
= V ar(QnT ) can be found in Proposition 4.

Proposition 4. Under Assumptions 1, 2, 5 and 7,

µQnT
= 0 and ΣQnT

= 1 +O(
1

T
).

Assumption 8 is not needed to obtain the result of Proposition 4. Hence, Proposition 4

holds for any weights matrix Wn. Using (22), (25), (28) and (29), we have

Snr = (
σ20
σ̃2

)2QnT +
1√
2
(
σ20
σ̃2

)2
√
n

T
PnT +

1√
2
(
σ20
σ̃2

)2
√
n

T

1

n

n∑
i=1

E(ri,nT )−
2√
2
(
σ20
σ̃2

)2
√
n

T
UnT

− 2√
2
(
σ20
σ̃2

)2
√
n

T

1

n

n∑
i=1

E(z̃i,nT r̃i,nT ) +
1√
2n

n∑
i=1

(
(
σ20
σ̃2

)2 − 1
)

= (
σ20
σ̃2

)2QnT +
1√
2
(
σ20
σ̃2

)2
√
n

T
PnT − 2√

2
(
σ20
σ̃2

)2
√
n

T
UnT − 1√

2
(
σ20
σ̃2

)2
√
n

T
+

1√
2n

n∑
i=1

(
(
σ20
σ̃2

)2 − 1
)

(30)

We now apply limit theorems to QnT , PnT , and UnT in (30). We note that the established

CLT and LLN for linear-quadratic forms are not applicable because zi,nT , ri,nT and z̃i,nT r̃i,nT

are the nonlinear transformation or product of z̃i,nT and r̃i,nT . In this sense, we will employ

the CLT and LLN under near-epoch dependence, established by Jenish and Prucha (2012)21.

We first show that z̃i,nT and r̃i,nT are L2-near-epoch dependent (NED)22. Let D ⊂ Rd (d ≥ 1)

be a lattice of unevenly placed locations in Rd. Assume that each unit i has its fixed location

in Rd over time periods t = 1, ..., T . Define the location function l : i = {1, ..., n} → Dn ⊆

D ⊂ Rd by l(i) = (l1(i), ..., ld(i)). Assume |Dn| = n where |A| denotes the cardinality of A.

The distance between l(i) and l(j) is defined as ρ
(
l(i), l(j)

)
= max

1≤k≤d
{|lk(i)− lk(j)|}23.

21Jenish and Prucha (2012) extend the concept of near-epoch dependent (NED) processes used in the time
series literature to spatial processes.

22An attractive feature of NED processes is that the NED property is preserved under transformations
(Jenish and Prucha, 2012).

23We refer to Jeong and Lee (2021) for this setting.
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In the remaining subsection, we use i = l(i) and j = l(j) as a location, and ρ(i, j) =

ρ
(
l(i), l(j)

)
as a distance for simplicity. Let ξ = {εi1, ..., εiT , i ∈ Tn, n ≥ 1} be a random

field for all time periods (∀t = 1, ..., T ) where Dn ⊆ Tn ⊆ D. Consider the following σ-field

as Fi,nT (s) = σ
(
εj1, ..., εjT ; j ∈ Tn, ρ(i, j) ≤ s

)
generated by the random variables located in

the s-neighborhood of i. We need the following assumption to follow the approach of Jenish

and Prucha (2012) for the increasing domain asymptotics.

Assumption 9. The lattice D ⊂ Rd (d ≥ 1) is infinitely countable. All elements in D are

located at distances of at least ρ0 > 0 from each other, i.e., ρ(i, j) ≥ ρ0 for all i, j ∈ Dn.

Without loss of generality, we assume that ρ0 > 1.

Let Z̃ = {z̃i,nT , i ∈ Dn, n ≥ 1} be a random field with ||z̃i,nT ||p < ∞ (p ≥ 1) and let

d̃ = {d̃i,n, i ∈ Dn, n ≥ 1} be an array of finite positive constants24. Then, the random field

Z̃ is said to be L2-NED on ξ = {εi1, ..., εiT , i ∈ Tn, n ≥ 1} if ||z̃i,nT − E(z̃i,nT |Fi,nT (s))||2 ≤

d̃i,nγ̃(s) where γ̃(s) → 0 as s → ∞. If sup
n

sup
i∈Dn

d̃i,n < ∞, then Z̃ is said to be uniformly

L2-NED on ξ. Similarly, define a random field for R̃ = {r̃i,nT , i ∈ Dn, n ≥ 1}.

Lemma 2. Under Assumptions 1 and 2,

z̃i,nT and r̃i,nT are uniformly Lp bounded where p = 4 + η, i.e., sup
n

sup
i∈Dn

||z̃i,nT ||4+η <∞ and

sup
n

sup
i∈Dn

||r̃i,nT ||4+η <∞.

Proposition 5. Under Assumptions 1, 2, and 9,

Z̃ = {z̃i,nT , i ∈ Dn, n ≥ 1} and R̃ = {r̃i,nT , i ∈ Dn, n ≥ 1} are uniformly L2-NED on ξ with

γ̃(s) = sup
n

sup
i∈Dn

√∑n
j=1w

2
ij1
(
ρ(i, j) > s

)∑n
j=1w

2
ij

25.

The NED property is preserved under summation and multiplication (Jenish and Prucha,

2012; Xu and Lee, 2015). In this sense, the next step is to consider zi,nT = (z̃i,nT )
2, ri,nT =

(r̃i,nT )
2 and z̃i,nT r̃i,nT .

24For any random variable Y , let ||Y ||p = (E|Y |p)1/p, p ≥ 1.
251
(
ρ(i, j) > s

)
is an indicator function where 1

(
ρ(i, j) > s

)
= 0 if the distance between i and j is equal

to or less than s. As s gets larger, 1
(
ρ(i, j) > s

)
goes to zero.
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Let Z = {zi,nT , i ∈ Dn, n ≥ 1} be a random field with ||zi,nT ||p < ∞ (p ≥ 1) and

d = {di,n, i ∈ Dn, n ≥ 1} be an array of finite positive constants. Then, the random field

Z is said to be L2-NED on ξ if ||zi,nT − E(zi,nT |Fi,nT (s))||2 ≤ di,nγ(s) where γ(s) → 0 as

s→ ∞. If sup
n

sup
i∈Dn

di,n <∞, then Z is said to be uniformly L2-NED on ξ. Similarly, define

random fields for R = {ri,nT , i ∈ Dn, n ≥ 1} and K = {z̃i,nT r̃i,nT , i ∈ Dn, n ≥ 1}.

Proposition 6. Under Assumptions 1, 2, and 9,

Z = {zi,nT , i ∈ Dn, n ≥ 1}, R = {ri,nT , i ∈ Dn, n ≥ 1} and K = {z̃i,nT r̃i,nT , i ∈ Dn, n ≥ 1}

are uniformly L2-NED on ξ with γ(s) = sup
n

sup
i∈Dn

(∑n
j=1w

2
ij1
(
ρ(i, j) > s

)∑n
j=1w

2
ij

) η
8+4η

.

We apply the CLT under near-epoch dependence to QnT and the LLN under near-epoch

dependence to PnT and UnT in (30). Following Xu and Lee (2015), in addition to Assumption

1, we assume the following conditions.

Assumption 10. The weights wij in Wn satisfy at least one of the following conditions:

(1) Only individuals whose distances are less than or equal to some specific constant may

affect each other directly. Without loss of generality, we set it as ρ̄0 > 1. That is to say, wij

can be nonzero only if ρ(i, j) ≤ ρ̄0.

(2) There exists an α > d ≥ 1 and a constant C0 > 0 such that |wij| ≤ C0/ρ(i, j)
α.

Assumption 11. α > d · (1.5 + 2η−1)

As discussed in Xu and Lee (2015), Assumption 10(1) is stronger than Assumption 10(2)

in the sense that Assumption 10(2) allows an interaction even if two locations are far away

from each other. In our case, it requires the strength to decline with ρ(i, j) in the power of α

determined by Assumption 11 to make the strength of spatial dependence decay sufficiently

fast. If the elements of Wn are specified by a function of the spatial distance in some space,

such as wij = C0/ρ(i, j)
α, we can have wij > 0 for all i, j.

Proposition 7. Under Assumptions 1, 2, 7 and 9-11,

QnT =
1√
2n

n∑
i=1

(
zi,nT − E(zi,nT )

) d−→ N(0, 1).
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Proposition 8. Under Assumptions 1, 2, 7 and 9,

PnT =
1

n

n∑
i=1

(
ri,nT − E(ri,nT )

) p−→ 0 and UnT =
1

n

n∑
i=1

(
z̃i,nT r̃i,nT − E(z̃i,nT r̃i,nT )

) p−→ 0.

Hence, as we analyze the statistics in (30), we can find the asymptotic distribution of the

proposed S test in a special case under Assumption 8 in Theorem 3.

Theorem 3. Under H0, Assumptions 1, 2, 5, 7-11, and
n

T
→ k where 0 ≤ k <∞,

S =
1√
2n

( 1
T
gnT (σ̃

2)′Σ−1
g,ngnT (σ̃

2)− n
) d−→ N(0, 1).

Theorem 3 imposes a restriction on the relative expansion rates of n and T such that

n

T
→ k where 0 ≤ k < ∞. Hence, in the case of the completely non-reciprocal interactions,

the conclusions on whether a spatial correlation exists or not, when n is asymptotically

proportional to T or when T grows faster than n, can be drawn based on the value of the

proposed test statistic, Snr =
1√
2n

n∑
i=1

(( 1
σ̃2

1√
T

∑T
t=1 Ỹ

′
ntsis

′
iWnỸnt)

2

s′iWnW ′
nsi

− 1
)
.

4.3 The limiting result of S in general interactions

Assumption 8 (non-reciprocal interactions or networks) is too strong in practice; we now

allow the reciprocities (wijwji ̸= 0) in a network as Σg,n in (11). To analyze the asymptotic

properties of S in general interactions, we need the analytical form of Σ−1
g,n. The challenge

here is to derive the inverse of an n× n matrix Σg,n in which all off-diagonal entries are not

necessarily zero with large n. We note that under Assumption 6, Σg,n is a strictly diagonally

dominant matrix uniformly in n; we can obtain Σ−1
g,n using its property.

Σg,n can be expressed as Σg,n = ΣD
g,n − ΣD

g,nBn = ΣD
g,n(In −Bn) where ΣD

g,n in (20) and

Bn = −



0
s′1Wns2s

′
2Wns1

s′1WnW ′
ns1

s′1Wns3s
′
3Wns1

s′1WnW ′
ns1

. . .
s′1Wnsns

′
nWns1

s′1WnW ′
ns1

s′2Wns1s
′
1Wns2

s′2WnW ′
ns2

0
s′2Wns3s

′
3Wns2

s′2WnW ′
ns2

. . .
s′2Wnsns

′
nWns2

s′2WnW ′
ns2

s′3Wns1s
′
1Wns3

s′3WnW ′
ns3

s′3Wns2s
′
2Wns3

s′3WnW ′
ns3

0 . . .
s′3Wnsns

′
nWns3

s′3WnW ′
ns3

...
...

...
. . .

...

s′nWns1s
′
1Wnsn

s′nWnW ′
nsn

s′nWns2s
′
2Wnsn

s′nWnW ′
nsn

s′nWns3s
′
3Wnsn

s′nWnW ′
nsn

. . . 0


(31)
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where ||Bn||∞ < 126. Since the spectral radius of Bn, ρ(Bn) ≤ ||Bn||∞ < 1, we can derive

the inverse of Σg,n = ΣD
g,n(In −Bn) as

Σ−1
g,n = (In −Bn)

−1ΣD−1
g,n = (In +Bn +

∞∑
k=2

Bk
n)Σ

D−1
g,n

= ΣD−1
g,n +BnΣ

D−1
g,n +

∞∑
k=2

Bk
nΣ

D−1
g,n

(32)

where
∞∑
k=0

Bk
n <∞27.

Finally, using the result of (32), we obtain the proposed S test:

S =
1√
2n

( 1
T
gnT (σ̃

2)′Σ−1
g,ngnT (σ̃

2)− n
)

=
1√
2n

( 1
T
gnT (σ̃

2)′ΣD−1
g,n gnT (σ̃

2)− n
)
+

1√
2n

1

T
gnT (σ̃

2)′BnΣ
D−1
g,n gnT (σ̃

2)

+
∞∑
k=2

1√
2n

1

T
gnT (σ̃

2)′Bk
nΣ

D−1
g,n gnT (σ̃

2)

(33)

where the first term
1√
2n

( 1
T
gnT (σ̃

2)′ΣD−1
g,n gnT (σ̃

2)−n
)
is the same as Snr in (21). Therefore,

Theorem 3 is directly applicable to the first term. If all other remaining terms converge to

zero, we can construct a standard normal test.

Proposition 9. Under Assumptions 6 and 7,

If
1√
2n

1

T
gnT (σ̃

2)′BnΣ
D−1
g,n gnT (σ̃

2) is op(1), then
∞∑
k=2

1√
2n

1

T
gnT (σ̃

2)′Bk
nΣ

D−1
g,n gnT (σ̃

2) is op(1).

Proposition 9 implies that it suffices to show
1√
2n

1

T
gnT (σ̃

2)′BnΣ
D−1
g,n gnT (σ̃

2)
p−→ 0 for

∞∑
k=1

1√
2n

1

T
gnT (σ̃

2)′Bk
nΣ

D−1
g,n gnT (σ̃

2)
p−→ 0.

26The ith row sum of Bn is

∑n
j ̸=i |s′iWnsjs

′
jWnsi|

s′iWnW ′
nsi

=

∑n
j=1 |wijwji|∑n

j=1 w
2
ij

< 1 for all i and n by Assumptions 1

and 6.
27 lim

k→∞
(In − (In −Bn))

k = lim
k→∞

Bk
n = 0 due to ρ(Bn) < 1.
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Consider
1√
2n

1

T
gnT (σ̃

2)′BnΣ
D−1
g,n gnT (σ̃

2) where

BnΣ
D−1
g,n = −



0 ∗ ∗ . . . ∗
s′2Wns1s

′
1Wns2

s′2WnW ′
ns2s

′
1WnW ′

ns1
0 ∗ . . . ∗

s′3Wns1s
′
1Wns3

s′3WnW ′
ns3s

′
1WnW ′

ns1

s′3Wns2s
′
2Wns3

s′3WnW ′
ns3s

′
2WnW ′

ns2
0 . . . ∗

...
...

...
. . .

...

s′nWns1s
′
1Wnsn

s′nWnW ′
nsns

′
1WnW ′

ns1

s′nWns2s
′
2Wnsn

s′nWnW ′
nsns

′
2WnW ′

ns2

s′nWns3s
′
3Wnsn

s′nWnW ′
nsns

′
3WnW ′

ns3
. . . 0


(34)

Using

1√
T
gnT,i(σ̃

2)√
s′iWnW ′

nsi
=
σ2
0

σ̃2
(z̃i,nT −

1√
T
r̃i,nT ) with the symmetric property of BnΣ

D−1
g,n , we have

1√
2n

1

T
gnT (σ̃

2)′BnΣ
D−1
g,n gnT (σ̃

2) = − 1√
2n

n∑
i=1

1√
T
gnT,i(σ̃

2)√
s′iWnW ′

nsi

n∑
j=1

s′iWnsjs
′
jWnsi√

s′iWnW ′
nsi
√
s′jWnW ′

nsj

1√
T
gnT,j(σ̃

2)√
s′jWnW ′

nsj

= −(
σ20
σ̃2

)2
1√
2n

n∑
i=1

(z̃i,nT − 1√
T
r̃i,nT )

n∑
j ̸=i

s′iWnsjs
′
jWnsi√

s′iWnW ′
nsi
√
s′jWnW ′

nsj
(z̃j,nT − 1√

T
r̃j,nT )

= − 1√
2
(
σ20
σ̃2

)2
1√
n

n∑
i=1

z̃i,nT

n∑
j ̸=i

s′iWnsjs
′
jWnsi√

s′iWnW ′
nsi
√
s′jWnW ′

nsj
z̃j,nT

+
2√
2
(
σ20
σ̃2

)2
√
n

T

1

n

n∑
i=1

r̃i,nT

n∑
j ̸=i

s′iWnsjs
′
jWnsi√

s′iWnW ′
nsi
√
s′jWnW ′

nsj
z̃j,nT

− 1√
2
(
σ20
σ̃2

)2
√
n

T

1

n

n∑
i=1

r̃i,nT

n∑
j ̸=i

s′iWnsjs
′
jWnsi√

s′iWnW ′
nsi
√
s′jWnW ′

nsj
r̃j,nT

(35)

Proposition 10. Under Assumptions 1, 2, 6 and 7,

If
1√
n

n∑
i=1

z̃i,nT

n∑
j ̸=i

s′iWnsjs
′
jWnsi√

s′iWnW ′
nsi
√
s′jWnW ′

nsj
z̃j,nT is op(1), then

1√
2n

1

T
gnT (σ̃

2)′BnΣ
D−1
g,n gnT (σ̃

2)

is op(1).

Propositions 9 and 10 imply that it suffices to show
1√
n

n∑
i=1

z̃i,nT

n∑
j ̸=i

s′iWnsjs
′
jWnsi√

s′iWnW ′
nsi
√
s′jWnW ′

nsj
z̃j,nT

p−→ 0 for the convergence of
∞∑
k=1

1√
2n

1

T
gnT (σ̃

2)′Bk
nΣ

D−1
g,n gnT (σ̃

2) in (33).
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Define the random variables gi,nT over i = 1, ..., n as

gi,nT ≡ z̃i,nT

n∑
j ̸=i

s′iWnsjs
′
jWnsi√

s′iWnW ′
nsi
√
s′jWnW ′

nsj
z̃j,nT = z̃i,nT

n∑
j ̸=i

wijwji√∑n
j=1w

2
ij

√∑n
i=1w

2
ji

z̃j,nT (36)

Denote GnT =
1√
n

n∑
i=1

gi,nT . We note that the convergence of GnT depends on
wij√∑n
j=1w

2
ij

.

For some social interactions or economic activities, each unit can be influenced by a

significant portion of units,
∑
j=1

|wij| (Lee, 2002). In these cases, the weights matrices are

row-normalized, and the elements w̄ij =
wij∑n

j=1 |wij|
can depend on n as w̄ij = O(

1

hn
) where

hn is divergent uniformly in all i, j (Lee, 2004). Similarly, we now introduce the conditions for

wij√∑n
j=1w

2
ij

; each unit is influenced by a portion of units, measured by

√√√√ n∑
j=1

w2
ij. Consider

the following interactions or networks in the form of Assumptions 12 and 13:

Assumption 12. The elements w∗
ij =

wij√∑n
j=1w

2
ij

are at most of order h∗−1
n , w∗

ij = O(
1

h∗n
)

where the rate sequence h∗n is divergent, uniformly in all i, j.

Assumption 13. lim
n→∞

h∗n
n1/4

= ∞ and lim
n→∞

h∗n
n1/2

= 0.

Assumptions 12 and 13 imply that the social interactions or networks are asymptotically

small reciprocal in the sense that
wijwji√∑n

j=1w
2
ij

√∑n
i=1w

2
ji

= O(
1

h∗2n
) which goes to zero. The

completely non-reciprocal interaction in Assumption 8,
wijwji√∑n

j=1w
2
ij

√∑n
i=1w

2
ji

= 0, is the

special case of Assumptions 12 and 13. The social interactions or networks in the form of

Assumptions 12 and 13 can cover much more empirical cases. Also, Assumptions 12 and 13

can include empirical examples where Wn is row-normalized but exclude the case where all

units are neighbors of each other (equal weight, wij = 1/(n− 1) for all i, j).
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Remark 1. Using w∗
ij in Assumption 12, we can rewrite z̃i,nT and r̃i,nT as

z̃i,nT =

1
σ2
0

1√
T

∑T
t=1 εit

∑n
j=1wijεjt√∑n

j=1w
2
ij

=
1

σ20

1√
T

T∑
t=1

εit

n∑
j=1

w∗
ijεjt (37)

r̃i,nT =

1
σ2
0
T ϵ̄iT

∑n
j=1wij ϵ̄jT√∑n
j=1w

2
ij

=
1

σ20
T ϵ̄iT

n∑
j=1

w∗
ij ϵ̄jT (38)

For both ||z̃i,nT −E(z̃i,nT |Fi,nT (s))||2 and ||r̃i,nT −E(r̃i,nT |Fi,nT (s))||2, we can take the same

sup
n

sup
i∈Dn

d̃i,n = 1 and γ̃(s) = sup
n

sup
i∈Dn

√√√√ n∑
j=1

w∗2
ij 1
(
ρ(i, j) > s

)
where

n∑
j=1

w∗2
ij = 1. Also, ΣQnT

→

1 as long as
n

T
→ k <∞. Hence, all results in Section 4.2 hold.

In the remaining subsection, we use Assumptions 12 and 13 instead of Assumptions 8.

We show the convergence of GnT using Chebyshev’s inequality in Proposition 11.

Proposition 11. Under Assumptions 1, 2, 5-7, 9, 12 and 13,

GnT =
1√
n

n∑
i=1

gi,nT
p−→ 0.

Hence, as we analyze the statistics in (33), we can find the asymptotic distribution of the

proposed S test in more general interaction under Assumptions 12 and 13 in Theorem 4.

Theorem 4. Under H0, Assumptions 1, 2, 5-7 and 9-13, and
n

T
→ k where 0 ≤ k <∞,

S =
1√
2n

( 1
T
gnT (σ̃

2)′Σ−1
g,ngnT (σ̃

2)− n
) d−→ N(0, 1).

Theorem 4 imposes a restriction on the relative expansion rates of n and T such that

n

T
→ k where 0 ≤ k < ∞. Also, Theorem 4 implies that under Assumptions 12 and

13, S is asymptotically equivalent to Snr, |S − Snr| = op(1). Hence, in the case of small

reciprocal interactions, the conclusions on whether a spatial correlation exists or not, when n

is asymptotically proportional to T or when T grows faster than n, can be drawn based on the

value of the proposed test statistic, S =
1√
2n

( 1
T
gnT (σ̃

2)′Σ−1
g,ngnT (σ̃

2) − n
)
where gnT (σ̃

2) =

(
1

σ̃2
1√
T

T∑
t=1

Ỹ ′
nts1s

′
1WnỸnt, ...,

1

σ̃2
1√
T

T∑
t=1

Ỹ ′
ntsns

′
nWnỸnt)

′, or the asymptotically equivalent form

Snr.
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4.4 Local power of the proposed S test

For the asymptotic local power of the S test, we adopt the following local alternatives:

H1,nT : δi0 =
∆i

n1/4T 1/2
for i = 1, ..., n (39)

where ∆i is a fixed constant (∆i ̸= 0). Denote ∆D = diag(∆1, ...,∆n) and ΨH1 =
1

n1/4T 1/2
∆D.

Under Assumptions 12 and 13, Snr is asymptotically equivalent to S in Theorem 4. Thus,

we analyze the asymptotic result of Snr under the local alternatives. Under H1,nT , S
nr takes

the following form:

Snr =
1√
2n

n∑
i=1

(( 1
σ̃2

1√
T

∑T
t=1 Ṽ

′
nt(In −ΨH1Wn)

−1′sis
′
iWn(In −ΨH1Wn)

−1Ṽnt)
2

s′iWnW ′
nsi

− 1
)

(40)

where (In−ΨH1Wn)
−1 = In+

∞∑
k=1

(
1

n1/4T 1/2
∆DWn)

k <∞ for large enough n by Assumption

3. This can be rewritten as

Snr =
1√
2n

n∑
i=1

(( 1
σ̃2

1√
T

∑T
t=1 Ṽ

′
nt(In +

∑∞
k=1(

1
n1/4T 1/2∆

DWn)
k)′sis

′
iWn(In +

∑∞
k=1(

1
n1/4T 1/2∆

DWn)
k)Ṽnt)

2

s′iWnW ′
nsi

− 1
)

=
1√
2n

n∑
i=1

(( 1
σ̃2

1√
T

∑T
t=1 Ṽ

′
nt(In +

1
n1/4T 1/2∆

DWn)
′sis

′
iWn(In +

1
n1/4T 1/2∆

DWn)Ṽnt)
2

s′iWnW ′
nsi

− 1
)
+ op(1)

=
1√
2n

n∑
i=1

(( 1
σ̃2

1√
T

∑T
t=1 Ṽ

′
ntsis

′
iWnṼnt)

2

s′iWnW ′
nsi

− 1
)
+

1√
2n

n∑
i=1

( 1
n1/4T 1/2

1
σ̃2

1√
T

∑T
t=1 Ṽ

′
ntW

′
n∆

Dsis
′
iWnṼnt)

2

s′iWnW ′
nsi

+
1√
2n

n∑
i=1

( 1
n1/4T 1/2

1
σ̃2

1√
T

∑T
t=1 Ṽ

′
ntsis

′
iWn∆

DWnṼnt)
2

s′iWnW ′
nsi

+ op(1)

=
1√
2n

n∑
i=1

(( 1
σ̃2

1√
T

∑T
t=1 Ṽ

′
ntsis

′
iWnṼnt)

2

s′iWnW ′
nsi

− 1
)
+

1√
2

1

n

n∑
i=1

( 1
σ̃2

1
T

∑T
t=1 Ṽ

′
ntW

′
n∆

Dsis
′
iWnṼnt)

2

s′iWnW ′
nsi

+
1√
2

1

n

n∑
i=1

( 1
σ̃2

1
T

∑T
t=1 Ṽ

′
ntsis

′
iWn∆

DWnṼnt)
2

s′iWnW ′
nsi

+ op(1)

(41)
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since | 1√
T

T∑
t=1

Ṽ ′
nt(∆

DWn)
k ′sis

′
iWn(∆

DWn)
kṼnt| is Op(

√
T ) by Lemmas A.3 and A.4 for any

finite k. We show that
1√
2n

n∑
i=1

(( 1
σ̃2

1√
T

∑T
t=1 Ṽ

′
ntsis

′
iWnṼnt)

2

s′iWnW ′
nsi

− 1
) d−→ N(0, 1) in Theorem 3.

Therefore, the asymptotic power depends on the limit of

ΦnT =
1

n

n∑
i=1

( 1
σ̃2

1
T

∑T
t=1 Ṽ

′
ntW

′
n∆

Dsis
′
iWnṼnt)

2 + ( 1
σ̃2

1
T

∑T
t=1 Ṽ

′
ntsis

′
iWn∆

DWnṼnt)
2

s′iWnW ′
nsi

(42)

Denote Φ = lim
n→∞

ΦnT .

Theorem 5. Under H1,nT , Assumptions 1-3 and 5-13, and
n

T
→ k where 0 ≤ k < ∞,

S =
1√
2n

( 1
T
gnT (σ̃

2)′Σ−1
g,ngnT (σ̃

2)− n
) d−→ N(

Φ√
2
, 1).

Theorem 5 implies that the S test has power against local alternatives if ∆i ̸= 0 for a non-

zero fraction of units in the limit due to Φ = lim
n→∞

1

n

n∑
i=1

∆2
i (
∑n

j=1w
2
ij)

2 + (
∑n

j=1 ∆jwijwji)
2∑n

j=1w
2
ij

>

0. Under Assumption 8, Φ = lim
n→∞

1

n

n∑
i=1

∆2
i

n∑
j=1

w2
ij > 0 because wijwji = 0 for all i, j.

5 Properties of the S test

5.1 Power properties of S by comparison with M

As discussed in the previous sections, the proposed S test is based on
∂lnLnT (0, ..., 0, σ̃

2)

∂δi
=

1

σ̃2

T∑
t=1

Ỹ ′
ntsis

′
iWnỸnt for all i; we construct the n× 1 vector as

1√
T
gnT (σ̃

2) =
1√
T

∂lnLnT (0, ..., 0, σ̃
2)

∂ψ
=

(
1

σ̃2
1√
T

T∑
t=1

Ỹ ′
nts1s

′
1WnỸnt, . . . ,

1

σ̃2
1√
T

T∑
t=1

Ỹ ′
ntsns

′
nWnỸnt

)′

(43)

and each element measures the distance away from zero at the points where the function is

maximized subject to the restriction. If the restriction is negligible (underH0, Ỹnt = Ṽnt), the

values of the distance should not differ from zero by more than errors. Using the asymptotic
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variance and a standardized formulation of the LM test, we propose the S test as

S =
1√
2n

( 1
T
gnT (σ̃

2)′Σ−1
g,ngnT (σ̃

2)− n
)

=
1√
2n

(


1

σ̃2

1√
T

T∑
t=1

Ỹ ′
nts1s

′
1WnỸnt

1

σ̃2

1√
T

T∑
t=1

Ỹ ′
nts2s

′
2WnỸnt

...

1

σ̃2

1√
T

T∑
t=1

Ỹ ′
ntsns

′
nWnỸnt



′

Σ−1
g,n



1

σ̃2

1√
T

T∑
t=1

Ỹ ′
nts1s

′
1WnỸnt

1

σ̃2

1√
T

T∑
t=1

Ỹ ′
nts2s

′
2WnỸnt

...

1

σ̃2

1√
T

T∑
t=1

Ỹ ′
ntsns

′
nWnỸnt


− n

) (17)

where Σg,n is a normalization factor. We note that S adds up squared values of each distance

(
1

σ̃2

1√
T

T∑
t=1

Ỹ ′
ntsis

′
iWnỸnt)

2 ≥ 0 for all i due to the quadratic structure.

We now consider the summation of the entries of the vector in (43) over i as

n∑
i=1

1√
T
gnT,i(σ̃

2) =
n∑
i=1

1

σ̃2

1√
T

T∑
t=1

Ỹ ′
ntsis

′
iWnỸnt =

1

σ̃2

1√
T

T∑
t=1

Ỹ ′
ntWnỸnt (44)

It is noteworthy that
1

σ̃2

1√
T

T∑
t=1

Ỹ ′
ntWnỸnt is the numerator of M =

1
σ̃2

1√
T

∑T
t=1 Ỹ

′
ntWnỸnt√

tr(W ′
nWn +W 2

n)

where
√
tr(W ′

nWn +W 2
n) is a normalization factor. It turns out that the traditional M test

adds up the values of each distance, which can be positive or negative. Hence, the power of

M may be low when they cancel each other out, even if the restriction is not negligible.

As shown in Theorems 5 and D.2 under Assumption 8, the power of S depends on

lim
n→∞

1

n

n∑
i=1

∆2
i

n∑
j=1

w2
ij, while the power of M depends on lim

n→∞

1

n

n∑
i=1

∆i

n∑
j=1

w2
ij. If the sign of

∆i is different across i, the power of the traditionalM test may decrease in general, or vanish

under certain circumstances. On the contrary, even in that case, the power of the proposed

S test remains as long as ∆i ̸= 0 for a non-zero fraction of units in the limit. In sum, the

low power of M can happen when spatial lag coefficients are heterogeneous in nature and

can be more severe when the sample size is small. This analysis implies that the traditional

M test does not behave consistently across all potential alternative hypotheses.
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5.2 Finite sample properties of S by Monte Carlo experiments

5.2.1 Design

To investigate the performance of the proposed D test, we conduct Monte Carlo experiments.

We consider the following Data Generating Process (DGP 1), defined by (3).

DGP 1 (The SAR panel data model with fully heterogeneous spatial lag coefficients).

Ynt = (In −Ψ0Wn)
−1(cn0 + Vnt) (3)

where Ψ0 = diag(δ10, ..., δn0), Wn is an n × n spatial weights matrix, cn0 is an n × 1 vector

of individual fixed effects, and Vnt is an n × 1 vector of i.i.d. disturbances with zero mean

and finite variance σ2
0.

In these experiments, we consider the weights matrix Wn by using the distance based

measure such as wij =
1

|i− j + 1|4
for all i ̸= j and wii = 0 for all i, and row-normalize the

matrix. We set ci0 = 0.1 ·U [0, 1] for the fixed effects. For the test power analysis, we consider

two scenarios: (1) all positive spatial effects with chi-square distributed heterogeneity, Ψ0 =

diag(δ10, ..., δn0) where δi0 = λ + δh · (χ2
1 − 1)/

√
2 where λ = 0.1 and δh = 0.14 (2) mixed

signs of spatial effects with normally distributed heterogeneity, Ψ0 = diag(δ10, ..., δn0) where

δi0 = λ + δh · N(0, 1) where λ = 0.05 and δh = 0.1428. Figure (1) illustrates the spatial lag

coefficients of both alternatives in the case of n = 75 used in the simulation.

Finally, we consider three distributions of the disturbances: normal (N(0, 1)), uniform

(U [−
√
3,
√
3]) and chi-square ((χ2

5 − 5)/
√
10) distributions with zero mean and σ2

0 = 1. We

use 1, 000 replications for the size and power with Ψ0, Wn and cn0 fixed, and then redraw

randomly Vnt in each replication.

28λ implies the magnitude of spatial dependence and δh implies the magnitude of heterogeneity across
units. When δh = 0, the spatial coefficients become homogenous.
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(a) Scenario (1) (b) Scenario (2)

Figure 1: Heterogeneous spatial lag coefficients in DGP 1 (n = 75)

5.2.2 Results

We report the size of the S test for all n ∈ {25, 50, 75} and T ∈ {25, 50, 75} combinations in

Table 1. We show size properties using N(0, 1), U [−
√
3,
√
3], and (χ2

5−5)/
√
10 disturbances

at the 5% significance level, respectively. All cases reject the null hypothesis (H0) at higher

rates than the theoretical value 5%, regardless of the forms of disturbances. When T grows

faster than n or n is asymptotically proportional to T , the size goes around the theoretical

value (0.050), as discussed in Section 4.2 and 4.3. On the other hand, as n becomes notably

larger than T , the size distortion appears.

Table 1: Size of the proposed S test

T = 25 T = 50 T = 75

εit ∼ N(0, 1) n = 25 0.079 0.070 0.074
n = 50 0.097 0.074 0.064
n = 75 0.092 0.071 0.064

εit ∼ U [−
√
3,
√
3] n = 25 0.078 0.067 0.062

n = 50 0.074 0.066 0.063
n = 75 0.081 0.077 0.078

εit ∼ (χ2
5 − 5)/

√
10 n = 25 0.107 0.087 0.074

n = 50 0.111 0.084 0.075
n = 75 0.125 0.068 0.063

Note: 1, 000 Monte Carlo replications
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In the power analysis, we report the power of both the proposed S test and the traditional

M test for all n ∈ {25, 50, 75} and T ∈ {25, 50, 75} combinations. Table 2 shows the power

of the S test for both Scenario (1) and (2). As predicted in Section 4.4, the test has good

power properties for all combinations. The power of Scenario (2) is lower than that of (1)

because the overall spatial dependence is weaker (λ = 0.05 in the case of Scenario (2)). The

power reaches around the theoretical value (1.000) as the sample size gets large. Also, the

power is robust to the shapes of the disturbances.

Table 3 reports the power of the M test with the same alternatives (Ψ0). By comparing

Table 2 with Table 3, we can observe how power changes if we use the traditional test when

the spatial processes are heterogeneous in nature. Even when all spatial lag coefficients are

positive, such as in Scenario (1), the power of M can be lower than that of S, as expected in

Section 5.1. This gap is more apparent when the sample size is small. In particular, power

may be reduced if spatial effects have different signs across units when n increases, as shown

in Scenario (2), even though there are spatial correlations in a network. These results hold

regardless of the shape of error terms. Overall, the proposed S test has satisfactory finite

sample properties and better power over the traditional one in these types of networks when

the sample size is small.

Table 2: Power of the proposed S test

(1) (2)

T = 25 T = 50 T = 75 T = 25 T = 50 T = 75

εit ∼ N(0, 1) n = 25 0.626 0.909 0.985 n = 25 0.373 0.655 0.850
n = 50 0.672 0.937 0.997 n = 50 0.644 0.935 0.998
n = 75 0.786 0.985 1.000 n = 75 0.726 0.963 0.998

εit ∼ U [−
√
3,
√
3] n = 25 0.610 0.918 0.990 n = 25 0.363 0.629 0.851

n = 50 0.638 0.944 0.998 n = 50 0.645 0.942 0.998
n = 75 0.807 0.990 1.000 n = 75 0.695 0.969 1.000

εit ∼ (χ2
5 − 5)/

√
10 n = 25 0.609 0.883 0.976 n = 25 0.415 0.647 0.857

n = 50 0.626 0.914 0.990 n = 50 0.655 0.932 0.999
n = 75 0.796 0.979 1.000 n = 75 0.727 0.963 0.999

Note: (1) Ψ0 = diag(δ10, ..., δn0) where δi0 = λ+ δh · (χ2
1 − 1)/

√
2 with λ = 0.1 and δh = 0.14

(2) Ψ0 = diag(δ10, ..., δn0) where δi0 = λ+ δh ·N(0, 1) with λ = 0.05 and δh = 0.14
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Table 3: Power of the traditional M test

(1) (2)

T = 25 T = 50 T = 75 T = 25 T = 50 T = 75

εit ∼ N(0, 1) n = 25 0.472 0.733 0.896 n = 25 0.187 0.324 0.449
n = 50 0.601 0.883 0.972 n = 50 0.374 0.663 0.794
n = 75 0.804 0.971 0.996 n = 75 0.317 0.534 0.695

εit ∼ U [−
√
3,
√
3] n = 25 0.485 0.726 0.891 n = 25 0.174 0.309 0.427

n = 50 0.599 0.883 0.977 n = 50 0.376 0.632 0.812
n = 75 0.796 0.972 0.999 n = 75 0.294 0.519 0.700

εit ∼ (χ2
5 − 5)/

√
10 n = 25 0.472 0.755 0.896 n = 25 0.200 0.318 0.456

n = 50 0.595 0.867 0.972 n = 50 0.370 0.631 0.799
n = 75 0.787 0.969 0.998 n = 75 0.335 0.557 0.712

Note: (1) Ψ0 = diag(δ10, ..., δn0) where δi0 = λ+ δh · (χ2
1 − 1)/

√
2 with λ = 0.1 and δh = 0.14

(2) Ψ0 = diag(δ10, ..., δn0) where δi0 = λ+ δh ·N(0, 1) with λ = 0.05 and δh = 0.14

6 An empirical illustration

6.1 Motivation

To illustrate the practicality of the proposed S test, we present a simple empirical application

in the international knowledge spillover. Research on international knowledge spillovers has

made progress, especially since the seminal contribution of Coe and Helpman (1995)29. They

consider the following specification for innovation-driven growth:

log(Fi) = α0
i + αdi log(S

d
i ) + αfi log(S

f
i ) (45)

where i is a country index, Fi is the total factor productivity (TFP), Sdi represents the

domestic R&D capital stock and Sfi represents the foreign R&D capital stock defined as the

import-share-weighted average of R&D capital stock of its trade partners. They show that a

country’s TFP depends not only on domestic R&D capital but also on foreign R&D capital

and the foreign side is more substantial as an economy is more open to trade30.

29For the survey of the early contribution on the knowledge/R&D spillovers, see Coe et al. (2009).
30While it is still under discussion whether the knowledge is transmitted through trade or FDI, Keller

(2022) points out that over recent decades a number of advances have produced robust evidence that both
trade and FDI lead to sizable knowledge spillovers.
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In addition to the breakthrough in terms of theory, our understanding of knowledge

spillovers has been improved through a combination of advances in econometric methodology,

new sources of data, and appropriate empirical work (Keller, 2022). In particular, spatial

econometric models may effectively investigate knowledge spillovers and interactions using

technological or economic proximity, as surveyed in Autant-Bernard (2012). For the analysis

of country-level spillover and transmission using spatial models, bilateral trade data is widely

used to construct the weights matrices based on the theory of the trade channel31. In the

spatial econometric framework, the commonly used approach to test spatial correlation is

to formulate a hypothesis on a homogeneous spatial lag coefficient. However, before going

into estimation and inference for panel data, one might be interested in testing whether the

spatial dependence in knowledge production exists or not in the heterogeneous setting as (45).

We consider the following model using the spatial autoregressive term with heterogeneous

coefficients:

yit = δi0

n∑
j=1

wijyjt + ci0 + εit, i = 1, ..., n, t = 1, ..., T (46)

where yit is an innovation output, wij is the weight specified by bilateral import flows, ci0 is

a country-specific fixed effect and εit is an error term. The hypothesis formulated in (46) is

H0 : δi0 = 0 for all i = 1, ..., n against H1 : δi0 ̸= 0 for a non-zero fraction of units.

To calculate the test statistic, one can use a patent indicator as a proxy for innovation

or knowledge production (output) following the existing literature32. However, the country-

level patent data is publicly available on an annual basis. In hypothesis testing, n should be

notably smaller than the total time periods T in order to apply the existing testing procedure

(e.g., the LM test for seven innovative countries). Therefore, we employ the proposed S test

since it is valid for large n when testing the hypothesis formulated in (46). One may use the

traditional M test to conclude whether knowledge spillovers exist using the same data. We

will compare the results between our proposed S and traditional M tests.

31See Ho et al. (2013)., Ho et al. (2018), and Elhorst et al. (2021), among others.
32See Bottazzi and Peri (2007), Mancusi (2008), Ho et al. (2018), Drivas et al. (2022), Eugster et al.

(2022), and among others.
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6.2 Data

We use a balanced panel of 27 innovative countries over the period of 1985-202133. The

innovation output yit is the annual growth rate of triadic patent applications (∆log patent

applications)34. We use the triadic patent families (OECD MSTI), following Drivas et al.

(2022)35. The most widely used patent indicators refer to the counts of patent applications

to a single patent office36. While the richness and strength of those indicators are broadly

recognized, they are affected by home advantage bias, and the quality and international com-

parability of indicators based on the patent families are improved by reducing the weaknesses

associated with indicators from a single patent office (Dernis and Khan, 2004)37. Thus, this

triadic patent indicator allows us to compare knowledge production across countries better.

Finally, the average of bilateral import flows over the period of 1998-2016 (IMF Direction of

Trade Statistics, DOTS) is used to construct the weights matrix.

6.3 Results

Table 4 reports the results of the proposed S and traditional M tests. The S test provides

strong evidence against the hypothesis of no spatial correlation; the null hypothesis is rejected

at the 1% significance level. However, the same hypothesis is not rejected at the 10% level

when the M test is employed. This contrast implies that the traditional test may draw an

erroneous conclusion on spatial correlation and the traditional testing procedures should be

reconsidered, especially when the spatial processes are heterogeneous in nature, as discussed

in Section 5.1 and shown by simulations in Section 5.2.

33See Appendix G for the list of sample countries. These countries account for 96% of the world’s innovation
activity in 2021.

34The number of total observations is 972 (n = 27 and T = 36).
35Triadic patent families are a set of patents filed at three major patent offices, such as the European

Patent Office (EPO), the Japan Patent Office (JPO) and the United States Patent and Trademark Office
(USPTO), to protect the same innovation.

36For example, Bottazzi and Peri (2007), Ho et al. (2018), and Hovhannisyan and Sedgley (2019) use the
USPTO patent data, while Mancusi (2008) uses the EPO patent data.

37Considering the costs of protection at different offices, triadic patent families would eliminate home
advantage biases and capture the more valuable inventions.
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Table 4: Results of the test statistics

The S test The M test

N(0, 1) test 2.8184*** 1.5798

Note: ∗∗∗p < 0.01, ∗∗p < 0.05, and ∗p < 0.1

7 Conclusion

In this paper, we propose the test for spatial correlation in spatial panel data models with

fully heterogeneous spatial lag coefficients when both n and T are large. We first derive

the LM test for large T asymptotics so as not to encounter the issues of identification and

dimensionality. We then propose the S test, a standardized version of the LM test, and

derive its limiting distributions under the null hypothesis and local alternatives when both n

and T tend to infinity jointly. We use limit theorems under near-epoch dependence to show

the main asymptotic results.

Furthermore, we show that the traditionalM test may lose power when spatial effects are

heterogeneous. This analysis implies that the traditional test does not behave consistently

across all potential alternative hypotheses. Monte Carlo results show that the S test has

satisfactory finite sample properties and is more powerful than the traditional test in these

types of networks. Finally, we apply our approach to an empirical example of international

knowledge spillovers. The test results imply that the traditional testing procedures may

draw erroneous conclusions on spatial correlation or dependence under heterogeneous spatial

effects.

In future studies, our approach can be extended to testing spatial lag homogeneity for

panel data models in large panels. The test evaluates the null hypothesis of homogeneous

spatial lag coefficients against an alternative that allows for heterogeneous coefficients. This

specification test can be seen as a generalized version of our approach in this paper. Also,

the identification and estimation in the heterogeneous version of spatial panel data models

when both n and T are large would be an interesting topic of future research.
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Bramoullé, Y., Djebbari, H., & Fortin, B. (2009). Identification of peer effects through social

networks. Journal of econometrics, 150 (1), 41–55.

Cheng, W., & Lee, L.-F. (2017). Testing endogeneity of spatial and social networks. Regional

Science and Urban Economics, 64, 81–97.

Cliff, A. D., & Ord, J. K. (1973). Spatial autocorrelation. Pion Ltd.,London.

36



Coe, D. T., & Helpman, E. (1995). International R&D spillovers. European Economic Review,

39 (5), 859–887.

Coe, D. T., Helpman, E., & Hoffmaister, A. W. (2009). International R&D spillovers and

institutions. European Economic Review, 53 (7), 723–741.

Debarsy, N., & Ertur, C. (2010). Testing for spatial autocorrelation in a fixed effects panel

data model. Regional Science and Urban Economics, 40 (6), 453–470.

de Jong, R. M., & Bierens, H. J. (1994). On the limit behavior of a chi-square type test if

the number of conditional moments tested approaches infinity. Econometric Theory,

10 (1), 70–90.

Dernis, H., & Khan, M. (2004). Triadic patent families methodology. OECD Science, Tech-

nology and Industry Working Papers, No. 2004/02.

Drivas, K., Economidou, C., Konstantakis, K. N., & Michaelides, P. G. (2022). Technological

leaders, laggards and spillovers: A network GVAR analysis. Open Economies Review,

1–39.

Elhorst, J. P. (2014). Spatial econometrics: from cross-sectional data to spatial panels (Vol. 479).

Springer.

Elhorst, J. P., Gross, M., & Tereanu, E. (2021). Cross-sectional dependence and spillovers in

space and time: Where Spatial econometrics and Global VAR models meet. Journal

of Economic Surveys, 35 (1), 192–226.

Eugster, J. L., Ho, G., Jaumotte, F., & Piazza, R. (2022). International knowledge spillovers.

Journal of Economic Geography, 22 (6), 1191–1224.

Geniaux, G., & Martinetti, D. (2018). A new method for dealing simultaneously with spatial

autocorrelation and spatial heterogeneity in regression models. Regional Science and

Urban Economics, 72, 74–85.

Hillar, C. J., Lin, S., & Wibisono, A. (2012). Inverses of symmetric, diagonally dominant

positive matrices and applications. arXiv preprint arXiv:1203.6812.

37



Ho, C.-Y., Wang, W., & Yu, J. (2013). Growth spillover through trade: A spatial dynamic

panel data approach. Economics Letters, 120 (3), 450–453.

Ho, C.-Y., Wang, W., & Yu, J. (2018). International knowledge spillover through trade: A

time-varying spatial panel data approach. Economics Letters, 162, 30–33.

Hovhannisyan, N., & Sedgley, N. (2019). Using panel VAR to analyze international knowl-

edge spillovers. Review of International Economics, 27 (5), 1633–1660.

Jenish, N., & Prucha, I. R. (2009). Central limit theorems and uniform laws of large numbers

for arrays of random fields. Journal of econometrics, 150 (1), 86–98.

Jenish, N., & Prucha, I. R. (2012). On spatial processes and asymptotic inference under

near-epoch dependence. Journal of econometrics, 170 (1), 178–190.

Jeong, H., & Lee, L.-f. (2021). Spatial dynamic game models for coevolution of intertemporal

economic decision-making and spatial networks. Journal of Economic Dynamics and

Control, 129, 104186.

Kelejian, H. H., & Prucha, I. R. (2001). On the asymptotic distribution of the Moran I test

statistic with applications. Journal of Econometrics, 104 (2), 219–257.

Keller, W. (2022). Knowledge spillovers, trade, and foreign direct investment. In Oxford

Research Encyclopedia of Economics and Finance.
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Appendix A Some basic lemmas

We provide some basic properties and the law of large numbers which are useful for showing

the asymptotic results of our statistics.

Assumption A1. The disturbances εit, i = 1, ..., n and t = 1, ..., T , are i.i.d. across i and

t with zero mean, finite variance σ2
0 > 0, and E|εit|4+η <∞ for some η > 0.

Assumption A2. The spatial weights matrixWn is time-invariant and its diagonal elements

satisfy wii = 0 for i = 1, ..., n.

Assumption A3. Wn is uniformly bounded in row and column sums in absolute value.

Assumption A4. The elements w∗
ij =

wij√∑n
j=1w

2
ij

are at most of order h∗−1
n , w∗

ij = O(
1

h∗n
)

where the rate sequence h∗n is divergent, uniformly in all i, j.

Assumption A5. n is a non-decreasing function of T and T goes to infinity.

Assumption A5 allows two cases: (i) n→ ∞ as T → ∞; (ii) n is fixed as T → ∞. Thus,

our analysis applies to large T asymptotics. Denote Ṽnt = Vnt − V̄nT where V̄nT =
1

T

T∑
t=1

Vnt

with Vnt = (ε1t, ..., εnt)
′. Define si as an n×1 vector of zeros, except for one at the ith element

for i = 1, ..., n38. Suppose that an n× n nonstochastic matrix Bn is a multiplication of sis
′
i

andWn. For example, Bn = sis
′
iWn or Bn = W ′

nsis
′
iWn. Also, define the n×n nonstochastic

matrix An = (an,ij) where an,ij =
s′iWnsjs

′
jWnsi√

s′iWnW ′
nsi
√
s′jWnW ′

nsj
=

wijwji√∑n
j=1w

2
ij

√∑n
i=1w

2
ji

.

Lemma A.1. Under Assumptions A2 and A4, for any matrix An,

tr(A2
n) =

n∑
i=1

n∑
j=1

an,ijan,ji and tr(AnA
′
n) =

n∑
i=1

n∑
j=1

a2n,ij are O(
n

h∗2n
).

Lemma A.2. Under Assumptions A2 and A3, for any matrix Bn,

tr(Bn) = O(1), tr(B2
n) = O(1) and tr(BnB

′
n) = O(1).

38Then, sis
′
i is an n× n matrix of zeros, except for one at the (i,i)th element.
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Lemma A.3. Under Assumptions A1-A3 and A5, for any matrix Bn,

E(
1

T

T∑
t=1

V ′
ntBnVnt) = O(1),

E(V̄ ′
nTBnV̄nT ) = O(

1

T
),

E(
1

T

T∑
t=1

Ṽ ′
ntBnṼnt) = O(1).

Lemma A.4. Under Assumptions A1-A3 and A5, for any matrix Bn,

1

T

T∑
t=1

V ′
ntBnVnt − E(

1

T

T∑
t=1

V ′
ntBnVnt) = Op(

1√
T
),

V̄ ′
nTBnV̄nT − E(V̄ ′

nTBnV̄nT ) = Op(
1

T
),

1

T

T∑
t=1

Ṽ ′
ntBnṼnt − E(

1

T

T∑
t=1

Ṽ ′
ntBnṼnt) = Op(

1√
T
).

Lemmas A.2-A.4 hold when Bn = W k
n
′sis

′
iW

k
n for any finite k because similar arguments

can be applicable to the matrix.

Proof of Lemma A.1 Since sup
i,j

|w∗
ij| = O(

1

h∗n
) by Assumption A4, we have

n∑
i=1

n∑
j=1

an,ijan,ji =
n∑
i=1

n∑
j=1

wijwji√∑n
j=1w

2
ij

√∑n
i=1w

2
ji

wjiwij√∑n
i=1w

2
ji

√∑n
j=1w

2
ij

≤ (max
i,j

|wij|√∑n
j=1w

2
ij

)2
n∑
i=1

∑n
j=1w

2
ij∑n

j=1w
2
ij

= O(
n

h∗2n
)

(A.1)

Similarly, we have
n∑
i=1

n∑
j=1

a2n,ij = O(
n

h∗2n
) because An is symmetric.

Proof of Lemma A.2 For the maximum row sum or column sum norm || ||, ||Wn|| ≤ c

for all n by Assumption A3. By its submultiplicative property, ||Wn|| ≤ ||Wn||||Wn|| ≤ c2.

Thus, any matrix product of Wn is uniformly bounded in row and column sums in absolute

value (for short, UB). Then, for any matrix Bn, tr(Bn) can be written as tr(s′iMnsi) whereMn

is UB for any i. Since any elements of Mn are uniformly bounded and tr(s′iMnsi) = s′iMnsi

is the (i,i)th element of Mn, we have tr(Bn) = O(1). Similar arguments can be applied to

show tr(B2
n) = O(1) and tr(BnB

′
n) = O(1).
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Proof of Lemma A.3 First, E(
1

T

T∑
t=1

V ′
ntBnVnt) = σ2

0tr(Bn) = O(1) and E(V̄ ′
nTBnV̄nT ) =

1

T
σ2
0tr(Bn) = O(

1

T
) by Lemma A.2. Using these results, we can show E(

1

T

T∑
t=1

Ṽ ′
ntBnṼnt) =

E(
1

T

T∑
t=1

V ′
ntBnVnt − V̄ ′

nTBnV̄nT ) = σ2
0tr(Bn)−

1

T
σ2
0tr(Bn) = O(1).

Proof of Lemma A.4 The proof is given in the supplementary material.

Appendix B Derivatives of the likelihood function

Denote θ = (ψ′, σ2)′ where ψ = (δ1, ..., δn)
′. The concentrated likelihood function of (4) is

lnLnT (θ) = −nT
2
ln(2π)− nT

2
ln(σ2) + T ln|Sn(ψ)| −

1

2σ2

T∑
t=1

Ṽnt(ψ)
′Ṽnt(ψ) (B.1)

where Ṽnt(ψ) = (In − ΨWn)Ỹnt = Sn(ψ)Ỹnt with Ψ =
n∑
i=1

δisis
′
i and si is an n× 1 vector of

zeros, except for one at the ith element. Define Gn(ψ) = Wn(In −ΨWn)
−1 = WnSn(ψ)

−1.

The first and second order derivatives with respect to θ are:

∂lnLnT (θ)

∂θ
=



∂lnLnT (θ)

∂δ1
∂lnLnT (θ)

∂δ2
...

∂lnLnT (θ)

∂δn
∂lnLnT (θ)

∂σ2


(B.2)

where
∂lnLnT (θ)

∂δi
=

1

σ2

T∑
t=1

(
Ṽnt(ψ)

′sis
′
iGn(ψ)Ṽnt(ψ) − σ2s′iGn(ψ)si

)
for i = 1, ..., n and

∂lnLnT (θ)

∂σ2
=

1

2σ4

T∑
t=1

(
Ṽnt(ψ)

′Ṽnt(ψ)− nσ2
)
.
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∂2lnLnT (θ)

∂θ∂θ′
=



∂2lnLnT (θ)

∂δ21

∂2lnLnT (θ)

∂δ1∂δ2
. . .

∂2lnLnT (θ)

∂δ1∂δn

∂2lnLnT (θ)

∂δ1∂σ2

∂2lnLnT (θ)

∂δ2∂δ1

∂2lnLnT (θ)

∂δ22
. . .

∂2lnLnT (θ)

∂δ2∂δn

∂2lnLnT (θ)

∂δ2∂σ2

...
...

. . .
...

...

∂2lnLnT (θ)

∂δn∂δ1

∂2lnLnT (θ)

∂δn∂δ2
. . .

∂2lnLnT (θ)

∂δ2n

∂2lnLnT (θ)

∂δn∂σ2

∂2lnLnT (θ)

∂σ2∂δ1

∂2lnLnT (θ)

∂σ2∂δ2
. . .

∂2lnLnT (θ)

∂σ2∂δn

∂2lnLnT (θ)

∂(σ2)2


(B.3)

where
∂2lnLnT (θ)

∂δ2i
= − 1

σ2

T∑
t=1

Ṽnt(ψ)
′Gn(ψ)

′sis
′
iGn(ψ)Ṽnt(ψ)−T (s′iGn(ψ)si)

2 for i = 1, ..., n,

∂2lnLnT (θ)

∂δi∂σ2
=
∂2lnLnT (θ)

∂σ2∂δi
= − 1

σ4

T∑
t=1

Ṽnt(ψ)
′sis

′
iGn(ψ)Ṽnt(ψ) for i = 1, ..., n,

∂2lnLnT (θ)

∂δi∂δj
=

−Ts′iGn(ψ)sjs
′
jGn(ψ)si for i ̸= j, and

∂2lnLnT (θ)

∂(σ2)2
= −

(
− nT

2σ4
+

1

σ6

T∑
t=1

Ṽnt(ψ)
′Ṽnt(ψ)

)
39.

Hence, at θ0 = (ψ′
0, σ

2
0)

′, we have

1√
T

∂lnLnT (θ0)

∂θ
=



1

σ20

1√
T

T∑
t=1

(
Ṽ ′
nts1s

′
1Gn(ψ0)Ṽnt − σ20s

′
1Gn(ψ0)s1

)
1

σ20

1√
T

T∑
t=1

(
Ṽ ′
nts2s

′
2Gn(ψ0)Ṽnt − σ20s

′
2Gn(ψ0)s2

)
...

1

σ20

1√
T

T∑
t=1

(
Ṽ ′
ntsns

′
nGn(ψ0)Ṽnt − σ20s

′
nGn(ψ0)sn

)
1

2σ40

1√
T

T∑
t=1

(
Ṽ ′
ntṼnt − nσ20

)


(B.4)

where Gn(ψ0) = Wn(In−Ψ0Wn)
−1 = WnSn(ψ0)

−1 and Ṽnt = Vnt−V̄nT with V̄nT =
1

T

T∑
t=1

Vnt.

39Detailed derivations are available in the supplementary material.
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From (B.4), we have
1√
T

∂lnLnT (θ0)

∂θ
=

1√
T

∂lnL∗
nT (θ0)

∂θ
− φnT where

1√
T

∂lnL∗
nT (θ0)

∂θ
=



1

σ20

1√
T

T∑
t=1

(
V ′
nts1s

′
1Gn(ψ0)Vnt − σ20s

′
1Gn(ψ0)s1

)
1

σ20

1√
T

T∑
t=1

(
V ′
nts2s

′
2Gn(ψ0)Vnt − σ20s

′
2Gn(ψ0)s2

)
...

1

σ20

1√
T

T∑
t=1

(
V ′
ntsns

′
nGn(ψ0)Vnt − σ20s

′
nGn(ψ0)sn

)
1

2σ40

1√
T

T∑
t=1

(
V ′
ntVnt − nσ20

)


(B.5)

and

φnT =



1

σ20

√
T V̄ ′

nT s1s
′
1Gn(ψ0)V̄nT

1

σ20

√
T V̄ ′

nT s2s
′
2Gn(ψ0)V̄nT

...

1

σ20

√
T V̄ ′

nT sns
′
nGn(ψ0)V̄nT

1

2σ40

√
T V̄ ′

nT V̄nT


(B.6)

And, its corresponding information matrix (Σθ0,nT = −E( 1
T

∂2lnL∗
nT (θ0)

∂θ∂θ′
)) is

Σθ0,nT =



−E(
1

T

∂2lnL∗
nT (θ0)

∂δ21
) −E(

1

T

∂2lnL∗
nT (θ0)

∂δ1∂δ2
) . . . −E(

1

T

∂2lnL∗
nT (θ0)

∂δ1∂δn
) −E(

1

T

∂2lnL∗
nT (θ0)

∂δ1∂σ2
)

−E(
1

T

∂2lnL∗
nT (θ0)

∂δ2∂δ1
) −E(

1

T

∂2lnL∗
nT (θ0)

∂δ22
) . . . −E(

1

T

∂2lnL∗
nT (θ0)

∂δ2∂δn
) −E(

1

T

∂2lnL∗
nT (θ0)

∂δ2∂σ2
)

...
...

. . .
...

...

−E(
1

T

∂2lnL∗
nT (θ0)

∂δn∂δ1
) −E(

1

T

∂2lnL∗
nT (θ0)

∂δn∂δ2
) . . . −E(

1

T

∂2lnL∗
nT (θ0)

∂δ2n
) −E(

1

T

∂2lnL∗
nT (θ0)

∂δn∂σ2
)

−E(
1

T

∂2lnL∗
nT (θ0)

∂σ2∂δ1
) −E(

1

T

∂2lnL∗
nT (θ0)

∂σ2∂δ2
) . . . −E(

1

T

∂2lnL∗
nT (θ0)

∂σ2∂δn
) −E(

1

T

∂2lnL∗
nT (θ0)

∂(σ2)2
)


(B.7)

where−E( 1
T

∂2lnL∗
nT (θ0)

∂δ2i
) = s′iGn(ψ0)Gn(ψ0)

′si+(s′iGn(ψ0)si)
2 for i = 1, ..., n, −E( 1

T

∂2lnL∗
nT (θ0)

∂δi∂σ2
) =

−E( 1
T

∂2lnL∗
nT (θ0)

∂σ2∂δi
) =

1

σ2
0

s′iGn(ψ0)si for i = 1, ..., n, −E( 1
T

∂2lnL∗
nT (θ0)

∂δi∂δj
) = s′iGn(ψ0)sjs

′
jGn(ψ0)si
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for i ̸= j, and −E( 1
T

∂2lnL∗
nT (θ0)

∂(σ2)2
) =

n

2σ4
0

.

For the variance of
1√
T

∂lnL∗
nT (θ0)

∂θ
, we have the following equation:

E(
1√
T

∂lnL∗
nT (θ0)

∂θ

1√
T

∂lnL∗
nT (θ0)

∂θ′
) = Σθ0,nT + Ωθ0,nT (B.8)

where Ωθ0,nT =
µ4 − 3σ4

0

σ4
0

diag
(
G2
n,11(ψ0), ..., G

2
n,nn(ψ0)

) 1

2σ2
0

(
Gn,11(ψ0), ..., Gn,nn(ψ0)

)′
1

2σ2
0

(
Gn,11(ψ0), ..., Gn,nn(ψ0)

) n

4σ4
0


with µ4 = E(ε4it) and Gn,ii(ψ0) is the (i, i)th entry of Gn(ψ0).

When Vnt are normally distributed, Ωθ0,nT = 0(n+1)×(n+1) since µ4 − 3σ4
0 = 0. Using

E(
1

T

∂2lnL∗
nT (θ0)

∂θ∂θ′
) + E(

1√
T

∂lnL∗
nT (θ0)

∂θ

1√
T

∂lnL∗
nT (θ0)

∂θ′
) = 0 at θ0 for normally distributed

errors, we have −E( 1
T

∂2lnL∗
nT (θ0)

∂θ∂θ′
) = Σθ0,nT .

Appendix C Proofs

C.1 Proof of Proposition 1

From Ṽnt = Vnt − V̄nT where V̄nT =
1

T

T∑
t=1

Vnt and Vnt = (ε1t, ..., εnt)
′, the restricted QML

estimator can be rewritten as

σ̃2 =
1

nT

T∑
t=1

Ṽ ′
ntṼnt =

1

nT

T∑
t=1

V ′
ntVnt −

1

n
V̄ ′
nT V̄nT

=
1

nT

n∑
i=1

T∑
t=1

ε2it −
1

n

n∑
i=1

(
1

T

T∑
t=1

εit)
2

(C.1)

under H0. Note that ε
2
it and εit are i.i.d. across t = 1, ..., T with E(ε2it) = σ2

0, E(εit) = 0 and

E|εit|4+η <∞ for some η > 0 under Assumption 2. By Kolmogorov’s Strong LLN, we have

σ̃2 a.s.−−→ σ2
0. Therefore, with Slutsky’s theorem, we have

σ2
0

σ̃2

p−→ 1.
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C.2 Proof of Proposition 2

Denote Σi,j
g,n as the (i, j)th entry of Σg,n for all i, j. For any nonzero vector c,

c′Σg,nc =
n∑
i=1

n∑
j=1

ciΣ
i,j
g,ncj =

n∑
i=1

c2iΣ
i,i
g,n +

n∑
i=1

n∑
j ̸=i

ciΣ
i,j
g,ncj

=
n∑
i=1

c2i

n∑
j=1

w2
ij +

n∑
i=1

n∑
j ̸=i

ciwijwjicj

=
n∑
i=1

c2i

n∑
j=1

w2
ij + 2

n∑
i=1

n∑
j=i+1

ciwijwjicj

(C.2)

Then, by Assumptions 1 (wii = 0 for all i) and 4(1) (
n∑
j=1

w2
ij >

n∑
j=1

|wijwji| for all i), we have

c′Σg,nc =
n∑
i=1

c2i

n∑
j=1

w2
ij + 2

n∑
i=1

n∑
j=i+1

ciwijwjicj >
n∑
i=1

c2i

n∑
j=1

wijwji + 2
n∑
i=1

n∑
j=i+1

ciwijwjicj

=
n∑
i=1

n∑
j ̸=i

c2iwijwji + 2
n∑
i=1

n∑
j=i+1

ciwijwjicj

=
n∑
i=1

n∑
j=i+1

wijwji(ci + cj)
2 ≥ 0

(C.3)

which implies that Σg,n is positive definite.

For Assumptions 1 and 4(2), Σg,n is symmetric and diagonally dominant with all positive

entries. Hillar et al. (2012) investigate the special property of the inverse of symmetric and

diagonally dominant matrices with all positive entries. Therefore, Lemma 7.1 in Hillar et al.

(2012) is applicable to Σg,n, and we have the result that the minimum eigenvalue of Σg,n is

positive under Assumptions 1 and 4(2). Hence, Σg,n is positive definite.
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C.3 Proof of Theorem 1

From the results under H0, we have
1√
T
gnT (σ̃

2)
d−→ N(0,Σg,n) where Σg,n is positive definite

and symmetric. Also, there exists Σ
1
2
g,n which is invertible such that Σg,n = Σ

1
2
g,nΣ

1
2
g,n since

Σg,n is positive definite and symmetric, so we have Σ−1
g,n = Σ

− 1
2

g,nΣ
− 1

2
g,n . Then, the quadratic

form,
1

T
gnT (σ̃

2)′Σ−1
g,ngnT (σ̃

2) can be written as

1

T
gnT (σ̃

2)′Σ−1
g,ngnT (σ̃

2) =
1√
T
gnT (σ̃

2)′Σ
− 1

2
g,nΣ

− 1
2

g,n
1√
T
gnT (σ̃

2)

= (Σ
− 1

2
g,n

1√
T
gnT (σ̃

2))′(Σ
− 1

2
g,n

1√
T
gnT (σ̃

2))

(C.4)

where Σ
− 1

2
g,n

1√
T
gnT (σ̃

2)
d−→ N(0, In). Hence, we have

1

T
gnT (σ̃

2)′Σ−1
g,ngnT (σ̃

2)
d−→ χ2

n under H0.

C.4 Proof of Lemma 1

Consider (i, j)th entry of the difference as

| 1
T

∂2lnLnT (∆̄1, ..., ∆̄n, σ
2
0)

∂δi∂δj
− E(

1

T

∂2lnL∗
nT (0, ..., 0, σ

2
0)

∂δi∂δj
)| (C.5)

By the triangle inequality, we have

| 1
T

∂2lnLnT (∆̄1, ..., ∆̄n, σ
2
0)

∂δi∂δj
− E(

1

T

∂2lnL∗
nT (0, ..., 0, σ

2
0)

∂δi∂δj
)|

≤ | 1
T

∂2lnLnT (0, ..., 0, σ
2
0)

∂δi∂δj
− E(

1

T

∂2lnL∗
nT (0, ..., 0, σ

2
0)

∂δi∂δj
)|

+ | 1
T

∂2lnLnT (∆̄1, ..., ∆̄n, σ
2
0)

∂δi∂δj
− 1

T

∂2lnLnT (0, ..., 0, σ
2
0)

∂δi∂δj
|

≤ | 1
T

∂2lnLnT (0, ..., 0, σ
2
0)

∂δi∂δj
− E(

1

T

∂2lnL∗
nT (0, ..., 0, σ

2
0)

∂δi∂δj
)|+ sup

ψ∈Θ∆

|| 1
T

∂3lnLnT (δ1, ..., δn, σ
2
0)

∂δi∂δj∂ψ
|| · ||∆̄− 0n×1||

(C.6)

where ∆̄ = (∆̄1, ..., ∆̄n)
′ p−→ 0n×1 as T → ∞.

For the first term when i ̸= j, we have | 1
T

∂2lnLnT (0, ..., 0, σ
2
0)

∂δi∂δj
−E( 1

T

∂2lnL∗
nT (0, ..., 0, σ

2
0)

∂δi∂δj
)| =
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−s′iWnsjs
′
jWnsi + s′iWnsjs

′
jWnsi = 0 derived from (B.3) and (B.7) with ψ = (0, ..., 0)′. For

the first term when i = j, we consider the following equation derived from (B.3) and (B.7)

with ψ = (0, ..., 0)′:

1

T

∂2lnLnT (0, ..., 0, σ
2
0)

∂δ2i
− E(

1

T

∂2lnL∗
nT (0, ..., 0, σ

2
0)

∂δ2i
)

= − 1

σ2
0

1

T

T∑
t=1

Ṽ ′
ntW

′
nsis

′
iWnṼnt + s′iWnW

′
nsi

= −
( 1
σ2
0

1

T

T∑
t=1

Ṽ ′
ntW

′
nsis

′
iWnṼnt − E(

1

σ2
0

1

T

T∑
t=1

Ṽ ′
ntW

′
nsis

′
iWnṼnt)

)
+

1

T
s′iWnW

′
nsi

(C.7)

because E(
1

σ2
0

1

T

T∑
t=1

Ṽ ′
ntW

′
nsis

′
iWnṼnt) = (1− 1

T
)tr(W ′

nsis
′
iWn) = (1− 1

T
)s′iWnW

′
nsi shown in

Lemma A.3. By Lemmas A.3 and A.4, | 1
T

∂2lnLnT (0, ..., 0, σ
2
0)

∂δ2i
−E( 1

T

∂2lnL∗
nT (0, ..., 0, σ

2
0)

∂δ2i
)| =

Op(
1√
T
).

For the second term, it suffices to show that sup
ψ∈θ∆

| 1
T

∂3lnLnT (δ1, ..., δn, σ
2
0)

∂δi∂δj∂δl
| < ∞. The

third order derivative evaluated at σ2
0 is

1

T

∂3lnLnT (δ1, ..., δn, σ
2
0)

∂δi∂δj∂δl
= −s′iWn(In −ΨWn)

−1sls
′
lWn(In −ΨWn)

−1sjs
′
jWn(In −ΨWn)

−1si

− s′iWn(In −ΨWn)
−1sjs

′
jWn(In −ΨWn)

−1sls
′
lWn(In −ΨWn)

−1si

(C.8)

where Ψ = diag(ψ) with ψ = (δ1, ..., δn)
′. Note that (In−ΨWn)

−1 is invertible for all ψ where

Θ∆ is bounded within a small neighborhood around zero by Assumption 3, and s′iWn(In −

ΨWn)
−1sj is the (i,j)th entry ofWn(In−ΨWn)

−1. Therefore, sup
ψ∈θ∆

| 1
T

∂3lnLnT (δ1, ..., δn, σ
2
0)

∂δi∂δj∂δl
| =

O(1) for all i, j, l.

Similar arguments can be applied to all other entries of
1

T

∂2lnLnT (∆̄1, ..., ∆̄n, σ
2
0)

∂ψ∂ψ′ −

E(
1

T

∂2lnL∗
nT (0, ..., 0, σ

2
0)

∂ψ∂ψ′ ).
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C.5 Proof of Theorem 2

From the previous results, we have
1√
T
gnT (σ̃

2)
d−→ N(τ,Σg,n) under H1,T where τ = Σg,n∆,

Σg,n = Σ
1
2
g,nΣ

1
2
g,n and Σ−1

g,n = Σ
− 1

2
g,nΣ

− 1
2

g,n . Then, the quadratic form,
1

T
gnT (σ̃

2)′Σ−1
g,ngnT (σ̃

2) can

be written as

1

T
gnT (σ̃

2)′Σ−1
g,ngnT (σ̃

2) = (Σ
− 1

2
g,n

1√
T
gnT (σ̃

2))′(Σ
− 1

2
g,n

1√
T
gnT (σ̃

2)) (C.9)

where Σ
− 1

2
g,n

1√
T
gnT (σ̃

2)
d−→ N(Σ

− 1
2

g,nτ, In). Hence, under H1,T , the LM test has a noncentral

chi-square distribution with n degrees of freedom and noncentrality of µ = τ ′Σ
− 1

2
g,nΣ

− 1
2

g,nτ =

∆′Σg,n∆.

C.6 Proof of Proposition 3

From (C.1), Ṽnt = Vnt − V̄nT where V̄nT =
1

T

T∑
t=1

Vnt and Vnt = (ε1t, ..., εnt)
′, the restricted

QML estimator can be rewritten as

σ̃2 =
1

nT

T∑
t=1

Ṽ ′
ntṼnt =

1

nT

n∑
i=1

T∑
t=1

ε2it −
1

n

n∑
i=1

(
1

T

T∑
t=1

εit)
2

=
1

nT

n∑
i=1

T∑
t=1

ε2it −
1

nT 2

n∑
i=1

T∑
t=1

ε2it −
2

nT 2

n∑
i=1

T∑
t=1

t−1∑
s=1

εitεis

(C.10)

under H0. For the first and second terms, ε2it is i.i.d. across i = 1, .., n and t = 1, ..., T with

E(ε2it) = σ2
0 and E|εit|4+η <∞ for some η > 0 under Assumption 2. By Kolmogorov’s Strong

LLN, we have
1

nT

n∑
i=1

T∑
t=1

ε2it
a.s.−−→ σ2

0, and hence
1

nT 2

n∑
i=1

T∑
t=1

ε2it
a.s.−−→ 0. For the last term, εitεis

is uncorrelated over i and t, so V ar(
1

nT 2

n∑
i=1

T∑
t=1

t−1∑
s=1

εitεis) =
1

n2T 4

n∑
i=1

T∑
t=1

t−1∑
s=1

V ar(εitεis) =

O(
1

nT 2
). By Chebyshev’s inequality,

1

nT 2

n∑
i=1

T∑
t=1

t−1∑
s=1

εitεis = op(1). Hence, with Slutsky’s

theorem, we have
σ2
0

σ̃2

p−→ 1.
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From (C.10), we next consider
σ2
0

σ̃2
− 1 =

1

σ̃2

(
σ2
0 − σ̃2

)
as

σ2
0

σ̃2
− 1 =

1

σ̃2

( 1

nT

n∑
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T∑
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σ2
0 −

1

nT

n∑
i=1

T∑
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ε2it +
1

nT 2

n∑
i=1

T∑
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ε2it + 2
1

nT 2

n∑
i=1

T∑
t=1

t−1∑
s=1

εitεis
)

=
σ2
0

σ̃2

( 1
σ2
0

1

nT

n∑
i=1

T∑
t=1

(σ2
0 − ε2it) +

1

σ2
0

1

nT 2

n∑
i=1

T∑
t=1

ε2it +
2

σ2
0

1

nT 2

n∑
i=1

T∑
t=1

t−1∑
s=1

εitεis
)
(C.11)

For each term in (C.11), V ar(
1√
nT

n∑
i=1

T∑
t=1

(σ2
0−ε2it)) =

1

nT

n∑
i=1

T∑
t=1

V ar(ε2it), V ar(
1√
nT

n∑
i=1

T∑
t=1

ε2it) =

1

nT

n∑
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T∑
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V ar(ε2it) and V ar(
1√
nT

n∑
i=1

T∑
t=1

t−1∑
s=1

εitεis) =
1

nT 2

n∑
i=1

T∑
t=1

t−1∑
s=1

V ar(εitεis) areO(1).

Hence, along with
σ2
0

σ̃2

p−→ 1, we have
σ2
0

σ̃2
− 1 = OP (

1√
nT

).

C.7 Proof of Proposition 4

First, consider µQnT
= E(QnT ) = E(

1√
2n

n∑
i=1

(
zi,nT −E(zi,nT )

)
) = 0. Next, consider ΣQnT

=

V ar(QnT ) = V ar(
1√
2n

n∑
i=1

(
zi,nT − E(zi,nT

)
) as
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=

1
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i=1

zi,nT ) =
1

2n
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V ar(zi,nT ) + 2
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i=1

n∑
j=i+1
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=
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n∑
i=1

V ar(zi,nT ) +
1

n
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(C.12)

For the first term in (C.12), from (E.6), we have

1
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n∑
i=1

V ar(zi,nT ) =
1

2n
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i=1

(
2 +

1

σ8
0

1

T

µ4(µ4 − 3σ4
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) (C.13)
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which implies that
1

2n

n∑
i=1

V ar(zi,nT ) = 1 + O(
1

T
) since
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w4
ij ≤ (

n∑
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2 for all i and n.

For the second term in (C.12), from (E.12), we have
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Then
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which hold for all n by Assumptions 1 and 5. Therefore,
1

n

n∑
i=1

n∑
j=i+1

Cov(zi,nT , zj,nT ) = O(
1

T
),

and we have ΣQnT
= 1 +O(

1

T
).

C.8 Proof of Lemma 2

We first show that z̃i,nT is uniformly Lp bounded where p = 4+ η, i.e., sup
n

sup
i∈Dn

||z̃i,nT ||4+η <

∞, or equivalently, sup
n
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.
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Consider
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1
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where C2 = (18pq1/2)p with p−1 + q−1 = 1. By the triangle inequality, we have
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where C1 = C
1/(4+η)
2 . Thus, it remains to show ||(εit

n∑
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Under Assumptions 1 (wii = 0 for all i) and 2 (εit are i.i.d. across i and t), E|εit
n∑
j=1

w∗
ijεjt|4+η

can be written as
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Consider
n∑
j ̸=i

w∗
ijεjt as a zero-mean martingale over j = 1, ..., n. Then, by the Burkholder
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and triangular inequalities, we have
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because sup
i,t
E|εit|4+η < ∞ and

n∑
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ij = 1 for all i and n under Assumptions 1

and 2.

We next show that r̃i,nT is uniformly Lp bounded where p = 4+η, i.e., sup
n

sup
i∈Dn

||r̃i,nT ||4+η <

∞, or equivalently, sup
n

sup
i∈Dn

|| 1
σ2
0

T ϵ̄iT

n∑
j=1

w∗
ij ϵ̄jT ||4+η < ∞ where ϵ̄iT =

1

T

T∑
t=1

εit. Consider

√
T ϵ̄iT =

T∑
t=1

1√
T
εit as a zero-mean martingale over t = 1, ..., T . Then, Burkholder inequality

implies

E| 1√
T

T∑
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εit|4+η = E|
T∑
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1√
T
εit|4+η ≤ C2E|

T∑
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1

T
(εit)

2|2+
η
2 (C.27)

By the triangle inequality and Assumption 2, we have

(E| 1√
T

T∑
t=1

εit|4+η)1/(4+η) ≤ C
1/(4+η)
2

((
E|

T∑
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1

T
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2
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(
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( 1
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2

)1/2
<∞

(C.28)

55



which implies that ||
√
T ϵ̄iT ||4+η <∞ or E|

√
T ϵ̄iT |4+η <∞ for all i and n.

Since ϵ̄iT is independent across i and wii = 0 for all i, we have

E| 1
σ2
0

T ϵ̄iT

n∑
j=1

w∗
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σ2
0

√
T ϵ̄iT |4+η × E|

n∑
j ̸=i

w∗
ij

√
T ϵ̄jT |4+η (C.29)

Consider
n∑
j ̸=i

w∗
ij

√
T ϵ̄jT as a zero-mean martingale over j = 1, ..., n. Then, by the Burkholder

and triangular inequalities with the results above, we have

E| 1
σ2
0

T ϵ̄iT

n∑
j=1
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√
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(C.30)

because sup
n

sup
i
E|

√
T ϵ̄iT |4+η <∞ and

n∑
j ̸=i

w∗2
ij = 1 for all i and n.

C.9 Proof of Proposition 5

Consider ||z̃i,nT − E(z̃i,nT |Fi,nT (s))||2 where z̃i,nT =

1
σ2
0

1√
T

∑T
t=1 εit

∑n
j=1wijεjt√∑n

j=1w
2
ij

. Define an

indicator function 1
(
ρ(i, j) > s

)
. Note that 1

(
ρ(i, j) > s

)
= 0 if the distance between i and

j is equal to or less than s. As s gets larger, 1
(
ρ(i, j) > s

)
goes to zero for all i, j. Then,
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z̃i,nT − E(z̃i,nT |Fi,nT (s)) can be derived as
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(C.31)

Then

E|z̃i,nT − E(z̃i,nT |Fi,nT (s))|2 =
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2
ij

1

σ40
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(C.32)

Therefore, for ||z̃i,nT − E(z̃i,nT |Fi,nT (s))||2, we can take d̃i,n = 1 for all i and n, and γ̃(s) =

sup
n

sup
i∈Dn

√∑n
j=1w

2
ij1
(
ρ(i, j) > s

)∑n
j=1w

2
ij

which goes to zero as s→ ∞.
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Consider ||r̃i,nT−E(r̃i,nT |Fi,nT (s))||2 where r̃i,nT =

1
σ2
0
T ϵ̄iT

∑n
j=1wij ϵ̄jT√∑n
j=1w

2
ij

with ϵ̄iT =
1

T

T∑
t=1

εit.
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where ϵ̄iT =
1

T

T∑
t=1

εit is independent across i with E(ϵ̄iT )
2 =
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Therefore, for ||r̃i,nT − E(r̃i,nT |Fi,nT (s))||2, we can take d̃i,n = 1 for all i and n, and γ̃(s) =

sup
n

sup
i∈Dn

√∑n
j=1w

2
ij1
(
ρ(i, j) > s

)∑n
j=1w

2
ij

which goes to zero as s→ ∞. Since sup
n

sup
i∈Dn

d̃i,n = 1 <∞,

Z̃ = {z̃i,nT , i ∈ Dn, n ≥ 1} and R̃ = {r̃i,nT , i ∈ Dn, n ≥ 1} are uniformly L2-NED on ξ.
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C.10 Proof of Proposition 6

The NED property is kept under summation, product (Lemma A.2) and Lipschitz transfor-

mations (Xu and Lee, 2015). Using the result of Proposition 5 with Lemma A.2 in Xu and

Lee (2015) and Lemma 2 (sup
n

sup
i∈Dn

||z̃i,nT ||4+η <∞), we have

||zi,nT − E(zi,nT |Fi,nT (s))||2 = ||(z̃i,nT )2 − E((z̃i,nT )
2|Fi,nT (s))||2

≤ di,nγ(s)

(C.35)

where γ(s) = γ̃(s)
η

4+2η for some η > 0 and sup
n

sup
i∈Dn

di,n <∞. Thus, for ||zi,nT−E(zi,nT |Fi,nT (s))||2,

we take γ(s) = sup
n

sup
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(∑n
j=1w

2
ij1
(
ρ(i, j) > s

)∑n
j=1w

2
ij

) η
8+4η

where 0 <
η

8 + 4η
≤ 1

4
. Because z̃i,nT

and r̃i,nT have the same NED coefficient and scaling factor, similar arguments can be applied

to ri,nT = (r̃i,nT )
2 and z̃i,nT r̃i,nT . Since sup

n
sup
i∈Dn

di,n <∞ by Lemma A.2 in Xu and Lee (2015),

Z = {zi,nT , i ∈ Dn, n ≥ 1}, R = {ri,nT , i ∈ Dn, n ≥ 1} and K = {z̃i,nT r̃i,nT , i ∈ Dn, n ≥ 1}

are uniformly L2-NED on ξ.

C.11 Proof of Proposition 7

By Proposition 6, Z = {zi,nT , i ∈ Dn, n ≥ 1} is uniformly L2-NED on ξ with γ(s) =

sup
n

sup
i∈Dn

(∑n
j=1w

2
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(
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)∑n
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2
ij

) η
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. Following Jenish and Prucha (2012), the sufficient

conditions for σ−1
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(
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) d−→ N(0, 1) where σ2
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= V ar
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2
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satisfies
∞∑
s=1

sd−1γ(s) <∞ for some η > 0.

First, condition (i) is satisfied by Lemma 2. Next, condition (ii) is shown in Proposition

4 since ΣQnT
= V ar(

1√
2n

n∑
i=1

zi,nT ) =
1

2n
σ2
QnT

= 1 + O(
1

T
). Hence, it remains to check
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∞∑
s=1

sd−1γ(s) <∞. Consider
∞∑
s=1
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∞∑
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Under Assumption 10(1), wij can be non-zero only if ρ(i, j) ≤ ρ̄0. Since w
2
ij1
(
ρ(i, j) > s

)
= 0

for any s ≥ [ρ̄0] + 1, we have
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(C.37)

since the term becomes a sum of finite and bounded series under Assumption 10(1).

Alternatively, under Assumption 10(2) (|wij| ≤ C0/ρ(i, j)
α), we have w2

ij ≤ C̃0/ρ(i, j)
α̃

where α̃ = 2α and C̃0 = C2
0 . By Lemma A.1 in Jenish and Prucha (2009), |{m : x ≤ ρ(i, j) <

x+ 1}| ≤ Cxd−1 for some constant C > 0 when x ≥ 1. Then, we have
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(C.38)
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where
(
CC̃02

α̃(α̃ − d)−1
) η

4+2η
< ∞. Thus, the infinite series

∞∑
s=1

sd−1+
(d−α̃)η
4+2η converges only

if d − 1 +
(d− α̃)η

4 + 2η
< −1. Hence, we have

∞∑
s=1

sd−1γ(s) < ∞ so long as α̃ > d · (3 + 4η−1),

which implies that α > d · (1.5 + 2η−1) (Assumption 11) because α̃ = 2α.

Finally, using the result (
1√
2n
σQnT

)−1 1√
2n

n∑
i=1

(
zi,nT − E(zi,nT )

) d−→ N(0, 1), we have

QnT =
1√
2n

n∑
i=1

(
zi,nT − E(zi,nT )

) d−→ N(0, 1).

C.12 Proof of Proposition 8

First, the LLN does not require any restrictions on the NED coefficient. By Proposition 6,

R = {ri,nT , i ∈ Dn, n ≥ 1} is uniformly L2-NED on ξ with γ(s) = sup
n

sup
i∈Dn

(∑n
j=1w

2
ij1
(
ρ(i, j) > s

)∑n
j=1w

2
ij

) η
8+4η

.

Following Jenish and Prucha (2012), the sufficient condition for PnT =
1

n

n∑
i=1

(
ri,nT−E(ri,nT )

) p−→

0 in the case of |Dn| = n and sup
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ci,n = sup
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sup
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di,n <∞ is:

(i) ri,nT are uniformly Lp-bounded for p > 1+ δ for some δ > 0. Condition (i) is satisfied by

Lemma 2. Hence, we have PnT =
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di,n <∞ is:

(i) z̃i,nT r̃i,nT are uniformly Lp-bounded for p > 1 + δ for some δ > 0. For Condition (i), by

Holder inequality when p = 2 and q = 2, we have
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(C.39)

since sup
n

sup
i∈Dn

||z̃i,nT ||4+η < ∞ and sup
n

sup
i∈Dn

||r̃i,nT ||4+η < ∞ by Lemma 2. Hence, Condition

(i) is satisfied, and we have UnT =
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n

n∑
i=1

(
z̃i,nT r̃i,nT − E(z̃i,nT r̃i,nT )

) p−→ 0.
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C.13 Proof of Theorem 3

Under H0 and Assumption 8, S = Snr takes the following form:
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where
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p−→ 1 by Proposition 3. Proposition 7 is applied to QnT . The second and third

terms converge to zero by Proposition 8 as long as
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(C.40)

which goes to zero by Proposition 3
(σ2

0

σ̃2
−1 = OP (

1√
nT

)
)
. Therefore, for the non-reciprocal

interactions in the form of Assumption 8, S =
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C.14 Proof of Proposition 9

Since ρ(Bn) ≤ ||Bn||∞ < 1, we have lim
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C.15 Proof of Proposition 10
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provided that the second term is op(1). For the second term, the inner structure only involves

1
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εjs rather than εjt. Since
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C.16 Proof of Proposition 11

Denote b̃n,ij =
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We first analyze the moment of each term: From (F.3) and (F.9) and Lemma A.1, we have
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and O(

√
n

h∗2n
) in (C.44) goes to zero under Assumption 13. Thus, by Chebyshev’s inequality,

it remains to show that the second moment of each term in (C.43) goes to zero to show that

GnT
p−→ 0.
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Consider the second moment of the first term in (C.43) as
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For the first term in (C.47), from (F.5), we have
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because the maximum order is
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For the second term in (C.47), from (F.6), we have
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since the order is
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For the last term in (C.47), from (F.7), we have
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6. The results of (C.48), (C.49) and (C.50) imply that the second moment of the first term

in (C.43) is O(
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) = op(1) under Assumption 13.
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For the second moment of the second term in (C.43), we have
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Note that E(V ′
ntsis

′
iWnVntV

′
nssjs

′
jWnVnsV

′
ntsls

′
lWnVntV

′
nssms
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mWnVns) will not vanish only when

l = i and m = j for all t and s. Thus, by Lemma A.1, we have
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Thus, the second moment of the second term in (C.43) is O(
1

h∗2n
) = op(1) under Assumption

13. Similar arguments can be applied to the second moment of the third term in (C.43).
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C.17 Proof of Theorem 4

Under H0, S takes the following form:

S =
1√
2n

( 1
T
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+
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(33)

Theorem 3 is applied to the first term, we have
1√
2n

( 1
T
gnT (σ̃

2)′ΣD−1
g,n gnT (σ̃

2)−n
) d−→ N(0, 1).

All remaining terms in (33) converge to zero by Propositions 9 and 10, provided that GnT
p−→

0. Finally, GnT
p−→ 0 by Proposition 11. Therefore, for the small reciprocal interactions in

the form of Assumptions 12 and 13, S =
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T
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C.18 Proof of Theorem 5

First, consider the restricted QML estimator as
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−1Ṽnt

=
1

nT

T∑
t=1
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ntṼnt + op(1)

(C.53)

because (In−ΨH1Wn)
−1 = In+

∞∑
k=1

(
1

n1/4T 1/2
∆DWn)

k <∞ for large enough n by Assumption

3 and | 1
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T∑
t=1

Ṽ ′
nt(∆

DWn)
k ′(∆DWn)

kṼnt| = O(1) by Lemma 15 in Yu et al. (2008) for any
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finite k. Since
1
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iWnṼnt)

2 + ( 1
σ2
0

1
T

∑T
t=1 Ṽ
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DWnṼnt)
2

s′iWnW ′
nsi

+ (
σ2
0

σ̃2
)2

2

σ4
0

1

nT 2

n∑
i=1

T∑
t=1

t−1∑
s=1

(Ṽ ′
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where
σ2
0

σ̃2

p−→ 1 under H1,nT .

For the first term in (C.54), we have
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because
(Ṽ ′
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< ∞ for all i and n by Assumptions 2 and

5, which implies that Kolmogorov’s LLN holds. Similar arguments can be applied to the

second term in (C.54). Thus, the first two terms in (C.54) go to zero in probability.
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For the third term in (C.54), we have
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′
nsW

′
n∆

Dsis
′
iWnṼns)
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iWnṼns)

s′iWnW ′
nsi

− E(
1

T

t−1∑
s=1

(Ṽ ′
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because
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is an uncorrelated sequence over

t = 1, ..., T with the finite mean and variance by Assumptions 2 and 5. Hence, the third term

goes to lim
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For the fourth term in (C.54), we have
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Similar arguments can be applied to the fourth term. Hence, the fourth term goes to

lim
n→∞
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above, we have Φ = lim
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Appendix D M test

D.1 The standard SAR panel data model

Consider the following spatial panel data model with a homogeneous spatial coefficient:

Ynt = λ0WnYnt + cn0 + Vnt, t = 1, ..., T (D.1)

where Ynt = (y1t, ..., ynt)
′ is an n× 1 vector of a dependent variable for all units in period t,

Wn is an n× n spatial weights matrix, cn0 is an n× 1 vector of individual fixed effects, and

Vnt = (ε1t, ..., εnt)
′ is an n× 1 vector of disturbance terms40.

Define Sn(λ) = In − λWn for any λ. At the true parameter, Sn(λ0) = In − λ0Wn. Then,

presuming Sn(λ0) is invertible, (D.1) can be rewritten as Ynt = (In − λ0Wn)
−1(cn0 + Vnt).

40For the elements of Vnt, we assume that εit is i.i.d. across i and t with zero mean and variance σ2
0 .
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D.2 The concentrated likelihood function

Denote θ = (λ, σ2)′ and ζ = (λ, c′n)
′. At the true value, θ0 = (λ′0, σ

2
0)

′ and ζ0 = (λ0, c
′
n0)

′.

The likelihood function of (D.1) is

lnLnT (θ, cn) = −nT
2
ln(2π)− nT

2
ln(σ2) + T ln|Sn(λ)| −

1

2σ2

T∑
t=1

Vnt(ζ)
′Vnt(ζ) (D.2)

where Vnt(ζ) = (In − λWn)Ynt − cn = Sn(λ)Ynt − cn. Thus, Vnt = Vnt(ζ0).

For analytical purposes, it is convenient to concentrate cn out in (D.2). We define Ỹnt =

Ynt− ȲnT where ȲnT =
1

T

T∑
t=1

Ynt. Similarly, Ṽnt = Vnt− V̄nT . Using the first order condition

that
∂lnLnT (θ, cn)

∂cn
=

1

σ2

T∑
t=1

Vnt(ζ) from (D.2), the concentrated likelihood function is

lnLnT (θ) = −nT
2
ln(2π)− nT

2
ln(σ2) + T ln|Sn(λ)| −

1

2σ2

T∑
t=1

Ṽnt(λ)
′Ṽnt(λ) (D.3)

where Ṽnt(λ) = (In − λWn)Ỹnt = Sn(λ)Ỹnt.

Define Gn(λ) = Wn(In−λWn)
−1 = WnSn(λ)

−1 for any λ. From (D.3), the first derivative

of the concentrated likelihood function with respect to λ can be derived:

∂lnLnT (θ)

∂λ
=

1

σ2

T∑
t=1

(
Ṽnt(λ)

′Gn(λ)Ṽnt(λ)− σ2tr(Gn(λ))
)

(D.4)

D.3 The limiting result of M

To test spatial correlation, one may formulate a hypothesis as a restriction on λ0 in (D.1).

The null hypothesis of interest is H0 : λ0 = 0. To analyze the asymptotic properties of the

M test when both n and T are large, we need the following standard assumptions:

Assumption D1. The spatial weights matrixWn is time-invariant and its diagonal elements

satisfy wii = 0 for i = 1, ..., n.
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Assumption D2. The disturbances εit, i = 1, ..., n and t = 1, ..., T , are i.i.d. across i and

t with zero mean, finite variance σ2
0 > 0, and E|εit|4+η <∞ for some η > 0.

Assumption D3. Sn(ψ) = In − diag(ψ)Wn is invertible for all ψ = (δ1, ..., δn)
′ in a small

neighborhood around zero.

Assumption D4. Wn is uniformly bounded in row and column sums in absolute value.

Assumption D5. n is an increasing function of T and T goes to infinity.

Assumptions D1, D2, D4 and D5 are the standard regularity conditions used in Yu et al.

(2008). Assumption D3 implies that Sn(λ) = In − λWn is also invertible because λWn is a

special case of diag(ψ)Wn where ψ consists of the same value of λ for all elements.

Consider the first order derivative in (D.4). Under H0, Ṽnt(λ) = (In−0Wn)Ỹnt = Ỹnt and

Gn(λ) = Wn(In − 0Wn)
−1 = Wn such that λ = 0. Therefore, the test statistic is based on
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(D.5)

Let σ̃2 be the restricted QML estimator with the restriction λ = 0 imposed, so σ̃2 =

maxσlnL
c
nT (σ

2) where

lnLcnT (σ
2) = −nT

2
ln(2π)− nT

2
ln(σ2)− 1

2σ2

T∑
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Ỹ ′
ntỸnt (D.6)

Thus, we derive σ̃2 =
1

nT

T∑
t=1

Ỹ ′
ntỸnt.

Proposition D.1. Under H0 and Assumptions D2 and D5,

σ̃2 p−→ σ2
0, and hence

σ2
0

σ̃2

p−→ 1.

We now investigate the asymptotic distribution of
1√
nT

∂lnLnT (0, σ̃
2)

∂λ
under H0. From
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(D.5) evaluated at σ̃2 under H0 (Ỹnt = Ṽnt) and Assumption D1 (tr(Wn) = 0), we have
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(D.7)

where
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p−→ 1 by Proposition D.1. Note that
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and Assumption D1. Thus, the limiting result of
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Theorem D.1. Under H0 and Assumptions D1-D2 and D4-D5,

M =

1
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1√
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′
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nWn +W 2
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d−→ N(0, 1).

Hence, the conclusions on whether a spatial correlation exists or not, when both n and

T are large, can be drawn based on the value of M .

D.4 Local power of the M test

For the asymptotic local power of theM test when spatial lag coefficients are heterogeneous,

we adopt the following local alternatives:

H1,nT : δi0 =
∆i

n1/2T 1/2
for i = 1, ..., n (D.8)
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where ∆i is a fixed constant (∆i ̸= 0). Denote ∆D = diag(∆1, ...,∆n) and ΨH1 =
1

n1/2T 1/2
∆D.

We investigate the asymptotic result of M under H1,nT as
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where (In−ΨH1Wn)
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′
nt(In +

1
n1/2T 1/2∆

DWn)
′Wn(In +

1
n1/2T 1/2∆

DWn)Ṽnt√
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′
nt(∆

DWn)
′WnṼnt√
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since | 1√
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DWn)
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DWn)
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) by Lemma 9 in Yu et al. (2008)

for any finite k. In Section D.3, we derive the limiting result of the first term in (D.10).

Therefore, the asymptotic power depends on the limit of
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Denote ϕ = lim
T→∞

ϕnT .

Theorem D.2. Under H1,nT and Assumptions D1-D5,
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Theorem D.2 implies that the M test may lose power if ∆i has a different sign across
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Proof of Proposition D.1 See Proposition 3.
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For the first and second terms,
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Ṽ ′
ntWn(∆

DWn)Ṽnt) =
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Appendix E The random variables

Assume that Wn is time-invariant and its diagonal elements satisfy wii = 0 for all i. Also,

assume that the disturbances εit are i.i.d. across i and t with zero mean, finite variance

σ2
0 > 0 and E|εit|4+η <∞ for some η > 0. Denote µs = E(εsit) for s = 3, 4.

E.1 Moments of zi,nT

zi,nT = (

1
σ2
0

1√
T

∑T
t=1 V

′
ntsis

′
iWnVnt√

s′iWnW ′
nsi

)2 =
1

σ4
0

1

T

(
∑T

t=1 V
′
ntsis

′
iWnVnt)

2

s′iWnW ′
nsi

=
1

σ4
0

1

T

(∑T
t=1(V

′
ntsis

′
iWnVnt)

2

s′iWnW ′
nsi

)
+

1

σ4
0

1

T

(∑T
t=1

∑t−1
s=1 2(V

′
ntsis

′
iWnVnt)(ϵ

′
nssis

′
iWnϵns)

s′iWnW ′
nsi

)
(E.1)

z2i,nT =
1

σ8
0

1

T 2

(∑T
t=1(V

′
ntsis

′
iWnVnt)

2

s′iWnW ′
nsi

)2
+

1

σ8
0

1

T 2

(∑T
t=1

∑t−1
s=1 2(V

′
ntsis

′
iWnVnt)(ϵ

′
nssis

′
iWnϵns)

s′iWnW ′
nsi

)2
+

2

σ8
0

1

T 2

((∑T
t=1(V

′
ntsis

′
iWnVnt)

2

s′iWnW ′
nsi

)
×
(∑T

t=1

∑t−1
s=1 2(V

′
ntsis

′
iWnVnt)(ϵ

′
nssis

′
iWnϵns)

s′iWnW ′
nsi

)
(E.2)

From (E.1), (F.2) and (F.8), we have
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From (E.2), (F.2), (F.3), (F.8) and (F.12), we have
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Finally, from (E.3) and (E.5), we have
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When εit are normally distributed, V ar(zi,nT ) = 2 +
6

T
since µ4 − 3σ4

0 = 0.
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E.2 Cross-moment of zi,nT

From (E.1), we consider Cov(zi,nT , zj,nT ) as
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with φ has all other cross-product terms41.

From (E.9), (F.5), (F.10) and (F.11), we have
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41The term isolates all cross-products with zero expected values (E(φ) = 0).
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(E.11)

Finally, from (E.3) and (E.11), we have

Cov(zi,nT , zj,nT ) = E(zi,nT zj,nT )− E(zi,nT )E(zj,nT )
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(E.12)

When εit are normally distributed, Cov(zi,nT zj,nT ) =
4
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since µ4 − 3σ4
0 = 0 and µ3 = 0.
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E.3 Moment of ri,nT
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where ϵ̄iT =
1

T

T∑
t=1

εit. Since ϵ̄iT is independent across i with E(ϵ̄2iT ) =
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all i, we have
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E.4 Moment of z̃i,nT r̃i,nT
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where ϵ̄iT =
T∑
t=1

εit. Then
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Appendix F Moments for products of quadratic forms

Assume that εit are i.i.d. across i and t with zero mean, finite variance σ2
0 > 0 and E|εit|4+η <

∞ for some η > 0. Denote µs = E(εsit) for s = 3, 4. Suppose that Wn is time-invariant and

its diagonal elements satisfy wii = 0 for all i. Then, we have the following moments for

products of quadratic forms42: For i ̸= j ̸= l ̸= m,
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42The detailed derivations are given in the supplementary material.
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For i ̸= j and t ̸= g,
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Appendix G Sample countries

Table G1: The list of sample countries

Australia Austria Belgium Canada China Denmark
Finland France Germany Hungary Ireland Israel
Italy Japan Korea Netherlands New Zealand Norway
Poland Portugal Russia Singapore Spain Sweden
Switzerland United Kingdom United States

Note: These countries account for 96% of the world’s innovation activity in 2021.
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