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Navigating Workforce Transformation: AI Augmentation and Automation Risks Across 

Four Occupation Zones and Various Similarity Measures 

Ting Zhang1 and Laurie Schintler2 

Introduction 

Automation is transforming the labor market at an unprecedented pace, raising important 

questions about the future of work and the skills required to thrive in an increasingly automated 

world. For many workers, the rise of automation brings both hope and fear—concerns about job 

security, the need for upskilling, and whether their current skills will remain relevant. As Frey and 

Osborne (2017) highlight, computerized automation, often driven by rule-based, repetitive tasks, 

tends to displace workers, particularly those performing routine and predictable tasks. In contrast, 

Felten et al. (2023) emphasize AI-driven automation powered by large language models (LLMs), 

which complement human capabilities and enhance cognitive, non-routine, and creative tasks. 

Understanding these two distinct types of automation is not just academic—it’s essential for 

everyday workers who want to prepare for the future. The current wave of automation isn’t only 

about whether jobs will exist in the future, but how those jobs will change, what skills will be 

required, and who stands to benefit from these shifts. By examining the differences between FO 

(Frey & Osborne, 2017) and FRS (Felten et al., 2023) measures of automation, we can better 

identify which types of occupations are at greater risk of displacement and which are more likely 

to experience opportunities for upskilling. 

One of the key challenges in understanding the automation-driven labor market is recognizing 

how task similarities shape these outcomes. Many might assume that if two occupations share 

similar tasks, upskilling opportunities are more likely. However, as Frey and Osborne (2017) 

argue, increased task similarity often means higher automation risk, reducing the need for skill 

development in already automatable tasks. On the other hand, Felten et al. (2023) show that AI-

driven automation enhances higher-level cognitive tasks, leading to new opportunities for 

upskilling, especially in non-routine, knowledge-intensive jobs. 

For workers and policymakers alike, understanding these automation dynamics is crucial. If 

workers’ tasks are highly routine and susceptible to FO automation, they may face fewer 

upskilling opportunities as their tasks are replaced by machines. Conversely, workers in 

knowledge-intensive jobs that benefit from AI-driven automation are more likely to see their 

skillsets complement technological advancements, offering new opportunities for growth. 

Policymakers must recognize these differences to design targeted reskilling programs that address 

the specific needs of different worker types. By understanding how AI-driven automation 
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complements human capabilities, we can help ensure that workers aren’t left behind in the age of 

AI. 

Ultimately, the current automation landscape is not just about whether jobs will exist but how they 

will evolve. By examining the differences between FO and FRS automation, and the relationship 

between task similarities and upskilling, we can better understand how to support workers who 

are at risk of displacement, while helping others unlock new pathways to career growth. 

This study contributes uniquely to the existing literature by distinguishing between AI-driven 

augmentation and computerized automation risks, offering a more nuanced understanding of how 

automation impacts vary across different job zones. By introducing a four-occupation zone 

framework—AI Augmentation, Computerized Displacement, Displacement & Augmentation, and 

No Displacement No Augmentation zones—the study provides greater precision in identifying the 

distinct dynamics of automation and AI impacts. Additionally, its focus on occupation similarity 

and upskilling behavior extends the existing knowledge on labor market adaptability, emphasizing 

how task similarity influences automation risks and mobility patterns over time. Through heatmap 

and network analysis methodologies, the study offers a novel perspective on the distribution of 

automation risks, contributing to a deeper comprehension of how automation shapes workforce 

dynamics and policy implications. 

Literature Review and Hypothesis 

Computerized automation (Frey & Osborne, 2017, called FO hereafter) affects occupational 

upskilling opportunities differently than AI-powered automation enabled by large language 

models (LLMs) (Felten et al., 2023, called FRS hereafter). This paper argues that while FO 

disproportionately impacts routine jobs by devaluing skill requirements, FRS has a broader and 

more nuanced effect on skill transformation, enhancing cognitive and non-routine skills. 

Frey and Osborne (2017) classify jobs into high and low susceptibility to automation based on 

task routineness. Occupations like assembly line work or clerical tasks—highly routine and 

predictable—are highly automatable. Digital automation reduces demand for human input, 

leading to skill devaluation or obsolescence in these roles. Balsmeier and Woerter (2019) 

corroborate this by demonstrating that routine-intensive tasks experience job displacement. 

However, they also note that complementary industries can generate higher-skill demands, 

creating a dual impact depending on the sector. 

Felten et al. (2023) emphasize that AI-powered LLMs influence skill development differently. 

These models augment human cognitive capabilities by providing real-time access to knowledge, 

aiding creative and analytical tasks. For instance, knowledge workers—such as analysts or 

writers—leverage AI for synthesizing complex information, allowing upskilling in areas requiring 

critical thinking and problem-solving. Brynjolfsson, Rock, and Syverson (2021) highlight how AI 

complements intangible assets like innovation, further fostering productivity and skill growth in 

knowledge-intensive roles. In
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The divergence between FO and FRS lies in their task-specific impacts. FO predominantly targets 

predictable and routine tasks, while FRS influences knowledge-intensive and creative domains. 

This aligns with findings from Autor and Salomons (2018), who note that automation's overall 

impact depends on the degree of complementarity between technology and human labor. Unlike 

FO, which often leads to displacement, FRS facilitates skill augmentation by enabling workers to 

engage in higher-order tasks that are less susceptible to automation. 

Computerized automation and AI LLM automation present distinct pathways for skill evolution in 

the workforce. FO's primary effect is on devaluing and displacing routine tasks, whereas FRS 

enhances cognitive and creative capabilities. These differences underscore the need for tailored 

policy interventions to address sector-specific impacts and ensure equitable skill development 

opportunities. We therefore hypothesize: 

H1: Computerized automation (Frey & Osborne, 2017, called FO here after) affects 

occupation upskill opportunities different from AI LLM automation (Felten et al., 2023, 

called FRS hereafter).  

Computerized automation, as outlined by Frey and Osborne (2017), refers to rule-based, repetitive 

tasks typically automated using predefined programming and machinery. Such tasks often involve 

routine cognitive or manual activities, where the likelihood of displacement is high because the 

technology efficiently substitutes labor. By contrast, AI-driven automation, particularly involving 

LLMs, leverages machine learning to perform tasks requiring cognitive flexibility, complex 

decision-making, and natural language processing, as discussed by Felten et al. (2023). 

Occupations with high AI impact (high FRS scores) but low computerized displacement risks 

(low FO scores) are positioned for upskilling opportunities because AI complements rather than 

replaces human capabilities. Felten et al. (2023) emphasize that these jobs typically require 

problem-solving, creativity, and collaboration—skills enhanced rather than supplanted by AI. 

Examples include roles in education, healthcare, and creative industries where AI tools can 

augment human decision-making and efficiency. 

Supporting this, Bessen (2019) argues that technological advancements often lead to skill 

augmentation rather than displacement in tasks requiring adaptability. For instance, educators 

using AI-based tools like LLMs can better personalize learning experiences without being 

displaced, as AI aids rather than replaces their core responsibilities. 

In contrast, occupations with high computerized displacement risks (high FO scores) are least 

likely to upskill because these roles are predominantly routine and standardized, making them 

more vulnerable to full automation. Frey and Osborne (2017) classify such roles as those in 

manufacturing, clerical work, and other repetitive sectors. Once displaced, these roles provide 

limited pathways for skill enhancement, as displaced workers often require entirely new skillsets 

to transition to other industries. In
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Acemoglu and Restrepo (2020) highlight the "displacement effect," where technology adoption in 

routine tasks often leads to a net reduction in employment opportunities without significant 

investments in reskilling infrastructure. This reinforces the notion that high computerized 

displacement risks impede upskilling efforts. 

The divergence in upskilling potential arises from the nature of automation's impact: 

1. AI-driven automation (high FRS, low FO): Enhances cognitive capabilities, enabling 

workers to adapt and upskill in complementary roles (Felten et al., 2023; Bessen, 2019). 

2. Computerized automation (high FO): Displaces routine work without offering avenues 

for augmentation, as the tasks themselves are fully automatable (Frey & Osborne, 2017). 

The potential for upskilling depends on the interplay between the nature of tasks and the type of 

automation applied. Occupations with high AI impact but low computerized displacement risks 

are poised for skill enhancement because AI acts as a complement rather than a substitute. 

Conversely, jobs susceptible to computerized displacement are less likely to foster upskilling, as 

automation wholly replaces human labor in these contexts. These findings, grounded in robust 

studies and literature, highlight the critical role of task characteristics in shaping the future of 

work. We therefore hypothesize 

H2: Due to different nature of automation between computerized automation and AI LLM 

automation, occupations with high AI impact (high FRS measure effect) and low 

computerized displacement risks (low FO measure effect) are most likely to up skill, while 

occupations with the high computerized displacement risk (high FO measure effect) and 

least likely to upskill.  

Computerized automation typically focuses on executing well-defined, repetitive, and rule-based 

tasks with precision and consistency. This kind of automation often leads to task displacement, 

particularly for low-skill routine jobs (Frey & Osborne, 2017). In contrast, AI LLM automation, 

driven by advancements in generative models and machine learning, excels in tasks involving 

language comprehension, reasoning, and content generation. These tasks include creative 

problem-solving and cognitive augmentation, often associated with higher-skill professions 

(Felten et al., 2023). Those two different measures result in different effects on four occupation 

types: 

1. High AI Impact, Low FO Impact:  These occupations, such as marketing specialists or HR 

professionals, benefit significantly from AI-driven tools that augment productivity without fully 

replacing workers. For instance, LLMs assist in writing reports, analyzing trends, and drafting 

communication. Research suggests these roles see increased demand for upskilling in using AI 

tools to stay competitive, as noted by Felten et al. (2023), who highlight that such tasks require 

integration of AI capabilities rather than replacement. In
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2. High AI Impact, High FO Impact: Occupations like customer support or legal assistants are 

heavily impacted by both automation types. While FO automation may replace repetitive 

components, AI LLMs enhance efficiency in high-level tasks such as summarizing legal 

documents or conducting sentiment analysis (Brynjolfsson et al., 2018). Upskilling in these roles 

focuses on AI tool proficiency and developing skills that complement AI, such as ethical 

judgment and decision-making. 

3. Low AI Impact, Low FO Impact: Manual labor-intensive jobs, such as janitorial work, remain 

relatively insulated from both automation types. Upskilling opportunities in these roles are 

traditionally limited; however, AI may influence managerial aspects of such roles, like predictive 

maintenance scheduling, requiring basic digital literacy (Arntz et al., 2016). 

4. Low. AI Impact, High FO Impact: Routine-intensive clerical jobs, such as data entry, are highly 

susceptible to displacement from computerized automation but face limited AI augmentation. 

Arntz et al. (2016) argue that these roles see minimal upskilling opportunities, as FO automation 

replaces rather than enhances tasks. 

In earlier decades, computerized automation emphasized standardization and efficiency. This 

phase spurred demand for reskilling into non-routine cognitive and social-interactive tasks (Autor 

et al., 2003). Upskilling trends were uneven, with limited opportunities for routine-intensive jobs. 

We can call this computerized automation era.  

As LLMs become prevalent, occupations involving creativity and analytical thinking gain new 

upskilling avenues. Felten et al. (2023) emphasize how AI empowers professionals by handling 

tedious cognitive loads, fostering opportunities for skill diversification. Upskilling now focuses 

on AI literacy, ethical AI management, and soft skills, ensuring effective human-AI collaboration. 

We can call this AI LLM automation era.  

The distinct nature of computerized automation and AI LLM automation has created divergent 

upskilling trajectories for the four occupational types. While FO automation largely displaces 

routine work, AI LLM automation enables augmentation of high-skill roles and necessitates 

adaptation through upskilling. By understanding these trends, workers and policymakers can 

better prepare for the future of work, ensuring equitable opportunities for skill development 

across all sectors. We therefore hypothesize:  

H3: Due to different nature of automation between computerized automation and AI LLM 

automation, the four occupation types face different upskill opportunity trends over the 

years.  

In terms of the pathway for upskilling, people might often think it is easier to upskill from similar 

occupations. To explain the relationship between occupation similarities and upskill odds, we 

need to draw on concepts from the literature, focusing on detailed tasks, broad tasks, domain 

knowledge, and technical skills. Various studies highlight the distinction between how occupation In
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similarities can impact skills requirements and how these relationships might not always translate 

directly into upskilling odds. 

Detailed task similarity refers to the overlap in specific, narrowly-defined tasks that two 

occupations perform. Frey and Osborne (2017) argue that as occupations become more similar in 

their detailed tasks, the likelihood of technological substitution increases. However, this does not 

necessarily imply that there will be an equal probability of upskilling. Frey and Osborne (2017) 

argue that jobs with high task similarity are more susceptible to automation, reducing the need for 

new skill development due to the efficiency gained through technological substitution (Frey & 

Osborne, 2017).  For example, if two occupations share many similar tasks such as routine data 

processing or manual labor, automation may replace these tasks, reducing the need for workers to 

reskill. However, this does not necessarily imply that these occupations' upskilling odds will 

increase. Instead, workers may become displaced due to automation, leading to lower upskilling 

needs for tasks that are no longer required. 

Broad task similarity refers to more general categories of tasks that are performed across different 

occupations. Felten et al. (2023) highlight that occupations with higher broad task similarities 

often rely on shared foundational skills and knowledge. While this might suggest greater overlap 

in job roles, it does not always correlate with higher upskill odds. Felten et al. (2023) assert that 

broader task similarities might indicate reduced job specialization, which can limit the need for 

specific skill upgrades as automation focuses on these generalized task categories. For instance, 

occupations that rely on tasks involving customer service or administrative roles might show high 

broad task similarity. However, because these tasks tend to be less technical, technological 

advancements might not necessarily drive high upskilling needs, particularly in non-technical 

roles where automation can substitute for human labor (Felten et al., 2023). 

Domain knowledge refers to the understanding of specialized content related to a particular field, 

whereas technical skills refer to the application of specific technologies or tools. According to 

Felten et al. (2023), occupations with high domain knowledge and technical skill overlap may 

show higher upskilling odds since technical skills are often tied to the use of new technologies. 

However, Frey and Osborne (2017) point out that even when technical skills overlap, upskilling 

odds may not always follow because automation can reduce the demand for such skills in routine 

or highly standardized tasks. For example, technical roles such as software development often 

show high technical skill similarity due to overlapping requirements like coding or software 

development tools. However, if automation or artificial intelligence (AI) can perform these tasks, 

the need for workers to continuously upskill might decrease, particularly if these technical roles 

are heavily automated. Therefore, higher technical skill overlap does not necessarily lead to 

increased upskilling needs if automation displaces the technical tasks themselves (Frey & 

Osborne, 2017). 

From the detailed and broad task similarities, and considering domain knowledge and technical 

skills overlap, higher occupation similarities often suggest a potential for automation rather than In
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an increased demand for upskilling. Frey and Osborne (2017) point to automation as a driving 

force behind reduced upskilling odds, especially when similar tasks become automated. 

Meanwhile, Felten et al. (2023) underline that high technical skill similarity can persist but may 

not necessarily translate to increased upskilling, particularly in roles susceptible to automation. 

Thus, occupation similarities do not guarantee higher upskill odds in all cases. We therefore 

hypothesize: 

H4: Higher occupation similarities do not necessarily relate to higher upskill odds. 

 

Methodology 

Occupational Similarity Indices 

A critical component of the study is the development of indices of occupational similarity, which 

capture the alignment of tasks, technology skills, and knowledge domain expertise between 

occupations. The rationale for selecting these occupational attributes follows closely from 

Christenko (2022) although we add technology skills given their relevance in an 

automation/computerization context.  We use these indices to explain occupational transitions 

through regression analysis.  As a basis for creating and operationalizing the indices, we draw 

upon the U.S. Department of Labor's Standard Occupational Classification (SOC) Network and 

the O*NET database, which provides detailed information on 923 occupations and their attributes. 

We use the 2022 occupation data, scaling all indices from 0 to 1, with higher values indicating 

greater similarity between occupations. 

Cosine on Detailed Task: 

The O*NET database includes detailed text descriptions of tasks associated with each occupation. 

There are 16,850 unique task descriptions in the 2022 data. Examples include tasks such as 

"Direct or coordinate an organization's financial or budget activities to fund operations, maximize 

investments, or increase efficiency." 

We apply text mining to these descriptions to construct an index of occupational similarity.First, 

we process and clean the task descriptions by removing stop words (e.g., “the,” “and”), 

punctuation, and other irrelevant features. Then use Term Frequency-Inverse Document 

Frequency (TF-IDF) to identify words of high relevance, emphasizing terms unique to each 

occupation while minimizing the effects of common terms to multiple occupations. This approach 

is well-suited for sparse datasets like ours, where relatively few words describe each occupation. 

Cosine similarity scores are calculated for each pair of occupations based on their extracted words 

(using 1-gram tokens).  

 

Task descriptions alone do not fully capture the importance of tasks or the technical and 

knowledge-based requirements specific to each occupation. To address this issue, we construct In
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three additional indices using Manhattan distances applied to O*NET ratings of the importance of 

different occupational requirements. Manhattan distance is the sum of the absolute differences 

between the values of corresponding variables across two observations. It is a more suitable 

measure of distance than other metrics (such as Euclidean distance) when the variables are all on 

the same scale, which is the case for the O*NET ratings. Specifically, they range as they range 

from 1 (not very important) to 5 (very important). Given that Manhattan distance captures 

dissimilarity (i.e., a higher value indicates greater dissimilarity), we normalized the distances 

from 0 to 1 and flipped them such that a higher value indicates greater similarity. This also makes 

the indices compatible with the cosine similarity indices. Each index is described below: 

Normalized Broad Task Similarity: 

This index is ultimately based on O*NET importance ratings for Activities (elements), which 

capture tasks at a very coarse level. The reason we construct this index is because the detailed 

tasks do not indicate anything about their importance to different occupations. Additionally, since 

the detailed tasks do not have importance ratings, we have to go through a sequence of steps to 

convert the detailed tasks to the elements in the activities data.  

We first use the Domain Word Association (DWA) crosswalk to convert the detailed tasks to 

DWA tasks, which provide broader conceptualizations of the tasks. For example, the detailed task 

“Review and analyze legislation, laws, or public policy and recommend changes to promote or 

support interests of the general population or special groups” is converted to the DWA task 

“Analyze impact of legal or regulatory changes.” We then convert DWA to Inter-Word 

Association (IWA) tasks and ultimately to the Element name corresponding to broad activities. 

Following with the same example, the DWA task is converted to “Assess characteristics or 

impacts of regulations or policies, which in tun is converted to the Element name “Analyzing 

Data Information.” We exploit the importance ratings corresponding with the elements for the 

Manhattan distance calculation. However, since the same element can show up more than once 

for any given occupation, we first take the average of the importance scores for each of the 

occupations and elements.  

Normalized Domain Knowledge Similarity: 

This index captures the domain knowledge required for an occupation. Two occupations may 

share similar tasks but require expertise in different fields. For example, post-secondary sociology 

and psychology teachers both engage in instruction and research but require distinct disciplinary 

backgrounds. O*NET identifies 33 knowledge categories, such as administrative management, 

transportation, and sociology/anthropology. 

Normalized Technical Skill Similarity: 

This index focuses on technology skills, specifically software-related competencies, rather than 

tools. Examples include accounting software, geographic information systems, and network 

security or VPN software. In
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Heatmap Visualization of Occupational Similarity 

We use heatmaps to visualize the similarity within and between different occupational categories 

for each worker’s Year 2 versus Year 1 occupations. To generate the heatmaps, we apply the 

similarity indices to the detailed 2022 O*NET occupational data and then calculate average 

similarity values both within and across major occupational groups (2-digit codes). In the 

heatmaps (Figures 1a-1d), red represents higher similarity, while green indicates lower similarity. 

We also include descriptive statistics for each set of averages to help in drawing meaningful 

conclusions from the maps. However, it is important to note that the statistics for the cosine 

similarity index are not directly comparable to those derived from the Manhattan distance, as they 

are based on different mathematical foundations. 

Empirical Tests  

The current study leverages individual-level data derived from the U.S. Current Population 

Survey (CPS) to examine job transitions from year 1 (2009–2022) to year 2 (2010–2023). 

Specifically, the dependent variable is measured as Upskill, No Change, and Downskill, reflecting 

transitions in occupational skill levels. To measure the marginal variable effects on the dependent 

variable, we adopted binomial logit models, shown as follows: 

 

Where: 

• Upskill is the dependent variable with three outcomes: Upskilled versus De-skilled. 

• Occupation Type is a categorical variable representing the four automation-based zones. 

• Similarity includes four different similarity indices: detailed task similarity, broad task 

similarity, domain knowledge similarity, and technical skill similarity. 

• FO Index and FRS Index represent the computerized automation and AI/LLM 

automation risks, respectively. 

• Control Variables include age, gender, race, ethnicity, marital status, education, health, 

and year of migration. 

• FE denotes fixed effects (occupation, time, and location fixed effects). 

 

Quadratic form of all the four similarity measures, as well as the FRS and FO indices, are adopted 

to capture the non-learn trends. We also adopted demeaned continuous variable measure to 

control for potential unobserved heterogeneity and mitigate issues of multicollinearity and 

endogeneity, providing a more precise estimation of the relationship between different occupation 

similarity measures, automation, and upskilling outcomes. In
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The relevant data are confined to years 2009-2023 after matching occupational similarity indices 

and automation probabilities (FO, FRS). Job transitions are categorized using the Department of 

Labor’s (DOL) O*Net Job Zone framework, which groups occupations based on required 

educational attainment, related work experience, and on-the-job training (ONET Online, n.d.a). 

The study employs a binomial logit model to estimate the likelihood of job transitions between 

different Job Zones, which range from Job Zone 1 (low preparation) to Job Zone 5 (extensive 

preparation). The independent variables include occupational similarity/distance, worker 

demographics, regional effects, and year effects, along with interaction terms to capture potential 

moderating influences. 

The ONET Job Zone framework, developed by the U.S. Department of Labor, categorizes 

occupations into five groups based on the preparation required, including education, work 

experience, and on-the-job training. Job Zone 1 requires little or no preparation, such as short-

term training for roles like cashiers, while Job Zone 5 demands extensive preparation, often 

involving advanced degrees for positions such as surgeons or lawyers. Intermediate zones reflect 

increasing levels of preparation, ranging from moderate-term training (Job Zone 2) to bachelor's 

degrees and professional experience (Job Zone 4). This classification helps workers, employers, 

and policymakers assess the skills and education needed for various career paths (ONET Online, 

n.d.a). We therefore use the Job Zone level to represent upskill or downskill.  

The Occupational Information Network (ONET) provides detailed descriptors for various job 

types, including manual and technical roles, as well as the associated skills and knowledge 

required. Manual jobs typically involve physical activities and tasks that require bodily movement 

and coordination, such as operating machinery or assembling products. Technical jobs, on the 

other hand, demand specialized knowledge and skills related to specific technologies or 

methodologies, often necessitating formal education or training in fields like engineering or 

information technology. Broad skills refer to general competencies that are applicable across 

multiple occupations, including critical thinking, problem-solving, and effective communication. 

Knowledge encompasses the organized sets of principles and facts that individuals apply within 

occupational contexts, such as understanding of mathematics, engineering principles, or customer 

service practices. These classifications assist in job analysis and career exploration by outlining 

the requirements and responsibilities associated with different occupations (ONET Online, n.d.b). 

 

Findings 

Descriptive stats 

The FRS AI Displacement & Augmentation Risk Index (FRS Index) exhibits a moderate to strong 

positive correlation (r = 0.5651) with job zone upgrades, indicating that as job zones advance, the 

FRS Index increases. Conversely, the Computerization Automation and Job Displacement Risk 

Index (FO Index) shows a negative correlation (r = -0.5439) with job zone upgrades, suggesting In
itia

l D
ra

ft



Page 11 of 37 
 

that higher job zones are associated with lower FO Index values. Table X(b) illustrates this trend, 

with the FRS Index escalating alongside job zone upgrades, while the FO Index declines. 

Consequently, high job zone occupations, such as sociologists and management analysts, are 

positioned in the top-left quadrant of Figure 2, characterized by higher FRS Index values and 

lower FO Index values. In contrast, low job zone occupations, like pressers in textile and garment 

industries, cluster toward the bottom-right quadrant, exhibiting lower FRS Index values and 

higher FO Index values. Routine-task roles, including door-to-door sales workers, telemarketers, 

and procurement clerks, face elevated risks on both the FO and FRS scales, appearing around the 

top-right of Figure 2. This distribution results in a moderate negative correlation (r = -0.2824) 

between the FO and FRS indices, consistent with Hypothesis 1. Additionally, the FRS Index is 

negatively correlated (r = -0.5278) with the normalized scale for manual technical skill similarity 

levels, indicating that occupations requiring higher manual technical skills tend to have a smaller 

AI and LLM Displacement & Augmentation impacts. 

These findings align with existing literature on the impact of automation and AI on various 

occupations. For instance, studies have shown that AI adoption has reduced employment in 

certain sectors, particularly affecting lower-skilled jobs, while high-paying occupations and those 

requiring advanced degrees have been less impacted (Acemoglu et al., 2020). Additionally, 

research indicates that automation has led to job polarization, with low-wage occupations 

experiencing job losses and high-wage occupations seeing gains (Autor & Dorn, 2013). These 

patterns underscore the complex relationship between technological advancement and labor 

market dynamics. 

Table 1 Correlation Matrix between Different Skill Measures (obs=33,582) 

             | UpSkil~Z FOprob_1 FRSn~m_1 cosine~k norm_m~d norm_m~w norm_m~h 

jobzon~1 

-------------+----------------------------------------------------------------

-------- 

  UpSkill_JZ |   1.0000 

    FOprob_1 |   0.2883   1.0000 

   FRSnorm_1 |  -0.2173  -0.2824   1.0000 

cosinedeta~k |   0.0002   0.0232  -0.0108   1.0000 

norm_man_b~d |   0.0146   0.1174   0.1497   0.1434   1.0000 

norm_man_k~w |   0.0052   0.1586   0.1305   0.3798   0.2109   1.0000 

norm_man_t~h |   0.0063   0.1654  -0.5278   0.2079  -0.1320   0.0556   1.0000 

   jobzone_1 |  -0.5414  -0.5439   0.5651  -0.0474   0.0592  -0.0958  -0.3746   

1.0000 

 

Table 2 provides additional insights into the distribution of occupations across different Job 

Zones, highlighting the interplay between job preparation, skill similarity, and automation risks, 

shedding light on how workers in different Job Zones navigate the evolving labor market shaped 

by advancing technologies. 

 

As Job Zone levels increase, the likelihood of workers facing higher risks of computerization and 

automation displacement (FO Index) decreases, while the probability of affected by AI-driven In
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automation, encompassing both displacement and augmentation effects (FRS Index), increases. 

This opposite FO versus FRS index effect reflects Hypothesis 1.  

 

Moreover, each occupation similarity measure—whether based on detailed task, broad tasks, 

domain knowledge, or technical skill similarities—reveals similar concentrations of workers 

across job zones. Workers’ occupation similarity between years tends to decrease slightly in high 

Job Zones. This finding suggests that workers in jobs requiring greater preparation (associated 

with higher Job Zones) are less likely to remain in highly similar roles if they change jobs. This 

trend may reflect the higher human capital and adaptability of these workers, which could 

facilitate greater learning capacity and a propensity to pursue upward mobility or upgrade their 

roles during job transitions. 

 

Table 2 Mean FO and FRS Indices and Different Job Skill Types by Job Zone 

Job Zone FO Index FRS Index 
Detailed Task 

Similarity 
Broad Task 

Similarity 
Domain Knowledge 

Similarity 
Technical Skill 

Similarity 

1 0.7762 0.2222 0.1670 0.6230 0.6636 0.9388 

2 0.7208 0.4361 0.1679 0.5701 0.6798 0.8868 

3 0.4237 0.5108 0.1724 0.5878 0.6637 0.8746 

4 0.3009 0.7649 0.1547 0.6192 0.6610 0.7874 

5 0.0313 0.8069 0.1364 0.5367 0.6182 0.8173 

 

 

Findings based on heatmaps 

Appendix Table 1 summarizes the major occupational codes and their corresponding categories to 

aid interpretation. Generally, the major occupational categories transition from high-skill 

(cognitive) to low-skill (manual) tasks, as well as cognitive tasks to routine tasks. Cognitive tasks 

involve mental processes such as problem-solving, critical thinking, decision-making, creativity, 

and information processing, whereas manual tasks involve physical effort, dexterity, or motor 

skills to complete specific activities. 

The heatmaps show distinct patterns, indicating that occupational similarity (potential 

occupational mobility) varies depending on the factor being considered. For detailed tasks (Figure 

1a), high-skilled cognitive occupational categories (e.g., SOC code 11–27) and low-skilled 

manual occupations (e.g., 47–53) show relatively high similarity, although the lower-skilled 

categories have a narrower range of occupations. This suggests that individuals in high-skilled 

cognitive tasks may have greater occupational mobility than those in lower-skilled professions—

at least in terms of tasks.  

In Figure 1b for the broad tasks, the lowest similarities appear in the central categories, which 

involve a mix of tasks associated with a broader range of skills. Also of note is that occupational 

mobility tends to be relatively high within certain major occupational groups, such as Education, 

Instruction, and Library (25) and Food Preparation and Serving Related (35), suggesting that In
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transitioning between jobs within these sectors may be easier. When considering the importance 

of tasks (Figure 1b), we see a different pattern than 1b. This demonstrates the need to evaluate not 

only the specific tasks involved in an occupation but also their relative importance.  

The heatmap for domain knowledge (Figure 1c) shows significant similarity within major 

occupational categories but significant differences across sectors. For example, fields like science 

exhibit distinct knowledge requirements, while areas such as production and manufacturing share 

more similarities.  

When examining technical skills (Figure 1d), yet another pattern emerges. Variation is minimal 

(not fully visible on the heatmap due to the lack of normalization across minimum and maximum 

values), suggesting that a core set of technical skills is required across many occupations. While 

specialized technical skills are important in certain occupations, foundational competencies may 

be equally (if not, more) important for training purposes.  

These findings have significant implications for understanding occupational mobility in the 

context of automation. As suggested, the heatmaps help identify occupations with greater mobility 

potential—occupations where workers might transition with minimal retraining or re-education 

following job displacement. However, the types and combinations of skills, expertise, and tasks 

needed for transitions to dissimilar occupations—whether through re-skilling, down-skilling, or 

up-skilling—are inherently complex. 

Another important consideration is the interplay between occupational similarity and automation 

potential. While high similarity within or between major sectors suggests easier transitions, it 

might also make such occupations more vulnerable to automation. For instance, a sector with 

substantial internal similarity could face widespread job displacement if many occupations share 

automatable tasks. To get to this dimension of the problem, we conduct network analysis by 

bringing in information on occupational automation propensities. 

Figure 1a. Average Similarity Based on Detailed Tasks 

 

Note: Minimum=0.007579, Maximum=0.327974, Range=0.320396. Red represents higher 

similarity, while green indicates lower similarity. In
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Figure 1b. Average Similarity Based on the Importance of Broad Tasks 

 

Note: Minimum: 0.38773, Maximum: 0.843489, Range: 0.455758. Red represents higher 

similarity, while green indicates lower similarity. 

Figure 1c. Average Similarity Based on the Importance of Domain Knowledge 

 

Note: Minimum=0.279438, Maximum=0.736821, Range=0.457383. Red represents higher 

similarity, while green indicates lower similarity. 

Figure 1d. Average Similarity Based on the Importance of Technical Skills 
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Note: Minimum=0.785295, Maximum= 0.852228, Range= 0.066933. Red represents higher 

similarity, while green indicates lower similarity. 

 

The heatmaps show distinct patterns, indicating that occupational similarity (potential 

occupational mobility) varies depending on the factor being considered. For detailed tasks (Figure 

1a), high-skilled cognitive occupational categories (e.g., SOC code 11–27) and low-skilled 

manual occupations (e.g., 47–53) show relatively high similarity, although the lower-skilled 

categories have a narrower range of occupations. This suggests that individuals in high-skilled 

cognitive tasks may have greater occupational mobility than those in lower-skilled professions—

at least in terms of tasks.  

In Figure 1b for the broad tasks, the lowest similarities appear in the central categories, which 

involve a mix of tasks associated with a broader range of skills. Also of note is that occupational 

mobility tends to be relatively high within certain major occupational groups, such as Education, 

Instruction, and Library (25) and Food Preparation and Serving Related (35), suggesting that 

transitioning between jobs within these sectors may be easier. When considering the importance 

of tasks (Figure 1b), we see a different pattern than 1b. This demonstrates the need to evaluate not 

only the specific tasks involved in an occupation but also their relative importance.  

The heatmap for domain knowledge (Figure 1c) shows significant similarity within major 

occupational categories but significant differences across sectors. For example, fields like science 

exhibit distinct knowledge requirements, while areas such as production and manufacturing share 

more similarities.  

When examining technical skills (Figure 1d), yet another pattern emerges. Variation is minimal 

(not fully visible on the heatmap due to the lack of normalization across minimum and maximum 

values), suggesting that a core set of technical skills is required across many occupations. While 

specialized technical skills are important in certain occupations, foundational competencies may 

be equally (if not, more) important for training purposes.  

These findings have significant implications for understanding occupational mobility in the 

context of automation. As suggested, the heatmaps help identify occupations with greater mobility 

potential—occupations where workers might transition with minimal retraining or re-education 

following job displacement. However, the types and combinations of skills, expertise, and tasks 

needed for transitions to dissimilar occupations—whether through re-skilling, down-skilling, or 

up-skilling—are inherently complex. 

Another important consideration is the interplay between occupational similarity and automation 

potential. While high similarity within or between major sectors suggests easier transitions, it 

might also make such occupations more vulnerable to automation. For instance, a sector with 

substantial internal similarity could face widespread job displacement if many occupations share In
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automatable tasks. To get to this dimension of the problem, we conduct network analysis by 

bringing in information on occupational automation propensities. 

 

Findings based on Typology 

Similarity between FO Index and FRS Index: Both FO index (Frey and Osborne, 2017) and 

FRS Index (Felten et al., 2023) measure automation risks, focusing on how automation—whether 

through AI, machine learning, or other technologies—affects jobs. Both measures assess which 

tasks within occupations are more likely to be automated, identifying routine and cognitive tasks 

that are susceptible to automation. Both approaches categorize occupations based on automation 

risks, linking automation likelihood to the type of job and its required skills. 

Difference between FO Index and FRS Index: While FO Index primarily focused on 

displacement risk of jobs, assessing whether tasks in an occupation are automatable and thus 

likely to be replaced by machines or AI, FRS Index emphasized both displacement and 

augmentation risks, recognizing AI’s dual role in either replacing tasks or enhancing human 

productivity. While FO index links to a narrower view of skill obsolescence, emphasizing jobs 

that become redundant due to automation, FRS Index links to a broader view that recognizes both 

skill obsolescence and new skill demands, considering augmentation alongside displacement and 

emphasizing how AI can complement human labor, leading to potential productivity gains. While 

FO Index concentrated on routine, repetitive, and non-cognitive tasks that are highly susceptible 

to automation, FRS Index addresses broader scope including non-routine cognitive tasks and tasks 

that AI can augment, enhancing productivity rather than fully replacing them. 

Based on the FO and FRS index, we can divide the occupations into four different zones, show in 

Figure 2. 

1. High in FRS, but Low in FO: those are the jobs that involve significant human-centric 

tasks and cognitive skills but low automation potential. FRS measures potential 

productivity boosts from AI integration, emphasizing tasks that AI can enhance.FO evaluates 

susceptibility to automation, which these roles resist. The examples include sociologists, 

management analysts, etc. We can call them AI Augmentation zone.  

2. High in Both (High in FRS and FO): those are jobs that involve structured tasks and 

some cognitive skills but are still at risk of automation. These roles benefit from AI 

productivity boosts but also face significant automation risks. Examples are telemarketers, 

procurement clerks, door-to-door sale workers, etc. We can call them Displacement & AI 

Augmentation zone.  

3. Low in Both (Low in FRS and FO): Jobs that involve limited AI productivity benefits 

and low automation risk. These are typically physical, unstructured, or creative roles 

resistant to AI adoption. Examples include fire fighters, janitors, etc. We can call them No 

Displacement No Augmentation zone.  In
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4. Low in FRS, but High in FO: Jobs with high automation potential but minimal 

productivity gains from AI enhancement. These roles often consist of repetitive tasks where 

AI replaces humans rather than complements them. examples include pressers in textile, 

extractors, etc. We can call them computerized displacement zone.  

This categorization helps identify where AI complements human work versus fully automates 

tasks, offering insights into workforce planning and skill development. Table 3 and Figure 2 

summarize this: 

Table 3. The Four Occupation Types Based on FO & FRS Indices  

Category 
Occupation 

Type in Figure 2 
Characteristics Examples 

High FRS, 

Low FO 
AI Augmentation 

Human-centric, cognitive roles 

enhanced by AI, not automated 

Sociologists, management 

analysts, etc. 

High FRS, 

High FO 

Displacement + 

AI Augmentation 

Structured roles at risk of 

automation, enhanced by AI 

telemarketers, procurement 

clerks, door-to-door sale 

workers, etc 

Low FRS, 

Low FO 

No Displace No 

Augment 

Physical/manual roles with 

minimal AI impact 
fire fighters, janitors, etc.  

Low FRS, 

High FO 

Computer 

Displacement 

Repetitive roles likely to be 

replaced, not enhanced 

pressers in textile, 

extractors, etc.  

 

Most high Job Zone occupations, which require greater preparation, are concentrated in the AI 

Augmentation Zone (Figure 2), whereas lower Job Zone occupations are predominantly found in 

the Computerized Displacement Zone. 

Figure 2. Scatter Plot for Two Different Types of Automation Risk Scales, FO vs, FRS scales 
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Appendix Table 3 presents the top 10 occupations within each of the four labeled occupation 

types or zones, ranked using two different methods. The left side of the table lists the top 10 

occupations in each type based on the number of workers, while the right-side highlights 

occupations with the highest or lowest FRS and FO index value combinations to represent each 

occupation type. 

In the No Displacement No Augmentation zone, the largest occupations include chefs, first-line 

construction or production supervisors, packers and packagers, and electricians. In the 

Computerized Displacement zone, the largest occupations are laborers, carpenters, and 

waiters/waitresses. The Displacement and AI Augmentation zone is dominated by retail 

salespersons, customer service representatives, bookkeeping/accounting/auditing associates, and 

office clerks. Lastly, in the AI Augmentation zone, the largest occupations include first-line retail 

and office supervisors, chief executives, and general managers. 

When considering FRS and FO indices, occupations with the lowest FRS and FO indices in the 

No Displacement No Augmentation zone include cleaners, mobile home installers, and In
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upholsterers. In the Computerized Displacement zone, the lowest FRS and highest FO indices are 

associated with reinforcing iron and rebar workers, structural iron and steel workers, fence 

erectors, and industrial truck and tractor operators. The Displacement and AI Augmentation zone 

features the highest FRS and FO indices from telemarketers, procurement clerks, and credit 

authorizers/checkers/clerks. Finally, in the AI Augmentation zone, the highest FRS and lowest FO 

indices are found in sociologists, management analysts, public relations specialists, and clergy. 

Findings from Binomial Logit Models 

To address potential multicollinearity and endogeneity issues, particularly when incorporating 

interaction effects into the model, we utilized demeaned variable measures. This adjustment 

significantly reduced correlations between variables, as demonstrated in Appendix Table 2. 

 

Table 5 presents the estimates from our binomial logit model, testing Hypotheses 1 through 3. 

Model (1) models the effects from each independent variable without interaction, while Model (2) 

interacts with the four occupation types (or zones) with year. The quadratic form of all the four 

similarity measures, as well as the FRS and FO indices, all catches non-linear trends.  

As shown in Figure 3, the odds of upskilling display contrasting patterns when considering the 

FO index versus the FRS index. The odds of upskilling increase with a higher FO index but 

decrease with a rising FRS index, consistent with Hypothesis 1. The FO index primarily captures 

computerized automation effects, showing a clear rising substitution effect of labor as automation 

intensifies. In contrast, the FRS index reflects AI and LLM-driven automation, highlighting how 

increasing FRS leads to stronger impacts from both job displacement and job augmentation. The 

augmentation effect suggests that while workers may not face displacement, they could remain in 

the same job zone but experience higher productivity improvements. 

Table 5. Binomial Logit Model Estimates Testing Hypotheses 1-3 

  
No Interaction Occupation Type*Yr 

  Model (1) Model (2) 

VARIABLES UpSkill UpSkill 

2.AutomType: Computer Displacement  -0.884*** -55.009*** 

  (0.003) (0.688) 

3.AutomType: Displace & Augment  0.327*** -121.558*** 

  (0.004) (0.654) 

4.AutomType:  AI Augmentation  1.938*** -104.563*** 

  (0.003) (0.644) 

Detailed Task Similarity 3.549*** 3.542*** 

  (0.005) (0.005) 

Detailed Task Similairty^2  -11.793*** -11.785*** 

  (0.022) (0.022) 

Broad Task Similarity  0.146*** 0.155*** 

  (0.003) (0.003) 

Broad Task Similarity^2  3.656*** 3.707*** In
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  (0.016) (0.016) 

Domain Knowledge Similarity  -1.898*** -1.891*** 

  (0.005) (0.005) 

Domain Knowledge Similarity^2  -1.824*** -1.818*** 

  (0.021) (0.021) 

Technical Skill Similarity  -5.625*** -5.638*** 

  (0.007) (0.007) 

Technical Skill Similarity^2  -3.762*** -3.826*** 

  (0.031) (0.031) 

FO Index  2.230*** 2.241*** 

  (0.004) (0.004) 

FO Index^2  -2.460*** -2.462*** 

  (0.007) (0.007) 

FRS Index  -8.485*** -8.495*** 

  (0.005) (0.005) 

FRS Index^2  4.594*** 4.629*** 

  (0.012) (0.012) 

Year     -0.032*** 

    (0.000) 

2.AutomType: Computer Displacement*Year    0.027*** 

    (0.000) 

3.AutomType: Displace & Augment*Year    0.060*** 

    (0.000) 

4.AutomType:  AI Augmentation*Year    0.053*** 

    (0.000) 

2-Digit SOC Occupation FE Yes Yes 

Year FE Yes   

Location (Region) FE Yes Yes 

Constant -1.569*** 62.504*** 

  (0.005) (0.541) 

Observations 33,852 33,852 

Notes:  

1. Standard errors in parentheses 
2. *** p<0.001, ** p<0.01, * p<0.05, + p<0.10 
3. Control Variables include Age, Gender, Education Attainment, Race, Ethnicity, Marital Status, Year 

Immigrated, Health (Disability). 
4. All similarity measures, FO and FRS indices are demeaned. 

 

Figure 3. FO vs. FRS Indices and Upskill—H1 
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As expected and illustrated in Figure 4, occupations experiencing Computerized Displacement 

have the lowest odds of upskilling, while jobs in the AI Augmentation zone are most likely to 

upskill, controlling for all other factors. Compared to jobs with Low Displacement and Low 

Augmentation risks, those facing computerized displacement risks are 12% less likely to upskill, 

whereas jobs with high AI augmentation opportunities are 1.9 times more likely to upskill, 

holding all other variables constant. These results are presented in Table 5 and further reflects 

Hypothesis 2. 

Figure 4. Upskill and Occupation Types—H2 
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Figure 5 illustrates that while the odds of upskilling for workers facing Computerized 

Displacement have remained largely stable from 2010 to 2023, the odds for those facing high AI 

impacts—both AI Augmentation and Displacement—have consistently risen over time. 

Conversely, workers facing low automation risk and low AI impact have seen declining odds of 

upskilling, consistent with Hypothesis 3. As expected from the literature, FO and FRS capture 

distinct types of automation effects, and occupation similarity does not significantly enhance the 

odds of upskilling. Workers with low automation risk, low displacement, and low AI 

augmentation are less likely to experience immediate displacement, but also show declining 

upskilling odds over time. 

 

    Figure 5 Year, Occupation Automation Types, and Upskil—H3 
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As shown in Figure 6, as detailed task similarity between a worker’s two jobs increases from Year 

1 to Year 2, the odds of upskilling initially rise, peaking around the average similarity level before 

declining. This pattern is similar for technical skill similarities, though the tipping point occurs 

earlier. When detailed task and technical skills become highly similar, the odds of upskilling 

decrease. In contrast, broad task similarity initially reduces the odds of upskilling, but rises again 

as the similarity approaches the average level. Domain knowledge similarity, however, has a 

consistently negative relationship with upskilling. This is consistent with Hypothesis 4. These 

findings highlight that higher similarity in detailed tasks, domain knowledge, and technical skills 

tends to reduce upskilling, while increased similarity in broad task types can enhance upskilling 

odds. The detailed model estimates are presented in Table 6. 

Figure 6. Upskill and Occupation Similarities—H4 
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Table 6. Binomial Logit Model Estimates Testing Hypothesis 4 

  

Occupation 
Type*Detailed 

Task 

Occupation 
Type*Broad 

Task 

Occupation 
Type*Domain 

Knowledge 

Occupation 
Type*Technical 

Skills 

  Model (3) Model (4) Model (5) Model (6) 

VARIABLES UpSkill UpSkill UpSkill UpSkill 

2.AutomType: Computer Displacement  -1.604*** -0.337*** -1.179*** -0.913*** 

  (0.004) (0.003) (0.003) (0.004) 

3.AutomType: Displace & Augment  -0.354*** 0.672*** -0.030*** 0.132*** 

  (0.005) (0.004) (0.004) (0.005) 

4.AutomType:  AI Augmentation  1.830*** 2.087*** 1.994*** 1.541*** 

  (0.003) (0.003) (0.003) (0.003) 

Detailed Task Similarity 5.687*** 3.974*** 3.629*** 4.008*** In
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  (0.011) (0.005) (0.005) (0.005) 

Detailed Task Similairty^2  -31.429*** -12.333*** -14.096*** -13.296*** 

  (0.066) (0.022) (0.022) (0.022) 

Broad Task Similarity  0.256*** -0.038*** 0.400*** 0.160*** 

  (0.003) (0.009) (0.003) (0.003) 

Broad Task Similarity^2  4.025*** 9.696*** 4.041*** 3.537*** 

  (0.016) (0.053) (0.016) (0.016) 

Domain Knowledge Similarity  -1.630*** -1.963*** 9.096*** -1.795*** 

  (0.005) (0.005) (0.012) (0.005) 

Domain Knowledge Similarity^2  -0.061** -1.440*** 19.049*** -1.368*** 

  (0.021) (0.021) (0.044) (0.021) 

Technical Skill Similarity  -6.165*** -5.642*** -5.680*** -11.121*** 

  (0.007) (0.007) (0.007) (0.017) 

Technical Skill Similarity^2  -5.315*** -3.265*** -4.861*** -24.006*** 

  (0.032) (0.032) (0.032) (0.122) 

FO Index  2.491*** 2.021*** 2.312*** 2.137*** 

  (0.004) (0.004) (0.004) (0.004) 

FO Index^2  -2.708*** -2.102*** -2.804*** -2.748*** 

  (0.007) (0.007) (0.007) (0.007) 

FRS Index  -8.720*** -8.697*** -8.958*** -8.694*** 

  (0.005) (0.005) (0.005) (0.005) 

FRS Index^2  4.902*** 4.141*** 4.932*** 4.780*** 

  (0.012) (0.012) (0.012) (0.012) 

2.AutomType: Computer Displacement*Detailed Task Similarity -1.774***      

  (0.014)      

3.AutomType: Displace & Augment*Detailed Task Similarity  -4.685***      

  (0.014)      

4.AutomType:  AI Augmentation*Detailed Task Similarity  0.261***      

  (0.014)      
2.AutomType: Computer Displacement*Detailed Task 
Similarity^2 26.358***      

  (0.080)      

3.AutomType: Displace & Augment*Detailed Task Similarity ^2 29.719***      

  (0.077)      

4.AutomType:  AI Augmentation*Detailed Task Similarity ^2 10.176***      

  (0.078)      

2.AutomType: Computer Displacement*Broad Task Similarity   -1.410***     

    (0.010)     

3.AutomType: Displace & Augment*Broad Task Similarity    -1.748***     

    (0.011)     

4.AutomType:  AI Augmentation*Broad Task Similarity    0.703***     

    (0.010)     

2.AutomType: Computer Displacement*Broad Task Similarity^2   -16.890***     

    (0.060)     

3.AutomType: Displace & Augment*Broad Task Similarity ^2   -0.848***     

    (0.063)     

4.AutomType:  AI Augmentation*Broad Task Similarity ^2   -6.748***     

    (0.061)     In
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2.AutomType: Computer Displacement*Domain Knowledge 
Similarity    -12.911***   

     (0.015)   
3.AutomType: Displace & Augment*Domain Knowledge  
Similarity     -12.412***   

     (0.014)   

4.AutomType:  AI Augmentation*Domain Knowledge  Similarity     -12.868***   

     (0.014)   
2.AutomType: Computer Displacement*Domain Knowledge  
Similarity^2    -20.894***   

     (0.064)   
3.AutomType: Displace & Augment*Domain Knowledge  
Similarity ^2    -8.873***   

     (0.067)   
4.AutomType:  AI Augmentation*Domain Knowledge  Similarity 
^2    -35.054***   

     (0.062)   
2.AutomType: Computer Displacement*Technical Skill 
Similarity      2.566*** 

       (0.021) 

3.AutomType: Displace & Augment*Technical Skill Similarity       10.141*** 

       (0.021) 

4.AutomType:  AI Augmentation*Technical Skill Similarity       6.936*** 

       (0.021) 
2.AutomType: Computer Displacement*Technical Skill 
Similarity^2      5.466*** 

       (0.158) 

3.AutomType: Displace & Augment*Technical Skill Similarity ^2      31.403*** 

       (0.131) 

4.AutomType:  AI Augmentation*Technical Skill Similarity ^2      29.410*** 

       (0.134) 

2-Digit SOC Occupation FE Yes Yes Yes Yes 

Year FE Yes Yes Yes Yes 

Location (Region) FE Yes Yes Yes Yes 

Constant -1.175*** -1.819*** -1.259*** -1.124*** 

  (0.005) (0.005) (0.005) (0.005) 

Observations 33,852 33,852 33,852 33,852 

Notes:  

1. Standard errors in parentheses 
2. *** p<0.001, ** p<0.01, * p<0.05, + p<0.10 
3. Control Variables include Age, Gender, Education Attainment, Race, Ethnicity, Marital Status, Year 

Immigrated, Health (Disability). 
4. All similarity measures, FO and FRS indices are demeaned. 

 

As shown in Figures 7, 4, and 5, occupations in the AI Augmentation zone are overall the most 

likely to upskill, while those facing high computerized displacement risks are the least likely to 

upskill. However, even within AI Augmentation zones, the upskill odds decline as similarities 

become increasingly high across detailed, broad, domain knowledge, and technical skill In
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dimensions. For occupations experiencing both displacement and AI augmentation, upskilling 

odds are higher when detailed or broad task similarities increase, but decrease as domain 

knowledge and technical skill similarities rise.  For occupations with low displacement and low 

augmentation risks, upskilling opportunities increase when broad and domain knowledge 

similarities are high, but decline as detailed task and technical skill similarities increase. 

For AI Augmentation occupations, upskilling opportunities remain relatively high, but diminish 

when similarity levels become too high. For occupations facing both displacement and AI 

augmentation, the best upskilling opportunities are observed with high detailed and broad task 

similarities or low domain knowledge similarities. For occupations with low displacement and 

low augmentation risks, the best upskilling opportunities arise when broad and domain knowledge 

similarities are high or when technical skill similarity is low. For occupations with high 

computerized displacement risks, the opportunity for upskilling remains relatively limited, though 

broad task similarities help widen the upskilling window slightly. 

Figure 7 Occupation similarity, Occupation Automation Types, and Upskil 
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Summary of Findings, Discussion, and Contribution 

The study examines the relationship between job zones, automation risks, and AI-driven impacts 

on occupations. Findings reveal that high-skill, cognitively intensive jobs are less vulnerable to 

computerized automation but more prone to AI augmentation, while low-skill, manual jobs are 

more exposed to computerized automation risks. High job zone occupations, such as sociologists 

and management analysts, fall within the AI Augmentation zone, while low job zone roles, like 

textile pressers, cluster in the Computerized Displacement zone. Routine-task jobs like 

telemarketers show elevated risks on both FO (Computerized Automation) and FRS (AI-driven 

Augmentation) scales, resulting in a moderate negative correlation between FO and FRS indices. 
The results suggest distinct patterns of occupational distribution for four different occupation In
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zones based on automation risk typologies, including the AI Augmentation Zone , Displacement 

and AI Augmentation Zone, the Computerized Displacement Zone, and No Displacement No 

Augmentation Zone, highlighting differing implications for upskilling and workforce planning. 

The findings from this study contribute to the ongoing discourse on automation and AI’s impact 

on labor markets. The correlation analysis between the FRS AI Displacement & Augmentation 

Risk Index and job zone upgrades suggests a moderate to strong positive relationship, indicating 

that as job zones progress, AI-driven augmentation risks (FRS Index) increase while 

computerized automation risks (FO Index) decrease. Specifically, high-skill, cognitively intensive 

occupations such as sociologists and management analysts exhibit greater AI-driven productivity 

gains, reflecting AI’s potential for augmenting human tasks rather than fully displacing them 

(Felten et al., 2023). These results align with previous literature suggesting that automation tends 

to displace low-skill, routine-based jobs while augmenting high-skill, cognitive roles (Acemoglu 

& Restrepo, 2018; Autor & Dorn, 2013). 

The negative correlation between FO and FRS indices (r = -0.2824) found in this study confirms 

Hypothesis 1, demonstrating a distinct divergence in the impacts of computerized automation and 

AI-driven augmentation. Specifically, the FO Index focuses on routine, repetitive tasks, which are 

more susceptible to automation, while the FRS Index accounts for both displacement and 

productivity gains via AI integration (Felten et al., 2023). This distinction corroborates earlier 

research emphasizing job polarization, where high-skill, high-wage roles are less affected by 

automation and may experience productivity enhancements through AI, while low-skill, low-

wage jobs are more vulnerable to displacement (Autor & Dorn, 2013). 

Furthermore, the relationship between the FRS Index and manual technical skill similarity 

highlights that occupations requiring higher manual technical skills tend to experience reduced 

AI-driven impacts, further emphasizing the differentiation between job types (Felten et al., 2023). 

The study’s heatmap analysis reveals that occupations in high job zones with higher cognitive 

skill requirements are more likely to benefit from AI augmentation rather than being fully 

displaced, supporting prior research on the growing complementarity of AI with human labor in 

high-skill domains (Acemoglu & Restrepo, 2018). 

In contrast, occupations characterized by low job zone levels, such as textile pressers, fall within 

the Computerized Displacement zone. These jobs face greater exposure to automation risks due to 

their reliance on routine, manual tasks, which are more susceptible to AI displacement (FO Index) 

(Frey & Osborne, 2017). This pattern is consistent with studies indicating that low-skill, repetitive 

occupations tend to experience significant automation-driven job losses (Autor & Dorn, 2013). 

The findings related to the FO and FRS indices provide insights into how automation risks are 

distributed across different occupational groups or zones. While high-skill, cognitively intensive 

jobs benefit from AI-driven augmentation, low-skill, manual jobs are more exposed to automated 

displacement, further supporting the hypothesis of technological-driven job polarization (Autor & 

Dorn, 2013; Frey & Osborne, 2017). The study also highlights that while job zone similarity In
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between years tends to decrease for high-skill jobs, such workers are more likely to engage in 

occupational mobility through upskilling or re-skilling (Felten et al., 2023). 

Overall, the current findings offer a nuanced understanding of how automation and AI affect 

different occupational groups, contributing to the ongoing dialogue on the future of work, job 

displacement, and skill development (Acemoglu & Restrepo, 2018). 

This study makes several unique contributions compared to prior literature. First, it differentiates 

between computerized automation risks (FO Index) and AI-driven augmentation risks (FRS 

Index), providing a more nuanced understanding of how automation impacts vary across 

occupations. While previous studies, such as Frey and Osborne (2017) and Acemoglu & Restrepo 

(2018), primarily focused on job polarization due to routine, low-skill tasks being automated, this 

study goes beyond by emphasizing AI’s role in enhancing productivity in high-skill cognitive 

jobs, rather than just focusing on displacement. The finding that AI augmentation tends to 

complement human labor in these high-skill roles, while computerized automation predominantly 

affects low-skill, routine jobs, highlights the complex and multifaceted nature of automation 

impacts. 

Second, the introduction of a four-occupation zone framework—AI Augmentation, Computerized 

Displacement, Displacement & Augmentation, and No Displacement No Augmentation zones—

provides a clearer typology of how AI and automation risks are distributed across occupations. 

Prior research often categorized jobs into binary categories (e.g., high vs. low displacement), but 

this study’s detailed classification offers more precise insights into how different types of jobs 

experience varying levels of AI and automation impacts. By categorizing jobs based on their 

automation risk profiles, the study contributes a more comprehensive understanding of the distinct 

dynamics at play in different sectors. 

Third, the study’s exploration of occupation similarity and upskilling dynamics presents a 

significant contribution to the existing literature. Previous research has examined the relationship 

between skill mismatch and automation, but this study goes further by analyzing how 

occupational similarity affects upskilling behaviors. It finds that higher technical and domain 

knowledge similarity decreases upskilling opportunities, while broad task similarity increases 

them. These nuanced findings challenge earlier studies that treated skill similarity as a 

straightforward concept, providing a more refined understanding of how occupational similarity 

influences labor market adaptability. 

Fourth, this study’s longitudinal approach, spanning over a decade from 2010 to 2023, offers 

critical insights into how automation risks and upskilling trends evolve over time. While much of 

the existing literature provides cross-sectional snapshots of automation impacts, this study’s 

temporal analysis reveals that jobs with high AI augmentation risks are increasingly likely to 

experience upward mobility, whereas jobs facing computerized displacement risks are less likely 

to upskill. This temporal dimension enriches the understanding of how automation risks and 

occupational mobility interact in the long term. In
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Lastly, the use of heatmap and network analysis methodologies represents a methodological 

contribution that has not been fully emphasized in previous studies. By mapping task and skill 

similarity patterns across different job zones, the study provides new insights into the complex 

relationship between occupational similarity and automation risks. This approach allows for a 

deeper understanding of how these risks are distributed within and between occupational sectors, 

offering a novel perspective on the role of task similarity in predicting automation impacts. 

In summary, this study contributes to prior literature by refining and extending key concepts such 

as automation risk, AI augmentation, and occupational mobility. Its novel framework, nuanced 

analyses, and methodological advancements offer a more detailed and comprehensive 

understanding of how automation risks are distributed across job zones, providing valuable 

insights for workforce development and policy-making strategies. 

 

3. Conclusion and Implications 

This study offers significant contributions to the existing body of research on automation, AI, and 

labor market dynamics. By distinguishing between AI-driven augmentation and computerized 

automation, the study provides a more nuanced framework for understanding how automation 

impacts different job zones. The categorization of occupations into AI Augmentation, 

Computerized Displacement, Displacement & Augmentation, and No Displacement No 

Augmentation zones allows for a more detailed analysis of how automation risks are distributed 

across the workforce. The findings highlight the complex relationship between occupational 

similarity, AI-driven changes, and upskilling opportunities, contributing to a deeper 

understanding of the forces shaping labor market outcomes. Furthermore, the study’s emphasis on 

the role of AI in productivity enhancement versus job displacement expands upon existing 

research, particularly by emphasizing the dynamic interplay between AI and human capital 

development. 

The findings of this study carry important implications for policymakers, educators, and 

workforce planners. First, the differentiation between AI augmentation and computerized 

displacement provides a critical lens for identifying strategies to mitigate automation risks while 

fostering upskilling opportunities in AI-driven roles. For occupations within the AI Augmentation 

zone, targeted interventions such as training programs, reskilling initiatives, and education 

focused on enhancing cognitive and technical skills can support workers in maintaining 

productivity gains and upward mobility. For occupations in the Computerized Displacement zone, 

efforts should prioritize retraining in roles less susceptible to automation, particularly through the 

development of broader, transferable skills. 

Additionally, the findings emphasize the importance of investing in human capital and promoting 

lifelong learning to ensure that workers in high-skill, cognitively intensive roles can adapt to 

evolving labor market demands. These findings suggest that industries dependent on routine and 

low-skill tasks may face greater automation risks, highlighting the need for targeted policies 

aimed at fostering job creation and growth in high-skill, high-value areas. In
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Policymakers should focus on promoting sector-specific interventions that support automation 

resilience, particularly by encouraging diversification in industries and sectors with lower 

automation risk. The study also calls for increased support in education and training systems that 

can enhance the adaptability of workers and reduce the prevalence of job polarization. Developing 

strategies that enable workers to transition smoothly across job zones—particularly those 

involving greater AI augmentation—can foster resilience in the face of automation. 

Finally, these results underscore the necessity of integrating AI-driven labor market forecasts into 

workforce planning efforts to ensure alignment between education, training, and labor market 

needs. By understanding the nuanced impacts of automation, policymakers can better design 

interventions that enhance workforce productivity, reduce the mismatch between skills and job 

demands, and ensure a more equitable labor market. 
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Appendix  

 

Table 1. Major Occupational Codes and Categories 

Code Category 

11 Management 

13 Business and Financial Operations 

15 Computer and Mathematical 

17 Architecture and Engineering 

19 Life, Physical, and Social Science 

21 Community and Social Service 

23 Legal 

25 Education Instruction and Library 

27 Arts, Design, Entertainment, Sports, and Media 

29 Healthcare Practitioners and Technical Occupations 

31 Healthcare Support 

33 Protective Services 

35 Food Preparation and Serving Related 

37 Building and Grounds Cleaning and Maintenance 

39 Personal Care and Service 

41 Sales and Related 

43 Office and Administrative Support 

45 Farming, Fishing, and Forestry 

47 Construction and Extraction 

48 Installation, Maintenance, and Repair 

51 Production 

53 Transportation and Material Moving 

55 Military Specific 

Note: We exclude category 55 from the analysis. 

 

Table 2 Correlation matrix of modeling variables  (obs=33,852) 

             | UpSkil~Z AutomT~e CosinD~n N_Broa~n N_Know~n N_Tech~n FO_Pr1~n 

FRS_N1~n    age_1    sex_1    EDU_1    EDU_2 Hispan~1 Marita~1 Marita~2 

yrimmi~1   Race_1 diffan~1 diffan~2 

-------------+----------------------------------------------------------------

------------------------------------------------------------------------------

----------------------------- 

  UpSkill_JZ |   1.0000 

   AutomType |  -0.0793   1.0000 

CosinDtTas~n |   0.0002   0.0039   1.0000 In
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N_Broad_DM~n |   0.0146   0.0203   0.1434   1.0000 

N_Know_DMean |   0.0052   0.0867   0.3798   0.2109   1.0000 

N_Tech_DMean |   0.0063  -0.4405   0.2079  -0.1320   0.0556   1.0000 

FO_Pr1_DMean |   0.2883  -0.3033   0.0232   0.1174   0.1586   0.1654   1.0000 

FRS_N1_DMean |  -0.2173   0.7003  -0.0108   0.1497   0.1305  -0.5278  -0.2824   

1.0000 

       age_1 |  -0.0252   0.1157   0.0280   0.0316   0.0101  -0.0915  -0.1025   

0.1203   1.0000 

       sex_1 |   0.0030   0.1148   0.0286   0.0874   0.1541  -0.1035   0.1201   

0.2694   0.0065   1.0000 

       EDU_1 |  -0.0085   0.3398  -0.0206   0.0872   0.0030  -0.3407  -0.1985   

0.3902   0.0716   0.0196   1.0000 

       EDU_2 |   0.0084   0.3285  -0.0216   0.0896   0.0042  -0.3413  -0.1871   

0.3794   0.0507   0.0229   0.8994   1.0000 

  Hispanic_1 |   0.0024  -0.1240   0.0100  -0.0375  -0.0160   0.1321   0.0757  

-0.1553  -0.1386  -0.0244  -0.1752  -0.1809   1.0000 

MaritalSta~1 |   0.0202  -0.1231  -0.0082  -0.0192  -0.0032   0.1015   0.1398  

-0.1177  -0.4534   0.0328  -0.0981  -0.0839   0.0641   1.0000 

MaritalSta~2 |   0.0178  -0.1198  -0.0066  -0.0188  -0.0019   0.0998   0.1400  

-0.1162  -0.4365   0.0325  -0.1013  -0.0882   0.0664   0.9449   1.0000 

   yrimmig_1 |  -0.0083  -0.0943   0.0449  -0.0254  -0.0300   0.0898   0.0259  

-0.1283   0.0059  -0.0216  -0.0638  -0.0733   0.4387  -0.0658  -0.0624   

1.0000 

      Race_1 |  -0.0025  -0.0210   0.0140   0.0040   0.0006   0.0175   0.0261  

-0.0139  -0.0510   0.0290   0.0168   0.0148  -0.0684   0.0691   0.0725   

0.2174   1.0000 

   diffany_1 |  -0.0040  -0.0073   0.0095   0.0018   0.0030   0.0191   0.0105  

-0.0195   0.1114  -0.0134  -0.0251  -0.0249  -0.0335   0.0045   0.0083  -

0.0349  -0.0012   1.0000 

   diffany_2 |   0.0005  -0.0164   0.0012   0.0005   0.0004   0.0205   0.0086  

-0.0202   0.1099  -0.0086  -0.0257  -0.0281  -0.0296   0.0122   0.0153  -

0.0307  -0.0070   0.3312   1.0000 

Table 3. Top 10 Occupations by Counts and FRS-FO Index Values in Each Occupation Type 

Ranking 
Method 

Top 10 Largest Occupation by Occupation 
Type 

Rank 
Top 10 Highest/Lowest FRS-FO Index by Occupation Type  

Occupation 
Type 

Occupation Freq. % Cum FRS FO 
Job 

Zone 
SOC2018 SOC2018 Title In
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No Displace 
No Augment Chefs and Head Cooks 1,118 24 24 1 0.08 0.37 2 29-1081 

Cleaners of Vehicles and 
Equipment 

No Displace 
No Augment 

First-Line Supervisors 
of Constructio.. 627 14 38 2 0.11 0.18 2 21-2011 

Manufactured Building and 
Mobile Home Installers 

No Displace 
No Augment 

First-Line Supervisors 
of Production .. 476 10 48 3 0.12 0.39 2 29-1031 Upholsterers 

No Displace 
No Augment 

Packers and Packagers, 
Hand 372 8 56 4 0.15 0.17 3 17-2141 Firefighters 

No Displace 
No Augment Electricians 294 6 62 5 0.17 0.38 2 41-9031 Packers and Packagers, Hand 
No Displace 
No Augment Childcare Workers 291 6 69 6 0.19 0.10 2 51-1011 

Electrical Power-Line 
Installers and Repairers 

No Displace 
No Augment 

Farmers, Ranchers, and 
Other Agricult.. 245 5 74 7 0.21 0.41 2 29-1122 

Structural Metal Fabricators 
and Fitters 

No Displace 
No Augment 

First-Line Supervisors 
of Mechanics, .. 238 5 79 8 0.21 0.49 2 49-1011 

Telecommunications Line 
Installers and Repairers 

No Displace 
No Augment 

Cleaners of Vehicles 
and Equipment 170 4 83 9 0.22 0.41 1 29-1181 

Graders and Sorters, 
Agricultural Products 

No Displace 
No Augment 

Hairdressers, 
Hairstylists, and 
Cosme.. 109 2 85 10 0.24 0.39 3 33-1021 

Elevator and Escalator 
Installers and Repairers 

Computer 
Displace 

Laborers and Freight, 
Stock, and Mate.. 1,072 9 9 1 0.02 0.90 2 29-2081 

Reinforcing Iron and Rebar 
Workers 

Computer 
Displacet Construction Laborers 1,047 9 18 2 0.04 0.83 2 39-2021 

Structural Iron and Steel 
Workers 

Computer 
Displace Carpenters 766 6 24 3 0.05 0.92 2 37-2021 Fence Erectors 
Computer 
Displace Waiters and Waitresses 726 6 30 4 0.07 0.93 2 51-4041 

Industrial Truck and Tractor 
Operators 

Computer 
Displace 

Food Preparation 
Workers 632 5 35 5 0.07 0.84 1 51-6021 

Plasterers and Stucco 
Masons 

Computer 
Displace 

Inspectors, Testers, 
Sorters, Sampler.. 446 4 39 6 0.08 0.90 2 49-2091 Roofers 

Computer 
Displace 

Shipping, Receiving, 
and Inventory Cl.. 402 3 43 7 0.08 0.77 1 35-3041 Dishwashers 

Computer 
Displace 

First-Line Supervisors 
of Food Prepar.. 394 3 46 8 0.09 0.89 2 49-3031 

Rail-Track Laying and 
Maintenance Equipment 
Operators 

Computer 
Displace 

Maids and 
Housekeeping Cleaners 365 3 49 9 0.09 0.85 2 51-2011 

Laborers and Freight, Stock, 
and Material Movers, Hand 

Computer 
Displace 

Automotive Service 
Technicians and Me.. 353 3 52 10 0.10 0.94 2 35-1012 Tire Builders 

Displace & 
Augment Retail Salespersons 1,442 14 14 1 1.00 0.99 2 29-1011 Telemarketers 
Displace & 
Augment 

Customer Service 
Representatives 1,373 13 27 2 0.91 0.98 2 29-1131 Procurement Clerks 

Displace & 
Augment 

Bookkeeping, 
Accounting, and 
Auditing.. 841 8 35 3 0.90 0.97 2 2601198 

Credit Authorizers, Checkers, 
and Clerks 

Displace & 
Augment Office Clerks, General 790 8 43 4 0.89 0.94 1 29-1041 

Door-to-Door Sales Workers, 
News & Street Vendors, 
Related Workers In
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Displace & 
Augment 

Receptionists and 
Information Clerks 745 7 50 5 0.89 0.77 4 19-4021 

Purchasing Agents, Except 
Wholesale, Retail, & Farm 
Products 

Displace & 
Augment 

Accountants and 
Auditors 680 7 56 6 0.88 0.90 3 15-2011 

Human Resources Assistants, 
Except Payroll & 
Timekeeping 

Displace & 
Augment Insurance Sales Agents 293 3 59 7 0.87 0.94 3 47-2111 

Interviewers, Except 
Eligibility and Loan 

Displace & 
Augment 

Property, Real Estate, 
and Community .. 276 3 62 8 0.87 0.92 4 13-2061 Insurance Sales Agents 

Displace & 
Augment 

Personal Financial 
Advisors 275 3 65 9 0.87 0.84 4 13-1011 

Proofreaders and Copy 
Markers 

Displace & 
Augment 

Billing and Posting 
Clerks 257 2 67 10 0.87 0.70 3 33-3021 

Eligibility Interviewers, 
Government Programs 

AI Augment 
First-Line Supervisors 
of Retail Sale.. 2,217 21 21 1 0.95 0.06 5 43-2011 Sociologists 

AI Augment 
First-Line Supervisors 
of Office and .. 981 9 30 2 0.90 0.13 4 47-2073 Management Analysts 

AI Augment Chief Executives 868 8 38 3 0.89 0.18 4 13-2031 Public Relations Specialists 

AI Augment 
General and Operations 
Managers 793 7 45 4 0.88 0.01 5 41-2022 Clergy 

AI Augment Construction Managers 733 7 52 5 0.88 0.04 5 43-3021 Lawyers 

AI Augment Food Service Managers 708 7 58 6 0.86 0.03 4 51-7042 Purchasing Managers 

AI Augment Financial Managers 657 6 65 7 0.85 0.00 5 43-4141 Dietitians and Nutritionists 

AI Augment Management Analysts 458 4 69 8 0.85 0.01 5 25-4031 
Speech-Language 
Pathologists 

AI Augment 
Medical and Health 
Services Managers 335 3 72 9 0.85 0.03 4 43-3051 

Directors, Religious Activities 
and Education 

AI Augment 

Computer & 
Information Systems 
Mana.. 241 2 74 10 0.85 0.17 4 49-9091 Financial Examiners 
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