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Abstract

The widely used approach to testing spatial correlation is to formulate a hypothesis
on a homogenous spatial coefficient in spatial models. This paper proposes a novel test
for spatial correlation in spatial panel data models with heterogeneous spatial autore-
gressive coefficients. In small reciprocal interactions, the proposed test asymptotically
follows a standard normal distribution when both n and T tend to infinity jointly. The
power under local alternatives is investigated. We show that the traditional test may
lose power when spatial effects are heterogeneous in nature. Monte Carlo simulations
demonstrate that our proposed test has better power compared to the traditional one
in these types of networks. We provide an empirical example to illustrate that the

proposed and traditional tests can draw different conclusions on spatial correlation.

JEL classifications: C12, C33
Keywords: Spatial panels, LM test, Dispersion test, Near-epoch dependence, Quasi-

maximum likelihood

*Correspondence to: Department of Economics, The Ohio State University, Email: chang.1846Qosu.edu
"Department of Economics, The Ohio State University, Email: dejong.36@osu.edu.
We would like to thank Jason Blevins, Rui Wang, Eric Mbakop, Hanbat Jeong, Seungki Lee, and participants
at the 33rd Annual Meeting of the Midwest Econometrics Group, the XVII World Conference of the Spatial
Econometrics Association, and the 11th Annual Conference of the International Association for Applied
Econometrics for their helpful comments and suggestions.



1 Introduction

A natural first step in the spatial economic analysis is a test for spatial correlation. The
standard econometric approach is to formulate a hypothesis as a restriction on the spatial
coefficient in spatial models. For cross-sectional data, the most popular procedure is the
Moran I test, which dates back to Moran (1950) and is further advanced by Cliff and Ord
(1973). Burridge (1980) explores the Lagrange multiplier (LM) interpretation of the Moran
I test. Kelejian and Prucha (2001) derive the asymptotic distribution of Moran I type test
statistics by introducing the central limit theorem (CLT) for linear-quadratic forms.

Over the last decades, the spatial econometrics literature has extended the models from
cross-section data to spatial panels. Along with these advances in the estimation of various
spatial models, numerous contributions to hypothesis testing have been made. Among the
classical approaches, the LM tests are popular in spatial settings because they only require
restricted estimates and can be computationally simpler. One seminal contribution of spatial

panels is Yu et al. (2008). Consider the following spatial dynamic panel data model:

Ynt - AOWnYnt + 'VOYnt—l + pOWnYnt—l + XntBO + Cpo + Vnt, t= 1; ceey T (1)

where Y,: = (y1¢, .-, Ynt)' 18 an n X 1 vector of a dependent variable for all units in period t,
W, is an n X n spatial weights matrix, X, is an n x k, matrix of nonstochastic regressors,
Cno is an n x 1 vector of individual fixed effects, and V,;; = (€14, ...,&n)’ is an n X 1 vector of
disturbance terms. The LM tests for the hypotheses of \g = 0, 79 = 0, and/or py = 0 can
be found in Bera et al. (2019).

However, in almost all contributions, the hypotheses are formulated on the scalar spatial

autoregressive or autocorrelation coefficient®. Consider a special case of (1), the pure spatial

1For recent surveys of LM tests in the spatial literature, see Baltagi et al. (2003, 2007), Debarsy and
Ertur (2010), Yang (2010), Born and Breitung (2011), Qu and Lee (2012), Baltagi and Yang (2013a, 2013b),
Robinson and Rossi (2014), Yang (2015), Cheng and Lee (2017), among others.

2In conventional spatial models, spatial spillover or network effects are assumed to be homogeneous across
economic units.



autoregressive (SAR) panel data model:

Ynt - AOWnYnt +Cuo + Vnt

Ao 0 0 L. 0 w1l  wWi2 W13 ... Win Y1t

0 X O 0 w21 w22 w23 Wan, Y2t (2>
=]0 0 X ... O w31 w32 W33 ... W3n yst | +Cpog+ Vi, t=1,...,T

0 0 0 e )\0 Wn1 Wn?2 Wn3 e Wnn Ynt

where \g is the spatial autoregressive (lag) parameter. To test Hy : A\g = 0 against Hy : Ay # 0
&_12% Zthl YrithYnt
Vir(Wiw, + W2)
T are large, derived in Appendix D. We refer to this underlying statistic of the traditional

when both n and

for (2), one may use a standard normal test, M =

approach as the M test.

Recently, some interest has been in the heterogeneous version of the standard SAR models
(LeSage and Chih, 2016; LeSage et al., 2017; Geniaux and Martinetti, 2018; Aquaro et al.,
2021). LeSage and Chih (2016) point out that allowing for heterogeneous coefficients holds
a natural appeal when contrasted with conventional spatial models®. Aquaro et al. (2021)
discuss the estimation and inference of the spatial panel data models with fully heterogeneous
coefficients in the sense that the assumption of a homogeneous spatial coefficient is likely to

be restrictive when the time dimension 7" is large. Consider the heterogeneous version of (2):

Ynt - \POWnYnt + Cpo + Vnt

010 O o ... O w1l w12 W13 ... Wip Y1t
0 d20 O ... O w21 W22 W23 ... W2 Y2t

= 0 0 63 ... O w3l W32 W33 ... W3 yst | +Cpo+ Vi, t=1,...,T
0 0 0 ... o Wnl Wn2 Wp3 ... Wnn Ynt

(3)

where \I’O = diag(élg, ey 5n0>

3LeSage et al. (2017) apply the heterogeneous coefficients spatial panel data model to explore retail fuel
pricing. Geniaux and Martinetti (2018) consider the spatial model with spatially varying coefficients due to
the misspecification of explanatory variables or the unknown structure of the spatial weights matrix.



In many empirical applications, we have data, but we do not know the true model. If one
believes that the spatial spillover or network effects are heterogeneous, the widely used M
test is not applicable®. Before going into estimation and inference for panel data, one might
be interested in testing whether the spatial correlation exists or not in this heterogeneous
setting of (3). Our hypothesis of interest is Hy : §;0 = 0 for all i = 1, ..., n against Hy : §;o # 0
for a non-zero fraction of units. Furthermore, some econometrics literature discusses that
the power of the Cliff-Ord type tests can be very low or vanish under certain circumstances
(Kramer, 2005; Martellosio, 2010, 2012; Preinerstorfer and Pé&tscher, 2017; Preinerstorfer
2023)°. The analysis in this paper will also provide a new perspective on how the power of
the traditional tests may be low or vanish.

In the case of fixed n and large T, one may test the hypothesis formulated in (3) following
a recent discussion. Elhorst et al. (2021) show a spatial econometric model can be viewed
as a special case of a GVAR model and propose the likelihood ratio (LR) test to choose the
homogeneous coefficient (SAR) in (2) against the heterogeneous coefficients (GVAR) in (3).
However, this test procedure is theoretically only valid for fixed n, which implies that n should
be notably smaller than 7" in practice. In particular, spatial empirical applications typically
focus on large n cases; this existing test procedure may not apply to many microeconomic
questions because n is often large in micro-datasets. This small n issue can be more severe
when the number of observations over time periods is limited.

To the best of our knowledge, there are few formal tests of spatial correlation for spatial
panel data models with heterogeneous spatial lag coefficients, especially when both n and T’
are large. If n is growing, theoretical challenges arise because the dimension of a standard test

6

statistic increases”. Outside of the spatial econometrics literature, Pesaran and Yamagata

4Gection 5.1 discusses the M test may lose power when the spatial effects are heterogeneous in nature and
the sample size is small. Monte Carlo results in Section 5.2 are shown to be in line with these key findings.
Section 6 offers an empirical application to illustrate our discussions.

®The similar discussion for the Durbin-Watson test in time series regression can be found in the early
contribution of Kramer (1985).

6For example, an n x 1 vector of the score function for the LM test and its corresponding n x n variance
matrix will have an infinite length.



(2008) propose the test of slope homogeneity for panel data models with strictly exogenous
regressors when n could be larger relative to 7. We will follow their approach to propose a
test statistic because they formulate a hypothesis on fully heterogeneous slope coefficients
and derive the asymptotic results of the test when both n and 7' are large. However, more
considerations are required for our setting due to the presence of endogenous regressors Y,
in (3). Therefore, the hypothesis test about a set of n restrictions in (3), when n is large in
addition to 7', is essential in theoretical and empirical perspectives.

In this sense, this paper aims to fill these gaps by proposing the test statistic for spatial
correlation in the pure SAR panel data models with heterogeneous coefficients when both n
and T are large. We begin by constructing an LM test statistic for large T asymptotics’. The
most important reason for deriving the LM test in our case is that such models with hetero-
geneous spatial lag coefficients in (3) raise intractable difficulties at the level of identification
and estimation (Elhorst, 2014). To avoid the issue of identification of (3), we use the LM
principle. We then propose a standardized version of the LM test, denoted by S, following
Pesaran and Yamagata (2008). The proposed tests are not based on the assumption that
the error terms are normally distributed. This quasi-maximum likelihood framework yields
robust tests for error distributions.

This paper is organized as follows. In Section 2, we introduce the model specification
and its likelihood function. Section 3 derives the LM test for large T" asymptotics. Using Le
Cam’s theory, we analyze the power of the LM test under local alternatives. In Section 4, we
propose the S test and derive the limiting distributions of S under the null hypothesis and
local alternatives when both n and T tend to infinity jointly. Section 5 discusses the power
properties and finite sample properties of the proposed S test compared to the traditional
M test. Section 6 presents an empirical example to illustrate the usefulness of our proposed
S test. Some basic lemmas are provided in Appendix A. All proofs are given in Appendix

C. The asymptotic results of the M test are shown in Appendix D.

"If n is fixed, there is no dimensionality issue on the test statistic. This LM test can be used for empirical
cases when T is notably larger than n.



2 The model and concentrated likelihood function

2.1 The heterogeneous SAR panel data model

Define s; as an n x 1 vector of zeros, except for one at the ith element for i = 1, ...,n%. Using

s;s, for all i, we rewrite (3) as

Ynt = \IIOWnYnt + Cpo + Vnt
n (4)
= <25i05i3;>WnYnt+Cn0+Vnta t= 1,...,T
i=1

where Yy = (y1g, o, Yne)” and Vi = (€14, ..., €0¢) are m x 1 vectors, W, is an n x n spatial
weights matrix, and ¢, is an n x 1 vector of individual fixed effects”.

Define S, (¢)) = I, — YW, where ¥ = Zés s; for any ¢ = (01,...,0,). At the true
parameter, S, (1) = I,, — YoW,,. Then, presumlng Sn(1o) is invertible, (4) can be written

as Ynt = (In - \IJOWn)71<Cn0 + Vnt) = Sn(qﬂO)il(CnO + Vnt)

2.2 The concentrated likelihood function

Denote § = (¢, 0%) and ¢ = (¢, c,)’ where ¢ = (64, ...,6,)". At the true value, 6y = (¢, 05)’

? n

and (o = (Yg, ¢ly) where g = (010, ..., 0no)’. The likelihood function of (4) is

T T 1 <
InLor (6, c,) = —%ln(%r) - %ln( %)+ TS, ()] = 5 22: (5)
where Vm(g) = (In — \I/Wn)ynt = S (lp) — Cp. ThUS Vnt = nt(((])‘

For analytical purposes, it is convenient to concentrate ¢, out in (5). We define Y, =

T
_ 1 . _
Y=Y, rfort=1,.. T, where Y,r = T Z Y,:. Similarly, V,; = V,,; — V,,r. Using the first
t=1
olnLyr(f,c,) 1 T

order condition that
Jdc, o2

Vot (€) from (5), the concentrated likelihood

t=1

8Then, s;s} is an n x n matrix of zeros, except for one at the (i,i)th element.
9For the elements of Ve, we assume that e is i.i.d. across ¢ and t with zero mean and variance 0(2).

6



function is

nT nT 1 T

Ly (6) = —"S-in(2r) = Son(o?) + TinlSu )] — 5 5 3 V@) Vul®)  (©)

t=1

where f/nt(@b) = (I, — \Ian)f/nt = Sn(@/))f/nt
Define G,,(v)) = Wy (I, — YW,) "t = W,,S,() " for any ¢ = (41, ...,6,). From (6), the
first and second order derivatives of the concentrated likelihood function can be derived: see

Appendix B for their expressions®:

3 Test statistic for large 7" asymptotics

In this section, we derive an LM test statistic, asymptotically chi-square distributed with n
degrees of freedom for large T asymptotics. To analyze the asymptotic properties of the LM

test, we need the following assumptions:

Assumption 1. The spatial weights matriz W, is time-invariant and its diagonal elements

satisfy w;; =0 fori=1,...,n.

Assumption 2. The disturbances €, it = 1,....,n and t = 1,...,T, are i.i.d. across i and t

with zero mean, finite variance oi > 0, and El|ey|*™ < oo for some n > 0.
Assumption 3. S,(¢) is invertible for all 1 in a small neighborhood around zero.

Assumptions 1-2 are the standard regularity conditions used in the spatial econometrics

literature''. Assumption 3 is needed to show the asymptotic power under local alternatives.

3.1 LM test

Consider the first order derivative with respect to ¢ = (dy,...,d,)" in (B.2). Under H,

(\Ij - Onxn)7 Vnt@p) - (I’n - OanWn)ynt - ?nt and Gn(¢) - Wn(ln - OanWn)_l = Wn such

Detailed derivation steps are available in the supplementary material.
8ee Lee (2004), Yu et al. (2008), and Yu and Lee (2010), among others.

7



that 1) = (0,...,0)". Therefore, the LM test statistic is based on the n x 1 vector of

T
1 ~ ~
8lnLnT(O, ciey O, 0'2) p Z (Yétslsllwnynt - 025,1Wn51)
001 t
AnLyr(0,...,0,02) 1
2

I
_

B

Va4 / \/ 2./
(YntSQSQWnYnt -0 SQWnSQ)

8lnLnT(O, vy 0, 0’2)

_ 059 = | o= 7
0. : P (7)
dlnLyr(0, ...,0,02) T
a6 iE (Y8080 Wi Yot — 028, W sy)
n o2 - ntonon 'V nint nirnen
t=

where s; is an n x 1 vector of zeros, except for one at the ith element. Define g,r(c?) =
8lnLnT(O, ceey 0, 0'2)

oY
Let 62 be the restricted QML estimator with the restriction ¢ = (0, ...,0)" imposed, so

. Also, denote g,7(0°) as the ith element of g,r(c?).

5% = maz,InLt () where

T
1 o
From (8), we derive 6° = — E Y Y.

Proposition 1. Under Hy and Assumption 2, as T — oo,
2
5> 2 o2 and hence 0—2 — 1.
G
We now investigate the asymptotic distribution of g,7(5%) under Hy. From (7) evaluated

at &% under H, (?m = Vnt) and Assumption 1 (s;W,,s; = w;; = 0 for all 7), we have

oy , -
V05181 Wn Vit

11

oqw‘ = oqw‘ =
]~

1 - N
=5 Z V, t313/1WnVnt
O'

1
G2

T
5 Y Viis285Wa Vg o2

V! s955 W, vV, 2
~92 nt 2¥VnVnt 0'0 9
In1(0°) = t=1 = 2 t=1 = ﬁgnT(U()) (9)
T T
1 V, 1 ¥4 / 7
52 Z tSnS w, Vmg ? Z ntsnannVnt
t=1 0 =1



o2
where V,;; = Vi — Vor and =2 2 1 by Proposition 1. Thus, the limiting result of Gnr(5?) is
o2

the same as that of g, (05) under Hy.

To show the asymptotic distribution of gnr(03) under Hy, we consider

b
VT

V5181 Wo Vi V! 518 W Vi
T / / —, , _
1 11 Viis25oWn Vi 1 Vors25oWoVir
TRar(00) = 5= | - VT . (10)
\/T ) \/T " : o :
VrgtSHS{anVnt VATSHS;LWnVnT
1 dlnL;,(0,...,0, O'g) 1

where the first term is denoted as and the second term is O,(

NG o Nii

by Lemmas A.3 and A.4'>. The mean and variance of the first term in (10) are y,, = 0 and

SyWaW s Sy WhisashWys1 ... sy WpsnshWyst
soWys18\Whsa  soW,W/lsy ... shWysps, Whyso
Eg,n = . ) . (11)
/ / / / / /
S Wns181Wysn s, WnsasoWys, ... S, WinW, sn

where Z;’fn = SW,W)s; = waj and Ezg]n = ngnsjs;Wnsi = w;jw;; for all i,5'. Note
that X, ,, takes the same form regardless of shapes of ;.
Under Assumptions 1 and 2, V! s;s;W,,V,; is i.i.d. across ¢t with E(V,,s;s\W,V,,;) = 0,
E(V!.5:85W, Vit)? = 058, W, W/ s; < oo and E(V,5:8Wo Vi) (Vi858 Wo Vi) = aosiW, 08578 Whsi
d

1
< 0o. By the central limit theorem (Multivariate Lindeberg-Levy CLT), we have Nia Gnr(0g) =

N(0,%,,). To derive the LM test, we need the following assumption on X, ,,.

12 1 9lnLy (0, .y 0,08)

VT o
imposed (under Hy). Also, we have |[VTV, psisi W, Vir| < VTV, p5i8i W Vir — ENTV. 188 W Vir)| +

|\E(VTV, 15i8\ W Vyr)| = Op(%) for all ¢ by Lemmas A.3 and A 4.

can also be derived from (B.5) in Appendix B with the restriction ¢ = (0, ..., 0)’

1329 » can also be derived from (B.8) in Appendix B with the restriction ¢ = (0,...,0)" imposed (under

1 0%InL (0, ...,0,02)
Th have E nt 2 00y = -3
Ho). Thus, we have (T 5‘@!)81/1’ )

g,n-



Assumption 4. For the elements in ¥, either (1) or (2) is satisfied:
n n

1) waj > Z \wijwj;| for all i.
=1 =1

2) waj > Z \wijwj;| and wi; >0 for all i, j.

J=1 Jj=1

. : . 2
Assumption 4(1) does not hold when W,, is symmetric because of Z wi; = Z |w;w;il.
j=1 =
However, any symmetric W,, can satisfy Assumption 4(2) as long as all off-diagonal entries

of W, are positive Under Assumptions 1 and 4(1 ), Ygn is a strlctly diagonally dominant

matrix because Zw > Z |w;jw;i| > 0 where Z lwi;wj| = Z |w;;wj;| is each row sum
Jj=1 Jj=1 Jj=1 JFi
of all off-diagonal entries in absolute value'*. Under Assumptions 1 and 4(2), %,, is a

diagonally dominant matrix.

Proposition 2. Under Assumptions 1 and /,

Ygn Us positive definite.

Based on the limiting results of under Hy and the condition on X, ,,, we can

%M(&?)

1
find the asymptotic distribution of the quadratic form, T gn7(6%)'S, 1, gnr(67) in Theorem 1.

Theorem 1. Under Hy and Assumptions 1, 2 and 4, as T — oo,

1 O\ <9\ d
?gnT(oj),EgﬂlmgnT(O]) — Xi

For the empirical cases where T is notably larger than n, one may use this LM test

115

shown in Theorem 1. Hence, the conclusions on whether a spatial correlation exists or not,

1
when T is large, can be drawn based on the value of fgnT(52)'Z;}LgnT(62) where g,7(6%) =

T
l 1 1 - -
gY/SSWY ..——EY’SS'WY)/.
=~ m nt°1°1 nty =y ~o nton°onV¥nint
O' VT g \/thl

A square matrix is said to be diagonally dominant if, for every row, the magnitude of the diagonal entry
in a row is larger than or equal to the sum of the magnitudes of all off-diagonal entries in that row. That
is, the matrix A = (a;;) is diagonally dominant if |a;;| > Z la;;]. Furthermore, it is strictly diagonally

3
dominant if strict inequality holds for all 3. 7

15The advantage of the LM tests over the other approaches, such as the Wald and LR tests, is that it only

requires the restricted estimate, &

10



3.2 Local power of the LM test

For the asymptotic local power of the LM test, we consider the following local alternatives:
for i =1,...,n (12)

where A; is a fixed constant (A; # 0). Denote A = (Aq,...,A,)’, an n x 1 vector of

constants. To investigate the asymptotic properties of the LM test under H; r, we utilize Le

Cam’s theory, following Qu and Lee (2013) and Cheng and Lee (2017) for spatial models.
Consider ¢, = lnLnT(Al/Tl/Q, s An/Tl/27 03)—InL,r(0, ...,0,07). By the second order

Taylor series expansion, we have

1 A,8lnLnT(0, . 0,02) N LA,(‘??lnLnT(Al, o N, 02)

_ 13
InT = iy B oT Dy A (13)

where A; lies between AZ'/TI/2 and 0 for all i = 1,...,n. Thus, A; & 0 as T — oo for all 4.

From the previous results in Section 3.1, we have

ot = 1 A,alnLnT«), ...,0,0'g) + iA’annLnT(Ah ...,An,ag)A
nT = T o0 2T B
o L AL (0 008) Ly LI (0, 0 0,08) ) (14)
VT oY 2 T ooy’ !
1 L* 2 1 O%InL* 2
where ﬁ@ln nT(é);/) .0,90) N N(0,%,,) under Hy and E(?a in ng@(/%@/}’?()’%)) -
1 0*inL,r(Aq, ..., A, o2 1 9*InL* ..,0,02
—Y4.n, provided that _6 nLur(B1, - B, %) — E(—a Ly (0, ’O’UO>) = 0,(1).

T oY T 0oy’

Lemma 1. Under Assumptions 1-3,
l@QZnLnT(Al, N, 02) B <l O?InL: (0, ..., 0, 03)) —o,(1)
T oo’ T oo’ e

1
Hence, g,r LN N(—§A/2g,nA7 A'Y, ,A) under Hy and this result implies that Le Cam’s

first lemma holds. Denote 0** = A'S, ,,A. From (9), (10) and (14), we obtain the asymptotic

11



1 .
covariance of —=g,7(6%) and g,r as

VT

L Ly (0,...,0,08) ,, 1 aan;;T(o,...,o,ag))
VT O VT N (15)

1 9lnL:,(0,...,0,02)
-V n A=X,.A
ar(\/T o ) o

Cov(

Denote 7 = ¥, ,A. Then, using the Cramer-Wold device, we can find the joint asymptotic

1
distribution of —=g,7(6?) and ¢,r under H, as

VT

(—=gr@.a =N 4 7)) (16)
ﬁgnTU et 730_*2 ’ 7_/ 0_*2

1
Hence, by Le Cam’s third lemma, — g,,7(6?) 4, N(1,%,,) under Hy 7.

VT

Theorem 2. Under Hy 1 and Assumptions 1-4, as T — oo,

1
TgnT(&Q)’Z;}lgnT(c}Q) 4 X2 (1) where = A'S, A is a noncentrality parameter.

Theorem 2 implies that the LM test has power against local alternatives if A; # 0 for

some ¢ due to p > 0 since X, ,, is positive definite by Proposition 2.

4 Test statistic when both n and 7' are large

In this section, we propose the S test when both n and T" are large based on the quadratic
form derived in Section 3. We first derive the limiting distribution of S under Hy, when both
n and T tend to infinity jointly in the special case where social interactions or networks
are completely non-reciprocal. We then extend our discussion to general interactions or

networks. Lastly, we derive the limiting result of the S test under local alternatives.

12



4.1 S test

1 /1
Wi tandardized version of the LM test, S = ——(=gn7(6°)'S, Lgnr(67) —n), f
e propose a standardized version of the est, \/%(Tg 1(6%)'%, 1 gnr(6%) —n), for

(3) when both n and T are large. Under Hy, the proposed S test takes the following form:

1
2 Iy —1 ~2
/ -1
gnT,l(c?Q) SYW, W, s1 S\ WhsasoaWps1 ... s1Wasps, Wysi g7,,T71(c~r2)
1 ( 1| gnr2(5%) oW 5181 W82 soW, W s9 e 55Wisnsh Wy so GnT.2(6%) >
= ——\ = —n

Gnrn(5%) s Wis181Whsn s, WysasoWys, ... sh W W) sy, GnT.n(67)

(17)

where g,,7;(6%) = = Z L sisiW, Vnt

1
Theorem 1 shows that TgnT((}z)’Eg_,,llgnT(&Q) 4 X2 as T — oo under Hy. For sequential

asymptotics (T — oo, then n — o00), it is readily shown that the S test asymptotically

1
follows a standard normal distribution N (0, 1) under Hy since S LIS (Xi—n) asn — ool

V2n
However, our main interest is to analyze the limiting result of S under joint asymptotics. For
the asymptotic properties of the S test when both n and T are large, we need the following

assumptions:
Assumption 5. W, is uniformly bounded in row and column sums in absolute value.

n
C o wiswsg
Assumption 6. supsup 23_1 |w;jw;i|

nooi Z?:l wz‘zj
Assumption 7. T is an increasing function of n and n goes to infinity.
Assumption 5 is the standard regularity condition for W,, used in the spatial econometrics
literature. This uniform boundedness of W,,, originated by Kelejian and Prucha (1998), is a
condition to limit spatial correlatlons to a manageable degree (Lee 2004). Under Assumption

5, ith diagonal element of £, ,,, Z wy; < max lwi;]( max Z |w;;]) < oo for all n. Assumption
Jj=1 7j=1

YFor x2, E(x2) = n and Var(x2) = 2n. For more details, see de Jong and Bierens (1994).

13



6 is a condition for the nonsingularity of ¥, ,, for all n. Assumption 6 implies that the strictly
diagonally dominant property of 3, , holds uniformly in n because the diagonal element is
strictly greater than the sum of all off-diagonal entries in that row for all 7 and n. Assumption

7 allows one case; T'— oo as n — oo where both n and 71" are large.

The crucial part of this analysis is to apply the appropriate limit theorems to the proposed
S test that contains the n-dimensional quadratic form where n is growing. To this end, we
first need the analytical form of the inverse of ¥, in (11). We note that all elements of X,
depend on W,, specified by some social interactions or network structures. In this sense, we

begin by discussing the limiting result of S under a special interaction in Section 4.2.

4.2 The limiting result of S in a special case

Consider the non-reciprocal interactions or networks in the form of Assumption 8:
Assumption 8. The reciprocities w;;w;; of Wy, is zero, i.e., wijwj; = 0 for all i and j.

Assumption 8 implies that the interactions or networks are completely non-reciprocal in

the sense that either w;; or wj;, or both is zero for all ¢ and j. Under Assumptions 1 and
wijwjz-
Vw0

however, these types of interactions or networks can be found in the econometrics literature.

8, we have =0 for all 4, 5 and n. Assumption 8 is strong in practice;

Bramoullé et al. (2009) illustrate a special social network where each unit is influenced only

by his or her left-hand friend. An example of their weights matrix G is:

00 0 0 0 1
1 000 0 0
0100 0 0

W,=10 0 10 00 (18)
00 0 0 0 0
00 00 10

14



This is a simple case of the non-reciprocal interactions or networks'’. In the case of (18),
Ygn = I,,. Also, interactions are likely to be non-reciprocal when a small number of units

affect many others dominantly. Pesaran and Yang (2021) illustrate the following interaction:

0 w12 0 0 0 0
W21 0 wa3 0 0 0
w31 0 0 W34 0 0
Wpo=1 wa 0 0 0 0 0 (19)
Wn-11 0 0 0 0 wp-1n
Wn1 0 0 0 ... 0 0
where the first unit is the dominant unit'®. This example can be the non-reciprocal network,

additionally assuming we; = 0. In the case of (19), X, ,, is a simple block diagonal matrix.
In the remaining subsection, we consider the non-reciprocal interactions or networks but

do not specify a particular form of W,'”. Then, under Assumption 8, all off-diagonal entries

of Xy, are zero because s;W,s;55W,s; = wijwy; = 0 for all 4, j, and X, becomes a block

diagonal matrix®. Denote E?,m the structure of ¥ ,, under Assumption 8, as

sy W W, s1 0 0 0
0 soWn W/ so 0 0
nh = 0 0 SEWo W s ... 0 (20)
0 0 0 e SEW W sy
nr 1 1 ~2\/\D—1 ~2 .
and denote S™ = F(T%T(G )Sen  gnr(6°) — n) for S under Assumption 8.
n

1"We may think of a generalized version of the Bramoullé et al. (2009). For instance, each unit is influenced
by all left-hand friends.

18Pesaran and Yang (2021) discuss estimation and inference in spatial models with dominant units.

YWe consider the conventional weights matrices where neighboring units are only a few adjacent ones.

20The advantage of the block diagonal matrix is that its inverse can be easily derived; the inverse of any
block-diagonal matrix is given by replacing the diagonal elements with their reciprocals.
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Using the property of a block diagonal matrix and V,; = Vi — Vi, we have

INvVD—1

5" = = (0 (S0 0 () =)

!/

gnT’l(&z) (W, W' s1)~! 0 .. 0 Gn1.1(62)
1 ( 1| gnr2(5%) 0 (shW, W) sa)™t ... 0 9nr2(5°) )
= —(= —n
Von T
Gn1.n(5%) 0 0 o (S W W s) Tt InT.n(52)

3

\/—_ ZgnTz S W W/SZ) lgnTﬂ-(52) — ].)

i=1

Z gnTz S W W Sz) lgnT,i(&Z) - ]-)

=1

(21)
1 — 1
where g,7,(5°) = = Z W, Vo = Uo Z sis;WnVnt—U—gTVéTsis;WnVnT). This
=1 =1
can be rewritten as
nr 1 ( gnTz( 2))2 o2 o2
s L (IR OT (S (T
vV2n — SZWanSz o o
08 5 1 n (Jig% Zthl Vrﬁtsis;Wan— %ﬁVéTSiSQWnVnT)Z . 1 < 0'(2) 24
02, 1 O, (s Lt ViesisiWaVar)® I PR (G2 VTVrsisiWaVar)?
=G \/zn;( SWnWisi UG & P siWnWisi
03,5 2 (%2] > tSiSQWnVnt)(%g\/TVYZTSiSQWnVnT) B2
2, 1 & 713% St Vi Wi Vg 2 1 o2 ,ynl g TV,TSZSW VnT
= (—= — + — (== -
(02) \/2n;(( VWL W s ) ) \/5(02) T ni:l( VSWL W si
2 (0(2])2 n 1 Z”:( 13%2;21 Vﬁtsz‘SQWnVnt)((/}(Q)TVT;TSiSQWnVnT) N Z ((08)2 0
V2 52 Tn~ VSSWL, W s SEW W s; V2n 52

(22)

Proposition 3. Under Hy and Assumptions 2 and 7,

2 o2
1
i* %ol a ndhence%—)l and;—l—Op(\/ﬁ).
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Define the random variable z; ,r and r; ,p over i = 1,...,n as

1 1 N vy 11 T "
- (g_g\/_f D VntSiSiWnVnt)2 _ (0—3\/—7 > =1 Eit ijl wijgjt)z (23)
’ /SIW, W s, S w?
1 st / Y / 1 = n €
STV, r8isiWnVar 2 TEr Y wij€r
Timr = (= )? = (2 )? (24)

/ /
/ SiW, W) s, Z’}_l w2

11 T / / 1 oyt / Y/
_(2)\/_T Zt:l VntSiSiWnVnt %TVnTSiSiWnVnT

o1 s @ g
where &7 = 7 ) Jeq. Let Ziur = N N AT
AU A A pntinT

Thus, zinr = (Zinr)® and 75,7 = (Fiar)®. Under Assumptions 1 and 2, 2,7, ri.r and

ZinTTinr are spatially correlated (dependent heterogeneous) random variables with finite

means and variances. That is, as shown in Appendix E, we have

E(zinr) =1 (25)
11 palpa = 305) 0 wi; 3y — o) 1
Varter) =2+ S S S 0
o (a)? = 2p405 + (09)* 1 wws;
o Sam) = B TS w) e
J ij i=1 Yji
pa—opl W pu—opl  wh
o TY", wJQ-i oy T Z;;l wfj
4 2 (o wawi)? fa — 30y 1 21 w??lezl
T (3o wiy) (i wii) op T (i wi) (i wi)
N A(ps)? 1 wljwﬂ(Z? ywawi)  2(pe)* 1 w30, wiwa)
of T wy)(Ciiwh) o6 T (2 wi) (i, wjy)
2(p3)? 1 wii (Do whwa) (27)
o T (3 j—wiy) (i wii)
E(Tz‘,nT) =1 (28)
1
E(ZintTinr) = JT (29)

where ps = E(e},) for s = 3,4. Note that Assumption 8 is not needed to obtain the results
above. Thus, (25)-(29) hold for any W,,.
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n n

1
Denote Q,r = \/? Z (Zz',nT - E(Zi,nT)>7 Py = — Z (Tz',nT - E(Tz‘,nT)) and U,r =

- n <
i=1 =1

— Z (2i7nT7’:i7nT — E(%i,anmT)). Then, the mean and variance of Q,r, 1g,, = E(Qnr) and
n <

ZQ:T = Var(Qn,r) can be found in Proposition 4.

Proposition 4. Under Assumptions 1, 2, 5 and 7,

1

Assumption 8 is not needed to obtain the result of Proposition 4. Hence, Proposition 4

holds for any weights matrix W,,. Using (22), (25), (28) and (29), we have

ol \f 1 0 Vil & 2 o? n
S'n,T': ~Y0\2 n - 2 = Z0N2 VIS E in 2 (70\2 7Un
(5_2) Qnr + \/5(5'2) +\f 2 n & 7” T 2( 2) T T
2 0ty [Nl _ 1 &0t
- =\ **5 E(ZinTTin 7} —) -1
Vﬂj(&Q) fr7li:1 (Z T, TO_+ Vﬁjﬁ ﬁ:1((02) )
2 2 2 n 2
J0y2 1 GGV, 2 05 [0 1 Goyevn 1 0y2
(52)"Qur + 2(52) T En \/§(~2) TUnT \/§(~2) T * 2n — ((&2) !

We now apply limit theorems to Q,7, P,r, and U,z in (30). We note that the established
CLT and LLN for linear-quadratic forms are not applicable because z; 1, 7i 7 and Z; yr7i nr
are the nonlinear transformation or product of z; ,,r and 7; 7. In this sense, we will employ
the CLT and LLN under near-epoch dependence, established by Jenish and Prucha (2012)21.
We first show that ;7 and 7,7 are Lo-near-epoch dependent (NED)*. Let D C R (d > 1)
be a lattice of unevenly placed locations in R%. Assume that each unit 7 has its fixed location
in R? over time periods ¢ = 1, ..., 7. Define the location function 1 : i = {1,...,n} = D, C
D C R% by 1(i) = (1,(4), ..., 14(i)). Assume |D,| = n where |A| denotes the cardinality of A.
The distance between 1(i) and 1(j) is defined as p(1(i),1(j)) = max {|L;(i) — L(j)[}**.

1<k<d

#1Jenish and Prucha (2012) extend the concept of near-epoch dependent (NED) processes used in the time
series literature to spatial processes.

22 An attractive feature of NED processes is that the NED property is preserved under transformations
(Jenish and Prucha, 2012).

ZWe refer to Jeong and Lee (2021) for this setting.
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In the remaining subsection, we use i = 1(¢) and j = 1(j) as a location, and p(i,j) =
p(l(z’),l(j)) as a distance for simplicity. Let & = {&;1,...,eir,7 € T,,n > 1} be a random
field for all time periods (V¢ = 1,...,T) where D,, C T,, C D. Consider the following o-field
as Finr(s) = 0(8j1, €517 € Ty p(iyg) < s) generated by the random variables located in
the s-neighborhood of 7. We need the following assumption to follow the approach of Jenish

and Prucha (2012) for the increasing domain asymptotics.

Assumption 9. The lattice D C R? (d > 1) is infinitely countable. All elements in D are
located at distances of at least pg > 0 from each other, i.e., p(i,j) > po for all i,5 € D,.

Without loss of generality, we assume that py > 1.

Let Z = {Zinr,i € Dy,n > 1} be a random field with ||Z;,,7]|, < oo (p > 1) and let
d= {Jm,@ € D,,n > 1} be an array of finite positive constants®*. Then, the random field
7 is said to be Lo-NED on € = {e;1, ..., cip,0 € Tpyn > 1} if ||Zinr — E(Zinr| Finr ()2 <
Ji,ni(s) where J(s) — 0 as s — oo. If sup sup dm < o0, then Z is said to be uniformly
Lo-NED on . Similarly, define a random Eelﬁlf)gr R = {Finr,i € Dpym > 1}.

Lemma 2. Under Assumptions 1 and 2,
Zinr and Tiyr are uniformly Ly, bounded where p =4 + 1, i.e., sup sup [|Zinr || < 00 and

n 1€D,

sup sup ||7; nr||44n < 00.
n iGDn

Proposition 5. Under Assumptions 1, 2, and 9,

7 = ={Zinr,i € Dyp,n > 1} and ]? {Finr,i € Dp,n > 1} are uniformly Ly-NED on £ with
wy, > s
3(s) = sup sup \/Z] L -J) >25
J lw

n lGDn

The NED property is preserved under summation and multiplication (Jenish and Prucha,
2012; Xu and Lee, 2015). In this sense, the next step is to consider z; v = (Zi7)%, Tinr =

(fi,nT)Q and zi,ani,nT .

% For any random variable Y, let ||V, = (E|Y[P)Y/P, p > 1.
*1(p(i,§) > s) is an indicator function where 1(p(i, ) > s) = 0 if the distance between i and j is equal
to or less than s. As s gets larger, 1(p(i,j) > s) goes to zero.
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Let Z = {zinr,i € Dyp,n > 1} be a random field with ||z;,r||, < oo (p > 1) and
d = {din,i € D,,n > 1} be an array of finite positive constants. Then, the random field
Z is said to be Ly-NED on € if ||2;nr — E(2inr|Finr(s))|]2 < diny(s) where y(s) — 0 as
s — oo. If sup sup d;, < 00, then Z is said to be uniformly L,-NED on &. Similarly, define
random ﬁeldT; fZOGrD}L% =A{rinr,i € Dp,n > 1} and K = {2, 07 7,0 € Dyymn > 1}
Proposition 6. Under Assumptions 1, 2, and 9,

Z =Azinr,i € Dpyyn > 1}, R={rinr,i € Dp,n > 1} and K = {Z; nrTinr,t € Dyp,n > 1}
<Z? ywil(p(i,g) > s)>sf4n
Z?:l wl2]

We apply the CLT under near-epoch dependence to @), and the LLN under near-epoch

are uniformly Ly-NED on & with v(s) = sup sup
n ’ieDn

dependence to P, and U, in (30). Following Xu and Lee (2015), in addition to Assumption

1, we assume the following conditions.

Assumption 10. The weights w;; in W, satisfy at least one of the following conditions:
(1) Only individuals whose distances are less than or equal to some specific constant may
affect each other directly. Without loss of generality, we set it as py > 1. That is to say, w;;
can be nonzero only if p(i,7) < po.

(2) There exists an o > d > 1 and a constant Cy > 0 such that |w;;| < Cy/p(i, j)“.
Assumption 11. o > d- (1.5+2n 1)

As discussed in Xu and Lee (2015), Assumption 10(1) is stronger than Assumption 10(2)
in the sense that Assumption 10(2) allows an interaction even if two locations are far away
from each other. In our case, it requires the strength to decline with p(i, j) in the power of «
determined by Assumption 11 to make the strength of spatial dependence decay sufficiently
fast. If the elements of W,, are specified by a function of the spatial distance in some space,

such as w;; = Cy/p(i,7)*, we can have w;; > 0 for all 7, j.

Proposition 7 Under Assumptions 1, 2, 7 and 9-11,
E(zinr)) % N(0,1).

nT \/%Z ZinT —

20



Proposition 8. Under Assumptions 1, 2, 7 and 9,
1N v 1N v
T n;(T (T)) T n;(,T,T (,T,T))
Hence, as we analyze the statistics in (30), we can find the asymptotic distribution of the

proposed S test in a special case under Assumption 8 in Theorem 3.

Theorem 3. Under Hy, Assumptions 1, 2, 5, 7-11, and % — k where 0 < k < o0,
1 1 . _ .
S = \/—Q—n(fgnT(oj)/Eg,}LgnT(az) —n) at N(0,1).

Theorem 3 imposes a restriction on the relative expansion rates of n and 7' such that

n
T — k where 0 < k < 0o. Hence, in the case of the completely non-reciprocal interactions,

the conclusions on whether a spatial correlation exists or not, when n is asymptotically

proportional to T" or when T grows faster than n, can be drawn based on the value of the
LT i
S;WnW/lSi '

1 &
roposed test statistic, S™" =
prop m;(

4.3 The limiting result of S in general interactions

Assumption 8 (non-reciprocal interactions or networks) is too strong in practice; we now
allow the reciprocities (w;;w;; # 0) in a network as X, in (11). To analyze the asymptotic
properties of S in general interactions, we need the analytical form of E;;. The challenge
here is to derive the inverse of an n x n matrix X, ,, in which all off-diagonal entries are not
necessarily zero with large n. We note that under Assumption 6, 3, ,, is a strictly diagonally
dominant matrix uniformly in n; we can obtain Zg_ﬂlﬁb using its property.

¥, can be expressed as X, = Egn - Zgan = Eﬁn(]n — B,,) where Zin in (20) and

! ! / / / /
0 s1WhisasoWhs1 81 Wys3saWys1 §1Whsns, Whsi
! / /
) ) sIW W) s1 /51WnVE/T’L.51 ) lenI/E/T’le
5oW, 5151 Whsa 0 soWys355Wh 59 SoWh8n5, Whnsa
/ / /
) 55 WnWéSQ ) ) ssWp W/ so ) so5Wy, W,;LSQ
B s3Wis151Whpss  s5Wys955W,, 83 0 53Wh 8,8, Whnsa (31)
n 7 ’ 7
ssWy, W/ s3 soa W, W/ s3 ssWy, W/ s3
/ / / ! / /
5o Wns181Whsn s, WysasoWysy, s, WysassWysy 0

! !/
s, W, W/ sy,

/ !/
st WoW/ sy,

!/ !/
s WoW/ sy,




where || B,||oo < 17°. Since the spectral radius of B,, p(B,) < ||Bu|lec < 1, we can derive

the inverse of 3 ,, = Egn([n — B,) as

-1 __ 1 Dl k D—1
Sk = (I, — B,)'sP = (1, + B, +ZB )P

k=2

=S + B+ ) BiSD

n~gn

(32)

o0
where E BY < o00®”
k=0

Finally, using the result of (32), we obtain the proposed S test:

L(l
V2n T
_ 201 g0(52 ! B,xP ?

_E(fgnT< Sy gar(5%) = n) + FTM( D' BaZen gnr(3%) (33)

9nr(62)' S, 3 gur(67) — 1)

Z MTM %) BESy gur(67)

1 1
where the first term —— (=
V2n (T

Theorem 3 is directly applicable to the first term. If all other remaining terms converge to

Gnr (5% ED Ygnr(5%) —n) is the same as S™ in (21). Therefore,

zero, we can construct a standard normal test.

Proposition 9. Under Assumptions 6 and 7,

1 1 N -
\/—TgnT( VB XP g (67) is 0,(1), then Z \/_TgnT (6%) BESD " gur(62) is 0p(1).

Proposition 9 implies that it suffices to show BnEfn Yo (6%) & 0 for

1 1 ~2\/
Va7
= 1 1 ! ks D—1 N
E ———gnr (0 )ang,n gnr(6°) = 0.

— vonT

D s 18iWnsisiWasi| 370 [wijwyil

26The th row sum of B, is ST 51 = Z? 1 w% < 1 for all 4 and n by Assumptions 1
and 6.
2 lim (I, — (I, — B,))* = lim B¥ =0 due to p(B,,) < 1.
k—o0 k—oc0
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1 1
Consid —n B, gr(6%) wh
onsider \/%Tg r(62) ' 9nr(67) where

0 * * L%
/ !
soWp,s151Whs2 0 . .
5§W7W1L525' W, W s1 / /
B D1 _ s3Wp 8151 Whs3 s53Wh,8255W,, 53 0 .
n=g.n W W sss\ W, Wisy — shW, W/ s3shbW, W/ so
/ / / ! / !

5, Wns151Whsn 5, Wns255Wy 55 5, Wns3s5Wy sy, 0

s Wo W) sy si\W,Wis1 s, W, W) s,stW,, W/ so s/, W, W/ s,s5W, W s3

%gnT,i(52) os

1
Using NEATA D = ﬁ(zi,nT — ﬁfi,nT) with the symmetric property of B Efn ! we have
n (2

n n 1 (52
L lgnT(02)'BnZ]D_lgnT( Z s 5iWns;js;Wasi 77 InT(07)
Van T v iz \/SWW,Sz] 1\/8WW/81\/SWW/S]\/SWW8]
(0(2))2 1 n(~ 1 - siWnsjsi Whsi )
= —(= i,nT T nT nl — T nT
CEVD) 1 VT J¢Z\/SWW,8“/8WW/8] % ”
__L((’;O)?L 3 7 Xn: 5iWnsj5;Wnsi s
- ~9 i,nT ZinT
V232 n =1 i \/ SQWnW/LSi\/W
+i(13)2 Elzn:f Zn: $iWnsjsiWnsi
\/i 5_2 Tn i,nT - p
2 SSW W, 3“/3 W, W sj
_i(ﬁ)2ﬁ1i~znTi i Wns;siWhsi
v2'62" Tn J;,AZ\/SWW,S“/SWW/S]
(35)

Proposition 10 Under Assumptions 1, 2, 6 and 7,

sIWh 558; " Wi 1 1
ZinT Zimr is 0p(1), then —— —gur(6%) BuSD gur (57)
\FZ %g;\/sI/VW’s“/sW’T/V’s]J ' v2nT

is op(1).

P itions 9 and 10 imply that it suffices to sh 1if ﬁi 5iWn ;5 Wns: 3
Iropositions an 11m at 1t sullices to sNoOwW —— Zin Zin
P Py Vn 4 ’T#l \/SWW/SZ\/SWW/SJ it

P 11 koD N
— 0 for the convergence of ——=—0n BrYy, . gn in (33).
g gd%ETgﬂ Y 'gnr(6%) in (33)
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Define the random variables g; ,,7 over i = 1, ...,n as

5 L SéwnSjS;-”nSi - - - Wi W5 - (36)
GinT = ZinT E ZinT = ZinT 5 ZinT
s ) ] ! o. ’ Io. P ’ n 2 n 2 ’
7 VW Wosin/siWaWys, i \/ij1 Wi \/Zizl wji

1 w;;
Denote G,,7 = — E ginr- We note that the convergence of G, depends on J
=1

- .
Vi = 2?21 wz‘Qj
For some social interactions or economic activities, each unit can be influenced by a
significant portion of units, Z |w;;| (Lee, 2002). In these cases, the weights matrices are
j=1
wij _ 1
can depend on n as w;; = O(—) where

> i1 lwigl P,
hy, is divergent uniformly in all 7, j (Lee, 2004). Similarly, we now introduce the conditions for

row-normalized, and the elements w;; =

; each unit is influenced by a portion of units, measured by wfj Consider

wij
=1

\/ Z?:l wzzj J

the following interactions or networks in the form of Assumptions 12 and 13:

n

Wi *— *
4 are at most of order b, wi; = O(+=)

/N~ 2 h*
Zj:l Wi "

where the rate sequence h, is divergent, uniformly in all i,j.

Assumption 12. The elements w;; =

* *

Assumption 13. nhg)lo y7i oo and nlgg} i 0.

Assumptions 12 and 13 imply that the social interactions or networks are asymptotically

wijwﬁ

Vo wh [ w?,

completely non-reciprocal interaction in Assumption 8§,

1
= O(W) which goes to zero. The

wijwji

\/Z?:l wi2j \/Z?:l wf‘i

special case of Assumptions 12 and 13. The social interactions or networks in the form of

small reciprocal in the sense that

= 0, is the

Assumptions 12 and 13 can cover much more empirical cases. Also, Assumptions 12 and 13
can include empirical examples where W,, is row-normalized but exclude the case where all

units are neighbors of each other (equal weight, w;; = 1/(n — 1) for all ¢, j).
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Remark 1. Using wyj; in Assumption 12, we can rewrite Z; ,r and 7; 7 as

1 ) n e
= v DY D L W o
ZinT = — 5 = ?7]“ g Eit E W;j€jt (37)
D1 Wi 0 t=1  j=1
N 2 TG’LT Z —1 Wij€5T 1 n .
TinT = = —Té&r § W €5 (38)
’ S w? 70 ; ’
j=1 "Yij Jj=1

For both ||2i,nT — E(gi,nT|~E,nT(5))||2 and Hfl nT — E(’FZ nT|-E nT( ))HQ, we can take the same

sup sup Jm =1 and A(s) = sup sup Zw*Ql (i,7) > s) where Zw =1. Also, X¢,, —

1 as long as % — k < co. Hence, all results in Section 4.2 hold.

In the remaining subsection, we use Assumptions 12 and 13 instead of Assumptions 8.

We show the convergence of G, using Chebyshev’s inequality in Proposition 11.

Proposition 11. Under Assumptions 1, 2, 5-7, 9, 12 and 13,
1 »
\/ﬁ lzzl: g nT
Hence, as we analyze the statistics in (33), we can find the asymptotic distribution of the

proposed S test in more general interaction under Assumptions 12 and 13 in Theorem 4.

Theorem 4. Under Hy, Assumptions 1, 2, 5-7 and 9-13, and % — k where 0 < k < o0,

1,1 e B
gnT(U2)/Eg,ignT(02) —n) LN N(0,1).

V2n (T
Theorem 4 imposes a restriction on the relative expansion rates of n and T such that

n

T — k where 0 < k < oco. Also, Theorem 4 implies that under Assumptions 12 and

13, S is asymptotically equivalent to S™", |S — S| = 0,(1). Hence, in the case of small
reciprocal interactions, the conclusions on whether a spatial correlation exists or not, when n

is asymptotically proportional to T" or when T grows faster than n, can be drawn based on the

. L1 ~2\rya—1 ~2 ~2
value of the proposed test statistic, S = E(?QnT(U )2 nGnT(67) — n) where g,7(67) =

T T
1 . .

— E 518 W, Yoi, ..., =5 E " Snsn W, Ynt) or the asymptotically equivalent form
ag

\f
S

3\

Qz
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4.4 Local power of the proposed S test

For the asymptotic local power of the S test, we adopt the following local alternatives:

A; .
HlnT (520 1/4T1/2 for ¢ = ]_,...77L (39)
1
where A, is a fixed constant (A; # 0). Denote A” = diag(A4, ..., A,) and ¥ = WAD.

Under Assumptions 12 and 13, S™ is asymptotically equivalent to S in Theorem 4. Thus,
we analyze the asymptotic result of S™" under the local alternatives. Under H; ,r, S™" takes

the following form:

%% S V(L — OHW,) Vs W (1, — UHW,)~1V,)?
\/% Z siWa Wy s; —1) @0
where (1, — W, )t = Z 1/4T1/2 ———APW,)* < oo for large enough n by Assumption
k=1
3. This can be rewritten as
gnr _ 1 Z (( Zt 1 nt( nt+ zzil(WADWn)k)/siséWn(In + ZgiﬂWADWn)k)Vnt)z
Vo STWn Wi
1 < (%% 25:1 Vi (In + WADWH)/SiSQWn(In + WADWH)VM)Q
- \/%Z( SW.W!'s: _1)+0p(1)
i=1 e ninT
1 " (%% Z?:l VétSiS;WnVnt)Q 1 n ( 1/4T1/2 0'2\/7215 1 /tWT/LADSiS;WnVnt)Q
B V2n ; ( ssWp W) s; “+ V2n ; siWp W) s;
n 1 Zn: (n1/41Tl/2 %ﬁ Z?:1 ‘N/AtSiSQWnADWnVnt 2 N (1)
O
Van & siWaWy,si '
R (;%%F Sy Vingsisi W V)2 ) 11N (g > VI W AP sisi W, Vi)
N \/Qn;( ssWp W) s; B ) +2n; ssWp W) s;
¢ LIS~ (G Do VassWabPWalia)®
V2n — SiW, W) s; p

(41)

26

_1)



since |\/_ Z V! (APW,) ¥ 5,8 W (APW,) V| is O,(VT) by Lemmas A.3 and A.4 for any

Z (%\/LT Zthl Vr:tsisgwnvnt)2
V2n = sSsW,W's;

Therefore, the asymptotic pov;er depends on the limit of

finite k. We show that - 1) 4 N(0,1) in Theorem 3.

@ — l i ( 12]1" t 1 V/ W/ADS'LS;'WnVnt)Z ( 12111 t 1 V/ SiS;WnADWnVnt)Z (42)
" ssW,W!s;

=1

Denote ® = lim &,,r.

n—oo

Theorem 5. Under Hi,r, Assumptions 1-3 and 5-13, and % — k where 0 < k < o0,

1,1 o el N d P
- gnT(Oj)/Zg,:zgnT(OQ) - n) — N( 1)

~ VT )

Theorem 5 implies that the S test has power against local alternatives if A; # 0 for a non-
nA? w; AW W)
zero fraction of units in the limit due to ® = lim — E (o wg) & (o Ao

n 2
% ..
n oonl 1 Z] le]

0. Under Assumption 8, & = lim — Z A? Z w;; > 0 because w;;w;; = 0 for all 7, 5.

n—oo 1,
7j=1

5 Properties of the S test

5.1 Power properties of S by comparison with M

. . . . ) OlnL,r(0,...,0, 5>
As discussed in the previous sections, the proposed S test is based on i ) =

06;

1z

= Y’tsls W,,Y,,; for all 1; we construct the n x 1 vector as
o

t=1

1 o1 8nLur(0,...,0,52) (1 1 e, - 11 e, o -
——gur(6%) = —= = =D Vis1siWaYar o =5 —= > Visns, Wa Yo
VT VT oY 5> \T = T =

and each element measures the distance away from zero at the points where the function is
maximized subject to the restriction. If the restriction is negligible (under Hy, Y, = Vnt), the

values of the distance should not differ from zero by more than errors. Using the asymptotic
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variance and a standardized formulation of the LM test, we propose the S test as

1

S = ( 97 (6°)' Sy 1 gnr(5%) — n)

/

iii?'sls’W?t iiiff’slslw}}t

VT VT

L1 vy ; L1 5y 17
_ 1 ( 57 7 2 Vst WaVue | oy | 52w 2 Voot W Yo ) (17)
= — t=1 t=1 -

\V2n g
11 - 11 &
?ﬁzytsns WY ?ﬁzyitsns WY
t=1 t=1

where Zg » 1s a normalization factor. We note that S adds up squared values of each distance

02 \/_ Z " sisiW, Ym) > 0 for all 7 due to the quadratic structure.

We now consider the summation of the entries of the vector in (43) over i as

> 7 (44)

3\

n n T
; %gnm(&% = Z g sisiW, Yo = %

o -
%\/LT Zt:l YéthYnt
02 \/_ Vir(Wiw, + W2)

where \/tr(W!W, + W2) is a normalization factor. It turns out that the traditional M test

It is noteworthy that —

ZYéthffm is the numerator of M =

adds up the values of each distance, which can be positive or negative. Hence, the power of
M may be low when they cancel each other out, even if the restriction is not negligible.

As shown in Theorems 5 and D.2 under Assumption 8, the power of S depends on

L N o
nh_)nolo - E A; E wj;, while the power of M depends on nh_}lgo - E A; E 1 w . If the sign of
= j=
A, is different across i, the power of the traditional M test may decrease in general, or vanish

under certain circumstances. On the contrary, even in that case, the power of the proposed
S test remains as long as A; # 0 for a non-zero fraction of units in the limit. In sum, the
low power of M can happen when spatial lag coefficients are heterogeneous in nature and
can be more severe when the sample size is small. This analysis implies that the traditional

M test does not behave consistently across all potential alternative hypotheses.
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5.2 Finite sample properties of S by Monte Carlo experiments
5.2.1 Design

To investigate the performance of the proposed D test, we conduct Monte Carlo experiments.

We consider the following Data Generating Process (DGP 1), defined by (3).

DGP 1 (The SAR panel data model with fully heterogeneous spatial lag coefficients).

Ynt - (In - \IJOWn)_l(CnO + Vnt) (3)

where Wy = diag(d19, .-, 0no), Wy is an n x n spatial weights matriz, c,o is an n X 1 vector
of individual fized effects, and Vi, is an n x 1 vector of i.i.d. disturbances with zero mean

and finite variance og.

In these experiments, we consider the weights matrix W,, by using the distance based
measure such as w;; = m for all 7 # j and wy; = 0 for all 4, and row-normalize the
matrix. We set ¢;o = 0.1-U|0, 1] for the fixed effects. For the test power analysis, we consider
two scenarios: (1) all positive spatial effects with chi-square distributed heterogeneity, ¥y =
diag(01p, ..., 0p0) where 85 = A+ &, - (x? — 1)/v/2 where A = 0.1 and 8, = 0.14 (2) mixed
signs of spatial effects with normally distributed heterogeneity, ¥y = diag(di, ..., 0no) Where
Sio = A+ 6, - N(0,1) where A\ = 0.05 and 6, = 0.14*. Figure (1) illustrates the spatial lag
coefficients of both alternatives in the case of n = 75 used in the simulation.

Finally, we consider three distributions of the disturbances: normal (N(0, 1)), uniform
(U[-V/3,v/3]) and chi-square ((x2 — 5)/v/10) distributions with zero mean and o2 = 1. We

use 1,000 replications for the size and power with Wy, W,, and c, fixed, and then redraw

randomly V;;; in each replication.

28\ implies the magnitude of spatial dependence and ), implies the magnitude of heterogeneity across
units. When d;, = 0, the spatial coefficients become homogenous.
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(a) Scenario (1) (b) Scenario (2)

Figure 1: Heterogeneous spatial lag coefficients in DGP 1 (n = 75)

5.2.2 Results

We report the size of the S test for all n € {25,50,75} and T' € {25,50,75} combinations in
Table 1. We show size properties using N (0, 1), U[—V/3,v/3], and (x2 —5)/v/10 disturbances
at the 5% significance level, respectively. All cases reject the null hypothesis (Hy) at higher
rates than the theoretical value 5%, regardless of the forms of disturbances. When T grows
faster than n or n is asymptotically proportional to T, the size goes around the theoretical
value (0.050), as discussed in Section 4.2 and 4.3. On the other hand, as n becomes notably

larger than 7', the size distortion appears.

Table 1: Size of the proposed S test

T=25 T=50 T=7
e ~ N(0,1) n=25| 0079 0.070 0.074
n=>50| 0.097 0.074  0.064
n="75| 0092 0071  0.064
e ~U[-V3,v/3] n=25] 0078 0.067 0.062
n=>50| 0074 0.066 0.063
n="75| 0081 0077 0.078
g~ (X2 —5)/V10 n=25| 0.107 0.087 0.074
n=>50| 0111  0.084  0.075
n="75| 0125 0.068  0.063

Note: 1,000 Monte Carlo replications

30



In the power analysis, we report the power of both the proposed S test and the traditional
M test for all n € {25,50,75} and T' € {25,50, 75} combinations. Table 2 shows the power
of the S test for both Scenario (1) and (2). As predicted in Section 4.4, the test has good
power properties for all combinations. The power of Scenario (2) is lower than that of (1)
because the overall spatial dependence is weaker (A = 0.05 in the case of Scenario (2)). The
power reaches around the theoretical value (1.000) as the sample size gets large. Also, the
power is robust to the shapes of the disturbances.

Table 3 reports the power of the M test with the same alternatives (V). By comparing
Table 2 with Table 3, we can observe how power changes if we use the traditional test when
the spatial processes are heterogeneous in nature. Even when all spatial lag coefficients are
positive, such as in Scenario (1), the power of M can be lower than that of S, as expected in
Section 5.1. This gap is more apparent when the sample size is small. In particular, power
may be reduced if spatial effects have different signs across units when n increases, as shown
in Scenario (2), even though there are spatial correlations in a network. These results hold
regardless of the shape of error terms. Overall, the proposed S test has satisfactory finite
sample properties and better power over the traditional one in these types of networks when

the sample size is small.

Table 2: Power of the proposed S test

(1) (2)
T=25 T=50 T=75 T=25 T=50 T=175
git ~ N(0,1) n =25 0.626 0.909 0.985 | n=25 0.373 0.655 0.850

n=50| 0672 0937 0997 | n=50| 0.644 0935  0.998
n=75| 078 0985 1000 | n=75| 0726 0963  0.998
e ~U[-V3,v/3] n=25| 0610 0918 099 |n=25| 0363 0629 0.851
n=50| 0638 0944 0998 | n=50| 0645 0.942  0.998
n=75| 0807 0990 1.000 | n=75| 0695 0.969  1.000
e~ (X2—5)/V10 n=25| 0609 0883 0976 | n=25| 0415 0.647  0.857
n=50| 0.62 0914 0990 | n=50| 0655 0.932  0.999
n=75| 0796 0979 1.000 | n=75| 0727 0963  0.999

Note: (1) ¥o = diag(d10, --., Ono) Where d;0 = A + dp, - (Xf — 1)/\/5 with A = 0.1 and §;, = 0.14
(2) Uy = diag(d1o, ..., 0no) wWhere §;0 = A+, - N(0,1) with A = 0.05 and 6, = 0.14
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Table 3: Power of the traditional M test

(1) (2)
T=2 T=5 T=75 T=2 T=50 T=75
eit ~ N(0,1) n=25| 0472 0733 0896 | n=25| 0187 0.324  0.449

n =50 0.601 0.883 0.972 | n =250 0.374 0.663 0.794
n =715 0.804 0.971 0.996 | n =175 0.317 0.534 0.695
Eit ~ U[—\/g, \/§] n =25 0.485 0.726 0.891 | n=25 0.174 0.309 0.427
n =50 0.599 0.883 0.977 | n =250 0.376 0.632 0.812
n =75 0.796 0.972 0999 | n=175 0.294 0.519 0.700
Eit ~ (X§ - 5)/\/E n =25 0.472 0.755 0.896 | n =25 0.200 0.318 0.456
n =50 0.595 0.867 0.972 | n =250 0.370 0.631 0.799
n =715 0.787 0.969 0.998 | n =175 0.335 0.557 0.712

Note: (1) ¥o = diag(61, ..., Ono) Where ;g = A + 05, - (x5 — 1)/\/5 with A = 0.1 and §;, = 0.14
(2) \110 = diag(dlo, ceey 5n0) where 57;0 =+ 5h . ]\7(07 1) with A = 0.05 and 5h =0.14

6 An empirical illustration

6.1 Motivation

To illustrate the practicality of the proposed S test, we present a simple empirical application
in the international knowledge spillover. Research on international knowledge spillovers has
made progress, especially since the seminal contribution of Coe and Helpman (1995)%°. They

consider the following specification for innovation-driven growth:
log(F}) = a2 + allog(5%) + ol log(S)) (45)

where i is a country index, Fj is the total factor productivity (TFP), S¢ represents the
domestic R&D capital stock and Sif represents the foreign R& D capital stock defined as the
import-share-weighted average of R& D capital stock of its trade partners. They show that a
country’s TFP depends not only on domestic R&D capital but also on foreign R&D capital

and the foreign side is more substantial as an economy is more open to trade.

For the survey of the early contribution on the knowledge/R&D spillovers, see Coe et al. (2009).

30While it is still under discussion whether the knowledge is transmitted through trade or FDI, Keller
(2022) points out that over recent decades a number of advances have produced robust evidence that both
trade and FDI lead to sizable knowledge spillovers.

32



In addition to the breakthrough in terms of theory, our understanding of knowledge
spillovers has been improved through a combination of advances in econometric methodology,
new sources of data, and appropriate empirical work (Keller, 2022). In particular, spatial
econometric models may effectively investigate knowledge spillovers and interactions using
technological or economic proximity, as surveyed in Autant-Bernard (2012). For the analysis
of country-level spillover and transmission using spatial models, bilateral trade data is widely
used to construct the weights matrices based on the theory of the trade channel®'. In the
spatial econometric framework, the commonly used approach to test spatial correlation is
to formulate a hypothesis on a homogeneous spatial lag coefficient. However, before going
into estimation and inference for panel data, one might be interested in testing whether the
spatial dependence in knowledge production exists or not in the heterogeneous setting as (45).
We consider the following model using the spatial autoregressive term with heterogeneous
coefficients:

yit=5iozwz‘jyjt+0io+5it, 1=1,..,n, t=1,...,T (46)
=1

where y;; is an innovation output, w;; is the weight specified by bilateral import flows, ¢;o is
a country-specific fixed effect and €; is an error term. The hypothesis formulated in (46) is
Hy:6;0=0foralli=1,...,n against H; : d;p # 0 for a non-zero fraction of units.

To calculate the test statistic, one can use a patent indicator as a proxy for innovation
or knowledge production (output) following the existing literature®*. However, the country-
level patent data is publicly available on an annual basis. In hypothesis testing, n should be
notably smaller than the total time periods 7" in order to apply the existing testing procedure
(e.g., the LM test for seven innovative countries). Therefore, we employ the proposed S test
since it is valid for large n when testing the hypothesis formulated in (46). One may use the
traditional M test to conclude whether knowledge spillovers exist using the same data. We

will compare the results between our proposed S and traditional M tests.

31See Ho et al. (2013)., Ho et al. (2018), and Elhorst et al. (2021), among others.
328ee Bottazzi and Peri (2007), Mancusi (2008), Ho et al. (2018), Drivas et al. (2022), Eugster et al.
(2022), and among others.
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6.2 Data

We use a balanced panel of 27 innovative countries over the period of 1985-2021%. The
innovation output y;; is the annual growth rate of triadic patent applications (Alog patent
applications)®®. We use the triadic patent families (OECD MSTI), following Drivas et al.
(2022)%. The most widely used patent indicators refer to the counts of patent applications
to a single patent office®®. While the richness and strength of those indicators are broadly
recognized, they are affected by home advantage bias, and the quality and international com-
parability of indicators based on the patent families are improved by reducing the weaknesses
associated with indicators from a single patent office (Dernis and Khan, 2004)*”. Thus, this
triadic patent indicator allows us to compare knowledge production across countries better.
Finally, the average of bilateral import flows over the period of 1998-2016 (IMF Direction of

Trade Statistics, DOTS) is used to construct the weights matrix.

6.3 Results

Table 4 reports the results of the proposed S and traditional M tests. The S test provides
strong evidence against the hypothesis of no spatial correlation; the null hypothesis is rejected
at the 1% significance level. However, the same hypothesis is not rejected at the 10% level
when the M test is employed. This contrast implies that the traditional test may draw an
erroneous conclusion on spatial correlation and the traditional testing procedures should be
reconsidered, especially when the spatial processes are heterogeneous in nature, as discussed

in Section 5.1 and shown by simulations in Section 5.2.

33See Appendix G for the list of sample countries. These countries account for 96% of the world’s innovation
activity in 2021.

34The number of total observations is 972 (n = 27 and T = 36).

35Triadic patent families are a set of patents filed at three major patent offices, such as the European
Patent Office (EPO), the Japan Patent Office (JPO) and the United States Patent and Trademark Office
(USPTO), to protect the same innovation.

36For example, Bottazzi and Peri (2007), Ho et al. (2018), and Hovhannisyan and Sedgley (2019) use the
USPTO patent data, while Mancusi (2008) uses the EPO patent data.

37Considering the costs of protection at different offices, triadic patent families would eliminate home
advantage biases and capture the more valuable inventions.
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Table 4: Results of the test statistics

The S test The M test
N(0,1) test 2.8184*** 1.5798

Note: ***p < 0.01, **p < 0.05, and *p < 0.1

7 Conclusion

In this paper, we propose the test for spatial correlation in spatial panel data models with
fully heterogeneous spatial lag coefficients when both n and T are large. We first derive
the LM test for large T asymptotics so as not to encounter the issues of identification and
dimensionality. We then propose the S test, a standardized version of the LM test, and
derive its limiting distributions under the null hypothesis and local alternatives when both n
and T tend to infinity jointly. We use limit theorems under near-epoch dependence to show
the main asymptotic results.

Furthermore, we show that the traditional M test may lose power when spatial effects are
heterogeneous. This analysis implies that the traditional test does not behave consistently
across all potential alternative hypotheses. Monte Carlo results show that the S test has
satisfactory finite sample properties and is more powerful than the traditional test in these
types of networks. Finally, we apply our approach to an empirical example of international
knowledge spillovers. The test results imply that the traditional testing procedures may
draw erroneous conclusions on spatial correlation or dependence under heterogeneous spatial
effects.

In future studies, our approach can be extended to testing spatial lag homogeneity for
panel data models in large panels. The test evaluates the null hypothesis of homogeneous
spatial lag coefficients against an alternative that allows for heterogeneous coefficients. This
specification test can be seen as a generalized version of our approach in this paper. Also,
the identification and estimation in the heterogeneous version of spatial panel data models

when both n and T are large would be an interesting topic of future research.
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Appendix A Some basic lemmas

We provide some basic properties and the law of large numbers which are useful for showing

the asymptotic results of our statistics.

Assumption Al. The disturbances €4, @ = 1,....,n and t = 1,....,T, are i.i.d. across ¢ and

t with zero mean, finite variance oz > 0, and E|ey|*t" < 0o for some n > 0.

Assumption A2. The spatial weights matriz W, is time-invariant and its diagonal elements

satisfy wy; =0 forvt=1,...,n

Assumption A3. W, is uniformly bounded in row and column sums in absolute value.

Wij o
J are at most of order h} ', w}; = O(+=)

\/ Z?:1 win e
where the rate sequence h; is divergent, uniformly in all i, j.

Assumption A4. The elements w;; =

Assumption A5. n is a non-decreasing function of T and T goes to infinity.

Assumption A5 allows two cases: (i) n — oo as T' — oo; (ii) n is fixed as T — oo. Thus
our analysis applies to large T" asymptotics. Denote f/nt =V, — V. where V,,p = Z Vit
with V,; = (€14, ..., €nt)’. Define s; as an n x 1 vector of zeros, except for one at the ith element
for i = 1,...,n*®. Suppose that an n x n nonstochastic matrix B,, is a multiplication of s;s/

and W,,. For example, B,, = s;s:W,, or B,, = W/ s;5:W,,. Also, define the n x n nonstochastic
$iWns;siWhs; Wiwj;

NN AN N

matrix A, = (an;) where a, ;; =

Lemma A.1. Under Assumptions A2 and A4, for any matrix A,

n

tr(A2) Zzanuanﬂ and tr(A,A.) ZZCLH” are O( h*2)

=1 j=1 =1 j=1

Lemma A.2. Under Assumptions A2 and A3, for any matriz B,
tr(B,) = O(1), tr(B2) = O(1) and tr(B,B.,) = O(1).

3Then, s;5, is an n x n matrix of zeros, except for one at the (i,i)th element.
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Lemma A.3. Under Assumptions A1-A3 and A5, for any matriz B,
Z V!B, V) = 0(1),

E(VATBnVnT) = O(T);

Z V!B, V) = O(1).
Lemrna A.4. Under Assumptz’ons A1-A8 and A5, for any matriz B,
T

1

— V' B,V, V! By Vpi) = —),
TZ nt t z; p( /—T)
1

Lemmas A.2-A.4 hold when B, = W}*'s;s{W" for any finite k because similar arguments

can be applicable to the matrix.

1
Proof of Lemma A.1 Since sup |wj;| = O(h_*) by Assumption A4, we have

4.J n

n n n n

Wi W; Wi W;
Jj Wit Jjiig

E QpijQn,ji =

=1 j=1 1= 1 Jj=1 \/Z] 1 zg\/Zz 1 j’L \/Zz 1wjz\/zj 1U}

o N (A1)
< (x5l _py 2ot ocn
b Z?Zl wfj i1 D i wij n
n n
Similarly, we have Z a2, i = ) because A, is symmetric.
i=1 j=1 n
Proof of Lemma A.2 For the maximum row sum or column sum norm || ||, [[W,]| < ¢

for all n by Assumption A3. By its submultiplicative property, ||[W,|| < ||[Wa|l[[Wal| < ¢
Thus, any matrix product of W, is uniformly bounded in row and column sums in absolute
value (for short, UB). Then, for any matrix B,,, tr(B,) can be written as tr(s;M,s;) where M,
is UB for any 7. Since any elements of M, are uniformly bounded and tr(s:M,s;) = s.M,,s;
is the (4,7)th element of M,,, we have tr(B,) = O(1). Similar arguments can be applied to
show tr(B%) = O(1) and tr(B,B.) = O(1).
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Proof of Lemma A.3 First, F(— Z V!, BpVii) = oltr(B,) = O(1) and E(V/ 1B, V1) =

T
1 1 1 ~ ~
?agtr(Bn) = O<f) by Lemma A.2. Using these results, we can show E(T E: V!.B,V,

1
Z V!, B Vs — V! BoVir) = oltr(B,) — ?ogtr(Bn) = O(1).

Proof of Lemma A.4 The proof is given in the supplementary material.

Appendix B Derivatives of the likelihood function
Denote 6 = (', 0®)" where ¢ = (81, ...,6,). The concentrated likelihood function of (4) is

nT nT 1

InLy(0) = —=-In(2m) — —~In(o )+ Tin|S, ()] = 5= Y Vae(¥) Var (1) (B.1)

where Vnt(w) = (I, — \IJWn)ffnt = Sn(w)f/nt with ¥ = 251'51'5;- and s; is an n x 1 vector of
i=1

zeros, except for one at the ith element. Define G,(¢) = W, (L, — YW,) ™' = W, S, (¢) ™"

The first and second order derivatives with respect to 6 are:

8lnLnT(9)

001
OlnLy,1(0)
Oln Lo (0) 9%

Bl :
OlnL,7(0)

00y,
8lnLnT(0)

Oc?

dlnL,r(0) 1 <
nT o ) 2 .
where 8—(52 = E ;:1 (Vnt<w)/SzS;Gn(w)Vnt(w> -0 SzGTL<¢)SZ) for i = 17"‘7” and

OlnL,r(0) 1 ro .
Oo? T 9g4 ; (Vnt(@b) Vnt(@/J) — n02),
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8 lnLnT(G) 821nLnT(9) 82lnLnT(9) 82lnLnT(9)

8(52 001009 o 00106, 001002
8 lnLnT(H) OQInLnT(Q) OQZnLnT(H) 82lnLnT(0)
06206 062 00200, 009002
—aQZHL"T(Q) = 2: 1 :2 - 2: 22 ’ (B.3)
8969, - . . . . . :
82lnLnT(0) 62lnLnT(9) 8 lnLnT(Q) 82lnLnT(9)
00,001 00,009 o 062 06,002
aQZHLnT(G) 82lnLnT(9) 6 lnLnT(G) 82lnLnT(0)
00206, 002069 o 00206, d(02)?
bope PILar(®) _ L mo TG 2 e
where 3—53 =52 tzl wt (V) Gr(V) 585G (V) Ve (V) = T(5;Gn(¥)s;)" for i = 1, ..., m,
PInLyr(0)  82InLyp(0) 1 « - &2In Ly (6)
= = —— Y f =1 -z =
Tt = g, = ot 2 V) sl Gu0) () for i = 1, =5
o, O?inL,7(0) nT 1 - -
_TS;Gn(¢)SjS;Gn(w)Si for i # j, and W = —( T 551 + =6 tz:; Vnt(l/}yVntW))gg-
Hence, at 6y = (1), 05)’, we have
1 1 &
agﬁ; (Vt5151Gn(10) Vit — 081 G (v0)51)
1 1 &
Ugﬁ;(vltsz%G () 555G (10)s2)
VT — 00 . '
1 1
9T = n G 35! Gn n
O_g \/T tz:; ntS S ¢0) — 005 WO)S )
T
1 1
Eﬁ tzl nUO
5 1<
where G, (1ho) = Wi (I, —UgW,) ™ = W, S, (o) " and Viy = Vi — Viup with Vi = - > Ve

39Detailed derivations are available in the supplementary material.
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1 L 1 L
From (B.4), we have OlnLur (b) = OinLir(bo) _ ©nr Where

vT 90 VT 09

T
1 1
iy > (V5151 G (0) Ve — 0551 Gn(t0)51)
0 =
S =1
2T > (V525G (v0) Ve — 0555 Gn(th0)52)
0 -
1 dlnLip(6y) = (B5)
N T ] '
1 1
2T > (Vs Gn(t0) Vot — 0351,Gn(t0)sn)
0 t=1
T
1 1
— — no}
208 \/T ; 0)
and
1 _ _
pﬁVéTﬁSﬁGn(%)VnT
0
1 _ _
—VTV,i5255Gn (o) Var
0
1 _ _
?\/TVT;TSnS%Gn(l/Jo)VnT
0
1 o
51 VT VarVar
0
1 % InL: (0
And, its corresponding information matrix (X, ,r = —E (?age—gg/(o))) is
. (l 82lnL:T(90)) ( 1 82lnLnT(90)) ( 1 321nLnT(00)) . (l 82lnL;T(90)
T 963 T 06106, o T 0606, T 061002
p LD (G, 1 Pina (00), pLPINL ()1 Pin ()
T 3525)51 T 963 o T 0200, T 352302
2907TLT = . .
L a2an* r(00)) 1 azan;T(oo)) nl 9%nL* . o)) _p L 821nL:T(90))
T 06,06 T 06,009 T 062 T 06,002
( 1 02lnLnT(90)) 1 GQZnLnT(GO) ( 1 821nLnT(90)) _ 1 82lnLnT(90)
T 00206, (7 0206, ) - T 90206, (7 d(c2)2 )
(B.7)
1 O*InL* (6 1 O*InL* (6
where —E(T%(@) = 81Gn(V0)Grn (o) si+(s,G (o) si)* fori = 1,....n E<T;5—5Tgo)> =
i o
1 9*InL: (6 1 . 1 9*InL: (60
E(TWT;O)) = U_gS;Gn<¢O)SZ fori = 17 N E(T#é(o)) = S;Gn(¢0)8jS;Gn(w0)Si
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1 82lnL,’gT(€0)) n
T 9J(0?)? 208

for i # j, and —E(=

VT 90

For the variance of

, we have the following equation:

E(\/T o0 Nl ) = oot + Qo nr (B.8)
1 /
4 — 30' dlag( n,11 ¢0 i,nn(d)O» 27‘_3 (Gn711<¢0)a ) Gn,nn(,@z)[)))

where Qg nr =

2( n,11 (¢0), nnn(¢0)) A4

]
99 4o

with py = E(e},) and Ghii( 77/1 is the (7,7)th entry of G, ().

When V;,; are normally distributed, Qg, 7 = O(ny1)x(n+1) since pig — 30§ = 0. Using
T 0000 VT 060 VT oo’

1 &%InLr
errors, we have —E(?mge—ggwo)) = Ygo,nT-

= 0 at 0y for normally distributed

Appendix C Proofs

C.1 Proof of Proposition 1

T
. _ _ 1
From V,; = V,,; — Vi, where V,,r = T E Vot and Viy = (e14, ..., €n¢)’, the restricted QML
t=1

estimator can be rewritten as
1 & 1 & 1
~2 - YR Y / R V<RV,
= Z VitV = — Z VitV = —VigVar

T T
2 2
i E E €it)

1 T

- (C.1)
1

zlt

under Hy. Note that 7, and e;; are i.i.d. across t = 1,..., T with E(c%) = 0, E(ey) = 0 and

Eley|*™ < oo for some i > 0 under Assumption 2. By Kolmogorov’s Strong LLN, we have

2
0y »p

5% 2% o2, Therefore, with Slutsky’s theorem, we have — — L

46



C.2 Proof of Proposition 2

Denote E;ﬂl as the (7, 7)th entry of ¥/, for all 4, j. For any nonzero vector c,

n n
/ _ NV . 23,0 Ry
CYgnC= E g clzgmc] = E E -+ g g clzgmc]

i=1 j=1 i=1 1=1 ]#1
—Z Zwm+ZZ@wwwﬂca (€.2)
Jj= =1 j#i
- Z wa +22 Z CiWijWjiCj
=1 j=i+1

Then, by Assumptions 1 (w;; = 0 for all 7) and 4(1) (Z wy; > Z |w;;wj;| for all i), we have
=1 =1

c Zg’nc = Z Z ww + 2 Z Z CiWjWj;Cj > Z Z WiWj; + 2 Z Z CiW;;Wj;Cj
j=

i=1 j=i+1 j= = 1] i+1

- 1 1) g (Y IV K]
=1 j#i i=1 j=i+1
n n
2 E : 2

= wijwji(ci -+ Cj) 2 0
i=1 j=i+1

(C.3)

which implies that Y, ,, is positive definite.

For Assumptions 1 and 4(2), 3, ,, is symmetric and diagonally dominant with all positive
entries. Hillar et al. (2012) investigate the special property of the inverse of symmetric and
diagonally dominant matrices with all positive entries. Therefore, Lemma 7.1 in Hillar et al.
(2012) is applicable to X, ,,, and we have the result that the minimum eigenvalue of ¥, is

positive under Assumptions 1 and 4(2). Hence, ¥, is positive definite.
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C.3 Proof of Theorem 1

1

From the results under Hy, we have \/TgnT( %) 4N (0,%,,,) where 3, is positive definite
1 11

and symmetric. Also, there exists Eg,n which is invertible such that Eg,n = Ygndgn since

Ygn is positive definite and symmetric, so we have X =3, 22 . Then, the quadratic
1
form, fgnT(&Q)’E;ngnT(&z) can be written as
1 52)/%) <2 1 52V, %Z—% 1 ~
fgnT(U ) gngnT<O )= \/TgnT< ) Xgm gnﬁgnT(U )
1 1 (C4)

= (E;?zﬁgw(&Q))'(Z 3\/—9@( %))

1

_1 1
where 347 —9ur(6°)' S, 1 gur(57) 4 X2 under H,.

&%) 4 N(0,1I,). Hence, we have T

g
ﬁgnT
C.4 Proof of Lemma 1
Consider (7, j)th entry of the difference as

1 O*InLyr(Ay, ..., A, 02) 1 9%InL: (0, ..., 0,02)

T 86,00 ~ B 86,00 ) (C5)

By the triangle inequality, we have

1 O%InLpr (A, ..., Ap, 0}) 1 9%InL} (0, ...,0,08)

T 96,00, ~ B 96,09, )
|762anT( 50,08) (l 82lnL;T(O,...,O,U§))‘
96;05; T 96;05;
‘la%nLnT(Al,... An,a8) la%nLnT(o,...,o,o—g)’
D6;06; T D6;05;
1 0%InL, .y 0,02 1 0%nL} (0, ...,0,08) 1 &3InL,r(61,...,6n, 02 .
< L (0, 0,00) gy 1 OB O 0,00)) gy ) LR 0L 0050y 7
86185] T D6;05; veor T D6;08;0
(C.6)

where A = (A, .., A,) B 0,01 as T — oo.

1 L ) 2 1 9%InL? 2
For the first term when ¢ # 7, we have| Fin ng;oad’o’%)—E(?a in ”g(ggéd"o’UO)ﬂ —
7 i ? J
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—8i W58 Wi + 8;Wys;55Wy,s; = 0 derived from (B.3) and (B.7) with ¢ = (0, ...,0)". For
the first term when i = j, we consider the following equation derived from (B.3) and (B.7)

with ¢ = (0,...,0)":

l@zlnLnT(O, .y 0,08) lazlnLZT(O, .y 0,08)

T 007 ~HT 06; !
11 -
- 2T ZV’ W' 585 W, Vit + s W, W s, (C.7)

T T
- _(i 1 > Vi Wsisi W Vg — ; W88t Wa Vi) + %S;angsi

owl =

. 1 1
because F(— — Z V! W s Wi Vi) = (1 — T)tr(WAsis;Wn) =(1- ?)SQWnW,'ls, shown in
t=1

‘70
1 0? InL,r(0, .. ,O,ag)
052

1 2InL:, (0, ...,0,02)

Lemma A.3. By Lemmas A.3 and A .4, | T 552 )| =

L
e}

1 BInL,r(61,...,0n, 08
For the second term, it suffices to show that sg}i ‘T " 8?558%&;1 ;)

—B(

Oy

| < 0o. The

third order derivative evaluated at o; is

1 Lar (01, 60, 08)
T 06,00,06,

— S W (L — OW,)  LsisiWo (I, — UW,) s Wi (I, — UW,) 7 's

— W (I, — W) sy siWo (L, — OW,) i)W (1, — UW,) s,
(C.8)

where ¥ = diag(v) with ¢ = (41, ...,8,)’. Note that (I, —¥W,,)" " is invertible for all 1) where

©* is bounded within a small neighborhood around zero by Assumption 3, and s;W,, (I, —

1 &BnLyr(6y, ..., 0,,02
W)~ s; s the (i,7)th entry of W (I, —WW,)~". Therefore, 52}1’? - aggagjaéz 700)’:

O(1) for all 4, j, 1.

1 PInLyr(Ay, ..., A, 02
Similar arguments can be applied to all other entries of — nLnr (A1 %) —

T Yoy’
<l D?InL: (0, ...,0,03) )
T oY’ '
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C.5 Proof of Theorem 2

d

From the previous results, we have gnr(5%) 5 N(7, Y, n) under Hy p where 7 = X, , A,

1
Nia

11 1
2Y474. Then, the quadratic form, TgnT(62)'Zg_77llgnT(52) can

1 1
_ y2 y2 -1 _
Ygn = Xin2gn and Zg’n =2

)

be written as

11 -1
where ¥, 7 \/TgnT(&Q) 4 N(X447,1,). Hence, under Hy 1, the LM test has a noncentral
1

1
chi-square distribution with n degrees of freedom and noncentrality of p = 7'%,23, 27 =

A'S, A,

C.6 Proof of Proposition 3

T
~ _ _ 1
From (C.1), Vy = V,y — Vo where V,p = T ZV’” and Viy = (€14, ..., €ne)’, the restricted

QML estimator can be rewritten as

- = — $— = = it
nl nl I t g Iim (C.10)

t—1
Eit€is
1

n

1 n T 1 n T 9 T
=WZZ€Z—WZZ€%—W;Z

i=1 t=1 i=1 t=1 t=1 s=

under Hy. For the first and second terms, €2 is i.i.d. across i = 1,..,n and t = 1, ..., T with

E(e}) =05 and E \5 t]4+" < oo for some 1 > 0 under Assumption 2. By Kolmogorov’s Strong

T
1 n
LLN, we have — Z Z e, “% 02, and hence T Z e £ 0. For the last term, g6,
1 t=1 1 t=1
= n T t 1Z n T t—1
is uncorrelated over i and ¢, so Var(—; nT2 Z Z Eit€is) = —aTi T n Z Var(eyeis) =
i=1 t=1 s=1 i=1 t=1 s=1
T t-1
1 n
O(W) By Chebyshev’s inequality, T2 Z Z Z&t&s = 0,(1). Hence, with Slutsky’s
i=1 t=1 s=1
2
o
theorem, we have Tg 1.
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2
From (C.10), we next consider 1= = — (0§ — 5?%) as

o2 o
2 n T n T n T n T t—1
“0—1@22f153y 122&wlz > cusi)
~—5 1= = - i t
o2 a2 \nT 4 O nr , it T it nT? ¢ ZS
=1 t=1 t=1 t=1 =1 t=1 s=1
n T T n T t—1
1122 DY
= —l—=— — & € Eit€i
20T ” o nT2 it T2 ! ”
=1 t=1 =1 t=1 =1 t=1 s=1

(C.11)

n T

1
— 1% ),V —
\/_z 1; zltl ar Zt ar v ZZEZt
1

For each term in (C.11), Var(

zltl
t—1 n t—1

T T
Z Z Eit€is) = # Z Z Z Var(eyeis) are O(1).
i=1

t=1 s=1

n

Z Z Var(el) and Var( \/_T Z

zltl i= t=1 s=1

1
vnT

Hence, along W1th — —> 1, we have 0—2 —1=0p(
o

).

C.7 Proof of Proposition 4

n

1
(a2

i=1

First, consider pg,, = E(Qnr) = E (2imr — E(2inr))) = 0. Next, consider Xq,, =

Var(Qur) = Var(\/lz_n Z (zi,nT — E(zmT)) as
i=1

n

Yo, = %Var(z ZinT) =5 ZVaT ZinT +22 Z Cov(zinr, Zjnt))

i=1 i=1 j=i+1

(C.12)
_n Z Var(zi,r) + " Z Z Cov(2inr;s Zjnr)
=1 =1 j=i+1
For the first term in (C.12), from (E.6), we have
1 <& 1 <& 11 palpa = 309) 205 wi;  3(ua — of) 1
-— V(IT(ZZ'JLT) = — 24+ —— n . ’ + e
> on 2 T e g T
) R (C.13)
=1+ l(l Z LM(M —300) D1 Wi L 3(pta — 03))
T n — 208 (27:1 w?j)2 204
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which implies that — Z Var(zinr) =1+ O since Zwu < Z w;)? for all i and n.

For the second term in (C.12), from (E.12), we have

%Z Z Cov(2int, ZjnT)

i=1 j7i+1
— ( Z Z (1) = 2M4Uo + (09)° Wi
i=1 j=i+1 (Z;L:1 wl2]> Z?—l w322>
2 4 2 n 2
,u4 wjz‘ Ha — 05 Wy 205, waw;i)
+— -+ m + n m C.14
; J;l > e w o5 Zj:l w?j (Zj:l w?j)(Zi:l wfz)) ( )
42 Z Z M4 - 300 ZZ:I w?lwgg'l i 4(ps)? wigw;i (Y -y wawj) )
= Qi wiH) (i wh)  og (i wh) (o, w))
+ 1 i En: (2(H3)2 w;i (D1, whw;i) i 2(us)?  wy (3o, w]zzwil) )>
[y o0 (Z?:l w%)(Zle U)JQZ) o (27:1 wi)(ZL w]21)
Then
n 2 92 2 n 2
Wi W;5; wi; Zj:z‘-i—l Wy;
7 0 < max —g - =0(1) C.15
32;1 (o wi) (i wi) D WY W ( )
n o S wd
Ll <max —ZEL 0 — (1) C.16
j;1 Dict wJQ'i ©oming Yo7, w?’z‘ ( )
n w2 no L w
Z = < maXZj;Z—ng =0(1) (C.17)
=il Zj:l Wi; g Zj:l Wi

- (> wawy)? (Z?:i—&—l Doy Wawjr)”
2 O ) = (s k) niny S )
_ (D1 wa Z?:iﬂ wir)’ (C.18)
(Z? 1 w?j)(mina‘ Z? 1 wjzz)
(Zl  |wal Z] =it+1 |wiil)?
(Zz L wi) (ming 57 1 W %)

—0(1)
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n

Z > wzzlwgzl < > wy Z?:i—‘,—l wgz‘l
Sy Qi wi) iy wi) T (i wi) (ming 32 wi)
- (max; |wl) (max;; [wil) (2, [wal D75, [wil) (C.19)
N (Z?:l @U?j)(minj Z?:l w]21)
< s |wigl[wsil oy [wal 225y lwil)
Y (35— w) (ming Y570, w)
z”: wigwyi (S0 wawy) - (maxg lwa) Q2 [wal) D25y Twig|[wyi]
i (Z?:l w?j)(Z:’L:l w?z) N (Z?:l w%)(minj > et w_]27,)
< max (lwssl 22121 [wal ) (Jwjil Z?:m |wij|)

w (o wi) (ming 300 wi)
n

3 wji (3o wiwsn) z": (max [w;i]) Jw;i (3212, wi)
Sy i wi) i wi) = (D wiy) (2oiy wjy)

_ :E: Inax,yung!ugz! (C.21)
j=it1 Zz lw

< o w21 lwyil)

—_ o . n 2
ming ) w

= o()

(C.20)

=0(1)

—0(1)

i wii (3o wiwa) < i (max fwa) [wi| (312 wj)
= (Z?:l wi) (Yo, w?) jﬂ.ﬂ (Z?:1 w) (3, wi)
_ j{: rnaxlhquIUhJI (C.22)
Parnf) 21 W

[wig (3 j=i 1 |wis)

< max 0 =0(1)
43 Zj:l wz‘2j
I < 1
which hold for all n by Assumptions 1 and 5. Therefore, — E E Cov(zinT, Zjnr) = O(T)’
n
i=1 j=it1

1
and we have X , =1+ O<T)

C.8 Proof of Lemma 2

We first show that Z; ,,r is uniformly L, bounded where p = 4+, i.e., sup sup ||z ,r||14y <
n €Dy

T
wij

1 1
E Eit E w;Ejt|[a1n < 00 where wj; = —————
i€Dp, \/ n

00, or equivalently, sup sup H )
" Zj:l wz‘gj
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T
11
Consider Z ——=5; Z w;;€jt as a zero-mean martingale over t = 1, ..., T". Then, Burkholder

€
2 1t
=1 70 VT j=1

inequality implies that

n

T n T
. 1 1 . 11 . n
E’|Zi,nT|4+77 = E| Z O__gﬁfit Z U)Z-jgjt|4+n S CQE' Z J—éf(Eit Z wijgjt)2|2+2 (023)
t=1 Jj=1 t=1 j=1

where Cy = (18pg'/?)? with p~' 4 ¢~! = 1. By the triangle inequality, we have

n

s 4+n\1/(4+ 1/( 4+n L1 22+" 1/(4+n)
Zir|la4n = (ElZipnr™) < ¢, E|Z1 i 6115211%5] | )
= J
& 1/(2+1)\ 1/2
= GBI e S uienH2) )

| . / (C.24)
N 1/2

157 Z&nZwiMszg)

o T =1 j=1

1/2
__T tE H Eit E ’U}Z]€]t H2+77)

IIMH

n n
where C] = 6’21/(4+77). Thus, it remains to show || (g4 Z w;‘jejt)2|]2+g < oo or E|(g Z w:jgjt)2’2+g —

j=1 j=1
n

Eley E w;‘jsjt|4+” < oo for all ¢, t and n.
Jj=1
n

Under Assumptions 1 (w;; = 0 for all i) and 2 (g4 are i.i.d. acrossiand t), Ele; Z wfjsjt|4+”

j=1
can be written as
n n
E|6it Z w;‘jsjt|4+’7 = E|€it Z w;‘jajt|4+"
i=1 e (C.25)
= Bley[*™ x B| Zw £

J#i

Consider Zw €j¢ as a zero-mean martingale over j = 1,...,n. Then, by the Burkholder
J#i
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and triangular inequalities, we have

n n
E|5it Zw;}gﬁﬁm = E|€l‘t|4+n X E| Zw;"jsjt|4+”

j=1 J#

n
< Eley|"™"" x CyE] Z(w:jgjt)2|2+%

#i
= Bleu| ™" x Co((E| Zw*2 2|2+3)1/C5)) s (C.26)
J#i
2+4
< Elea| ™ x Oy ||Zw Fetillayn)
J#i
n
< supsupE|5t| % Co( Zw ||€?t||2+g)2+2 < 0
JFi
n
because sup Eley|*™ < 0o and Zw ijj? = 1 for all 7 and n under Assumptions 1
vt g7 j
and 2.
We next show that 7; ,, is uniformly L, bounded where p = 4-+n, i.e., sup sup ||7; nr||asy <
n i€D,
n 1 ZT
0o, or equivalently, sup sup || TezTwaejTHHn < oo where €7 = — Zslt Consider
n €Dy, 0
J=1 t=1

TezT = Z szt as a zero-mean martingale over t = 1,...,T". Then, Burkholder inequality

implies

1 n
E|l—= 7T Zeztr“n = E| Z —elt\“" < C,E)| Z )+ (C.27)

By the triangle inequality and Assumption 2, we have

|2+" 1/(2+% )) 1/2

MH
'ﬂl

E’ Zgl |4+n 1/(4+n) < Cl/ 4+n) <
\/_ t=1
T 1/2
—(&it) C.28
=ai] Z (Eullary ) (C.28)

1 & 1/2
=3l lheg) <o

t:1

< sup Ch

/\
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which implies that ||[vVT&z||sp, < 0o or E|VTEp|**" < oo for all i and n.

Since €7 is independent across ¢ and w;; = 0 for all ¢, we have

1 n
E TEzT Z w”e]T|4+77 = E| ﬁgiT|4+n X E| Z w;‘jﬁéﬁ|4+” (029)
O

Jj=1 J#

n
Consider Z w;; VT €7 as a zero-mean martingale over j = 1,...,n. Then, by the Burkholder
J#i
and triangular inequalities with the results above, we have

1 .
Bl TelTwaejﬂ = E| \/TEZ‘TV‘JF?7 x E| Z(wijﬁEjT)2|2+g
= i
1 n ) 7 i
= Bl VTl ™7 x (Bl Y (w,VTeyr) )/ +1)
7 J#i
1 bon
= BT (1 0 (VT o)
0 J#i

<supsupE| \/_ezT\4+77>< Zw ||(VTe;7)? ||2+) < o0

JF#i
(C.30)
because SUp SUp E|VTéer[*" < oo and Zw =1 for all ¢ and n.
J#i

C.9 Proof of Proposition 5

LLZT e S0 wijE;

o2 =1 “it = ) t
Consider ||Z;nr — E(Zinr|Finr(s))||2 where Z; p,p = =2 VT 2= =LY Define an

Z?:l wi2j

indicator function 1(p(i, j) > s). Note that 1(p(i,7) > s) = 0 if the distance between i and

J is equal to or less than s. As s gets larger, l(p(i,j) > s) goes to zero for all 7,j. Then,
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Zint — E(Zinr|Finr(s)) can be derived as

n

T
- - 1 1 1
ZinT — E(ZiynT‘.FimT(S)) = 7( Z Eit Z WijE4¢ — ? \/» Z Eit Z wwé‘]t’]:; nT )
0 t=1 j

~

=1

T
:n<18fz:: z::wz] Z] >S)€]t+ QIZ&tZwU Zj <5)5]t

1 1 1 T n 1 T n
- (727252152“%1@(2 j)>s 5yt + ﬁizgztzw”l i,7) < s)gﬁ
2= lwzzy VT 3 VT
1 . S 11 &K &
T 2T Z eak () wiil(p(i, ) > s)ji) ;872%2%1(0(% j) < S)Ems)
t=1 j t=1 j=1

(C.31)
Then
E|Zi,nT — E(f‘,nT|]:',nT(8))|2 = =5 5 Eit ’UJ,L > S)Et
7 i Z] 1w UO Z ]Z J ) J)
1 11 - 2
= =i 7= Elea Y wijl(p(i,j) > s)ej
S T 2 P L i) > 92
1 1 = 9
= = 5 E(eu wal(p( ,J) > s)ejt) (C.32)
> =1 Wi 0 i
1 1, =
== jE(ezt)E(wal(p(z ) > s)ejt)
Z]:l wz] 90 j#i
1 1 - S 1wzl(p( j) > s)
= ey g Bleh) ) wiil(pli,j) > ) B(eh) = =
Zj:lwzzg 0 ' ; ’ ( ) o ZJ 1“)223
Therefore, for ||Z; ,r — (zl wr | Finr(8))]]2, we can take Ji,n =1 for all 7 and n, and 7(s) =
w > s
sup sup \/Z] ! ) ) which goes to zero as s — o0.
n iGDn
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1 e n _
S T€r ) 5 wij€r

T

: - . . v o 1

Consider ||7; nr—E(Ti nr|Finr(5))||2 where 7; ,p = =2 with €1 = — Z Eit-

n 9 T

23:1 Wij t=1
Then, 7; 0 — E(Finr|Finr(s)) can be written as
~ ~ 1 L, N,
TinT — E(Ti,nT|]:i,nT(S)) = (ﬁTeiT Z Wi €57 — E( TEr Z wljejT|~FL nT( )))
Yo w00 = % I

= n7< TezTZw” (i,7) > s)ejT+ TQTZU)U p(i,j) < s)EjT
Z] 1w 0 J=1

TezT Zw” (i,7) > s) &1 + TGZT wa p(i,j) < s)éjT|}"@-7nT(s)))
0 j=1

= - ( szTszg p(i,7) >8)€JT+ TezTZw” p(i, j)gs)EjT
Z] lw 0 j=1

1
—&rB( TZ’U)U (i,5) > s)&r) — 7T€ZT wa pli,j) < S)EJT)
0

7j=1
1
= = TEZT Z wm > 8) GJT)
Zg 1 U) i
(C.33)
1 1 & 1
— _ ) . . . . = 2 _ ) 2 _
where € = T tzl gi¢ i1s independent across @ with F(&r)” = T tzl E(ey)” = TO'O Then
. - 1 2
E|Ti,nT - E(Ti,nTLFi,nT(S))F = TG’LT Zwm 7/ .7 > S)EJT)
Z] 1 w
2
= Z w TQT Zw” > S)GJT)
7j=1
7 (C.34)
1 2
= — 6 T w; > S)E;T
e ; (6.9 > )
11 " > wil(p(i ) > )
= = T E@E)? Y wil(p(i.g) > s)E(gr)? = ==
2?21 w% 0_3 7 ; ] ( ) J Z?:l w12]
Therefore, for |7, — (n wr | Finr(8))]]2, we can take ch =1 for all 7 and n, and 7(s) =
Zg 1 U) ) > S) . . ~
sup sup which goes to zero as s — co. Since sup sup d;,, = 1 < oo,
n 1€Dy n 1€D,

7 = {Zinr,1 € Dn7 n Z 1} and R = {Fin,1 € Dyyn > 1} are uniformly Lo-NED on &.
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C.10 Proof of Proposition 6

The NED property is kept under summation, product (Lemma A.2) and Lipschitz transfor-
mations (Xu and Lee, 2015). Using the result of Proposition 5 with Lemma A.2 in Xu and

Lee (2015) and Lemma 2 (sup sup ||Z; ,7||a4y < 00), we have
n ieDn

zimr — E(zipr | Finr(9)|l2 = [|(Zinr)? — E((Ginr) | Finr(s))] |2
(C.35)

S dz,n’y(s)

where (s) = &(s)ﬁ for some i > 0 and sup sup d;,, < oo. Thus, for ||z; nr—E(2i nr|Finr(s))]]2,
n ieDn

ZT'L—1 w?l(p(i,j) > 5) St n 1
we take v(s) = sup su ( = Y > " where 0 < < =. Because %;
() np z’EDIi Z;;l wy; 8+4n ~ 4 wnT

and 7; ,7 have the same NED coefficient and scaling factor, similar arguments can be applied

t0 75y = (Finr)? and Zi nTTinr. Since sup sup d; , < oo by Lemma A.2 in Xu and Lee (2015),
n ZEDn

Z = {Zi,nTai € Dnan Z 1}7 R = {ri,nT77: S Dn7n Z 1} and K = {gi,nT":i,nT7i S Dnun 2 1}

are uniformly Lo-NED on &.

C.11 Proof of Proposition 7

By Proposition 6, Z = {zi,r,i € D,,n > 1} is uniformly Lo-NED on § with v(s) =
(Z?Zl w1 (p(i, §) > s)

n2
Zj:l Wij
n n

conditions for aéiT Z (zi’nT—E(ziﬁnT)) N N(0, 1) where aénT = Var( Z (zmT—E(zmT)))
i=1 i=1
in the case of |D,| = n and sup sup ¢;,, = sup sup d;,, < oo are:
n 1€D, n 1€D,

(i) zinr are uniformly L,-bounded for p > 2 4 ¢ for some 6 > 0

sup sup
n iEDn

_n__
>8+4n. Following Jenish and Prucha (2012), the sufficient

1
(ii) liminf | D,| ‘03 = ~03 >0

n—00 n
" wi(p(i, g) > 8)\ ok >
(iii) y(s) = sup sup (Z]_l & n(p( 2]) )> T satisfies Z 571y (s) < oo for some 1 > 0.
n i 2= Wi i

First, condition (i) is satisfied by Lemma 2. Next, condition (ii) is shown in Proposition

1 1 1
4 since Xg,, = Var( E ZinT) = 2—0% s =1+ O(T) Hence, it remains to check
/’/L n
i=1

Van
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o0

Z s1y(s) < co. Consider st_lv(s) as

s=1 s=1

i wil(p(i,g) > 5)\ st
d— 1 d—1 j=1% ’ 8+4n
s =supsup » $ ( = > (C.36)
Z s Z T
Under Assumption 10(1), w;; can be non-zero only if p(i, j) < py. Since wfjl (p(i,j) > s) =0

for any s > [po] + 1, we have

(o]

_n _n_
sup sup st 1(211) >s))8+477 = sup sup st 1<Zw >s)>4+277

n ZGDn n zEDn

< 00

(C.37)

since the term becomes a sum of finite and bounded series under Assumption 10(1).
Alternatively, under Assumption 10(2) (Jw;;| < Co/p(i,7)), we have wfj < Cy/p(i, §)*
where & = 2a and Cy = C2. By Lemma A.1 in Jenish and Prucha (2009), [{m : 2 < p(i, j) <

x+ 1} < Cx*! for some constant C' > 0 when x > 1. Then, we have

sup sup st 1(Zw )) g < sup sup st 1(2 Z éop(i,j)fd>$2"

n 1€Dn 4 noi€Dn (T =[s] z<p(i,j)<xz+1

g1 Z de_léow_d) Tiay
1 —[s]

s Z CCole + 1) (z +1)/2 )*
1 el

oo _n_
s?1 (C’éo?d / uotd-l du) e
X

M -

w
I

E%g

@
Il

<

i

= i a1 (C(§02d(d _ d)—lsd—d) T

(d—a)n

:i T (2 (a d)‘1>ﬁ
s=1

(C.38)
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(d—a&)n

_n_ 0
where (6'0025“(64 — d)_l) " < 0. Thus, the infinite series Z s converges only

s=1

d— ~ oo
ifd—1+ % < —1. Hence, we have ;sdlv(s) <oosolongas @ >d-(3+4n"),

which implies that o > d - (1.5 + 2~!) (Assumption 11) because & = 2a.

1 (R
Finally, using the result (\/—Z_naQnT)’l\/—Q_n Z (zipmr — E(zipr)) 4 N(0,1), we have
i=1

QnT - \/% ZZ:; (Zi,nT — E(Zi,nT)) i) ]\[(07 1)

C.12 Proof of Proposition 8

First, the LLN does not require any restrictions on the NED coefficient. By Proposition 6,
(Z?ﬂ wi1(p(i, 5) > 8)>sl’4n

Z?:l wz'Zj
n

1
Following Jenish and Prucha (2012), the sufficient condition for P, = — Z (ri,nT—E(mnT)) TN
n

i=1

R = {rinr,i € Dy,n > 1} is uniformly Ly-NED on £ with v(s) = sup sup

n 1€D,

0 in the case of |D,| = n and sup sup ¢;,, = sup sup d; ,, < o0 is:
n 1€D, n 1€D,

(i) 74 nr are uniformly L,-bounded for p > 1+ ¢ for some § > 0. Condition (i) is satisfied by

1 n
Lemma 2. Hence, we have P,y = — Z (TMT — E(riynT)) 0.
n
i=1
Similarly, by Propositions 5 and 6, Z; 77,7 is uniformly L,-NED on & with y(s) =
(2?21 wi1(p(i, j) > s)
sup sup s
n €Dy Zj:l wi;

condition for in the case of |D,,| = n and sup sup ¢;,, = sup sup d;,, < oo is:
n €Dy n €Dy

(i) ZinrTinr are uniformly L,-bounded for p > 1+ § for some § > 0. For Condition (i), by

)m. Following Jenish and Prucha (2012), the sufficient

Holder inequality when p = 2 and ¢ = 2, we have

n

E|(Zir)*" 2 (Fir)* 2| < || (Zir)* 2o (Fin) 2 I3

S (Eglgi,nT’ZlJr77 : E’fi,nT|4+n)1/2 < o0

(C.39)

since sup sup ||Z; nr||la4y < 0o and sup sup ||7i 7|44y < 0o by Lemma 2. Hence, Condition

n 1€D, n 1€D,
n
N . 1 .. .. p
(i) is satisfied, and we have U,r = — E (zivnTrmT — E(zivnTrmT)) = 0.
n
i=1
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C.13 Proof of Theorem 3

Under Hy and Assumption 8, S = S™ takes the following form:

S = (U_g)QQ 7(_2)2\/_ nT — %(Z_(E)Q\/gU”T — L ?_8)2_71 + L ‘ ((?_8)2 B 1)

2

o
where ~—g %y 1 by Proposition 3. Proposition 7 is applied to Qnr. The second and third
o

n
terms converge to zero by Proposition 8 as long as T — k < 00. The fourth term goes to

n
zero as long as T — k < co. The last term can be rewritten as

|
—_
N—
I

1 o8y n, od.,
E;((;) —1) :%((ﬁ)

|
SEEs
[\o}
[\
Sh
+
=
+
E
[\
o
|
o
a
S

2
which goes to zero by Proposition 3 (% - Pl
1

—_

Q
g
~

)) Therefore, for the non-reciprocal

interactions in the form of Assumption 8, S = gnT((}Q)'Eg_’,}LgnT(#) —n) 4 N(0,1)

Nl

ﬁ(

underT—>kwhereO<k<oo

C.14 Proof of Proposition 9

Since p(By) < ||Bnlleo < 1, we have hm |B%||o = 0, the (i, 7) entry of BF, hm (Bk) =0
1
\/—TgnT

(62) BZZQD 19,7(6%) = 0,(1) since the norm of B¥ decreases as k increases. Similar

for all 4,7, and ZBk < oo. If (6%) BoXL 1 g.7(6) = 0,(1), then it follows that

1
/_271 ?gnT

arguments can be applied to

11
—gur(5%) BESP 1 g,7(57) for all k > 3 where ZBk < 0.
Von T k=0
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C.15 Proof of Proposition 10

o2 siW, nS;jS; "Whsi Wi Wi
Recall (35) where = —> 1. Denote a,,;; = : -
\/sWWsZ\/sWWsj \/Zj 1%;\/21 Lw?

E Tz nT E Qp, Z]Zj nT and E Tz nT g Qp, UT] nT are
J#i J#i

0p(1), presuming — Z ZinT Z nijZjnr = 0p(1). Note that
J#i

Thus, it remains to show that

_ _ T T
UL(Q)TQT > iy Wii€T U—lg(\% D im1 Eit) 2 wij(\/LT 2 _t=1Eit)

TinT = =

il il
1 %2)% > e it > i lww\ﬁZs;ét Ejs
VT Z?:l wij

(C.41)

11
1 2T Et 1Eit D wzjgjt -

Suppose — Z’Zl nTZan iiZinT = NG Z( o VT & i= Za” iiZjnr = 0p(1).
J#i i=1 Z; 1w J#i

Then
n n
1 - .
—T § TinT an,zg ZjnT
ntis i

1.1 T n 1 T n
(AT D1 Eit Djm1 Wig T X gsy Ejs i
E ZinT E G, ijj nT + § ) E : Qn,ijZjnT

n 2 Y
j Zj:l W J#i

Lg% Zt 1 it Z] 1 wa Zs;ét 6]5 - -
Z znTZanngj nT \/—Z Zan,ijzj,nT = Op(l)
J#i

> =
=1 wij J#i

(C.42)

provided that the second term is 0,(1). For the second term, the inner structure only involves
T
1
— Z €js rather than ;. Since T Z €js does not dominate the overall convergence for large
s#t s;ét

enough T Z Sit Z Wij— Z Ejs and \/_ Z Sit Z wj;€ 4+ behave similarly. Thus,

s;ét

we have the same 0,(1) result. Similar arguments can be applied to 7"1 nT Z 35T 0T -
J#i
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C.16 Proof of Proposition 11

;W88 Ws; Wy jw;; 1

CHOTE P SiWnWﬁSZSjWnWéSj ZJ 1“}12] i=1 321 rom (23) ’ ”izlg’ ’
can be rewritten as
SiW,s; s; "W, Si
= o 3o S
7 ssW,W!s; sWWn]
_ ii(%‘ﬁ thl VoiSisiWa Vi Z $iWisisiWsi (Lg% Zt 1 VeS8 Wa Vi
N — / SIW, W s; \/s W, W’sl\/s W, W!s; V/SiWaW)s;
n T
1
= T ZZ 518, W Vi an iV 558 W Vi
0 i=1 t=1 Jj#i
1 n T -1
M= ZZ 55 Vg an i Zv,;ssjsgwnvm
0 t=1 JFi s=1
111 &
+ a_gﬁi?;g ! sisi W, Vnt;bm] S;l 558 W Vi

(C.43)

We first analyze the moment of each term: From (F.3) and (F.9) and Lemma A.1, we have

E14\/1_;ZZV’tsstVnthm] 558 WnVat)

i=1 t=1 jF#i

\/_ZZ i )2 O(l\z/_*?) (C.44)

i=1 j#i \/Z] 1 z]\/Zz 1w

14 \/1—; ZZ i8SV, szbm] Z 558 WiVis) = 0 (C.45)

i=1 t=1 j#i s=1

Z 35S W Vg Z b ij Z (578, WyVis) = 0 (C.46)

i=1 t=1 J#i s=t+1

ﬂ I

!
é\/_

and O(\/_

e 2) in (C.44) goes to zero under Assumption 13. Thus, by Chebyshev’s inequality,

it remains to show that the second moment of each term in (C.43) goes to zero to show that

G, 3 0.
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Consider the second moment of the first term in (C.43) as

1 11 -
e Z Z SiSTWo Vi Z bni V8585 W Vi )2
\/_ i=1 t=1 J#
111 &
_ ~ T2 Z B( sz;tszs Wy Vi ;bn Vi SiWo Vg )2
1 1
= —8—TE<Z V/ S’LS W Vnt an Zj tSJS annt)2
oy n
0 =1 ]75@
11 a
— Fn_/]_}E’(Z V/ 313 W Vnt Z bn ij tS]S]W Vnt Z VntSlSlW Vnt Z bn lm SmS;anVnt)
0 i=1 J#i =1 m

n
/ "W / "W, E :~ / "W
Vntsjsj nvntvntsisi nvnt bn,imvntsmsm nvnt)

_ g_ﬁ B Z S WV Y by <

J#

__TE Z e SiSiW Vi Zgnz] 1858 W Vi V8585 Wo Vi Z D jm VeSS Wi Ving)
o8n — Z
* U_ﬁE SiSQWnVnt Z Bn,ij SJSJW Vi Z VntSlSZW Vit Z bn imV, tsms w, Vnt)
J# l#i,j m#l
2 1 L -
= oSar” <Z<Vét8i82Wan)2 > baii (Vs 5 Wa V) *buiy)
0 i=1 i
11 - L noo.
+ __TE(Z(V'n,,tS'LS;WnVnt)Q Z bn,ijvétSjS‘IjWnVnt Z bndiétSmS’,ranVnt)
7on i J#i m#ij
U_ﬁE SiSQWnVnt Zgn,z](VétSJSQWnVnt)Q Z Bn,jmvétsmslmwnvm)
JFi m#£i,j
1 1 no n .
o8 nTE(Z(V,tsiS;I/V”th)2 Z bn,ijVétst;Wan Z Vi 515Wo Vi 1)
0 i=1 i I#i.j
0’ nT Z 5i5iWa Ve Z bni5 S55; Wi Vi) Z Vétslsgwnvntgn,lj)
JFi I#i,5
O'_WE Z V/tSiSQWnVnt Z Bn,ijvn/ts‘jSQ-WnVnt Z Vﬂl,tSlSEWTLVnt Z En:lmvﬂl,tsmsinwnvnt)
J# 14, mi,jl

(C.47)
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For the first term in (C.47), from (F.5), we have

11 -
8T T (Z(V/ts S W Vnt an z] tS]S W Va ) bn ”)
o n P o
_ / AN 2
i= J )
wl w’L
ST s ) S Wa Vi) (1) s + (o)W W)
% i=1 j#i ] lwzg i= 1wjz'

+ (11 — ) o W) 2(siWaWhiss) + (11 — 08)0 (84 Wos )2 (8 W W)

n
+ 200 (i W55)? + (114 — 300)05 > wiw?; + 4(us) o (W) (8§ Wasi) (siWa Wi, s;)

I=1
n n
1
+ 2(p3) 05 (8 Wasi) Z wiwi, + 2(u3)20f (5iWhsj) Z whwi)) = O(W)
I=1 =1 n
(C.48)
1 1 <& Wi W
because the maximum order is Ugn_TZZ(Z" 1wg Ji wz,)2U§(S;WnWési)(3;‘Wan€3j) -
i=1 j#i Jg=1 "ij Lai=1 "ji
noo9
wZJwJZ |wji 2 1 - Z#iwij _ 1
i=1 i i =1 Wiy D et W Y W nt = 2.5=1Wij n

For the second term in (C.47), from (F.6), we have

11
oS nT (;(V’tSzSW wVat) ;bnm Vi858 W, me;mem " SmSh Wi Vit

11
- 73722 Z brigbn,im B (Vi858 W Vi) (Ve 8585 Wi Viat) (Vi S Sy Wi Vint)

n n

n n
w@JT,Uji wzmwmz 8 2
— E E E 7 w2 (O'[)wjmwmjg Wy
ognT 4 EJ 1w

n
i= 1’UJ Jj= 1w Zl 1 Wiy =1

n (C.49)
253w W ) 20305 . s - 20w 0; .

+ 200W;i;Wim wzlwml+ 00 WimWm wzlw]l+ O WijWim W31 Wm

=1 =1 =1

4\ 4 4\ 42 4\ 42

+ 2(pa — 0) TYW; jWimWjiWimi + (4 — 300) TWi, WimWmji + (fta — 300)00wijwjmwmj
) 2.2 a0 . 19 2.2 a0 y 19 22,0 ) .

+ 2(13)“ O Wi jWimWjm Wi + 2(13)°05WijWimWj;Wimj + 2(143)°05Wi WimW jm Wi

n

+ (13)* 00w, Wjiwm;) = O(W)
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n
Wi Wj4 wimwmi
since the order is — g E E ] ]n n aﬁwjmwmj E w?z
0o nT > 1w
j= -1

w w? w?
i=1 j#i m#i,j i=1 j=1 Zl 1 "ml
1 wijwji wimwmi wjmwmj |wij| D i 1 Jwijwjil
= — < (max— _
nT D w j 1“’ Do 1“’ ! isJ " ”T > wy;
i=1 j#i m#ig T i= m Z] 1w i=1 m#i,j J=4

by Assumption 6. Similar arguments can be applied to the third-fifth terms in

B O<Th*4)
(C.47).

For the last term in (C.47), from (F.7), we have

11
e vaszs Wi Vmwa V701578 W Vi ZVntslle Vit Z D i VS S Wi Vint)
];ﬁfb l#l,] m7£17]l
1 1 n n
= EnT ZZ Z Z Drayigbrn,im B (Vi 858 W Vit Vi 858 W Vet Vit 18 Wi Vit Vi S Sy W Vi)
i=1 j#i l;éz,] m#zgl

n n

_ 1 1 WijWyg Wi Winl (408w~w~wl Wiy
- E :§ : § : E : n 2 n 2 n 2 n 2 0 Wiy Vgt Wim Pm,
g nT D1 Wi

i=1 j£i I#£i,5 m#i,j,l =1 wjz m=1Wim Zl:l Wit

8 8 8 8
+ 4oqWi Wi Wi j Wim + 400 Wim Wi Wi W + 400W; W j1Wim Wi + 400W;i5W jm Wi W

n
Tt

(C.50)

8 8 3 8
+ 40w W WmiWim + 400 W WM W5 Wi + 400Wim W Wi wj + 400wimwmlwﬂwl]~) = O(

n n n

Wi Wy Wim Wi
since the order is __T IV 40’ 0 Wi Wi Wy Wi,
Op 1 i=1 ‘77&1 l#z]m#ljlzj:lwl] Z:lel m= lwlle 1 ml

n n

|wij| . 4 -1 |wijwji| S L Wi n
< gl o3 Bl Bl o
Y w nT i=1 I£i,j Z] | Wy D et Wi, Thy,
6. The results of (C.48), (C.49) and (C.50) imply that the second moment of the first term

n (C.43) is O(

) by Assumption

TZ* ) = 0p(1) under Assumption 13.
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For the second moment of the second term in (C.43), we have

14 \/1771" szlt‘sls W Vntzbnz] Z

i=1 t=1 J#i s=1
T

111
= ;S;TQ ZE Z tSZS W Vntzbnwz

J#i s=1
111 XT:H n
_JgnTQt -

=1 s= i=1 j;éi
11 T
= 8 EZVntSSWVnthnU
%om J#Z
11T
:UT% ZVMSSI/VVmg%;bmJ

B> ViysisiW Vi Zn: bn.ij Vil
1

585 Wi Vis)®
sjs;-WnVns)2
558 WnVns)®
55 Wi Vins)?

n n
/ ! / 7 / /
155785 Wa Vi E V5185 Wn Vi E b im Vs Sm Sy W Vins)
=1 m#l

(C.51)

Note that E(V,,s;5;W, Vi V) s, s;- W Vs Vil s1Si Wi Vi Vo, csmst Wi Vi) will not vanish only when

Il =1and m = j for all t and s. Thus, by Lemma A.1, we have

sWs]sWsZ

t—1
Ll , o )
ot \fT Z Z Viuesisi WV Z siWn Wy siss Wy W s; ; Vs$i$iWnVas)

85 "W VsV sisi W, Voibn UV s;WnVns)

Zan ij V’tszs Wi Vit) (V,stjsg.wnvnsy

i=1 t=1

1 1 T
= ZV’tszs W, Vman i

UO J#

117(T -1
== (2T2 ) (Z(V’tsls Wi Viat) an ij 7S5 "W Vns) )

0 i=1 j#i
_11r@-1
N O'g n

1=1 j#i
n $iWns;s; Wy, 5:)?

—1
“n or? ZZSWW/SZSWW/SJ

= 1]751

— EM Z Z Wij Wi
n 2T?% £<’
=1 j#i Z] 1 wz] Zz 1 w

(C.52)

1
Thus, the second moment of the second term in (C.43) is O<W) = 0p(1) under Assumption

13. Similar arguments can be applied to the second moment of the third term in (C.43).
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C.17 Proof of Theorem 4

Under Hy, S takes the following form:

1 /1 1 1
= —T—\5sYn ZD n 52) — —F——=0n B, ED n 2
o= (0@ S8 g (57) = ) + <= 001(5%) BuSE 1 ()
© 1 1 . ) (33)
+ E ——0n BrY, . gn
s \/%Tg T ) g T( )
. : 1 1 D—1 ~2 d
Theorem 3 is applied to the first term, we have m(fgnT( Sy gar(6%) —n) = N(0,1).

All remaining terms in (33) converge to zero by Propositions 9 and 10, provided that G, r TN

0. Finally, G,7 = 0 by Proposition 11. Therefore, for the small reciprocal interactions in
1 /1 d

the f fA tions 12 and 13, S = ——(=ga7(6%)'S; 1 gur(6°) —n) = N(0,1) und

e form of Assumptions 12 and 13, \/%(Tg 7(6%)'S, L gnr(0%) — 1) (0,1) under

%—H{:Whereogk<oo.

C.18 Proof of Theorem 5

First, consider the restricted QML estimator as

T
1 . .
~2 ! Hq —17 Hy -1
0 = T E Vi (L, — VW) (1, — VW)™ Vi

T o0 00
1 ~ 1 D 1 b
= =2 Vol 4 D AW U+ ) (g AW Vi
t=1 k=1 k=1
| L . | (C.53)
_ ¥ D D ¥
= > Vil 4y AP (s APW) Vo + 0y (1)
t=1
1 e, -
== > ViV + 0p(1)

- 1
because ([n_\IJHl W)t = "+Z(WADW")k < oo for large enough n by Assumption
k=1

3 and \— ZV/ (APW,)F(APW,)* V| = O(1) by Lemma 15 in Yu et al. (2008) for any
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IS
1=
—_

- o
finite k. Smce — Z " Vi 2 02 by Proposition 3, we similarly have 6* 2 ¢2 and
under H 7.

We now need to derive the limit of the term ®,,7 as

1 2": (A S VL WIAP s W, Vie)? + (& Yo, Visisi W APW, V)2

Crr = n a sSiW,W!s;
(0(2))21 " (%% ZtT:1 VétWéADSiS;WnVnt)Q + ( 12% t 1 V/tszs WL.APW, Vnt)
R — ssW,W's;

_ (U_g)QiL i (VétWﬁADSiSQWnVnt)Q + (2 ZZ Sz’S;WnADWnVnt)Q
ssW,W's; 02 oy nT2 ssW,W!s;

i=1 t=1
n T t—1

2 / ' AD /  / Vi 1 AND
0592 1 (V W' AP 8,85 W, Vi) (V! WA sisiWnVns)
=3 2.2 AT

2 -1 / / D v Y44 / D 7
0502 1 (Vts‘siWnA W Vi) (V! 838 W APW, Vi)
et LYy Tt

(C.54)

o
where —2 2 1 under H; nT-
o

For the first term in (C.54), we have

V’ WAL s 88 W, Vnt) 11 1 <& (V’tW'ADSis(WnVnt)Q
< -2 nt"’ ' n i
o nT2 Z Z sSiW,W's; - T ogmn 4 Z siWnW)s; |

i=1 t=1

11,1 i(v AP 5,81, Vie)? (D)
ssW,W!s;

(VétWTgADsis;WnVnt)Q (V,{tWéADsingan)Q

because AL is i.i.d over t = 1,...,T with E(] AT ) =
SiVWVn WV pSi S;WaVVpSi
VI WIALsisiW,Voe)? AZE(s{W, Vi)
E(( nt n’WSI/IiZ’ ) ) = — ,é;’ T 2 < oo for all ¢ and n by Assumptions 2 and
SiWWn WV Si SiWVn WV Si

5, which implies that Kolmogorov’s LLN holds. Similar arguments can be applied to the

second term in (C.54). Thus, the first two terms in (C.54) go to zero in probability.
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For the third term in (C.54), we have

V/ W, ADSzS{L’WnVnt) (VASWAADSZ-S;W“VM)
ssW,W's;

1 s=1
2 1 IS (T WAAL i W Vo) (VI WAL 5351 W V)
1 ssW,W!s,

i=1 =1 =1 e ) (C.56)
Z v W'ADszs;anm)(V,;SW,;ADsis;WnVns))
— = sSsW,W's;

t
(SWLWIAPS)?E 1T — 1 s (s5W, W AP s;)?
+n T )Z ssW,W!s; n( T3 )Z sSsW,W's;

1=

= O(1) by Assumption 5 and

(W ADsls;anfnt)(VTZSWT'LADSZ-S;WnVns)

V!, W ADszs;anm)<x77gsw,;ADsis;Wan)
. TZZZ AT >

"1 (V! W AP s 55 W, Vi ) (VW AP 5,81, Vg )
Zl | Z Z siW,W!s;
i= (C.57)

1 (VI WAL 5,8 Wo Vi) (V! WAL 5,8 W Vi)
DN W, )
t=1 s=1

T ~ ~
2 1 (VW AL 5,8 WVt (VW AL 5,60 Wi Vi)
fsepa—g‘fz(?z AN

t=1 s=1

1L (VW AP s, W V) (V! W AP 5,8 W, Vi)
- E( Z - S‘I/I; W/S ))| = Op(l)

/ 1 AND / v ¥4 ' AD . ’ ~
because —Z (V Wi A7 sisiWi Vi) (Vo W A7 si5i W Vi)

is an uncorrelated sequence over
ssW,W!s;

t=1,..T Wlth the finite mean and variance by Assumptions 2 and 5. Hence, the third term
(siW,W!APs,

_ AW, WEs)? 1 G AT, w)?
goes to nh—>Hc}o n zzl siWnWT{Lsz N n—>Holo n Z SW,W's; nh—{go n Z L
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For the fourth term in (C.54), we have
W APW, Vi) (VL 5i8, W AP W, Vi)

n T t—1
2 1 (V.55
aé nT?2 ; ; ; W, W s;
2 IS (Vi W AL, Vi) (VY 508 W AP W, Vi)

1
Z Z Z sSiW, W s
T ) (C.58)

2
N UO nT2 =1 t=1 s=1
2 IS (Vi W AL W, Vi) (V55 s’-WnADWnVnS))

1

B nT? ; ; Z_; sTW, W si

"L (S W AP, s:)? B l(T — 1) Z (i W, AP, )2
SSWWh s n. T3 — SiW, W) s;

1 7T-1
+ﬁ( T )

M

=1

Similar arguments can be applied to the fourth term. Hence, the fourth term goes to
Ajwijwj;
Z] ! 705i)° . Therefore, using all the results

1 (siW, APW,s;) _
> mnz T

lim —
S siW,W!s;
i w; Ajw;jw;;)?
above, we have ® = hm - (ZJ 1 ) _ (ZJ 1 ijWji) _
noee i Zj:l wij

Appendix D M test

D.1 The standard SAR panel data model

Consider the following spatial panel data model with a homogeneous spatial coefficient

Ynt - AOWnYnt +Cpo + Vnta = 17 ceey T (Dl)

,Ynt) 1s an n x 1 vector of a dependent variable for all units in period ¢

where Y,,; = (yiy, ...

W, is an n x n spatial weights matrix, c,o is an n x 1 vector of individual fixed effects, and
gne) is an m X 1 vector of disturbance terms?.

I, — AW, for any A. At the true parameter, S,(Ao) = I, — AgW,,. Then

= (In - >\0Wn)71<cn0 + Vnt)

Vot = (51ta ey

Define S, (\) =
presuming S, (Ag) is invertible, (D.1) can be rewritten as Y

40For the elements of Vj,;, we assume that e;; is i.i.d. across i and ¢ with zero mean and variance o
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D.2 The concentrated likelihood function

Denote = (\,0?) and ¢ = (\,c,)’. At the true value, 6y = (\),03)" and (5 = (Ao, ).
The likelihood function of (D.1) is

T T 1 <
InLoyr (6, c,) = —%ln(%r) _ %ln(ag) + Tlnl S,V = 5 ; Vi (O'Viu(€) (D.2)
where V,1(¢) = (I, = A\W,) Yo — ¢, = Si(A) Yo — ¢, Thus, Vi = Vie(Go).

For analytical purposes, it is convenient to concentrate ¢, out in (D.2). We define Y, =

T
_ _ 1 ~ _
Y, — Y,r where Y, = T E Y,:. Similarly, V,,; = V,,; — V,,7. Using the first order condition

InL,r(0,¢c,) 1 T
that M = — Z Vot (€) from (D.2), the concentrated likelihood function is
dc, o2 —
nT nT 1 «
_ 2 v Y
InLyg(0) = —=—-1n(27) — —-In(0*) + Tin| Sy (M) = 55 > Vae(N) Vo () (D.3)

where Vi (A) = (I, = AW,) Yoy = Sp(A) Yo
Define G,,(\) = W, (I, —AW,,) "' = W,,S,,(\) ! for any A\. From (D.3), the first derivative
of the concentrated likelihood function with respect to A\ can be derived:
8lnLnT 1 d ~ 2
— ==Y (W, AN Vnr(A) — 0%tr(Gn(N))) (D.4)

0-2
t=1

D.3 The limiting result of M

To test spatial correlation, one may formulate a hypothesis as a restriction on A in (D.1).
The null hypothesis of interest is Hy : A\ = 0. To analyze the asymptotic properties of the

M test when both n and T are large, we need the following standard assumptions:

Assumption D1. The spatial weights matriz W, is time-invariant and its diagonal elements

satisfy w;; =0 fori=1,....n
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Assumption D2. The disturbances €4, 1 = 1,....n and t = 1,...,T, are i.i.d. across i and

t with zero mean, finite variance og > 0, and E|ey|*t" < co for some n > 0.

Assumption D3. S, (¢) = I, — diag(y)W,, is invertible for all p = (41, ...,0,) in a small

neighborhood around zero.
Assumption D4. W, is uniformly bounded in row and column sums in absolute value.
Assumption D5. n is an increasing function of T and T goes to infinity.

Assumptions D1, D2, D4 and D5 are the standard regularity conditions used in Yu et al.
(2008). Assumption D3 implies that S,(\) = I,, — AW, is also invertible because A\W,, is a

special case of diag())W,, where ¢ consists of the same value of A for all elements.

Consider the first order derivative in (D.4). Under Hy, V4 (A) = (I, — 0W,,) Y, = Y, and
Gn(\) = W, (I, — OW,)~' = W, such that A = 0. Therefore, the test statistic is based on

NLyr(0,02) 1 = oy 1) <
% = > (YWY — oPtr(W) (D.5)

t=1

Let % be the restricted QML estimator with the restriction A = 0 imposed, so ° =

mazsInLS,(c*) where

InLt (0% = ———In(27) — —In(0?) — 1 iff’ Yot (D.6)

T
1 -
Thus, we derive 62 = — E Y Y.

Proposition D.1. Under Hy and Assumptions D2 and Db,
2

5> 2 o2, and hence Cj—g 51
o
1 alnLnT(O, &2)
vnT O\

under Hy. From

We now investigate the asymptotic distribution of
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(D.5) evaluated at 2 under Hy (Yy; = Vi) and Assumption D1 (tr(W,,) = 0), we have

1 0nLyr(0,62) 1 1 e~y o 02,1 1 ey
= = W Vot = = (— VWiV,
vnT 7)) o2 \/nT ; nt P 52 (08 nT ; ¢ t)
2 T
o2, 1 1 , 1 [T_,
= (= S VWVt — 5\ = Vi WV
G2 (0(2) nT = nt ! otV n nT T)
2 T 2
og, 1 1 , oy, 1 T, 1 /T,
= —=(— E VoiWoVit) — = (=) = Vour W Var — E(— ~vV.W,V,
52 (03 T pa nt t) 2 (08 n nT T (Ug nT T))

(D.7)

: 1 /T - _ 1 _
where 2¢ % 1 by Proposition D.1. Note that —{/ — Ve WaVr — E(—1/ = V’TWnVnT) -
o ogV n ol

1 1 T 1
O,(—=) and E V. W Vor) = tr(W,,) = 0 by Lemma 9 in Yu et al. (2008
p(ﬁ) (0,0 n nT T) W ( ) Y ( )

~2
1 8lnLnT(07 g ) is the same as that Of
T o\

and Assumption D1. Thus, the limiting result of

T
1
_8\/—_ Z V! W, Ve under Hy. Denote Q1 = Z V! W, Vyi. Then, the mean and variance

t=1
of Qnr are /LQnT =0 and 03, = Togtr(W,W, + Wp2).

Theorem D.1. Under Hy and Assumptions D1-D2 and D4-D5,
. %\/LT Zthl YéthY t d
Vir(WiWw, + W2)

2 N(0,1).

Hence, the conclusions on whether a spatial correlation exists or not, when both n and

T are large, can be drawn based on the value of M.

D.4 Local power of the M test

For the asymptotic local power of the M test when spatial lag coefficients are heterogeneous,

we adopt the following local alternatives:

A; .
H1 nT - 510 = W for i = ]_, ..,n (DS)
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1

where A, is a fixed constant (A; # 0). Denote A? = diag(A4, ..., A,) and ¥ = TR ——— AP,
We investigate the asymptotic result of M under H; ,r as
LA S VL, = OW,) YW, (1, — W)Y,
M = T = t (D.9)

VA (WW, + W)

- 1
where (I, —WW,)"t = I, + Z(WADWn)k < oo for large enough 7" by Assumption
k=1

D3. Then,

#r z 2ey Vi(In = W W) "V Wy (L, — W) 71V,

VSt (WiW,, + W2)
ﬁﬁ Sy Vi + 3502 1(n1/2T1/2 APW,)EY W (I, + ZZ;(WADWHI{)VM
\/ltr(W'W + W2)

= — + op(1)
\/%tr(W’ W, + W2)
_ fz"/ L Vit Wa Vs n F T Yo Vi (APW,) W, Vi n 57 ar >ty Vi Wa(APW,) Vi +o,(1)
- p
\/ Lir(WW,, + W2) VAt (WLW,, + W2) Ly W,’LWn +W2)

(D.10)

~ T
ZV’ (APW )W (APW,) Vo] s Op(\/g) by Lemma 9 in Yu et al. (2008)

since |

\/_

for any ﬁnlte k: In Section D.3, we derive the limiting result of the first term in (D.10).

Therefore, the asymptotic power depends on the limit of

52 nT t

\/ Ltr (WIW, + W2) \/ Lir(W1W, + W2)

L2_T Zt 1 V/ (ADW ) annt 4 L-L 1 V/ Wn(ADWn)Vnt

Pnr = (D.11)

Denote ¢ = Tlim Ont-
— 00

Theorem D.2. Under Hy,r and Assumptions D1-DJ,

02 - Z 1Y’I/I/Yt d
it - N(,1).

M =
VA (WiW, + W)

76



Theorem D.2 implies that the M test may lose power if A; has a different sign across
IS S LW B ol NP
i due to ¢ = lim ~ 2ic 2o B + 5 X 2 FW;

e \/ % > i 2?21 w?j + % > i 2?21 Wij Wi

n ) 2
A; Zj 1 Wij . .
hm because w;;w;; = 0 for all 4, j..
7] )
n—oo n

\/ Zz 123 1w

. Under Assumption 8, ¢ =

Proof of Proposition D.1 See Proposition 3.

1 9lnL,r(0, &2)
vnT O\

1 1
QnT under Hy. Note that — aénT —

2vn ognT

1
—tr(W/ W, + W?2) is bounded away from zero by Assumption D4, and all conditions of
n

Proof of Theorem D.1 By Proposition D.1 and Equation (D.7), has

the same asymptotic distribution as that of

Lemma 13 in Yu et al. (2008) are satisfied. Hence, the lemma (CLT) applies to Q,r, and we

have Cnt 4 N(0,1). Using the results above, we have %‘/% ZtT:l VW 4 — N(0,1).
i, -3
Proof of Theorem D.2 We need to derive the limit of ¢, where
&, = 5 A S Vi APW,) Wi Vi . %% S VW (APW,) Vi
\/ltr(W'W +W2) \/%tr(W’W +W2)
089,02 ST Zt L Vi (APW,) W, Vi Zt LVIE(APW) W Vi
- (52 (= \/ltr(W/W +W2) - \/%tT(W/LWn W)
n (‘;(2))2 iﬁ it Vit Wa(AP W) Vi B ?lgﬁ St Vi W (AP W, ) Vi
G %tr(WT’an +W2) \/ltr(W'W + W2)
+ (‘;(3)2 0718% Sty Vi (APW,Y W, Vo (?é)QE nT >y Vi W (AP W) Vo )
G Ly (WIW, + W2) G \/%tr(w,gwn +W2)
(D.12)

T T
1 1 ~ ~ 1 1 ~
For the first and second terms, a_gn_T E V! (APW,) W, Vi — _g_T E " (APW,) W Vi)

T
and = Z W (AW, )V, —E lzi Z W (APW,)V,,) are O,(—=) by Lemma
90 t=1

2

nT
91in Yu et al. (2008). Also 25 1 under H, 7 shown in Theorem 5. For the last two terms,

’”’2
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T T
1 ~ -1 11 ~ ~
E / AD — t AD / dE(=— ! AD _
= t§ ljv (APWLY WaVis) = = tr (APWa) W) and B2 ;VmWn( W) Vit
T—-1
T tr(W,(APW,,)). Therefore, we have
¢ 1 %t?”(ADWnWTIJ + %tr(ADWr%) 1 1 Zz 1 Z] 1 A wzy + Zz 1 Z] 1 A wl]wjz
= lim -

e \/%tr(WéWn +W3) e \/ Zz 12] 1wz] + Zz 12] 1 Wi Wi

Appendix E The random variables

Assume that W, is time-invariant and its diagonal elements satisfy w; = 0 for all i. Also,
assume that the disturbances ¢; are i.i.d. across ¢ and t with zero mean, finite variance

o2 > 0 and E|e;|*™ < oo for some 1 > 0. Denote ju, = E(c5,) for s = 3, 4.

E.1 Moments of z;,r

T
(ULS\/LT Zt:l Vétsisgwnv’nt 9 1 1 (Z?zl Vn/,ts’iS;jWnVnt)2
ZinT = i
" W Wi s, AT SW, W’si
:i_<23:1<v,{tsisgwnvm)2> L1l (zt DY (v'tsz-s;wnvm)(e;ssisgwneng)
o T SsW,W!s; oy

T S, W s;
(E.1)
1 V! 8:8i W Vit )3\ 2 2V, sisi W Vi ) (€0,08iS: W €ns ) \ 2
__( t 1 > + = < t 1 nt ns 7 )
St = o3 T2 sWW's, T2 SSW, W' s
Sis' nVnt SiS; €155i5; Wn€ns
+3—< tl WLV, 2) ( tl 2(VigsisiWa Vi) (€nssisi W, )
ob T2 siWnW,’lsi SSWL, W1 s,

(E.2)

From (E.1), (F.2) and (F.8), we have

113 E(VisisiWaVar)? L1t S S B (2(V,y5i8 W Vi) (€555 Waens) )

Fl(z:
(zinT) = T STW, W, od T siWp,W)s;
L1 T, b0t

1 / /.
og T s;WpWjs;
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From (E.2), (F.2), (F.3), (F.8) and (F.12), we have

E(2,,) = igi Z?:l E(Vy5i8iWn Vir)* 11 Zthl Zi;ll E(Q(Vétsis;Wan)z(G;LssiS;Wnensy)
’ o8 T? (SiWp, W s;)? o5 T? (siW, W) s;)?
n 11 Z?:l Zi;ll E (4(Viesi8iWaVar) * (€5 8i8{Wnens)?) 10
o5 T? (ssWp W) s;)?
1 1 TE(V}ysisiWaVir)’ 11 TN B(2(V)y5i8 Wi Vit )2 (€508, Winens)?)
o8 T?  ($iW,W}s;)? o8 T? (siW, W) s;)?
+ 11 @E(4(V,fbtsiS;WnVnt)2(eﬁlssiSQWnens)Q)
o8 T? (s W, W} s;:)?
1 1 TE(VsisiWa V)t 1 1(T — D)oy (ssWoWysi)? 1 12(T — 1)o§(ssW, Wy, s;)?
TETE SWaWis)? T (SWaWis 2 ST (sWaWis)?
_ 11 i L 13 (T — 1)o§(siWy, W), s:)?
2 o8T (i W, W s;:)2

o8 T (s\W,,Ws;)
1 3 Tob(siW,, W) s;)? N 1 1gt— 308 (siW, W) s:)?
o8 T (siWp, W) s;)?

SR T (W Wsi)?

(E.4)

where ' = E(V!,5:8;W, Vi)' = pa ((pa — 307) Z wi; 4 304 (siW, W} s;)?). Thus, we have

j=1

B2y =34 L 1Al =300 i wy 1L (= 03)30d (W Wysi)?
Zz,nT

8T  (sS\W,W!s;)2 oS8T (STW, W 5;)2
0 i . n . A 0 i n (E5)
_3. 11 prapa — 300) 5w 3(pg — og) 1
o5 T (Z?:l wz'zj)2 ‘73 T
Finally, from (E.3) and (E.5), we have
Var(zinr) = E(zur) — (E(2inr))”
. L Ll —300) S wh 3G —of) 1 (E:6)
o5 T (Z?:l win)z 061 T

6
When ¢;; are normally distributed, Var(z;,r) = 2 + = since iy — 305 = 0.
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E.2 Cross-moment of z;,r

From (E.1), we consider Cov(2; n1, Zjnr) as

Cov(2inrs 2jnt) = E(Zint2inr) — E(Zinr)E(ZjnT) (E.7)

where

. i_(Zt (Vs SjSS‘WnVntV) _i_i_(Zt 12 (V/tSjS;'WnVnt)(Elnssjsgwn%s))
il = i S\ W, W) s odT

siW W s;
(E.S)
and
1 Zt 1( tS S; W, Vnt) Zt 1( tSjSI'W Vnt)2
' inT — ~ 8o E.9
ZinTZjnT = ST ( SiWnW/LSi ) ( S W W’ IS > + 2 ( )

with ¢ has all other cross-product terms*'.

From (E.9), (F.5), (F.10) and (F.11), we have

11 3 EVsisiWa V) 2 (Vs 8, W Vi)

E(Zi,nTZj,nT) =

UTS)E (siWn W) i) (ssWn W) s5)
1 Zthl Z;F;ét E(VyysisiWn Vi) (e, 5855 W, néns)’
T2 TV Ws0) (5 WalV53) +EW)
1 1 TEWV,si8;WnVat)? (V558 W Vg )?
o8 T2 (siWn Wy s:) (s Wi W) s5)
1 1 (T? = T)E(V,y5i85;WnVit)* (€),557 5 Wiens)?
i CATAPAI AR o
11 s 1 1 (T = D)o (siWnWys:) (s; W W, s5)

ST (W Wisi) (s, W Wis;) * 8T ([ WaWhsi) (s, W W)s;)
11 Tao(siWnW,’lsi)(stansj) 11" —of(siw, W, si) (s; W Wi s5)

o8 T (siWuWhs:) (s, W W)s;) * 0§ T (S;WaW)si) (s, W Wis))
(E.10)

“The term isolates all cross-products with zero expected values (E(y) = 0).
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where ** = E(V,,s;siW,Viu)?(VipsisiWaViu)® = o5 (siWu Wy si) ($5WaW)isi) + ((pa)® —
201405+(09)*) (8; W55 Wsi)* (M4—0§)0§(5§Wn5i) (5T Wisi)+(1a—05) 0 (5iWs;)* (5 Wa Wy 87) +

200 (s;WaW,55)* + (pa — 305)0y Z wiwy, + 4(13)° 05 (i W) (8, Wasi) (5 Wis;)

1=1
n n
+ 2(p3)* o5 (8, Was;) Z wiwy + 2(u3)?op (siW,s;) Z wiwy. Thus, we have
=1 I=1
B(eipnyr) = 14 14 = 20308 + (@0)° 1 Wity
90 T (Z] 1W; ])(Z’L:l wji)
pa—op 1 wl; pa—op 1 w
o T, wJZi o T 2 j=1 wi2j
N 2 (o wiwjr)? pa — 30 1 diey wzzlez'l (E.11)
T (Z] 1 'LUQ])(Z?:l wgzz) o T (Z?:1 w?j)(Z?zl wgzz)
N 4(M6) 1 wijw (O wawi) | 2(pa)® 1wy (30, wiwi)
op T (i wi)(Ciiiwh)  of T (o wih) (i wh)
2(ug)® 1 wi (3 whwa)
o T(Z] 1“)%)(2@':1 w]27,)
Finally, from (E.3) and (E.11), we have
Cov(zinT, 2jmr) = E(2Zimr2jmnr) — E(2imr)E(2j0T)
_ (na)® = 2ma05 + (05)* 1 W]
B o T (Z? 1 w%)(ZZ‘zl w?z)
M4—U§l w]zi M4—061i ng
oy T wJQ'i o T > i1 win
Oy wilel)z pa — 30§ 1 PRy wzzlw?l (E.12)

+

2
T (35 wh) (i wh) o T (Xjoyw})(Cin, w})
4(p3)? 1 wiw;i (31 waw;i) +2(M3) 1 wi (312 wiwin)
‘78 T(Z?ﬂw?j)(ZLlw]zD 08 T(Z?:l wfj)(ZZLlw?i)
2(ug)® 1 wii (34, whwa)
o T(Zg 1w2j)<2?:1w]2'i)

W W3 2 w2,

4
T )l Ty 2

since puq — 303 = 0 and 3 = 0.

When ¢;; are normally distributed, Cov(z; nrzjnr) =

2wy L2 O wawi)®
T Z?:1 w?j T (Z?:l w?j)(Z?:l w?z)
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E.3 Moment of r;,r
1 Y77 / r/ 1= n €
s IVirsisWaVar T 30 wiér

Timr = ( )= ) E.13
\/ SSW W, S w?, ( )

T
1 1
where €7 = T Z g;¢. Since & is independent across ¢ with E (EfT) = fag and w;; = 0 for
t=1
all 7, we have
1 Vi ! [/
=TV 18is;WnVr LTer Z _ 1 Wij&T
B(rinr) = (P — i) = B(" ’
V SiWnW) s Z?:l wZZj
T2
= EZT Z wzJEJT
0-0 Z] 1 UJ G#i
(E.14)
T° 1 _ 2 - _ 2
= = o EEr)” x E(Z Wi;€5r)
00 D j—1 Wi i
72 1 -
= E(&r)* x Y wiE(@Er)® =1

AN 2
a0 Zj:l Wis

j=1

E.4 Moment of Z, ,77; .1
11 1 i %
- (—37 Zt L ViisisiW, Vnt)(g—gTV,{TsingnVnT
inTTinT =
pren / SW,Ws,; / SW, W s,
_ _ E.15
B (lg% it it Yoy Wigtje arTET Y wigEr (E.15)
Z?:l ng Z?:l wzzj
T
where €7 = Zg“' Then
t=1
T n n T
1 1 1 1 1 1
E(Zz nTTq nT) n 2 E(igi ZElt wlj&‘jt)(ﬁi ZElt Wij Zajt)
Zg:lwzj oo vT = J=1 oo VT = j=1 VT t=1
T n
1 1 1 1
= n 3 (fgiz&tzww%t)
\/TZJ':NUU oo vT = j=1
) i ; (E.16)
1 1 1 1 1 1
+ s B = D e ) wiei) (5= Y e ) wij ) ejs)
\/TZJ':l wi; oo VT t=1  j=1 oo VT t=1 j=1 s#t
1 1 "L, 1
= wi; +0=—
VT Y wi ]Z_; N VT
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Appendix F Moments for products of quadratic forms

Assume that e;; are i.i.d. across ¢ and ¢ with zero mean, finite variance 0(2) > 0 and Ele;|*" <
oo for some 1 > 0. Denote us; = E(e;,) for s = 3,4. Suppose that W, is time-invariant and
its diagonal elements satisfy w;; = 0 for all <. Then, we have the following moments for

products of quadratic forms**: For i # j # [ # m,

E(Vysi8iWa Vi) = 058 Wi = 0 (F.1)
n
E(V,,sisiWo V)2 = 05 si W, Wis; = o Z wy; (F.2)
j=1
E(V,;tsis;Wan)(Vétst;-WnVnt) = Ués/iWnst;Wnsi = Jéwijwﬂ (F.3)
n
B(VogsisiWa V)" = (s = 305) 3wy + 305(5iWalW5:)°) (F.4)
j=1

E(V;08i8iWnVit)? (Vir 8585 Wi Ving)
= a0 (siWn Wy si) (s5WaWysj) + ((1a)? = 2pa0 + (05)%) (i Wsjsi Wasi)?

+ (1 — o) oA W) 2SSV W) + (11 — o) (84 Wos))* (8 W Wis;)

: (F.5)
+ 200 (W Wis5) + (1 — 305)05 Y wiws; + 4(13) 03 (5;Wnss) (8§ W) (s; W, W)
=1
n n
+2(13)200 (55 Wasi) D wiwji + 2(p3) 05 (51 Wasj) Y whwg
st =1

42The detailed derivations are given in the supplementary material.
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E(Vy5i8iWnVit)? (V5585 W Vi) (VeSS Wi Vint)

n n n n
8 2 8 8 8
= OqWjmWm; E wj + 200W; i Wim E Wi Wil + 200Wim W E WiwW;j + 200W; Wim E W Wit

=1 =1 =1 =1
4\ 4 4\ 4.2 4\ 4. 2
+ 2(pa — 00) 00 Wi WimWjiWmi + (Ha — 300)0oWinWimWmi + (4 — 300) TQW; ;W jm W,
) 25200 0. ) 19 2.2, a0 g 49 252, 0. ) )
+ (HS) O QWi Wign Wim Wi + (MS) OQWij Wi Wji Wi + (M3) O Wij Wim W jmWmj

+ (13)* oW, WjiWmj

= E(VétsingnVnt)(V,itsjs;-Wan)(V'

n

SISWo Vi) (Vi)

n

/
+Sm S WinVat)
— AoBw: s AW W W Wi - AoSw: s - AaSwiw. )
= 40gW;jWj; Wi W] + 40qWH W15 Wi Wi + 40§ Wim Wi Wi W1 + 40 GW55W 51 Wi Wing
8 8 8 8
+ 40( Wi Wjm Wi Wiy + 400 Wi W1 Wing Wi + 400 Wi Wi Wi Wi  + 400 Wim Wi wi;w;j;

8
+ 40’0 Wi Win | W5 W5

For i # j and t # g,

E(V,.,8:8Wn Vi) (V! 8i8- W, Vis) = Jétr(sis;Wn) X tr(sisiWy,) =0

E(VétsiSQWan)(VésstQWnVns) = Jétr(sis;Wn) X tr(sjs;-Wn) =0

E(V!,5i8i W Vi) 2 (V! 5585 W Vis)? = o8 (85 W, W 54)?

S oo
@
S
SN
~—
N

g,

E(V,35i8i W Vit)2 (Vi g5585 W Vis)? = 08 (8i W Wi s0) (5 WaWrsi) = a6 (O _wi) (O w?)

j=1 i=1

E(V)\5:8 Wy Vit )2 (V! 5555 W3 Vi) = 0
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Appendix G Sample countries

Table G1: The list of sample countries

Australia Austria Belgium Canada China
Finland France Germany Hungary Ireland

Italy Japan Korea Netherlands New Zealand
Poland Portugal Russia Singapore Spain

Switzerland United Kingdom United States

Denmark
Israel
Norway
Sweden

Note: These countries account for 96% of the world’s innovation activity in 2021.
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