Existential Risk and Growth

Philip Trammell and Leopold Aschenbrenner

ASSA Annual Meeting
Policy Implications of Transformative AI
3 Jan 2025

An <u>existential catastrophe</u> \equiv a catastrophe that kills everyone or, similarly, permanently sets global welfare to \sim 0.

An <u>existential catastrophe</u> \equiv a catastrophe that kills everyone or, similarly, permanently sets global welfare to \sim 0.

Prominent claims: (Parfit, 1984; Sagan, 1997; Ord, 2020; etc.)

- Technological progress has historically increased the risk of existential catastrophe, esp. via nuclear weapons, biotechnology, climate change, and AI.
- We are thus living through a once-in-history "time of perils", during which civilization will secure stability or perish.
- Accelerating tech progress today could increase the risk further.
 Concern for the long term should motivate slower technological development.

An <u>existential catastrophe</u> \equiv a catastrophe that kills everyone or, similarly, permanently sets global welfare to \sim 0.

Prominent claims: (Parfit, 1984; Sagan, 1997; Ord, 2020; etc.)

- Technological progress has historically increased the risk of existential catastrophe, esp. via nuclear weapons, biotechnology, climate change, and AI.
- We are thus living through a once-in-history "time of perils", during which civilization will secure stability or perish.
- Accelerating tech progress today could increase the risk further.
 Concern for the long term should motivate slower technological development.

This paper: We have good reasons to believe we are living through a "time of perils". A claim defended surprisingly little, for its importance! (Thorstad 2022, 2023)

An <u>existential catastrophe</u> \equiv a catastrophe that kills everyone or, similarly, permanently sets global welfare to \sim 0.

Prominent claims: (Parfit, 1984; Sagan, 1997; Ord, 2020; etc.)

- Technological progress has historically increased the risk of existential catastrophe, esp. via nuclear weapons, biotechnology, climate change, and AI.
- We are thus living through a once-in-history "time of perils", during which civilization will secure stability or perish.
- Accelerating tech progress today could increase the risk further.
 Concern for the long term should motivate slower technological development.

This paper: We have good reasons to believe we are living through a "time of perils". A claim defended surprisingly little, for its importance! (Thorstad 2022, 2023)

But if so, accelerating tech progress would likely *decrease* or *not affect* cumulative existential risk if optimally regulated, even by a planner with little concern for long-term survival.

Risk and survival

Time-varying hazard rate δ_t represents the flow probability of existential catastrophe.

Risk and survival

Time-varying hazard rate δ_t represents the flow probability of existential catastrophe.

Probability of survival to date t:

$$S_t \equiv e^{-\int_0^t \delta_s ds}.$$

Risk and survival

Time-varying hazard rate δ_t represents the flow probability of existential catastrophe.

Probability of survival to date t:

$$S_t \equiv e^{-\int_0^t \delta_s ds}.$$

$$\{\delta_t\}_{t=0}^{\infty} \equiv \underline{\text{the hazard curve}}$$

$$X \equiv \int_0^\infty \delta_t dt \equiv \underline{\text{cumulative risk}}$$

 $S_{\infty}=e^{-X}\equiv$ the probability of survival: decreases in X , and >0 iff X is finite

Suppose δ_t just depends on the tech level: $\delta_t = \delta(A_t) > 0$.

(Knowing how to make nukes, or deter their use; viruses, or vaccines; etc.)

Path of A is exogenous, has a positive derivative, and $\lim_{t\to\infty}A_t=\infty$.

Suppose δ_t just depends on the tech level: $\delta_t = \delta(A_t) > 0$. (Knowing how to make nukes, or deter their use; viruses, or vaccines; etc.) Path of A is exogenous, has a positive derivative, and $\lim_{t\to\infty} A_t = \infty$.

How does acceleration affect cumulative risk?

Change of variables:

$$X = \int_0^\infty \delta(A_t) dt = \int_{A_0}^\infty \delta(A) \left(\frac{dA}{dt}\right)^{-1} dA = \int_{A_0}^\infty \delta(A) \dot{A}_A^{-1} dA,$$

where \dot{A}_A denotes the value of \dot{A} when the technology level equals the subscripted A.

Suppose δ_t just depends on the tech level: $\delta_t=\delta(A_t)>0$. (Knowing how to make nukes, or deter their use; viruses, or vaccines; etc.) Path of A is exogenous, has a positive derivative, and $\lim_{t\to\infty}A_t=\infty$.

How does acceleration affect cumulative risk?

Change of variables:

$$X = \int_0^\infty \delta(A_t) dt = \int_{A_0}^\infty \delta(A) \left(\frac{dA}{dt}\right)^{-1} dA = \int_{A_0}^\infty \delta(A) \dot{A}_A^{-1} dA,$$

where \dot{A}_A denotes the value of \dot{A} when the technology level equals the subscripted A.

Temporary level effects ($\uparrow \dot{A}$ now, $\downarrow \dot{A}$ later): ambiguous.

Suppose δ_t just depends on the tech level: $\delta_t = \delta(A_t) > 0$. (Knowing how to make nukes, or deter their use; viruses, or vaccines; etc.) Path of A is exogenous, has a positive derivative, and $\lim_{t\to\infty} A_t = \infty$.

How does acceleration affect cumulative risk?

Change of variables:

$$X = \int_0^\infty \delta(A_t) dt = \int_{A_0}^\infty \delta(A) \left(\frac{dA}{dt}\right)^{-1} dA = \int_{A_0}^\infty \delta(A) \dot{A}_A^{-1} dA,$$

where \dot{A}_A denotes the value of \dot{A} when the technology level equals the subscripted A.

Temporary level effects ($\uparrow \dot{A}$ now, $\downarrow \dot{A}$ later): ambiguous.

Temporary accelerations ($\uparrow \dot{A}$ for a bounded range of A-levels): lower X ...unless $X = \infty$.

Suppose δ_t just depends on the tech level: $\delta_t = \delta(A_t) > 0$.

(Knowing how to make nukes, or deter their use; viruses, or vaccines; etc.)

Path of A is exogenous, has a positive derivative, and $\lim_{t\to\infty} A_t = \infty$.

How does acceleration affect cumulative risk?

Change of variables:

$$X = \int_0^\infty \delta(A_t) dt = \int_{A_0}^\infty \delta(A) \left(\frac{dA}{dt}\right)^{-1} dA = \int_{A_0}^\infty \delta(A) \dot{A}_A^{-1} dA,$$

where \dot{A}_A denotes the value of \dot{A} when the technology level equals the subscripted A.

Temporary level effects ($\uparrow \dot{A}$ now, $\downarrow \dot{A}$ later): ambiguous.

Temporary accelerations ($\uparrow \dot{A}$ for a bounded range of A-levels): lower X ...unless $X = \infty$.

Permanent accelerations ($\uparrow \dot{A}$ for all A-levels): lower X ...perhaps even if $X = \infty$.

Suppose δ_t just depends on the tech level: $\delta_t = \delta(A_t) > 0$.

(Knowing how to make nukes, or deter their use; viruses, or vaccines; etc.)

Path of A is exogenous, has a positive derivative, and $\lim_{t\to\infty} A_t = \infty$.

How does acceleration affect cumulative risk?

Change of variables:

$$X = \int_0^\infty \delta(A_t) dt = \int_{A_0}^\infty \delta(A) \left(\frac{dA}{dt}\right)^{-1} dA = \int_{A_0}^\infty \delta(A) \dot{A}_A^{-1} dA,$$

where \dot{A}_A denotes the value of \dot{A} when the technology level equals the subscripted A.

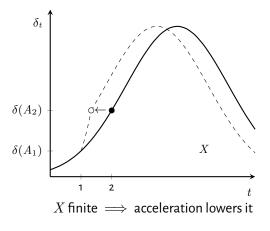
Temporary level effects ($\uparrow \dot{A}$ now, $\downarrow \dot{A}$ later): ambiguous.

Temporary accelerations ($\uparrow \dot{A}$ for a bounded range of A-levels): lower X ...unless $X = \infty$.

Permanent accelerations ($\uparrow A$ for all A-levels): lower X ...perhaps even if $X = \infty$.

Permanent stagnation yields constant δ , so $S_{\infty} = 0$.

Illustration (temporary acceleration from A_1 to A_2)



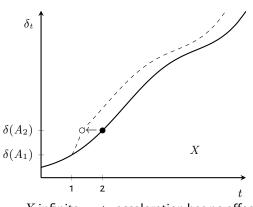
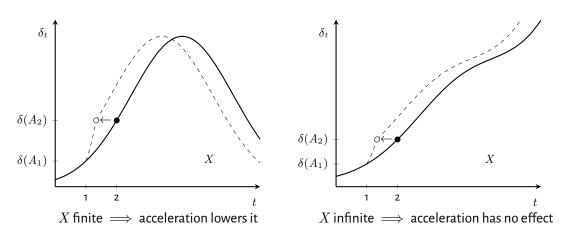
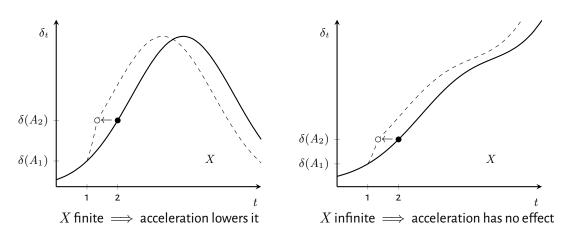


Illustration (temporary acceleration from A_1 to A_2)



Illusion of risky growth? $\uparrow A$ may $\uparrow \delta$ in the short term. Still, cannot raise X (lower S_{∞}).

Illustration (temporary acceleration from A_1 to A_2)



Illusion of risky growth? $\uparrow A$ may $\uparrow \delta$ in the short term. Still, cannot raise X (lower S_{∞}). **"Longtermism" and x-risk?** Concern for the *short term* can motivate slowing tech.

Exogenous policy

Let x_t denote a policy variable, and suppose $\delta_t = \delta(A_t, x_t)$.

Exogenous policy

Let x_t denote a policy variable, and suppose $\delta_t = \delta(A_t, x_t)$.

If the policy path $\{x_t\}$ is <u>exogenous</u>, the effect of acceleration on X is ambiguous. Example where acceleration increases X:

$$\delta_t = A_t x_t, \qquad x_t = (1+t)^{-2}.$$

Consider accelerating the tech path from

$$A_t = (1+t)^k$$
 to $(1+t)^{\tilde{k}}, k < 1 < \tilde{k}.$

Exogenous policy

Let x_t denote a policy variable, and suppose $\delta_t = \delta(A_t, x_t)$.

If the policy path $\{x_t\}$ is <u>exogenous</u>, the effect of acceleration on X is ambiguous. Example where acceleration increases X:

$$\delta_t = A_t x_t, \qquad x_t = (1+t)^{-2}.$$

Consider accelerating the tech path from

$$A_t = (1+t)^k$$
 to $(1+t)^{\tilde{k}}$, $k < 1 < \tilde{k}$.

X rises from finite (k-2<-1) to infinite $(\tilde{k}-2>-1)$:

$$\int_0^\infty (1+t)^{k-2} dt \quad \text{to} \quad \int_0^\infty (1+t)^{\tilde{k}-2} dt.$$

But "optimal" policy *strengthens* the tendency for acceleration to lower X, **in 2 ways**.

But "optimal" policy *strengthens* the tendency for acceleration to lower X, **in 2 ways**.

Model: $\delta_t = \delta(A_t, x_t)$. A_t grows exogenously as before; $\delta(\cdot)$ decreases in $x_t \in [0, 1]$. Consumption is $C_t = A_t x_t$:

- \bullet Technology A is indexed by potential consumption.
- Policy *x* is indexed by the fraction of consumption sacrificed to lower risk.

But "optimal" policy strengthens the tendency for acceleration to lower X, in 2 ways.

Model: $\delta_t = \delta(A_t, x_t)$. A_t grows exogenously as before; $\delta(\cdot)$ decreases in $x_t \in [0, 1]$. Consumption is $C_t = A_t x_t$:

- \bullet Technology A is indexed by potential consumption.
- Policy x is indexed by the fraction of consumption sacrificed to lower risk.

The optimal x path maximizes, at each t, the expected continuation value:

$$v_t \equiv \int_t^\infty e^{-\rho(s-t)} \frac{S_s}{S_t} u(C_s) ds.$$

But "optimal" policy *strengthens* the tendency for acceleration to lower X, **in 2 ways**.

Model: $\delta_t = \delta(A_t, x_t)$. A_t grows exogenously as before; $\delta(\cdot)$ decreases in $x_t \in [0, 1]$. Consumption is $C_t = A_t x_t$:

- Technology A is indexed by potential consumption.
- Policy x is indexed by the fraction of consumption sacrificed to lower risk.

The optimal x path maximizes, at each t, the expected continuation value:

$$v_t \equiv \int_t^\infty e^{-\rho(s-t)} \frac{S_s}{S_t} u(C_s) ds.$$

1 Even if $\delta(\cdot)$ increases in A fixing x, $\uparrow A \Longrightarrow \uparrow v, \downarrow u' \Longrightarrow \downarrow x$. ("Kuznets curve.") This may make X finite, and thus lowerable.

But "optimal" policy strengthens the tendency for acceleration to lower X, in 2 ways.

Model: $\delta_t = \delta(A_t, x_t)$. A_t grows exogenously as before; $\delta(\cdot)$ decreases in $x_t \in [0, 1]$. Consumption is $C_t = A_t x_t$:

- \bullet Technology A is indexed by potential consumption.
- Policy *x* is indexed by the fraction of consumption sacrificed to lower risk.

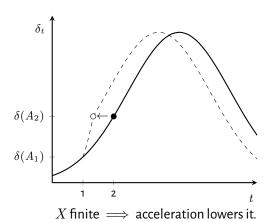
The optimal x path maximizes, at each t, the expected continuation value:

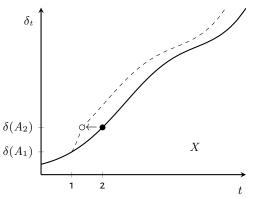
$$v_t \equiv \int_t^\infty e^{-\rho(s-t)} \frac{S_s}{S_t} u(C_s) ds.$$

- **1** Even if $\delta(\cdot)$ increases in A fixing x, $\uparrow A \Longrightarrow \uparrow v, \downarrow u' \Longrightarrow \downarrow x$. ("Kuznets curve.") This may make X finite, and thus lowerable.
- 2 If x_t is just a function of A_t , back to state-risk-only: $\delta_t = \delta(A_t, x(A_t)) = f(A_t)$. The cost (in "utils") of lowering x_t just depends on A_t . But the expected benefit $\frac{\partial \delta(A_t, x_t)}{\partial x_t} v_t$ increases in v_t , which increases in anticipated growth. So faster growth after $t \Longrightarrow \downarrow x$ at A_t .

Optimal policy: illustration

State risk only

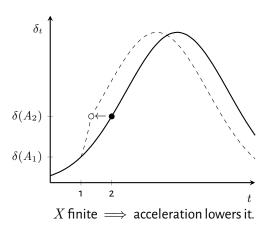




X infinite \implies acceleration has no effect.

Optimal policy: illustration

State risk only +1

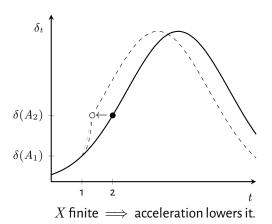


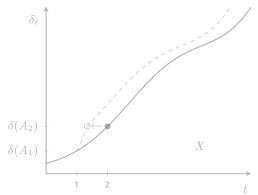
 δ_t $\delta(A_2)$ X $\delta(A_1)$ 2

X infinite \implies acceleration has no effect.

Optimal policy: illustration

State risk only + 1, 2





X infinite \implies acceleration has no effect.

Under hazard function $\delta(A_t,x_t)$, δ depends on the *state* of technology. Escaping risky states more quickly lowers cumulative risk.

Under hazard function $\delta(A_t,x_t)$, δ depends on the *state* of technology. Escaping risky states more quickly lowers cumulative risk.

But risk may instead be "transitional": posed by technological development. (Frontier virology lab; building an AI with unknown but immediate impact; etc.)

Under hazard function $\delta(A_t,x_t)$, δ depends on the *state* of technology. Escaping risky states more quickly lowers cumulative risk.

But risk may instead be "transitional": posed by technological development. (Frontier virology lab; building an AI with unknown but immediate impact; etc.)

Suppose δ_t increases in \dot{A}_t rather than, or in addition to, A_t : $\delta_t = \dot{A}_t^{\zeta} f(A_t, x_t), \quad \zeta > 0.$

Under hazard function $\delta(A_t, x_t)$, δ depends on the *state* of technology. Escaping risky states more quickly lowers cumulative risk.

But risk may instead be "transitional": posed by technological development. (Frontier virology lab; building an AI with unknown but immediate impact; etc.)

Suppose δ_t increases in \dot{A}_t rather than, or in addition to, A_t : $\delta_t = \dot{A}_t^{\zeta} f(A_t, x_t), \ \zeta > 0$. Developing *new* tech poses risk; $\delta = 0$ if $\dot{A} = 0$. Different discoveries can pose different amounts of risk, depending on $f(\cdot)$.

Under hazard function $\delta(A_t, x_t)$, δ depends on the *state* of technology. Escaping risky states more quickly lowers cumulative risk.

But risk may instead be "transitional": posed by technological development. (Frontier virology lab; building an AI with unknown but immediate impact; etc.)

Suppose δ_t increases in \dot{A}_t rather than, or in addition to, A_t : $\delta_t = \dot{A}_t^\zeta f(A_t, x_t), \ \zeta > 0$. Developing *new* tech poses risk; $\delta = 0$ if $\dot{A} = 0$. Different discoveries can pose different amounts of risk, depending on $f(\cdot)$.

If $\zeta=1$, as in Jones (2016, 2024), the growth rate from some \underline{A} to \overline{A} does not directly affect X. Higher anticipated A may lower δ by increasing v and thus lowering x.

Under hazard function $\delta(A_t, x_t)$, δ depends on the *state* of technology. Escaping risky states more quickly lowers cumulative risk.

But risk may instead be "transitional": posed by technological development. (Frontier virology lab; building an AI with unknown but immediate impact; etc.)

Suppose δ_t increases in \dot{A}_t rather than, or in addition to, A_t : $\delta_t = \dot{A}_t^{\zeta} f(A_t, x_t), \ \zeta > 0$. Developing *new* tech poses risk; $\delta = 0$ if $\dot{A} = 0$. Different discoveries can pose different amounts of risk, depending on $f(\cdot)$.

If $\zeta=1$, as in Jones (2016, 2024), the growth rate from some \underline{A} to \overline{A} does not directly affect X. Higher anticipated A may lower δ by increasing v and thus lowering x.

More generally, the effects of acceleration are ambiguous, depending on ζ and $f(\cdot)$. Even if $\zeta>1$, so that (all else equal) "experiments" are riskier concurrently than in sequence, acceleration may lower X due to policy interactions.

Suppose you believe:

1. Al will soon do/accelerate tech development across the board (so that speeding/slowing Al development amounts to speeding/slowing A)

Suppose you believe:

- 1. Al will soon do/accelerate tech development across the board (so that speeding/slowing Al development amounts to speeding/slowing A)
- 2. Hazard primarily
 - depends on the state of technology, or
 - increases not (much) faster than proportionally in the *rate* of tech development

Suppose you believe:

- 1. Al will soon do/accelerate tech development across the board (so that speeding/slowing Al development amounts to speeding/slowing A)
- 2. Hazard primarily
 - depends on the state of technology, or
 - increases not (much) faster than proportionally in the rate of tech development
- 3. Policymakers will "optimally" navigate the consumption-safety tradeoff

Contra e.g. Shulman and Thornley (2024)

Suppose you believe:

- 1. Al will soon do/accelerate tech development across the board (so that speeding/slowing Al development amounts to speeding/slowing A)
- 2. Hazard primarily
 - depends on the state of technology, or
 - increases not (much) faster than proportionally in the *rate* of tech development
- 3. Policymakers will "optimally" navigate the consumption-safety tradeoff Contra e.g. Shulman and Thornley (2024)

Then—even if your *only* goal is to reduce cumulative risk, i.e. you're arbitrarily more risk-averse than those setting policy—you should prefer faster AI development.

Suppose you believe:

- 1. Al will soon do/accelerate tech development across the board (so that speeding/slowing Al development amounts to speeding/slowing A)
- 2. Hazard primarily
 - depends on the state of technology, or
 - increases not (much) faster than proportionally in the *rate* of tech development
- 3. Policymakers will "optimally" navigate the consumption-safety tradeoff
 Contra e.g. Shulman and Thornley (2024)

Then—even if your *only* goal is to reduce cumulative risk, i.e. you're arbitrarily more risk-averse than those setting policy—you should prefer faster AI development.

This observation has no bearing on:

- How stringently to regulate AI deployment, holding development fixed.
 Indeed, one benefit of high A is low x.
- Whether to attempt a targeted slowing of certain sectors of AI development.