Industrial Policies and Innovation: Evidence from the Global Automobile Industry

Panle Jia Barwick Hyuk-soo Kwon

Shanjun Li

UW-Madison & NBER U Chicago Harris Cornell & NBER

Yucheng Wang

Nahim Bin Zahur

 $\mathsf{Cornell} \to \mathsf{U} \; \mathsf{Sydney}$

Queen's

ASSA 2025 Industrial Policy Jan, 2025

Introduction

- Research question: how industrial policies (IPs) aimed at promoting electric vehicles (EVs), affect green innovation in the automobile sector.
 - ▶ IP: (1) State action (2) Shift the composition of economic activity (targeting specific industry)
- We construct a unique database of global IPs and patents for the automobile industry.
- Key takeaway:
 - Green transition global automobile industry.
 - ▶ More EV IPs are associated with ↑ in the number of EV patents.
 - Firms with more EV experience innovate more rapidly, \longrightarrow path dependence.

Introduction

- Research question: how industrial policies (IPs) aimed at promoting electric vehicles (EVs), affect green innovation in the automobile sector.
 - ▶ IP: (1) State action (2) Shift the composition of economic activity (targeting specific industry)
- We construct a unique database of global IPs and patents for the automobile industry.
- Key takeaway:
 - Green transition global automobile industry.
 - ▶ More EV IPs are associated with ↑ in the number of EV patents.
 - Firms with more EV experience innovate more rapidly, \longrightarrow path dependence.

Introduction

- Research question: how industrial policies (IPs) aimed at promoting electric vehicles (EVs), affect green innovation in the automobile sector.
 - ▶ IP: (1) State action (2) Shift the composition of economic activity (targeting specific industry)
- We construct a unique database of global IPs and patents for the automobile industry.

• Key takeaway:

- Green transition global automobile industry.
- ▶ More EV IPs are associated with ↑ in the number of EV patents.
- Firms with more EV experience innovate more rapidly, \longrightarrow path dependence.

2 Data

3 Descriptive Patterns

4 Empirical Analysis: Impact of Industrial Policies on Innovation

5 Takeaways

Measuring IP 1: Using Global Trade Alert Database

• Natural Language Processing techniques to identify IPs (Juhász et al. 2023)

- 1. Manually label a training dataset to either IP or non-IP.
- 2. Train a supervised ML model and apply it to the entire dataset.
- 3,385 unique automobile IPs.
- Classify IPs into three fuel types based on the six-digit Harmonized System (HS) code of *Affected Products*:
 - 1. EV: related to electric vehicles, e.g., "electrical", "lithium," and "batteries."
 - 2. GV: related to internal combustion engine vehicles.
 - 3. General: related to both, e.g., brakes, safety airbags, and wheels.

Measuring IP 1: Using Global Trade Alert Database

• Natural Language Processing techniques to identify IPs (Juhász et al. 2023)

- 1. Manually label a training dataset to either IP or non-IP.
- 2. Train a supervised ML model and apply it to the entire dataset.

• 3,385 unique automobile IPs.

- Classify IPs into three fuel types based on the six-digit Harmonized System (HS) code of *Affected Products*:
 - 1. EV: related to electric vehicles, e.g., "electrical", "lithium," and "batteries."
 - 2. GV: related to internal combustion engine vehicles.
 - 3. General: related to both, e.g., brakes, safety airbags, and wheels.

Measuring IP 1: Using Global Trade Alert Database

- Natural Language Processing techniques to identify IPs (Juhász et al. 2023)
 - 1. Manually label a training dataset to either IP or non-IP.
 - 2. Train a supervised ML model and apply it to the entire dataset.
- 3,385 unique automobile IPs.
- Classify IPs into three fuel types based on the six-digit Harmonized System (HS) code of *Affected Products*:
 - 1. EV: related to electric vehicles, e.g., "electrical", "lithium," and "batteries."
 - 2. GV: related to internal combustion engine vehicles.
 - 3. General: related to both, e.g., brakes, safety airbags, and wheels.

Measuring IP 2: Using Country-by-Model EV Subsidy

- Compile a database of model-level EV subsidies and supply chain data for 13 countries from 2013 to 2020 (account for 95% of global EV sales).
 - E.g. Subsidy for Tesla Model 3 in the US in 2018 vs in China in 2020.

• Calculating the total subsidy exposure to firm-level (92 automakers and 45 battery cell suppliers):

$$\ln TotalSubsidy_{it} = \ln\left(\sum_{m} Sales_{imgt} \cdot Subsidy_{imgt}\right),$$

Firm *i*, model *m*, sales in country *g*, year *t*

Measuring IP 2: Using Country-by-Model EV Subsidy

- Compile a database of model-level EV subsidies and supply chain data for 13 countries from 2013 to 2020 (account for 95% of global EV sales).
 - E.g. Subsidy for Tesla Model 3 in the US in 2018 vs in China in 2020.
- Calculating the total subsidy exposure to firm-level (92 automakers and 45 battery cell suppliers):

$$\ln TotalSubsidy_{it} = \ln\left(\sum_{m} Sales_{imgt} \cdot Subsidy_{imgt}\right),$$

Firm i, model m, sales in country g, year t

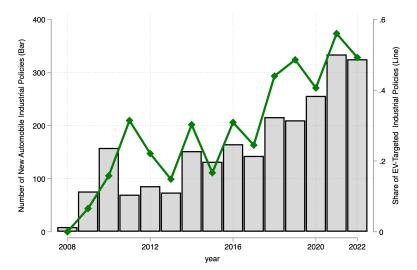
• Patent data from the European Patent Office (EPO)'s PATSTAT database.

• Classify fuel type of each patent filing record to *EV/GV/Both* based on International Patent Codes (IPC).

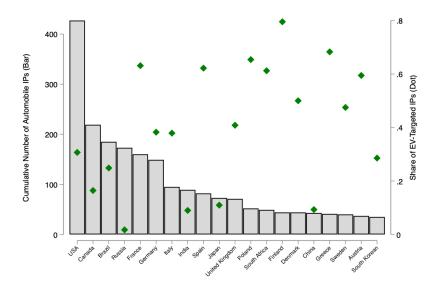
• Aggregate count of patent to country-level data and firm-level data (Aghion et al., 2016).

- Patent data from the European Patent Office (EPO)'s PATSTAT database.
- Classify fuel type of each patent filing record to *EV/GV/Both* based on International Patent Codes (IPC).
- Aggregate count of patent to country-level data and firm-level data (Aghion et al., 2016).

- Patent data from the European Patent Office (EPO)'s PATSTAT database.
- Classify fuel type of each patent filing record to *EV/GV/Both* based on International Patent Codes (IPC).
- Aggregate count of patent to country-level data and firm-level data (Aghion et al., 2016).

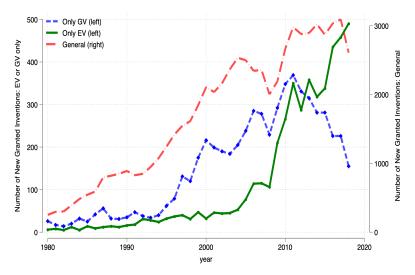

Oescriptive Patterns

Empirical Analysis: Impact of Industrial Policies on Innovation


5 Takeaway

The Number of New IPs in the Automobile Sector

 \bullet IPs targeting EVs have surged from almost non-existent in 2008 to 50% of IPs by 2022.



Top 20 Countries in Automobile-Related Industrial Policies

Global Trend of Newly Granted Inventions: 1980-2018

 $\bullet\,$ EV-specific inventions have rapidly increased, surpassing GV inventions by 2020

3 Descriptive Patterns

4 Empirical Analysis: Impact of Industrial Policies on Innovation

Regression Analysis and Robustness

• County-IPC-level analysis:

$$\begin{aligned} \ln(Y_{clt}) &= \alpha_1 IP_{c,k,t-1} + \alpha_2 \ln(Cum. Patent_{c,l,t-1}) \\ &+ \mathbf{X}_{clt} \Gamma + \tau_c + \tau_l + \tau_t + u_{clt}, \end{aligned}$$

- ▶ Y_{clt} count of new EV patent, $IP_{c,k,t-1}$ cumulative of EV IP
- Poisson pseudo maximum likelihood (PPML) with a rich set of fixed effects
- Alternative IP or patents measures.
- Placebo:
 - 1. Effects of EV IP on GV Patents.
 - 2. Effects of GV IP on EV Patents.

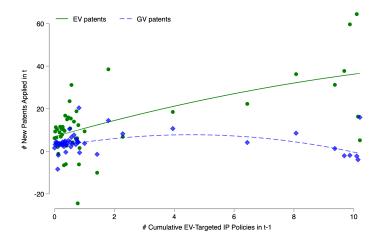
Regression Analysis and Robustness

• County-IPC-level analysis:

$$\begin{aligned} \ln(Y_{clt}) &= \alpha_1 IP_{c,k,t-1} + \alpha_2 \ln(Cum. Patent_{c,l,t-1}) \\ &+ \mathbf{X}_{clt} \Gamma + \tau_c + \tau_l + \tau_t + u_{clt}, \end{aligned}$$

- ▶ Y_{clt} count of new EV patent, $IP_{c,k,t-1}$ cumulative of EV IP
- Poisson pseudo maximum likelihood (PPML) with a rich set of fixed effects
- Alternative IP or patents measures.
- Placebo:
 - 1. Effects of EV IP on GV Patents
 - 2. Effects of GV IP on EV Patents.

Regression Analysis and Robustness

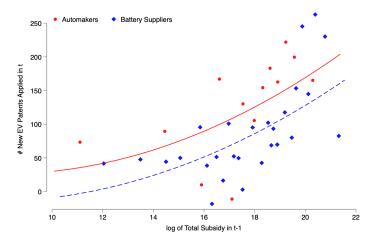

• County-IPC-level analysis:

$$\begin{aligned} \ln(Y_{clt}) &= \alpha_1 IP_{c,k,t-1} + \alpha_2 \ln(Cum. Patent_{c,l,t-1}) \\ &+ \mathbf{X}_{clt} \Gamma + \tau_c + \tau_l + \tau_t + u_{clt}, \end{aligned}$$

- ▶ Y_{clt} count of new EV patent, $IP_{c,k,t-1}$ cumulative of EV IP
- Poisson pseudo maximum likelihood (PPML) with a rich set of fixed effects
- Alternative IP or patents measures.
- Placebo:
 - 1. Effects of EV IP on GV Patents.
 - 2. Effects of GV IP on EV Patents.

Patents Applied against Cumulative EV IPs: Country-Level

• A one-standard-deviation \uparrow in five-year cumulative EV-targeted IPs is associated with a 4% \uparrow in new EV patent applications


• Firm level results

 $\ln(PAT_{it}) = a_1 \ln TotalSubsidy_{i,t-1} + a_2 \ln(Stock_{c,t-1}^{ev}) + a_3 \ln(Stock_{c,t-1}^{gv}) + \tau_i + \tau_t + \varepsilon_{it}$

- Using demand-model-simulated sales and incentives as (IO-style) IV
- Identification: "shift-share" variations,
 - 1. Simulated sales: pre-determine sales and dealership network, brand loyalty, home bias, etc. \implies "Share"
 - 2. Model-level subsidy: government policies, typically attribute-based \implies "Shift"

EV Patents Applied against EV Subsidy Received: Firm-Level

• A 10% \uparrow in EV financial incentives received leads to a similar 4% \uparrow in EV innovations

Economics of Scale and Path Dependency

• Innovate more in EV technologies if:

(1) having more EV patents accumulation/stock;

Country-level Analysis

	(1)
Lag 5-year Cum. EV IP	0.045**
	(0.022)
Lag log(1+Cum. granted P)	0.436***
	(0.037)
Environmental Policy Stringency	0.063*
	(0.033)

Economics of Scale and Path Dependency

• Innovate more in EV technologies if:

- (1) having more EV patents accumulation/stock;
- (2) having less GV patents stock.

• Country-level Analysis

• Firm-level Analysis

	(1)		(1)
Lag 5-year Cum. EV IP	0.045** (0.022)	Lag In(1+Total Subsidies)	0.040*** (0.008)
Lag log(1+Cum. granted P)	0.436 ^{***} (0.037)		[0.014]
Environmental Policy Stringency	0.063 [*]	Lag Knowledge stock, EV	0.525*** (0.100)
	(0.033)	Lag Knowledge stock, GV	-0.322*** (0.101)

- We quantitatively study EV-targeted industrial policies and EV technology innovation in the global automobile market.
- We construct a unique database of global IPs and patents.

• Key findings:

- ► Increasing global trend towards greater usage of EV IPs and more EV patents.
- More EV IPs are associated with \uparrow in the number of EV patents.
- ▶ Firms with more EV experience innovate more rapidly, → path dependence.

yuchengwangecon@gmail.com