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1 Introduction

The principle of targeting plays an important role in economic analyses of government
policy. Applying this well-respected principle is another matter, one that requires show-
ing substantial benefits on a case-by-case basis. In many epidemics, the risk of infection or
serious health complications varies greatly between different demographic groups, and
so does the cost of lockdowns and preventative actions. The COVID-19 pandemic, which
has claimed the lives of nearly 1.7 million people worldwide (as of December 30, 2020)
and led to the largest global recession of the last nine decades, is no exception. It is dis-
tinguished by a very steep mortality risk (case fatality rate) with respect to age: for those
over 65 years of age, mortality from infection is about 60 times that of those aged 20-49.
Differences of this magnitude merit examining the benefits of targeted policies.

In this paper we develop a multi-group version of the epidemiological SIR population-
based model (Kermack, McKendrick and Walker, 1927) and undertake a quantitative
analysis of optimal policy in this framework. Focusing on a case with three groups
(young, 20-49, middle-aged, 50-64, and old, 65+) and choosing parameters in line with
the COVID-19 pandemic, we find that the benefits of targeting are significant.

When the options are restricted to uniform policies that treat all groups symmetri-
cally, there are difficult trade-offs facing policy-makers. When the priority is to save lives
(a “safety-focused” approach), the economy will have to endure a lengthy lockdown and
sizable declines in GDP. For example, to keep the mortality rate in the (adult, over 20)
population below 0.1%, policy-makers have to impose a full or partial lockdown of the
economy for almost one year and a half and put up with economic costs equivalent to as
much as 25.9% of one year’s GDP. Conversely, an “economy-focused” approach attempt-
ing to keep economic damages to less than 10% of one year’s GDP would be forced to put
up with a mortality rate over 0.72%.

This policy trade-off can be significantly improved with targeted policies that employ
differential lockdowns across groups, as the (“Pareto”) frontiers between economic dam-
ages and loss of life in Figure 1 illustrate. The dashed curve, representing the trade-off
with targeted policies, is much closer to the “bliss point” (the origin) than is the solid
frontier for uniform policies. For example, our quantitative analysis shows that, with the
safety-focused objective, targeting can reduce economic damages from around 25.9% to
about 17.6%.

We also show that, for our COVID-19-based parameters, almost all of the gains from
targeting can be achieved without the need to resort to complicated targeting policies.
Rather, a “semi-targeted” policy that simply treats the most vulnerable (older) age group
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differently than the rest of the population performs nearly as well as “fully-targeted”
policies (which also treat the young and the middle-aged differentially). This is because
it is optimal to impose a non-trivial lockdown on the young and middle-aged in order
protect the old who interact with others even under a strict lockdown, and the gains from
full targeting are small relative to those of protecting the old from the younger groups’
network effects.

Three comments are useful at this point. First, throughout “lockdown” should be
understood not simply as individuals not leaving home, but as the suite of costly pre-
ventative actions (including social distancing) that reduce social and work interactions.
Second, our focus is on optimal policies, and we only return to the issue of implemen-
tation—how individuals can be encouraged to follow these policies and how much of it
can take place voluntarily—briefly at the end. It has to be borne in mind that govern-
ment policies will change individual behavior in potentially complex ways, as some of
the recent work endogenizing economic choices in models of epidemics has started rec-
ognizing.1 Third, there is still much uncertainty about many of the key parameters for
COVID-19 (Manski and Molinari, 2020) and any optimal policy, whether uniform or not,
will be highly sensitive to these parameters. Nonetheless, our general conclusion that
targeted policies bring sizable benefits appears very robust.

Several recent papers independently investigate the role of age-dependent hospital-
ization and fatality rates in SIR models (Gollier, 2020, Favero, Ichino and Rustichini, 2020,
Rampini, 2020, Bairoliya and İmrohoroğlu, 2020, Brotherhood et al. (2020) and Glover et
al. (2020)). The main difference is our systematic analysis of optimal policies. Brother-
hood, Kircher, Santos and Tertilt (2020) and Glover, Heathcote, Krueger and Ríos-Rull
(2020) study infection and economic dynamics in settings with labor supply and con-
sumption choices, and present complementary results to ours, focusing on younger indi-
viduals’ risk-taking behavior and the implications of this for testing and conditional quar-
antining or the conflict between the young and the old about mitigation policies, though
Glover, Heathcote, Krueger and Ríos-Rull (2020) also discuss optimal policy. Baqaee et
al. (2020) use a model where policy is targeted according to age and sector to investi-
gate alternative reopening scenarios (but consider only policies where policy-makers link
activity to the unemployment rate and whether deaths are rising or high).

The next section presents our multi-group SIR model. Section 3 describes our param-
eter choices. Our main results are presented in Section 4, which also contains a number

1See Rowthorn and Toxvaerd, 2020, Eichenbaum, Rebelo and Trabandt (2020), Farboodi, Jarosch and
Shimer, 2020, Jones, Philippon and Venkateswaran (2020), Garibaldi, Moen and Pissarides (2020) and Ace-
moglu et al. (2020a), as well as early related contributions such as Geoffard and Philipson (1996) and
Fenichel (2013).
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of robustness exercises. Section 5 concludes.

2 Multi-Group SIR model

2.1 Model Assumptions

Time is continuous, t ∈ [0, ∞), and individuals are partitioned into groups j = 1, . . . , J
with Nj initial members. The total population is normalized to unity so that ∑j Nj = 1.
Individuals within each group are subdivided into susceptible (S), infected (I), recovered
(R) and deceased (D),

Sj(t) + Ij(t) + Rj(t) + Dj(t) = Nj.

Agents move from susceptible to infected, then either recover or die. Groups interact
within themselves as well as with each other, as described below.

Susceptible individuals become infected by coming into contact with infected individ-
uals. Those who are infected may or may not require medical or “ICU” care. We suppose
that the need for ICU care is immediately realized upon infection. Let ιj denote the con-
stant fraction of infected people of type j needing ICU care. With Poisson arrival δr

j an
ICU patient of type j recovers. Non-ICU patients do not die, and recover with Poisson
arrival γj. While in the ICU, patients die with Poisson arrival δd

j (t), depending on total
ICU needs relative to capacity, where

γj = δd
j (t) + δr

j (t).

Let Hj(t) denote the number of type j individuals needing ICU care at time t, so
that Hj(t) = ιj Ij(t). We assume that the death probability conditional on ICU is a non-
decreasing function of the total ICU needs, H(t) = ∑j Hj(t),

δd
j (t) = ψj(H(t)),

where ψj is nondecreasing.
Detection and isolation of infected individuals is imperfect. To avoid additional state

variables, we assume that for each infected individual it is determined immediately upon
infection whether detection and isolation is possible. We denote by τj the constant prob-
ability that an infected individual of type j not needing ICU care becomes isolated. Sim-
ilarly, we let φj denote the probability that an individual of type j needing ICU care is

3



isolated. Hence, the probability that an infected person fails to be isolated is

ηj ≡ 1− (ιjφj + (1− ιj)τj).

We assume that recovered agents are immune and do not become infected for the re-
maining duration of the pandemic.2 However, due to imperfect testing, we suppose that
only a fraction κj (∈ [ιj · φj + (1− ιj)τj, 1]) of recovered agents are identified and allowed
to work freely. The remaining fraction is not identified and are subject to lockdowns.

A vaccine and a cure become available at some date T (see Acemoglu et al. (2020b) for
stochastic vaccine arrival).

2.2 Lockdown Policies

As noted in the Introduction, all policies reducing interpersonal interactions are referred
to as “lockdown policies”. Individuals in group j produce wj when they are not in lock-
down and ξ jwj during lockdown, where ξ j ∈ [0, 1], captures the relative productivity of
home vs. market production.

We denote by Lj(t) ∈ [0, 1] the extent of lockdown for group j. A full lockdown
(Lj = 1) creates a loss for each member of group j equal to (1− ξ j)wj.3 Full lockdown may
not be feasible, however, because of essential industries, so we impose Lj(t) ≤ L̄j ≤ 1.4

Importantly, even if full lockdown were feasible, it would not eliminate all human
interactions and contagion. Thus, we assume that lockdown Lj(t) reduces actual work
by Lj(t), but decreases the presence of group j in infectious interactions only by a factor
1− θjLj(t) where θj ≤ 1. This may be because people are still allowed on the streets and
transmission occurs when they cross paths or because people disobey lockdowns. One
implication of such imperfect lockdowns is that it is never feasible to completely isolate
one of the groups (for example, the old), and our analysis recognizes this constraint.

2At this time this hypothesis is not backed by conclusive evidence.
3wj may also include non-monetary costs of lockdowns as we discuss in Section 4.2.
4We assume that intermediate Lj(t)’s select the individuals to be locked down randomly. Policies that

lock down the same people persistently can be incorporated into our framework by splitting identical work-
ers into different groups that can be treated differently.
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2.3 Dynamics in MG-SIR

Before the vaccine and cure, for t ∈ (0, T), infections for group j evolve according to the
differential equation:

İj = β(1− θjLj)Sj ∑
k

ρjkηk(1− θkLk)Ik − γj Ij,

for β > 0 and contact coefficients {ρjk} that allow for different contact rates across groups.
This is the classic law of motion of SIR models, assuming a “quadratic matching tech-

nology”, whereby more people available for matching does not create any congestion.5

The rest of the laws of motion for t ∈ (0, T) are

Ṡj = − İj − γj Ij,

Ḋj = δd
j (t)Hj,

Ṙj = δr
j (t)Hj + γj(Ij − Hj),

where, again, Hj = ιj Ij denotes the number of ICU patients in group j.
After the vaccine and cure arrive at T, every individual that is alive is placed in the

recovered category: S(t) = I(t) = 0 for t ≥ T.
Our MG-SIR model displays a useful aggregation property, behaving like a single

group SIR model in special cases when lockdowns are uniform. Suppose that effective
contact rates and resolution rates out of infection are the same across groups, so that
ρjk = ρ and γj = γ, and consider uniform lockdown policies, Lj(t) = L(t) for all j.
Suppose further that infection rates are initially identical across groups, so that Sj(0)/Nj,
Ij(0)/Nj and Rj(0)/Nj are independent of j. Then, despite differences in case fatality
rates, the evolution of infections within each group, and hence aggregate infections, is
identical to that of a single group SIR model. The same is not true for deaths—these are
different across groups, but do not affect the evolution of infections. This aggregation
result is verified in our simulations for uniform policies.

5In Acemoglu et al. (2020b), we considered a more general, non-quadratic model, where

Mj(S, I, R, L) ≡
(

∑
k

ρjk[(Sk + ηk Ik + (1− κk)Rk)(1− θjLk) + κkRk]

)α−2

.

(with α ∈ (0, 2]) multiplies the right-hand side of this equation. We also showed how this matters for certain
aspects of optimal policy against the pandemic, but does not reduce the benefits of targeted policies.

5



2.4 Optimal Policies

The planner controls lockdown for each group {Lj(t)}j for all t ∈ [0, T). Throughout, the
planner will try to minimize a combination of total (excess) deaths during the pandemic,
Lives Lost = ∑j Dj(T), and Economic Losses =

∫ T
0 ∑j Ψj(t) dt, where

Ψj(t) = (1− ξ j)wjSj(t)Lj(t) + (1− ξ j)wj Ij(t)(1− ηk(1− Lj(t)))

+ (1− ξ j)wj(1− κj)Rj(t)Lj(t) + ∆jwjιjδ
d
j (t)Ij(t),

captures the economic losses from the lockdowns of susceptible individuals (first term),
the isolation of some of the infected (second term), the lockdown of some of the recovered
(third term), and the lost production of those who die (fourth term, in which ∆jwj is
the present discounted value of a group j member’s output until retirement lost due to
death). Notice that we are incorporating the loss of future output from each death into
the economic costs, but this is separate from the planner’s objective of minimizing lives
lost (and in this latter objective, we do not distinguish lives by future economic losses).

Although the exact form of the optimal lockdown is complex, one can distinguish two
broad strategies: the planner can “wait for the vaccine” (slowing down the spread of the
virus to limit infections until the vaccine arrives) or alternatively go for “herd immunity.”
In fact, there are many ways to reach herd immunity and different policies can steer the
pandemic toward different herd immunity outcomes.

To illustrate, suppose that there are two equal-sized groups, the old and the young,
and ρ = η = 1. Figure 2 shows, for this case, the time path for the pair (Sy(t), So(t)) over
the course of the pandemic for t ∈ [0, T] until the arrival of the vaccine. The pandemic
starts near (1, 1) with few infections and travels down and to the left, as more people get
infected.

The shaded area represents the region of herd immunity, where the size of the suscep-
tible population is sufficiently low that, once we enter this region before T, the pandemic
comes to an end quickly.6 In single-group SIR models, this region corresponds to an in-
terval of the form S ∈ [0, S̄], and within this interval we have İ < 0. With multiple groups
this same concept defines a region for the pair (Sy, So). When ρ = η = 1 and the two
groups have equal sizes, this region is symmetric, with slope −1, as shown in the figure.

6More formally, we can define the region of herd immunity as the set of points (Sy, S0) with the
property that, in the absence of lockdowns Ly(t) = Lo(t) = 0, the dynamic system starting from
(Sy(0), S0(0)) = (Sy, S0) and small initial infections (Iy(0), Io(0)) converges to points near (Sy, S0). In other
words (Sy(∞), S0(∞)) is continuous in (Iy(0), Io(0)) so that for the limit point (Sy(∞), S0(∞)) we have
(Sy(∞), S0(∞)) → (Sy, S0) as (Iy(0), Io(0)) → (Iy(0), Io(0)). One can express this property as a condition
on the largest (dominant) eigenvalue of the linearized dynamical system.
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Without any mitigation, the disease follows the dashed 45-degree line, starting from
an initial condition where almost nobody has been sick and reaching a situation where
the majority in both groups have been infected at some point. The pandemic goes beyond
the frontier for herd immunity—a phenomenon referred to as “overshooting”—because
infections continue to spread for a while as there are many infected individuals when we
cross the threshold. Although the pandemic travels along the 45-degree line so that the
same fraction of young and old get infected, mortality will be significantly higher for the
old given their higher case fatality rate.

Different lockdown policies induce different trajectories towards the herd immunity
region: the ones that do not reach the herd immunity region before t = T are “waiting
for the vaccine”, while those that reach this region before t = T are “going for herd
immunity”.

Any uniform policy sends (Sy, So) along the 45-degree line by virtue of our aggrega-
tion result. More targeted mitigation policies open up new possibilities. The top solid line
locks down the old more aggressively than the young, leading to lower infections among
old relative to young. The resulting trajectory then reaches the region of herd immunity
at an angle, with a higher fraction of infected among the young than the old, reducing
excess mortality for the old. With targeted policies, too, the planner may opt to hold out
for the vaccine as with the lower solid line, but can do so while reducing infections among
the old.

3 Specification and Calibration

We focus on targeting policies based on age, with three groups, the “young” (y) who
are ages 20-49, the “middle-aged” (m) who are 50-64, and the “old” (o) who are 65 and
above. We do not include those under 20 in our analysis.7 We take the population share of
these three groups among those over 20 years of age from BLS population data for 2019,
Ny = 0.53, Nm = 0.26, and No = 0.21. We assume equal earnings per capita for the young
and middle-aged groups, which we normalize by setting wy = wm = 1, while wo = 0.26.8

7Another factor that targeted policies could depend on is the presence of co-morbidities, which have
been shown to lead to significantly higher mortality and ICU needs. We focus on age in part because of
the availability of mortality risk data by age group and the greater feasibility of implementing age-based
policies.

8From BLS statistics, the full-time employed middle-aged have 12% higher weekly earnings, but are
13% less likely to be employed than the young. The share of workers who are employed full-time versus
part-time is roughly equal in the two groups. Only 20% of those over 65 work and, when employed, earn
slightly more, leading to wo = 0.26. In Section 4.2, we also include utility costs from lockdown, which
affect the relative opportunity costs of lockdown by group but do not change our overall qualitative and
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We set ξ = 0.4, which implies that working from home results, on average, in a 60% loss
of productivity, which matches Dingel and Neiman’s (2020) estimate that 37% to 46% of
the US workforce can work from home.

As in Alvarez, Argente and Lippi (2020), we set L̄ = 0.7 when we consider uniform
policies, reflecting the need for essential services by 30% of the workforce, and set L̄o = 1
and L̄j = 0.7 for the other groups when considering targeted policies. We set φj = τj =

0.1, implying that the probability of failing to isolate an infected individual is ηj ≡ η =

0.9 for all groups. We also assume that there is perfect identification of individuals who
have recovered and are allowed to go back to work, so that κj = 1.9

We choose γ = 1/18 so that a COVID-19 case reaches a conclusion, with the individual
either recovering or dying, in 18 days on average.10 We set β equal to 0.106, which implies
a reproduction rate of R0 = 1.9. This choice is motivated by the baseline numbers in
Ferguson et al. (2020), which gave a value of R0 = 2.4 for the beginning of the pandemic,
combined with more recent evidence, which suggests that minimal precautions (such as
basic sanitary measures and masks) have reduced transmissions by about 20% (Baqaee et
al., 2020, Chernozhukov et al., 2020).

We set θ = 0.75 in our baseline and examine lower values of θ in our robustness
analysis. This value of θ implies that a full lockdown reduces interactions by 75%. For
the contact matrix {ρij}, we start with a conservative benchmark and assume ρij = 1 for
all i, j, so that all age groups interact equally with each other. This is not meant to be
realistic, but it enables transparency and diminishes benefits from targeting, as the old
will be more exposed to the infected among the younger groups.

We take from Ferguson et al. (2020) the case fatality rates for the three age groups,
conditional on infection and ICU services being available as (δd

y = 0.001, δd
m = 0.01, δd

o =

0.06). These numbers are in line with those from South Korea and the Diamond Princess
cruise (see Acemoglu et al., 2020b, for details and discussion). We also choose ιj =

0.0076δd
j based on the fraction of infections requiring ICU care by age used in Ferguson et

al. (2020), adjusted for the structure of the US population. We specify that base mortality
rates are multiplied by a factor [1 + λH(t)] and choose λ so that a 10% uniform infection
rate increases mortality by 10%.

We set the present discounted value of the lost work-life of the three groups upon
death, (∆y, 4m, 4o), by assuming a retirement age of 67.5 years, so that there are 32.5
remaining work-years for the young, 10 years for the middle-aged and 2.5 years for the

quantitative conclusions.
9In Acemoglu et al. (2020b), we show that relaxing this assumption has no major effect on our results.

10Setting γ = 1/5 or 1/7 to match the length of time during which an individual is infectious and then
recalibrating β to match the same level of R0 leads to essentially identical results.
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old. We also set the interest rate at 1%.
Finally, in our baseline we have T = 546 days, corresponding to vaccine arrival in 1

1/2 years time, and set initial conditions for each group as 99% suceptible, 0.5% infected,
and 0.5% recovered.

To generate our frontiers, we minimize
∫ T

0 ∑j Ψj(t) dt + χ ∑j Dj(T), that is, the sum
of economic damages and χ times the number of deaths, subject to the laws of motion
of our model; we then vary the parameter for the nonpecuniary cost of life, χ̀. We use a
discrete-time approximation to this optimal control problem and then apply a nonlinear
interior point algorithm (IPA) to compute the solutions (Wächter and Biegler, 2006). We
utilize the APMonitor-Gekko interface to implement the IPA (Hedengren et al., 2014; Beal
et al., 2018). The numerical solutions are not sensitive to initial conditions.

4 Optimal Policies

4.1 Main Results

Figure 3 depicts the frontier between lives lost and economic damages under differ-
ent policies for our baseline parameters and summarizes the trade-off faced by policy-
makers. As in Figure 1 in the Introduction, the bliss point is the origin, where there are
no (excess) lives lost and no economic damages. Each curve in the figure represents the
frontier resulting from a different class of policies: the top (red) frontier is for uniform
policies. Below it we have the (green) frontier for semi-targeted policies, which set the
same lockdown policy for the young and the middle-aged and a different policy for the
65+ group. Slightly below this (in blue) is the frontier for fully-targeted policies. The con-
vex shape of the frontiers represents diminishing returns to pursuing one objective at the
expense of the other.

The trade-off facing policy-makers when the menu of options is limited to uniform
policies is grim. For example, policy-makers prioritizing saving lives could aim to keep
total mortality from COVID-19 to less than 0.1% of the (adult) population. This “safety-
focused” optimal uniform policy, depicted in the top left panel of Figure 4, involves a
(partial) lockdown until the vaccine’s arrival.11 This lengthy lockdown has significant
economic costs, amounting to 25.9% of one year’s GDP (25.35% of this damage is in terms
of economic losses during the year and a half duration of the pandemic, and the remain-

11This policy would be optimal, alternatively, if we set χ = 35, which translates into a “value of statistical
life” of $3.8 million for an average young person or an average value of life year of about $286,000 in the
population (in both cases inclusive of the economic and nonpecuniary costs). See (Acemoglu et al., 2020b)
for details.
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ing 0.55% are due to forgone productive contributions from excess deaths). Consistent
with our aggregation result, the infection rates for the three age groups are on top of each
other in the top right panel of Figure 4. Nevertheless, the table on the top right corner of
the figure shows that mortality rates are much higher for the older group, reflecting their
higher case fatality rate. The time path of the infection rate follows an inverse U shape,
typical in SIR models, peaking in about one and a half months and declining slowly there-
after. The behavior of the infection rate also reveals that optimal policy in this case is
“waiting for the vaccine”: when the lockdown is lifted shortly before the vaccine’s ar-
rival, there is no herd immunity and infections start increasing immediately (only to be
brought under control by the vaccine).12

The “economy-focused” optimal uniform policy, limiting economic damages to no
more than 10% of one year’s GDP, is shown in the bottom panel of Figure 4.13 In this
case, a significantly higher fraction of the population, about 0.7%, will perish because of
the disease. Differently from the safety-focused optimal uniform policy, the economy-
focused policy goes for “herd immunity”, with a shorter lockdown aimed at flattening
the curve of the infection and avoiding overwhelming ICU capacity. Infections now peak
at a higher level, about 7%, but they also decline to zero and never show a further uptick.

Our main result can be gleaned by comparing the uniform and semi-targeted frontiers
in Figure 3. For the safety-focused objective, which aims to keep total mortality from the
virus to less than 0.1%, a semi-targeted policy can reduce economic losses from the 25.9%
mentioned to about 17.6% (16.8% of this coming in the form of a decline in current GDP).
The form of the safety-focused semi-targeted optimal policy is depicted in the top panel of
Figure 5. The lockdown is very strict on the older group and much less strict on the rest of
the population. The safety-focused optimal semi-targeted policy also waits for the vaccine
for the older group (who are in lockdown until the vaccine’s arrival), but only partially
so for the rest of the population (whose curve is again flattened so much that by the time
the vaccine arrives, there is still no population-wide herd immunity, as can be seen from
the uptick of the infections just before the vaccine). Finally, the infection rate of the 65+
group reaches a smaller peak than under uniform policies, because they are protected by
their more strict lockdown. Notably, however, they are still being infected by the young
and the middle-aged because θ = 0.75 implies that they are in not-too-infrequent contact
with these younger groups, which is exactly the reason why the optimal semi-targeted

12Safety-focused optimal uniform policy yields a mortality rate of 0.0053% for the adult population and
thus total deaths of about 175,500 by the ninth month of the pandemic, compared to about 320,000 deaths
in the US by the end of December 2020.

13The value of a life for an average young person that would justify the economy-focused policy, corre-
sponding to `χ =18.6, is $2.8 million, compared to $3.8 million for the safety-focused policy.
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policy keeps the young and the middle-aged under a relatively long lockdown.
The middle panel of Figure 5 turns to the economy-focused optimal semi-targeted

policy and shows that now the adult mortality rate is 0.27%, rather than 0.72% under the
economy-focused optimal uniform policy. The economy-focused optimal policy is still
going for herd immunity, but with a nuance: herd immunity is achieved primarily with
the infections of the young and the middle-aged, while the more vulnerable older group
is protected. Herd immunity also explains why the older group is allowed to come out of
lockdown gradually starting in about a year.

Finally, the bottom panel of Figure 5 shows the optimal semi-targeted policy when we
use the same value of the parameter for nonpecuniary value of life, χ = 35, that supports
the safety-focused uniform policy. Semi-targeted policies at this level of χ encourage the
social planner to exploit the gains from targeting in terms of improved economic perfor-
mance, leading to economic damages of only 12.8%.14

A surprising result is that fully-targeted policies that treat the young and the middle-
aged differently perform essentially as well as semi-targeted policies. Indeed, in Figure
3 the blue fully-targeted frontier is nearly indistinguishable from the green semi-targeted
frontier. Figure A1 in the Appendix verifies that the middle-aged, who have higher mor-
tality rates from the virus than the young, are put under a stricter and longer lockdown.
This improves outcomes, but only by a miniscule amount. The reason is that, as noted
above, the main objective of locking down the under-65 groups is to protect the most vul-
nerable, 65+, group, and the comparatively small differences between the middle-aged
and the young do not contribute much to the gains.

Figure A2 in the Appendix shows that the differential lockdowns on the old are mostly
because of their higher vulnerability, not because of their lower market wage. There, we
distinguish between old-retired and old-workers, and assume that the old-workers have
the same wage as the middle-aged and the young, but the same vulnerability to the virus
as the old-retired. The optimal policy treats them very similarly to the old-retired. For
example, in the safety-focused semi-targeted policies, they are put under lockdown until
the vaccine arrives.

Overall, our results establish that targeted policies can significantly improve the trade-
offs between lives lost and economic damages from the pandemic, and most of the gains
can be achieved with simple semi-targeted policies that apply more strict lockdowns on
the oldest, most vulnerable group.

14When we consider the social planner’s choice for a fixed χ, it is not uncommon to see improvements
only in one dimension as targeting alters the trade-off between economic damages and fatalities. In partic-
ular, fatalities for a fixed χ may rise when the slope of the frontier with targeted policies is steeper at the
same level of fatalities.
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4.2 Robustness

We explored the robustness of these results in a number of directions. In all cases, the
significant gains from semi-targeting and the small additional benefits from full targeting
remain. The details of these robustness exercises are provided in Acemoglu et al. (2020b).
Here we discuss five that are particularly important. First, many works in the epidemiol-
ogy literature impose a hard constraint on ICU capacity (because they view over-running
ICU capacity as extremely costly) and consider simple lockdown policies, often showing
a pattern in which lockdowns are lifted and then reimposed, leading to several waves.
When we impose such a hard constraint (equal to 115% of the pre-COVID ICU capac-
ity of about 32,000), we find that this pattern of on and off policies is not optimal, and
targeted lockdowns lead to similar benefits to those shown above, despite the hard con-
straints. Figure A3 illustrates this point for optimal policies targeting 15% economic losses
uniform and semi-targeted policies.15 Second, we show in Figure A4 that the results are
very similar, when we use the value of β implied by the original numbers in Ferguson et
al. (2020).16 Third, we introduce an additional utility cost from lockdowns for all groups
equal to 30% of the young and the middle-aged wage, which implies that the opportu-
nity cost of lockdowns for the old is higher than in our baseline. Nevertheless, Figure A5
shows that the gains from targeting and the form of optimal semi-targeted policies remain
very similar. Fourth, we depart from the quadratic matching technology and show that
this also has no major effect on our conclusions (though the formal matching technology
does matter for other aspects of policy). Finally, we extend our analysis to the more real-
istic SEIR model (involving exposed, E, individuals). This has essentially no effect on our
conclusions; see Figure A6 and Acemoglu et al. (2020b).

4.3 Network Structure, Group Distancing and Testing

Introducing differential social interactions between different groups (relaxing the assump-
tion that ρjk = 1) is not only useful for realism but also enables us to consider a richer set
of policies, such as group distancing ones aimed at reducing between-group transmis-
sions. Here we use data from Klepac et al. (2020), based on the BBC pandemic project,
for interaction patterns across different age groups in the UK, which suggest moderately
higher within-group contact rates. Figures A7 and A8 show that optimal semi-targeted
lockdowns (with the baseline SIR model and the SEIR extension, respectively) again bring

15The ICU constraint is not binding for “safety-focused” policies, and the 10% economic losses of our
“economy-focused” policies are not feasible without violating this ICU constraint.

16This was the baseline in the working paper version of our work, Acemoglu et al. (2020b).
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significant gains and are on the whole similar to those shown above—except that there
is now some relaxation of lockdowns on the 65+ group, to take advantage of the lower
interactions between this group and other, higher-infection groups, followed by a sub-
sequent re-tightening. Next, we also introduce testing policies that help isolate infected
individuals at a higher rate. Group distancing and testing policies, either by themselves
or combined, make targeted policies even more powerful. For example, if the two are
combined, optimal semi-targeted policies are enough to keep infections very low and the
overall mortality rate at 0.1% at an economic cost of just 4.8% of GDP (see Figure A9 and
Acemoglu et al., 2020b, for more details).

5 Conclusions

We developed a framework for optimal policy analysis in a multi-group SIR model. Our
analysis shows that simple but ad hoc policies may sometimes lead to highly suboptimal
performance, and especially in the case of the COVID-19 pandemic, age-targeted policies
can significantly improve economic and public health outcomes. Our quantitative conclu-
sions are quite consistent across different parameterizations and are the main take-away
message from the paper.

We did not consider how optimal policies can be implemented, which is important
for at least two reasons. First, voluntary behavioral changes may already achieve some,
but typically not all, of the objectives of optimal policy, and it is important to investi-
gate the form and extent of government lockdown requirements in the presence of be-
havioral adjustments, and whether they need to be differential across groups (or whether
uniform requirements may sometimes lead to optimally differential behavior). Second, in
the presence of voluntary social distancing, government policies may sometimes backfire.
For example, Acemoglu et al. (2020a) show that testing policies may generate excessive
slackening of voluntary social distancing, especially among high-risk groups. These two
considerations together imply that there could be a type of “Lucas critique” when it comes
to mitigation policies: once lockdown or testing policies are changed, the law of motion of
the pandemic responds. This obviously calls for the study of more micro-founded models
of individual behavior in the course of a pandemic.
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Bairoliya, Neha and Ayşe İmrohoroğlu, “Macroeconomic Consequences of Stay-At-
Home Policies During the COVID-19 Pandemic,” April 2020. mimeo.

Baqaee, David, Emmanuel Farhi, Michael J Mina, and James H Stock, “Reopening Sce-
narios,” Working Paper 27244, National Bureau of Economic Research May 2020.

Beal, L.D.R., D.C. Hill, R.A. Martin, and J.D. Hedengren, “GEKKO Optimization
Suite.„” Processes, 2018, 6 (106).

Brotherhood, Luiz, Philipp Kircher, Cezar Santos, and Michèle Tertilt, “An economic
model of the Covid-19 epidemic: The importance of testing and age-specific policies,”
2020.

Chernozhukov, Victor, Hiroyuki Kasaha, and Paul Schrimpf, “Causal impact of
masks, policies, behavior on early COVID-19 pandemic in the US,” arXiv preprint
arXiv:2005.14168, 2020.

Dingel, Jonathan and Brent Neiman, “How Many Jobs Can be Done at Home?,” April
2020. White Paper.

Eichenbaum, Martin, Sergio Rebelo, and Mathias Trabandt, “The Macroeconomics of
Epidemics,” Working Paper 26882, National Bureau of Economic Research March 2020.

Farboodi, Maryam, Gregor Jarosch, and Robert Shimer, “Internal and External Effects of
Social Distancing in a Pandemic,” Working Paper 27059, National Bureau of Economic
Research April 2020.

14



Favero, Carlo A., Andrea Ichino, and Aldo Rustichini, “Restarting the Economy While
Saving Lives Under COVID-19,” April 2020.

Fenichel, Eli P, “Economic considerations for social distancing and behavioral based poli-
cies during an epidemic.,” J Health Econ, Mar 2013, 32 (2), 440–451.

Ferguson, NM, D. Laydon, G. Nedjati-Gilani, N. Imai, K Ainslie, M. Baguelin, S. Bha-
tia, A. Boonyasiri, Z. Cucunubá, G. Cuomo-Dannenburg, and A. Dighe, “Impact of
non-pharmaceutical interventions (NPIs) to reduce COVID-19 mortality and healthcare
demand,” March 2020. Imperial College COVID-19 Response Team.

Garibaldi, Pietro, Espen R. Moen, and Christopher A Pissarides, “Modelling contacts
and transitions in the SIR epidemics model,” in Charles Wyplosz, ed., Covid Economics
Vetted and Real-Time Papers, CEPR, April 2020.

Geoffard, Pierre-Yves and Tomas Philipson, “Rational Epidemics and Their Public Con-
trol,” International Economic Review, 1996, 37 (3), 603–624.

Glover, Andrew, Jonathan Heathcote, Dirk Krueger, and José-Víctor Ríos-Rull, “Health
versus Wealth: On the Distributional Effects of Controlling a Pandemic,” Working Pa-
per 27046, National Bureau of Economic Research April 2020.

Gollier, Christian, “Cost-benefit analysis of age-specific deconfinement strategies,” April
2020. presentation slides.

Hedengren, John D., Reza Asgharzadeh Shishavan, Kody M. Powell, and Thomas F.
Edgar, “Nonlinear modeling, estimation and predictive control in APMonitor,” Com-
puters and Chemical Engineering, 2014, 70, 133 – 148.

Jones, Callum J, Thomas Philippon, and Venky Venkateswaran, “Optimal Mitigation
Policies in a Pandemic: Social Distancing and Working from Home,” Working Paper
26984, National Bureau of Economic Research April 2020.

Kermack, William Ogilvy, A. G. McKendrick, and Gilbert Thomas Walker, “A con-
tribution to the mathematical theory of epidemics,” Proceedings of the Royal Society of
London. Series A, Containing Papers of a Mathematical and Physical Character, 1927, 115
(772), 700–721.

Klepac, Petra, Adam J Kucharski, Andrew JK Conlan, Stephen Kissler, Maria Tang,
Hannah Fry, and Julia R Gog, “Contacts in context: large-scale setting-specific social
mixing matrices from the BBC Pandemic project,” medRxiv, 2020.

15



Manski, Charles F and Francesca Molinari, “Estimating the COVID-19 Infection Rate:
Anatomy of an Inference Problem,” Working Paper 27023, National Bureau of Eco-
nomic Research April 2020.

Rampini, Adriano A, “Sequential Lifting of COVID-19 Interventions with Population
Heterogeneity,” Working Paper 27063, National Bureau of Economic Research April
2020.

Rowthorn, Robert and Flavio Toxvaerd, “The Optimal Control of Infectious Diseases via
Prevention and Treatment,” Technical Report 2013, Cambridge-INET Working Paper
2020.

Wächter, A. and L. Biegler, “On the implementation of an interior-point filter line-search
algorithm for large-scale nonlinear programming.,” Math. Program, 2006, 106, 25–57.

16



Deaths

ou
tp

ut
 lo

ss

0

No Control

Maximal Feasible Control

Maximal Fully  
Effective Control

Deaths

ou
tp

ut
 lo

ss

0

No Control

Maximal Feasible Control

Maximal Fully  
Effective Control

Minimal  
Economic Loss

Optimal Uniform 
Policies

Optimal 
Targeted Policies

Figure 1: Frontier: economic losses vs. (excess) deaths.

Sy(0,0)

So (1,1)

Herd 
Immunity

Figure 2: Illustrative herd immunity region and different time paths for the pandemic
with two groups, old and young.

A-1



0.000 0.005 0.010
Fatalities as Fraction of Adult Population

0.00

0.05

0.10

0.15

0.20

0.25

0.30

P
D

V
 o

f E
co

no
m

ic
 L

os
s 

in
 F

ra
ct

io
ns

 o
f G

D
P

PDV of Economic Loss vs  Fatalities 

Uniform Policy
SemiTargeted Policy
Targeted Policy

Base: Outcomes for = 0.75, = 1, = 0.9, T = 546

Figure 3: Frontiers of output loss vs. deaths for baseline specification. The three fron-
tiers represent different levels of targeting. The circles show the safety-focused policies,
the squares are for the economy-focused policies, and the triangle depicts the optimal
semi-targeted policy for a nonpecuniary cost of death χ = 35, which supports the safety-
focused optimal uniform policy.

A-2



0 200 400

0.0

0.2

0.4

0.6

0.8

1.0
Lockdown Policy

young
middle
old

Outcomes

Economic Loss  0.2587

Adult Population Fatalities 0.001

Young Fatality Rate 0.0001

MiddleAged Fatality Rate 0.0006

Old Fatality Rate 0.0038

0 200 400
0.000

0.025

0.050

0.075

0.100

0.125

0.150
Infection Rates

young
middle
old

Base: Safety Focused Optimal Uniform Policy for  = 0.75 = .9 = 1.0

0 200 400

0.0

0.2

0.4

0.6

0.8

1.0
Lockdown Policy

young
middle
old

Outcomes

Economic Loss  0.1

Adult Population Fatalities 0.0072

Young Fatality Rate 0.0005

MiddleAged Fatality Rate 0.0046

Old Fatality Rate 0.0275

0 200 400
0.000

0.025

0.050

0.075

0.100

0.125

0.150
Infection Rates

young
middle
old

Base: Economy Focused Optimal Uniform Policy for  = 0.75 = .9 = 1.0

Figure 4: Optimal uniform policy for baseline parameters that achieves the “safety-
focused” objective of limiting the population mortality rate to no more than 0.1% (top
two panels) and “economy-focused” objective of limiting economic losses to no more
than 10% of one year’s GDP (bottom two panels).
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Figure 5: “Safety-focused” semi-targeted optimal policy (top two panels), “economy-
focused” semi-targeted optimal policy (middle two panels), and optimal semi-targeted
policy with nonpecuniary cost of death χ = 35 (bottom two panels).
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