Online appendix for "The importance of commitment power in games with imperfect evidence"

by Francisco Silva

1 Proof of Lemma 1

Proof. Take some feasible profile (f, σ) . For all $\theta \in \Theta$, let

$$G(\theta) \equiv \{(d, m, a) \in D \times M \times \{0, 1\} : \sigma(\theta)(d, m, a) > 0\}$$

and

$$\left(\widehat{d}\left(\theta\right),\widehat{m}\left(\theta\right),\widehat{a}\left(\theta\right)\right) \in \arg\max_{(d,m,a) \in G\left(\theta\right)} \left\{ \begin{array}{l} ap\left(\theta,d\right)v\left(\theta,f\left(d,m,1\right)\right) + \\ \left(1 - ap\left(\theta,d\right)\right)v\left(\theta,f\left(d,m,0\right)\right) \end{array} \right\}.$$

Pure strategy $(\widehat{d}(\theta), \widehat{m}(\theta), \widehat{a}(\theta))$ is the principal's preferred pure strategy for type θ among those that type θ prefers. Let λ denote the lowest expected utility of any type under profile (f, σ) . Consider the alternative profile (f'', σ'') , where

$$\sigma''(\theta)(d, m, a) = \begin{cases} 1 \text{ if } (d, m, a) = (\widehat{d}(\theta), \theta, \widehat{a}(\theta)) \\ 0 \text{ otherwise} \end{cases}$$

for all $(d, m, a) \in D \times M \times \{0, 1\}$ and $\theta \in \Theta$ and

$$f''\left(d,m,s\right) = \begin{cases} f\left(d,\widehat{m}\left(m\right),s\right) & \text{if } d = \widehat{d}\left(m\right) \text{ and } m \in \Theta \\ \lambda & \text{otherwise} \end{cases}$$

for all $(d, m, s) \in D \times M \times \{0, 1\}$. It follows that, by construction, profile (f'', σ'') is feasible and is such that $V(f, \sigma) \leq V(f'', \sigma'')$.

Finally, consider profile (f', σ') , where f' = f'' except that

$$f'\left(\widehat{d}\left(\theta\right),\theta,1\right) = f'\left(\widehat{d}\left(\theta\right),\theta,0\right) = f''\left(\widehat{d}\left(\theta\right),\theta,0\right)$$

for all $\theta \in \Theta$ for which $\widehat{a}(\theta) = 0$, and

$$\sigma'(\theta)(d, m, a) = \begin{cases} 1 \text{ if } (d, m, a) = (\widehat{d}(\theta), \theta, 1) \\ 0 \text{ otherwise} \end{cases}$$

for all $(d, m, a) \in D \times M \times \{0, 1\}$ and $\theta \in \Theta$. It follows that, by construction, profile (f', σ') is also feasible, because, for all $\theta \in \Theta$ for which $\widehat{a}(\theta) = 0$, $f''\left(\widehat{d}(\theta), \theta, 1\right) \leq f''\left(\widehat{d}(\theta), \theta, 0\right)$. And, again by construction, $V\left(f', \sigma'\right) = V\left(f'', \sigma''\right) \geq V\left(f, \sigma\right)$, which completes the proof.

2 Proof of Proposition 1

Take any information structure with perfect evidence.

Lemma 2 There is an optimal profile (f, σ) such that for all $(d, m, a) \in D \times M \times \{0, 1\}$ and $\theta \in \Theta$,

$$\sigma(\theta)(d, m, a) = \begin{cases} 1 & \text{if } (d, m, a) = (\widehat{d}(\theta), \theta, 1) \\ 0 & \text{otherwise} \end{cases}$$

for some mapping $\widehat{d}: \Theta \to D$ with the property that $p\left(\theta, \widehat{d}\left(\theta\right)\right) = 1$ for all $\theta \in \Theta$.

Proof. From lemma 1, there is some optimal profile (f', σ') such that for all $(d, m, a) \in D \times M \times \{0, 1\}$ and $\theta \in \Theta$,

$$\sigma'(\theta)(d, m, a) = \begin{cases} 1 \text{ if } (d, m, a) = \left(\widetilde{d}(\theta), \theta, 1\right) \\ 0 \text{ otherwise} \end{cases}$$

for some $\widetilde{d}: \Theta \to D$. Let $\widehat{\Theta} \equiv \left\{\theta \in \Theta: p\left(\theta, \widetilde{d}(\theta)\right) = 0\right\}$ and, for all $\theta \in \widehat{\Theta}$, let $\overline{d}(\theta)$ be such that $p\left(\theta, \overline{d}(\theta)\right) = 1$. Notice that $\overline{d}(\theta)$ exists for all $\theta \in \widehat{\Theta}$ by the definition of what constitutes perfect evidence. For all $\theta \in \Theta$, let

$$\widehat{d}(\theta) = \begin{cases} \overline{d}(\theta) & \text{if } \theta \in \widehat{\Theta} \\ \widetilde{d}(\theta) & \text{if } \theta \notin \widehat{\Theta} \end{cases}.$$

Consider the following profile (f, σ) , where, for all $(d, m, s) \in D \times M \times \{0, 1\}$,

$$f(d, m, s) = \begin{cases} f'\left(\widetilde{d}(m), m, 0\right) & \text{if } m \in \widehat{\Theta} \\ f'(d, m, s) & \text{if } m \notin \widehat{\Theta} \end{cases}$$

and, for all $(d, m, a) \in D \times M \times \{0, 1\}$ and $\theta \in \Theta$,

$$\sigma(\theta)(d, m, a) = \begin{cases} 1 \text{ if } (d, m, a) = (\widehat{d}(\theta), \theta, 1) \\ 0 \text{ otherwise} \end{cases}.$$

By construction, (f, σ) is also optimal, which proves the statement.

For convenience, let us consider the following persuasion game: first, the agent chooses $(d,m) \in E^{\theta} \times M$, where $E^{\theta} \equiv \{d \in D : p(\theta,d) = 1\}$; second, the principal observes (d,m) and chooses reward $x = \widehat{f}(d,m) \in \mathbb{R}$. Let $(\widehat{f},\widehat{\sigma})$ denote the principal's preferred sequential equilibrium, where $\widehat{\sigma} : \Theta \to \Delta\left(E^{\theta} \times M\right)$ represents the agent's strategy and $\widehat{f} : D \times M \to \mathbb{R}$ represents the principal's strategy. Take any other profile $(\widehat{f}',\widehat{\sigma}')$ such that, for all $\theta \in \Theta$ and $(d,m) \in E^{\theta} \times M$,

$$\widehat{\sigma}'(\theta)(d,m) > 0 \Rightarrow \widehat{f}'(d,m) \ge \widehat{f}'(d',m')$$

for all $(d', m') \in E^{\theta} \times M$. Sher (2011) shows that no such profile is strictly preferred by the principal to $(\widehat{f}, \widehat{\sigma})$.

I complete the proof by using $(\widehat{f}, \widehat{\sigma})$ to build an optimal credible profile.

Let

$$f^*(d, m, s) = \begin{cases} \widehat{f}(d, m) & \text{if } s = 1\\ \min_{\theta \in \Theta} x^*(\theta) & \text{if } s = 0 \end{cases}$$

for all $(d, m, s) \in D \times M \times \{0, 1\}$ and

$$\sigma^{*}(\theta)(d, m, a) = \begin{cases} \widehat{\sigma}(\theta)(d, m) & \text{if } a = 1\\ 0 & \text{if } a = 0 \end{cases}$$

for all $(d, m, a) \in D \times M \times \{0, 1\}$ and $\theta \in \Theta$.

Lemma 3 Profile (f^*, σ^*) is credible and optimal.

Proof. The claim that (f^*, σ^*) is credible follows directly from the fact that $(\widehat{f}, \widehat{\sigma})$ is a sequential equilibrium of the persuasion game described above and the fact that

 $\min_{\theta \in \Theta} x^*(\theta)$ is the lowest possible punishment that is justified by some off-the-equilibrium-path belief.

To show that (f^*, σ^*) is optimal, I proceed by contradiction. Suppose not. Then, by lemma 2, there is some other feasible profile (f', σ') such that $V(f', \sigma') > V(f^*, \sigma^*)$ for which

$$\sigma'(\theta)(d, m, a) = \begin{cases} 1 \text{ if } (d, m, a) = (\widehat{d}(\theta), \theta, 1) \\ 0 \text{ otherwise} \end{cases}$$

for some $\widehat{d}:\Theta\to E^{\theta}$, for all $(d,m,a)\in D\times M\times\{0,1\}$ and $\theta\in\Theta$.

Let us return to the persuasion game described above and consider profile $(\hat{f}', \hat{\sigma}')$, where, for all $(d, m) \in D \times M$, $\hat{f}'(d, m) = f'(d, m, 1)$ and $\hat{\sigma}'(\theta)(d, m) = \sigma'(\theta)(d, m, 1)$ for all $\theta \in \Theta$. Because profile (f', σ') is feasible, it follows that, for all $\theta \in \Theta$ and $(d, m) \in E^{\theta} \times M$,

$$\widehat{\sigma}'(\theta)(d,m) > 0 \Rightarrow \widehat{f}'(d,m) \ge \widehat{f}'(d',m')$$

for all $(d', m') \in E^{\theta} \times M$, which is a contradiction to Sher (2011), because the principal strictly prefers profile $(\widehat{f'}, \widehat{\sigma}')$ to $(\widehat{f}, \widehat{\sigma})$.

3 Proof of Proposition 2

I show the statement by contradiction and assume that there is an optimal profile (f, σ) that is credible. Let $\lambda \in \mathbb{R}$ denote the lowest expected utility of any type given profile (f, σ) , and let Θ^{λ} denote the set of types whose expected utility is given by λ .

For every $\theta \in \Theta$, let $(\widehat{d}(\theta), \widehat{m}(\theta), \widehat{a}(\theta))$ be defined as in the proof of lemma 1, i.e., of all the actions that type θ prefers, $(\widehat{d}(\theta), \widehat{m}(\theta), \widehat{a}(\theta))$ is the principal's preferred one.

Let profile (f', σ') be defined as follows: for all $(d, m, s) \in D \times M \times \{0, 1\}$,

$$f'(d, m, s) = \begin{cases} u^{-1}(\lambda) & \text{if } m \in \Theta^{\lambda} \\ f(d, m, s) & \text{if } m \notin \Theta^{\lambda} \text{ and } d = \widehat{d}(m) \\ \min_{\theta \in \Theta} x^{*}(\theta) & \text{otherwise} \end{cases},$$

while, for all $(d, m, a) \in D \times M \times \{0, 1\}$ and $\theta \in \Theta$,

$$\sigma'(\theta)(d, m, a) = \begin{cases} 1 \text{ if } d = \widehat{d}(\theta), m = \theta \text{ and } a = \widehat{a}(\theta) \\ 0 \text{ otherwise} \end{cases}.$$

Lemma 4 Profile (f', σ') is optimal.

Proof. Profile (f', σ') is feasible by construction: any type $\theta \in \Theta^{\lambda}$ does not want to deviate, because $\lambda \geq \min_{\theta \in \Theta} u\left(x^*\left(\theta\right)\right)$, while any type $\theta \notin \Theta^{\lambda}$ does not want to deviate because their expected utility is larger than λ , by the definition of set Θ^{λ} .

To show that profile (f', σ') is optimal, one must show that $V(f', \sigma') \geq V(f, \sigma)$. For that, it is enough to notice that, for all $\theta \in \Theta^{\lambda}$, for all $(d, m, a) \in D \times M \times \{0, 1\}$ for which $\sigma(\theta)(d, m, a) > 0$,

$$v\left(\theta, u^{-1}\left(\lambda\right)\right) \ge ap\left(\theta, d\right)v\left(\theta, f\left(d, m, 1\right)\right) + \left(1 - ap\left(\theta, d\right)\right)v\left(\theta, f\left(d, m, 0\right)\right),$$

because function $g(\theta,\cdot)$ is concave.

Lemma 5 For all $(d, m) \in D \times M$ for which there is $\theta \in \Theta^{\lambda}$ such that

$$\sigma(\theta)(d, m, 1) + \sigma(\theta)(d, m, 0) > 0,$$

it follows that

$$f(d, m, 1) \le f(d, m, 0) = u^{-1}(\lambda) = \underset{x \in \mathbb{R}}{\operatorname{arg \, max}} E\left(v(\theta, x) | \theta \in \Theta^{\lambda}\right).$$

Proof. Take any $\theta \in \Theta^{\lambda}$ and consider any $(d, m, a) \in D \times M \times \{0, 1\}$ that is sent with positive probability by type θ given σ . If f(d, m, 1) > f(d, m, 0), then a = 1, which would imply that

$$p(\theta, d) v(\theta, f(d, m, 1)) + (1 - p(\theta, d)) v(\theta, f(d, m, 0)) < v(\theta, u^{-1}(\lambda))$$

because function $g(\theta, \cdot)$ is strictly concave. This would be a contradiction to the optimality of profile (f, σ) , because (f', σ') would be better.

As for the second part, notice that, for any message $(d, m) \in D \times M$ that, under σ , is sent with positive probability by some type $\theta \in \Theta^{\lambda}$, there is no other type $\theta \notin \Theta^{\lambda}$ that also sends it with positive probability. Therefore, because profile (f, σ) is credible, it follows that for any such $(d, m) \in D \times M$,

$$u^{-1}(\lambda) = \arg\max_{x \in \mathbb{R}} E^{\sigma}(v(\theta, x) | d, m, s)$$

whenever s=0, and whenever s=1 and there is some type $\theta \in \Theta^{\lambda}$ who chooses

(d, m, 1). Therefore, it follows that

$$u^{-1}(\lambda) = \arg\max_{x \in \mathbb{R}} E(v(\theta, x) | \theta \in \Theta^{\lambda}).$$

I complete the proof by showing that one can perturb profile (f', σ') and make the principal better off.

Let $\eta \in \mathbb{R}$ denote the second lowest expected utility of any type, given profile (f', σ') , and let Θ^{η} denote the set of types whose expected utility is η (which is not empty because there is no optimal profile that is constant). To be clear, $\eta > \lambda$ and any type $\theta \notin \{\Theta^{\lambda} \cup \Theta^{\eta}\}$ has an expected utility larger than η under profile (f', σ') . Pick some type $\theta^{\eta} \in \Theta^{\eta}$ and, without loss of generality, assume that $\widehat{d}(\theta^{\eta}) = d'$. Because type $\theta^{\eta} \notin \Theta^{\lambda}$, he does not receive a constant reward, so that $\widehat{a}(\theta^{\eta}) = 1$ and

$$f'(d', \theta^{\eta}, 1) > u^{-1}(\lambda) > f'(d', \theta^{\eta}, 0)$$
.

Let

$$\theta^{\lambda} \in \arg\max_{\theta \in \Theta^{\lambda}} \left\{ p\left(\theta, d'\right) u\left(f'\left(d', \theta^{\eta}, 1\right)\right) + \left(1 - p\left(\theta, d'\right)\right) u\left(f'\left(d', \theta^{\eta}, 0\right)\right) \right\},\,$$

i.e., type θ^{λ} is the type that would be more willing to mimic type θ^{η} of all types in set Θ^{λ} . It follows that $p(\theta^{\eta}, d') > p(\theta^{\lambda}, d') \geq p(\theta, d')$ for all $\theta \in \Theta^{\lambda}$.

For any $\varepsilon \geq 0$, consider the following profile $(f^{\varepsilon}, \sigma')$, where, for all $(d, m, s) \in D \times M \times \{0, 1\}$,

$$f^{\varepsilon}\left(d,m,s\right) = \begin{cases} f'\left(d',\theta^{\eta},1\right) - \varepsilon & \text{if } (d,m,s) = (d',\theta^{\eta},1) \\ f'\left(d',\theta^{\eta},0\right) + \delta\left(\varepsilon\right) & \text{if } (d,m,s) = (d',\theta^{\eta},0) \\ u^{-1}\left(\lambda\right) + \xi\left(\varepsilon\right) & \text{if } m \in \Theta^{\lambda} \\ f\left(d,m,z\right) & \text{if } m \notin \Theta^{\lambda} \cup \left\{\theta^{\eta}\right\} & \text{and } d = \widehat{d}\left(m\right) \\ \min_{\theta \in \Theta} x^{*}\left(\theta\right) & \text{otherwise} \end{cases},$$

and where $\delta(\varepsilon)$ is such that

$$\eta = p\left(\theta^{\eta}, d'\right) u\left(f^{\varepsilon}\left(d', \theta^{\eta}, 1\right)\right) + \left(1 - p\left(\theta^{\eta}, d'\right)\right) u\left(f^{\varepsilon}\left(d', \theta^{\eta}, 0\right)\right)$$

and $\xi(\varepsilon)$ is defined as follows: if

$$\lambda > p\left(\theta^{\lambda}, d'\right) u\left(f'\left(d', \theta^{\eta}, 1\right)\right) + \left(1 - p\left(\theta^{\lambda}, d'\right)\right) u\left(f'\left(d', \theta^{\eta}, 0\right)\right),$$

then $\xi(\varepsilon) = 0$; if not, then $\xi(\varepsilon)$ is such that

$$u\left(u^{-1}\left(\lambda\right)+\xi\left(\varepsilon\right)\right)=p\left(\theta^{\lambda},d'\right)u\left(f^{\varepsilon}\left(d',\theta^{\eta},1\right)\right)+\left(1-p\left(\theta^{\lambda},d'\right)\right)u\left(f^{\varepsilon}\left(d',\theta^{\eta},0\right)\right).$$

Lemma 6 There is some $\overline{\varepsilon} > 0$ such that, for all $\varepsilon \in [0, \overline{\varepsilon}]$, profile $(f^{\varepsilon}, \sigma')$ is feasible.

Proof. Let $\overline{\varepsilon}$ be sufficiently small so that, for all $\varepsilon \in [0, \overline{\varepsilon}]$,

$$f^{\varepsilon}(d', \theta^{\eta}, 1) > u^{-1}(\lambda) > f^{\varepsilon}(d', \theta^{\eta}, 0)$$
.

Take any type $\theta \in \Theta^{\lambda}$. The only deviation that is better under f^{ε} than under f' is to deviate to choosing $(d, m, a) = (d', \theta^{\eta}, 1)$. However, by construction of $\xi(\varepsilon)$, that deviation does not make type θ^{λ} strictly better off, provided $\overline{\varepsilon}$ is sufficiently small, which implies that no type in Θ^{λ} strictly benefits from such deviation.

Now, take type θ^{η} . By construction of $\delta(\varepsilon)$, his expected utility is $\eta > u(u^{-1}(\lambda) + \xi(\varepsilon))$, so that deviations to reporting $m \in \Theta^{\lambda}$ are not strictly beneficial. Any other deviation returns the same expected utility than under f', so that type θ^{η} has no interest in deviating.

Now, take any type $\theta \notin \{\Theta^{\lambda} \cup \Theta^{\eta}\}$. If he does not deviate, his expected utility is strictly larger than $\eta > \lambda$. Therefore, deviations to reporting $m \in \Theta^{\lambda}$ or $(d, m, a) = (d', \theta^{\eta}, 1)$ are not strictly beneficial, provided $\bar{\varepsilon}$ is sufficiently small. Other deviations would have also been available under f'.

Finally, take any type $\theta \in \Theta^{\eta}$. Once again, type θ does not want to deviate to reporting $m \in \Theta^{\lambda}$, because $\eta > u\left(u^{-1}(\lambda) + \xi\left(\varepsilon\right)\right)$. Now, let us consider deviations to choosing $(d, m, a) = (d', \theta^{\eta}, 1)$. If $p(\theta, d') = p(\theta^{\eta}, d')$, then this deviation has an expected utility of η and, so, it is not a strictly beneficial deviation. If, on the other hand, $p(\theta, d') \neq p(\theta^{\eta}, d')$, it must be that $p(\theta, d') < p(\theta^{\eta}, d')$, because $\theta \in \Theta^{\eta}$. Therefore, provided $\overline{\varepsilon}$ is sufficiently small, the expected utility of deviating would be smaller than η . Any other deviations would have also been available under f'.

For every $\varepsilon \geq 0$, let $z\left(\varepsilon\right) \equiv V\left(f^{\varepsilon}, \sigma'\right)$ and notice that

$$z(\varepsilon) = z_1(\varepsilon) + z_2(\varepsilon) + z_3,$$

where

$$z_{1}(\varepsilon) \equiv \sum_{\theta \in \Theta^{\lambda}} q(\theta) v(\theta, u^{-1}(\lambda) + \xi(\varepsilon)),$$

$$z_{2}(\varepsilon) \equiv q(\theta^{\eta}) \begin{pmatrix} p(\theta^{\eta}, d') v(\theta^{\eta}, f'(d', \theta^{\eta}, 1) - \varepsilon) + \\ (1 - p(\theta^{\eta}, d')) v(\theta^{\eta}, f'(d', \theta^{\eta}, 0) + \delta(\varepsilon)) \end{pmatrix}$$

and

$$z_{3} \equiv \sum_{\theta \notin \Theta^{\lambda} \cup \{\theta^{\eta}\}} q\left(\theta\right) \left(\begin{array}{c} p\left(\theta, \widehat{d}\left(\theta\right)\right) v\left(\theta, f'\left(\widehat{d}\left(\theta\right), \theta, 1\right)\right) + \\ \left(1 - p\left(\theta, \widehat{d}\left(\theta\right)\right)\right) v\left(\theta, f'\left(\widehat{d}\left(\theta\right), \theta, 0\right)\right) \end{array}\right).$$

By definition, notice that $z(0) = V(f', \sigma')$.

Lemma 7 $z'_{2}(0) > 0$.

Proof. Recall that, for all $\theta \in \Theta$ and $x \in \mathbb{R}$, there is a strictly concave function $g(\theta, \cdot)$ such that $v(\theta, x) = g(\theta, u(x))$. Therefore,

$$\frac{\partial v(\theta, x)}{\partial x} = \frac{\partial g(\theta, u(x))}{\partial u}u'(x)$$

Notice also that, because $\delta(0) = 0$, it follows that

$$\delta'(0) = \frac{p(\theta^{\eta}, d')}{1 - p(\theta^{\eta}, d')} \frac{u'(f'(d', \theta^{\eta}, 1))}{u'(f'(d', \theta^{\eta}, 0))}.$$

Combining these two results, we get that

$$z_{2}'\left(0\right)=q\left(\theta^{\eta}\right)p\left(\theta^{\eta},d'\right)u'\left(f'\left(d',\theta^{\eta},1\right)\right)\left(\frac{\partial g\left(\theta^{\eta},u\left(f'\left(d',\theta^{\eta},0\right)\right)\right)}{\partial u}-\frac{\partial g\left(\theta^{\eta},u\left(f'\left(d',\theta^{\eta},1\right)\right)\right)}{\partial u}\right)>0.$$

Lemma 8 $z'_1(0) = 0$.

Proof. First, suppose that

$$\lambda > p\left(\theta^{\eta}, d'\right) u\left(f'\left(d', \theta^{\eta}, 1\right)\right) + \left(1 - p\left(\theta^{\eta}, d'\right)\right) u\left(f'\left(d', \theta^{\eta}, 0\right)\right).$$

In that case, z_1 is independent of ε , so the statement follows trivially. If, instead,

$$\lambda = p(\theta^{\eta}, d') u(f'(d', \theta^{\eta}, 1)) + (1 - p(\theta^{\eta}, d')) u(f'(d', \theta^{\eta}, 0)),$$

then $\xi(\varepsilon)$ is such that

$$u\left(u^{-1}\left(\lambda\right)+\xi\left(\varepsilon\right)\right)=p\left(\theta^{\eta},d'\right)u\left(f^{\varepsilon}\left(d',\theta^{\eta},1\right)\right)+\left(1-p\left(\theta^{\eta},d'\right)\right)u\left(f^{\varepsilon}\left(d',\theta^{\eta},0\right)\right).$$

Notice that

$$\xi'(0) u'(u^{-1}(\lambda)) = -p(\theta^{\eta}, d') u'(f'(d', \theta^{\eta}, 1)) + (1 - p(\theta^{\eta}, d')) u'(f'(d', \theta^{\eta}, 0)) \delta'(0).$$

After replacing $\delta'(0)$, we get that $\xi'(0) = 0$. Hence,

$$z_{1}'(0) = \sum_{\theta \in \Theta^{\lambda}} q(\theta) \frac{\partial v(\theta, u^{-1}(\lambda))}{\partial x} \xi'(0) = 0$$

Combining the two previous lemmas, we get that there is some $\overline{\varepsilon}$ for which, for all $\varepsilon \in (0, \overline{\varepsilon})$,

$$z(\varepsilon) = V(f^{\varepsilon}, \sigma') > V(f', \sigma'),$$

which is a contradiction to the optimality of profile (f', σ') .

4 Proof of Proposition 3

Let me start by defining V_p^{OB} for each information structure p: it represents the expected utility of the principal's preferred feasible profile (f, σ) that is bounded (OB stands for "optimal bounded"), where the bounds are such that

$$f(d, m, s) \in \left[\min_{\theta \in \Theta} x^*(\theta), \max_{\theta \in \Theta} x^*(\theta)\right]$$

for all $(d, m, s) \in D \times M \times \{0, 1\}$.

Fix any D and $\widehat{p} \in P$. Notice that, by definition, for any sequence $\{p^t\} \to \widehat{p} \in P$, it follows that

$$V_{p_t}^O \ge V_{p_t}^{OB} \ge V_{p_t}^{OC}$$

for all t, while

$$V_{\widehat{p}}^{O} = V_{\widehat{p}}^{OB} = V_{\widehat{p}}^{OC}$$

by proposition 1.

Lemma 9 For any sequence $\{p^t\} \to \widehat{p} \in P$, $\{V_{p_t}^{OB}\} \to V_{\widehat{p}}^{OB}$.

Proof. By lemma 1, the problem of finding the optimal bounded profile is a typical mechanism design problem with a compact choice set, so the statement follows by the theorem of the maximum.

To complete the proof, it is enough to show that there is some sequence $\{p^t\} \to \widehat{p}$ for which $\{V_{p_t}^O\} \nrightarrow V_{\widehat{p}}^O$.

By lemmas 1 and 2, when $p = \widehat{p}$, there is some optimal profile (f^*, σ^*) such that for all $(d, m, s) \in D \times M \times \{0, 1\}$,

$$f^{*}(d, m, s) = \begin{cases} \widehat{x}(\theta) & \text{if } (d, m, s) = (\widehat{d}(\theta), \theta, 1) \\ \min_{\theta \in \Theta} x^{*}(\theta) & \text{otherwise} \end{cases}$$

for some $(\widehat{x}(\theta), \widehat{d}(\theta))$ for each $\theta \in \Theta$, and

$$\sigma^{*}(\theta)(d, m, a) = \begin{cases} 1 \text{ if } (d, m, a) = (\widehat{d}(\theta), \theta, 1) \\ 0 \text{ otherwise} \end{cases}$$

for all $(d, m, a) \in D \times M \times \{0, 1\}$. Let

$$\Theta^{x} \equiv \{\theta \in \Theta : \widehat{x}\left(\theta\right) = x\}$$

denote the set of types whose expected utility under profile (f^*, σ^*) is given by u(x) when $p = \hat{p}$.

Lemma 10 For every $\theta \in \Theta$,

$$\widehat{x}(\theta) = \arg\max_{x \in \mathbb{R}} E\left(v(\theta', x) | \theta' \in \Theta^{\widehat{x}(\theta)}\right)$$

Proof. Take some $\theta'' \in \Theta$ and suppose that

$$\widehat{x}\left(\theta''\right) \neq \arg\max_{x \in \mathbb{R}} E\left(v\left(\theta', x\right) | \theta' \in \Theta^{\widehat{x}\left(\theta''\right)}\right)$$

Assume that $p = \hat{p}$ and consider the following alternative profile (f', σ^*) , where $f' = f^*$ except that, for all $\theta \in \Theta^{\hat{x}(\theta'')}$, $f'\left(\hat{d}\left(\theta\right), \theta, 1\right) = \hat{x}\left(\theta''\right) + \varepsilon$. Provided $|\varepsilon| > 0$ is small

enough and ε is positive if and only if

$$\widehat{x}\left(\theta''\right) < \arg\max_{x \in \mathbb{R}} E\left(v\left(\theta', x\right) | \theta' \in \Theta^{\widehat{x}\left(\theta''\right)}\right),$$

profile (f', σ^*) is feasible and strictly preferred by the principal to profile (f^*, σ^*) , because, for all $\theta \in \Theta^{\widehat{x}(\theta'')}$, $g(\theta, \cdot)$ is strictly concave. But that is a contradiction to the optimality of profile (f^*, σ^*) .

Let me add some additional notation: for any information structure p, let $V^p(f, \sigma)$ denote the expected utility of the principal under profile (f, σ) when the information structure is p.

Notice that, if $V_{\widehat{p}}^O < E\left(v\left(\theta, x^*\left(\theta\right)\right)\right)$, there is some set $\Theta^{x'}$ that has more than one element. Let θ' denote the lowest type in set $\Theta^{x'}$ and notice that $x^*\left(\theta'\right) < x'$. Let $x'' = \max_{\theta:\widehat{x}(\theta) < x'} \left\{\widehat{x}\left(\theta\right)\right\}$ and define

$$\alpha = \frac{x' + \max\left\{x'', x^*\left(\theta'\right)\right\}}{2}.$$

Consider the following alternative profile (f'', σ^*) , where $f'' = f^*$ except that $f''\left(\widehat{d}\left(\theta'\right), \theta', 1\right) = \alpha$, and notice that $V^{\widehat{p}}\left(f'', \sigma^*\right) > V^{\widehat{p}}\left(f^*, \sigma^*\right) = V_{\widehat{p}}^{O}$.

Consider the following sequence $\{p^t\}$: for each t,

$$p^{t}(\theta, d) = \begin{cases} \max \{p(\theta, d) - \epsilon_{t}, 0\} & \text{if } \theta = \theta' \\ p(\theta, d) & \text{if } \theta \neq \theta' \end{cases}$$

for all $(\theta, d) \in \Theta \times D$, where $\epsilon_t \in (0, 1)$ and is such that $\{\epsilon_t\} \to 0$. In words, type θ' 's probability of success in each document is reduced by ϵ_t . Notice that, by definition, $\{p^t\} \to \widehat{p}$.

Consider the following profile (f^t, σ^*) :

$$f^{t}\left(d,m,s\right) = \begin{cases} \widehat{x}\left(\theta\right) \text{ if } \left(d,m,z\right) = \left(\widehat{d}\left(\theta\right),\theta,1\right) \text{ and } \theta \neq \theta' \\ \underline{x}\left(t\right) \text{ if } \left(d,m,z\right) \neq \left(\widehat{d}\left(\theta\right),\theta,1\right) \text{ and } \theta \neq \theta' \\ \alpha \text{ if } \left(d,m,z\right) = \left(\widehat{d}\left(\theta\right),\theta,1\right) \text{ and } \theta = \theta' \\ \min_{\theta \in \Theta} x^{*}\left(\theta\right) \text{ if } \left(d,m,z\right) \neq \left(\widehat{d}\left(\theta\right),\theta,1\right) \text{ and } \theta = \theta' \end{cases},$$

where, for each $t, \underline{x}(t) \in \mathbb{R}$ is sufficiently small that i) $\underline{x}(t) < \min_{\theta \in \Theta} x^*(\theta)$ and that

$$p^{t}\left(\theta^{\prime},d\right)u\left(f^{t}\left(d,\theta,1\right)\right)+\left(1-p^{t}\left(\theta^{\prime},d\right)\right)u\left(\underline{x}\left(t\right)\right)<\alpha$$

for all $(d, \theta) \in D \times \Theta$. Because $\lim_{x \to -\infty} u(x) = -\infty$, it follows that such $\underline{x}(t)$ exists for all t. Therefore, it follows that for any p^t , profile (f^t, σ^*) is feasible. Moreover, notice that

$$\left\{ V^{p^{t}}\left(f^{t},\sigma^{*}\right)\right\} \rightarrow V^{\widehat{p}}\left(f'',\sigma^{*}\right) > V\left(f^{*},\sigma^{*}\right),$$

which implies that $V_{p^t}^O \nrightarrow V_{\widehat{p}}^O$.