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Sequentiality of moves in an infinitely repeated prisoner’s dilemma
does not change the conditions under which mutual cooperation
can be supported in equilibrium relative to simultaneous decision-
making. The nature of the interaction is different, however, given
that sequential play reduces strategic uncertainty. We show in an
experiment that this has large consequences for behavior. In par-
ticular, we find that with intermediate incentives to cooperate, se-
quentiality increases the cooperation rate by around 40 percentage
points, whereas with very low or very high incentives to cooper-
ate, cooperation rates are respectively very low or very high in both
settings.
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Folk theorems show that both opportunism and cooperation can be sustained
in a prisoner’s dilemma game when the interaction is repeated and players are
sufficiently patient (Fudenberg and Maskin, 1986). A remarkable property of this
setup is that whether players move simultaneously or sequentially in the stage
game does not affect the conditions that support mutual cooperation in equilib-
rium.1 In both cases, mutual cooperation can be sustained if the discount factor is
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1Sequential moves, whereby the first mover’s choice is revealed to the second mover before the latter
makes a choice, are common in the context of trust (Kreps, 1990), borrower-lender relations (Thomas and
Worrall, 1990; Kehoe and Levine, 1993), employer-employee relations (Akerlof, 1982; Fehr, Kirchsteiger
and Riedl, 1993), and trade (Greif, 1993; Brown, Falk and Fehr, 2004).
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above a threshold that depends on the parameters of the game (Wen, 2002).2 Yet,
given that sequentiality reduces strategic risk for the player who moves second,
it creates a very different strategic environment. Specifically, the second mover
can reap the benefits of cooperation and at the same time avoid being betrayed
by cooperating if and only if the first mover cooperates. If the first mover un-
derstands this, then the strategic risk he faces is also lower than that of a player
in a simultaneous game. Consequently, one might plausibly expect that sequen-
tiality is a key determinant of cooperation. This paper reports on a controlled
experiment that studies whether and under what conditions sequentiality leads
to more cooperation. The paper is relevant for understanding cooperation across
a wide range of applications (e.g. trade, employer-employee relations, borrower-
lender relations) and contributes to the literature that investigates determinants
of cooperation.

The role of strategic uncertainty has been highlighted as a crucial determinant
of behavior within the class of repeated simultaneous prisoner’s dilemmas (PDs).
As summarized by Dal Bó and Fréchette (2018), the more money a player might
lose by cooperating, the less she is willing to cooperate.3 Two distinct but re-
lated approaches formalize the role of strategic uncertainty: Blonski, Ockenfels
and Spagnolo (2011) and Blonski and Spagnolo (2015) who apply the concept of
risk dominance to the repeated PD and Dal Bó and Fréchette (2011) who ap-
peal to the basin of attraction of repeated-game strategies. These approaches
also help to formalize the intuition that the sequentiality of moves may facilitate
cooperation. A key element is that the second mover in a repeated sequential
PD can, unlike a player in a repeated simultaneous PD, avoid ending up with the
sucker payoff by conditionally cooperating. This leads to the prediction that sec-
ond movers conditionally cooperate and first movers cooperate whenever mutual
cooperation is supported in equilibrium. Otherwise, they defect.4 With simul-
taneous decision-making, in contrast, the approaches predict a smooth relation
between payoffs and the likelihood of cooperation, conditional on mutual coopera-
tion being supported in equilibrium. In summary, if strategic uncertainty is taken
into account, the cooperation rate in sequential PDs is predicted to be (weakly)
higher than that in simultaneous PDs in games in which mutual cooperation is
supported in equilibrium.

In our experiment, participants play a series of indefinitely repeated sequential
or simultaneous PDs. In each round, players proceed to the next round with a

2This builds on the use of the grim trigger strategy as a cooperative strategy (Friedman, 1971). Since
that strategy leads to minimax payoffs (equal to static Nash payoffs) independently of sequentiality, it
is the worst possible punishment strategy in both settings (Fudenberg and Maskin, 1986).

3Strategic uncertainty is also an important factor in finitely repeated PDs (Embrey, Fréchette and
Yuksel, 2018), repeated entry games (Calford and Oprea, 2017) and dynamic dilemma games (Vespa and
Wilson, 2019).

4The prediction is reminiscent of a case discussed by Camera, Casari and Bigoni (2013) in relation to
a game where strangers decide whether to help one another in exchange for fiat money. In this case, the
only two stable population configurations are a population of defectors and a population of conditional
cooperators (traders), with basins of attraction depending on the parameters of the game.
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constant and known continuation probability δ.5 The experiment covers six pa-
rameter configurations that vary between subjects, as in Dal Bó and Fréchette
(2011). In one configuration, cooperation cannot be sustained in equilibrium be-
cause δ is below the threshold of the standard theory of infinitely repeated games,
while in the others, δ is above the theoretical threshold. We formulate predic-
tions while taking into account strategic uncertainty. In the treatment in which
mutual cooperation cannot be sustained in equilibrium, no difference is predicted
between the sequential and simultaneous versions. In the other treatments, se-
quentiality is predicted to (weakly) increase the cooperation rate to above that
in the simultaneous equivalent, with the largest effect predicted for the games
where δ is closest to the theoretical threshold. The reason for this is that in the
simultaneous version of the latter games, strategic risk is largest.

The experimental results show strong support for the predictions that take into
account strategic risk. In the treatments that are characterized by relatively high
strategic risk in the simultaneous version, sequentiality increases the cooperation
rate by 40 percentage points. In the treatments with relatively little strategic risk,
sequentiality has no significant effect on the cooperation rate; the cooperation
rate is close to one then when mutual cooperation is sustainable, and close to
zero when it is not.

Other experimental studies have compared sequential and simultaneous social
di-lemma games. Evidence from one-shot experiments, in which repeated-game
incentives are absent, indicates that the effect of sequentiality on cooperation ap-
pears to depend on the game’s parameters and the subject pool (Ahn, Ostrom and
Walker, 2003; Ahn et al., 2007; Khadjavi and Lange, 2013). Oskamp (1974) who
compares repeated sequential- and simultaneous-move PDs with different payoff
levels but otherwise the same repeated-game incentives, finds evidence for an in-
teraction between sequentiality of moves and payoff levels. In sequential-move
games, cooperation rates tend to be less responsive to a change in the payoff
level than in simultaneous-move games.6 Furthermore, there is a literature on
leading-by-example where a leader is modeled as the first mover in a voluntary-
contributions setting. In this literature, (exogenously imposed) sequentiality of
moves increases contributions relative to a simultaneous-move setting if the leader
has private information about the game’s parameters (Potters, Sefton and Vester-
lund, 2005) but leads to mixed results in full information settings (for example
Andreoni, Brown and Vesterlund, 2002; Güth et al., 2007).7 Finally, Kartal and

5Building upon the assumption that participants do not discount the future in the short period of
time they are in the lab, δ has the same role as that of the rate at which risk-neutral players discount
the future in an infinitely repeated game (Roth and Murnighan, 1978).

6In these experiments, it was announced that the repeated game would last for 60 rounds but was
ended after 50 to avoid end-game effects.

7See also Clark and Sefton (2001) who study the effect of stakes and subject pool on the cooperation
rate in one-shot sequential PDs; Engle-Warnick and Slonim (2006) who study behavior in infinitely
repeated trust games; and Reuben and Suetens (2012) who elicit stage-game strategies of players in
infinitely repeated sequential PDs in which players can condition their strategy on whether or not they
are playing the last round.
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Table 1—Stage game of a simultaneous PD.

Cooperate Defect

Cooperate c, c s, t

Defect t, s d, d

Note: t > c > d > s and 2c > t+ s.

Müller (2018) compare simultaneous and sequential infinitely repeated PDs in an
experiment inspired by their model with heterogeneity in cooperation preferences
and private information. They focus on a case in which cooperation cannot be
sustained in equilibrium and find that sequentiality increases the cooperation rate
by about 20 percentage points.

The remainder of the paper is organized as follows: Section I provides the
theoretical background; Section II describes the experimental design and proce-
dures and presents predicted effects of sequentiality in our experiment; Section
III presents the main results, with focus on the treatment effect of sequentiality
and on the behavior of first and second movers in the sequential games; Section
IV concludes.

I. Theoretical Background

In a repeated simultaneous PD with a stage game as shown in Table 1, the stan-
dard theory of infinitely repeated games prescribes that mutual cooperation can
be supported as an equilibrium outcome if δ ≥ δ∗ ≡ (t− c)/(t− d) (see propo-
sition 4 in Friedman, 1971). Both players playing grim trigger (GT) strategies
constitutes an equilibrium then.8 If the PD is played sequentially, then the theory
predicts that mutual cooperation can be supported in equilibrium under the same
condition as in the simultaneous PD, that is, if δ ≥ δ∗. Likewise, GT leads to the
harshest possible punishment and both players using a GT strategy constitutes
an equilibrium (see Section C.1 of the Appendix for calculations).9 In summary,
standard game theory does not provide a specific reason why cooperation rates
should be different in sequential PDs than in simultaneous ones: if δ < δ∗, the
only equilibrium is one in which both players defect, and if δ ≥ δ∗, cooperative
and non-cooperative equilibria exist in both cases.

More precise predictions can be obtained by appealing to risk dominance (Blon-
ski, Ockenfels and Spagnolo, 2011) or to the basin of attraction of repeated-game
strategies (Dal Bó and Fréchette, 2011). These approaches help to identify under
which conditions players are more likely to coordinate on a mutually cooperative

8GT is defined as follows: start by cooperating and continue to do so if both players cooperate, and
if one of the players defects, switch to defection forever.

9Since a second mover never moves first, the implementation of GT is as follows: the second mover
should cooperate if the first mover cooperates and if she himself cooperated in the previous move, and
switch to defection forever after a defection of one of the two players.
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equilibrium in games with δ ≥ δ∗. A key element is that the relative cost of
cooperating with a partner who defects, becomes an important determinant of
behavior for players who do not know with certainty whether or not their part-
ner will defect. In particular, consider a simplification of the repeated game to
a game in which players choose at the beginning of the repeated game between
the always defect strategy (AD) and a conditionally cooperative strategy (CC)
à la GT.10 We assume that the payoffs in the reduced game represent utilities
and that they are common knowledge. The basin of attraction of AD versus CC
(referred to as SizeBAD) is defined as the maximum probability that the partner
will follow the CC strategy that makes AD optimal, which is based on the set of
beliefs about the partner’s strategy that makes AD optimal. SizeBAD turns out
to be highly useful in understanding how behavior in sequential PDs might differ
from that in simultaneous PDs. In what follows, we explain the intuition. The
detailed calculations are presented in Section C.2 of the Appendix.

First, consider a repeated simultaneous PD. If δ ≥ δ∗, the reduced game in
which players choose between AD and CC is a game with two pure-strategy equi-
libria: (AD, AD) and (CC, CC). Players are more likely to choose CC and thus to
end up in equilibrium (CC, CC) if the expected payoff of CC exceeds that of AD.
This holds true if they believe that their partner will choose CC with sufficiently
high probability, namely with a probability that exceeds d−s

c+d−t−s+ δ(c−d)
1−δ

≡ p̄. The

threshold belief p̄, which we refer to as SizeBAD, depends on the game’s param-
eters and decreases ceteris paribus as c or δ increases. Thus, it is predicted that
for δ ≥ δ∗, the likelihood that participants cooperate, depends on the game’s
parameters. It is predicted to be higher, the higher is c or δ. For δ < δ∗, the
cooperation rate is predicted to be zero.

Next, consider a repeated sequential PD. If δ ≥ δ∗, the expected payoff for
the second mover of choosing CC is (weakly) larger than that of choosing AD
for all possible beliefs about the strategy of the first mover. This is because, in
contrast to a player in a simultaneous PD, a second mover who uses CC avoids
the sucker payoff. She prefers CC if the discounted payoff of CC is higher than
that of AD, namely if δ ≥ δ∗, and plays AD if δ < δ∗.11 The first mover is
not confronted with strategic uncertainty either, because he anticipates that the
second mover will conditionally cooperate (due to the assumption that the PD’s
payoffs represent the utilities of the players and that is common knowledge).
Therefore the first mover imitates the strategy of the second mover and also plays
CC if δ ≥ δ∗ and AD if δ < δ∗. Therefore, it is predicted that the cooperation
rate will be equal to 100% if δ ≥ δ∗ and zero otherwise.12 In summary, the

10Since players are assumed to choose their strategy at the beginning of the repeated game, tit-for-tat
(TFT) or another conditionally cooperative strategy with punishment would also qualify as CC.

11She is indifferent if δ = δ∗.
12Notice that the same predictions hold in the limit of a quantal response equilibrium, since noise

completely vanishes (Turocy, 1995). If noise has not vanished, then a smooth relation is predicted
between the parameters of the game and the cooperation rate, even in Seq if δ > δ∗ (see Section C.3 of
the Appendix for predictions based on quantal responses).
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cooperation rate in a repeated sequential PD is predicted to be (weakly) higher
than in the repeated simultaneous PD with corresponding parameters. In Section
II, we formulate more precise comparative-static predictions for the parameters
used in the experiment.

Finally, allowing for heterogeneity of players, for example in terms of other-
regar-ding preferences, does not change the core prediction that the cooperation
rate in a sequential PD is (weakly) higher than in the simultaneous version.13

However, if players have heterogeneous preferences, then the threshold above
which CC is preferred over AD is player-specific. For example, sufficiently pro-
social players would prefer CC over AD in the role of second mover in a sequential
PD even if δ < δ∗, whereas relatively spiteful players would need a larger δ than
δ∗ to prefer CC over AD. Thus, for a given distribution of selfish, pro-social, and
spiteful players in the population, the cooperation rate depends on the parameters
of the game, even in sequential PDs with δ > δ∗. In Section C.4 of the Appendix
we illustrate the effect of heterogeneity using a Charness and Rabin (2002) utility
function without a reciprocity component. A heterogeneity model with privately
informed players can be found in Kartal and Müller (2018).

II. The Experiment

A. Design and Procedures

Participants in the experiment play 50 repeated games. The number of periods
in a repeated game (referred to as rounds) is stochastic and ex ante unknown to
both the participants and the experimenter. In each round, the (known) proba-
bility that the game proceeds to the next round is δ. At the beginning of each
repeated game, participants are randomly divided into pairs within matching
groups of ten. They remain matched with the same counterpart for all rounds
of a repeated game. In the sequential PDs, participants are also randomly allo-
cated the role of first or second mover at the beginning of each repeated game.
We expect that letting participants play in both roles helps them understand
the strategic nature of the game.14 The software had a built-in history box that
participants could use to review all previous actions in the current repeated game.

We use the same parameters and treatment variations as in the simultaneous
PD experiment conducted by Dal Bó and Fréchette (2011) (henceforth, DBF):
d = 25, t = 50, s = 12; c = 32, c = 40 or c = 48; and δ = 0.5 or δ = 0.75.
These parameters cover a wide range of settings ranging (in expectation) from
short games with low gains to mutual cooperation to longer games with high gains

13A large literature shows that players are heterogeneous in that at least some of them hold pro- or
anti-social preferences (e.g. Levine, 1998; Fehr and Schmidt, 1999; Charness and Rabin, 2002). For them,
payoffs in PDs do not represent utilities. Ahn, Ostrom and Walker (2003) and Ahn et al. (2007) illustrate
how heterogeneity models help to understand cooperation in one-shot simultaneous and sequential PDs.

14Reassigning roles at the beginning of each repeated game also ensures that contagion effects à la
Kandori (1992) are constant across simultaneous and sequential treatments.
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Table 2—The treatments.

Sim Seq Total

δ = 0.5 δ = 0.75 δ = 0.5 δ = 0.75

c = 32 40 48 32 40 48 32 40 48 32 40 48

# Participants 30 30 30 30 30 30 60 60 60 60 60 60 540

# Matching groups 3 3 3 3 3 3 6 6 6 6 6 6 54

# Repeated games 50 50 50 50 50 50 50 50 50 50 50 50 600

# Rounds (mean) 1.8 1.9 1.9 4.1 4.1 4.1 1.8 1.8 1.8 4.3 4.3 3.3 –

One-round games (share) 0.60 0.54 0.54 0.24 0.26 0.26 0.54 0.54 0.54 0.25 0.25 0.26 –

Note: Sessions were conducted with 40, 50, or 60 participants and treatments were distributed across
several sessions. Apart from one exception, matching groups in a session faced the same δ and the same
style of decision-making but a different c.

to mutual cooperation. Table 2 presents an overview of the treatments, where
Sim and Seq refer to the treatments with simultaneous and sequential moves,
respectively. As can be seen from the table, both the average lengths of the
repeated games and the share of repeated games that last just one round are in
line with expectations.

The experiment was programmed with zTree (Fischbacher, 2007) and conducted
at the LINEEX lab in Valencia between July 2017 and April 2018. Sessions lasted
106 minutes on average and participants earned on average of e22.7. The proce-
dures are described more in detail in Section A of the Appendix, and an English
translation of the instructions can be found in Section B of the Appendix.15

B. Predictions

The predictions are based on the basin-of-attraction approach discussed in Sec-
tion I. Table 3 provides an overview of the values of SizeBAD for all treatments
based on the assumption that PD payoffs represent utilities. The larger the dif-
ference in SizeBAD between two particular treatments, the larger is the expected
difference in cooperation between them. Taking into account that DBF have al-
ready shown that the cooperation rate is close to one in Sim with c = 48, δ = 0.75,
we can summarize the predictions as follows:

1) The cooperation rate is expected to be close to zero in Sim and Seq in
treatment c = 32, δ = 0.5.

2) The cooperation rate is expected to be close to one in Sim and Seq in
treatment c = 48, δ = 0.75.

15We also ran treatments in which the strategy method was used to elicit choices of second movers,
and we plan to use these data in a future paper that compares hot and cold decision-making in sequential
PDs.
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Table 3—SizeBAD by treatment.

c

32 40 48

δ
0.5 1 0.72 0.38
0.75 0.81 0.27 0.16

(a) Sim

c

32 40 48

δ
0.5 1 0 0
0.75 0 0 0

(b) Seq
Note: The table indicates the basin of attraction of AD (SizeBAD) in the different treatments. SizeBAD
is defined as the maximal probability of the partner following a CC strategy that makes AD optimal.

3) The cooperation rate is expected to be (weakly) higher in Seq than in Sim
in the other treatments, and the difference in cooperation rate is expected
to (weakly) increase with the difference in SizeBAD between Seq and Sim:
c = 32, δ = 0.75 ≤ c = 40, δ = 0.5 ≤ c = 48, δ = 0.5 ≤ c = 40, δ = 0.75.

III. Results

A. Effect of Sequentiality on Cooperation Rates

This section reports the treatment effects of sequentiality on cooperation rates.
We focus on cooperation rates across first rounds because (a) repeated games
may have different lengths and (b) the adopted theoretical framework involves
the choice of whether to use a cooperative or non-cooperative strategy at the
beginning of the repeated game.16 We first focus on comparative-static results
after learning has taken place and then discuss dynamic patterns.

Figure 1 shows first-round cooperation rates across the last twenty repeated
games.17 We find that the difference between Sim and Seq is small in the treat-
ments with the lowest or highest incentive to cooperate (p = 0.200 and p = 0.635,
respectively).18 The cooperation rate is respectively close to zero and close to one
in these two treatments. In the Seq treatments with intermediate incentives to
cooperate, the cooperation rate is substantially higher than in the corresponding
Sim treatments. In particular, in treatments δ = 0.5, c = 40; δ = 0.5, c = 48; and
δ = 0.75, c = 32, sequentiality increases the post-learning cooperation rate by 38

16Statistics and graphs based on all rounds are included in Sections F and G in the Appendix, respec-
tively. Patterns are generally very similar to those reported in the main text.

17Figure G.1 in the Appendix includes predicted cooperation rates in Seq and cooperation rates ob-
served in DBF’s simultaneous PDs. As can be seen, DBF cooperation rates generally fall within 95%
confidence intervals of the cooperation rates in Sim in our experiment, suggesting that the patterns are
robust to changes in language, subject pool and small changes in procedure.

18Unless otherwise mentioned, the statistics reported in the results section are based on pairwise
treatment comparisons of behavior in the last 20 repeated games using probit regressions. The regressions
take the choice to cooperate in the first round of a repeated game as the dependent variable and include
a treatment dummy as an independent variable. Standard errors are clustered at the matching-group
level. Estimated treatment effects on the cooperation rate are presented in detail in Tables F.1 and F.4
in the Appendix.
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Figure 1. Cooperation rates.

Note: The graph shows first-round cooperation rates and 95% confidence intervals across the last 20
repeated games depending on the SizeBAD (including treatment labels). Estimates and confidence
intervals are based on predictions from probit regressions run on a treatment dummy with clustered
standard errors at the matching-group level.

to 41 percentage points (p < 0.001, p < 0.001 and p = 0.015, respectively). In
the Seq treatment with δ = 0.75, c = 40, the cooperation rate is somewhat higher
than in the corresponding Sim treatment but the difference is not statistically
significant (p = 0.639). Therefore, patterns of cooperation are overall closely in
line with the SizeBAD predictions.

The results are robust to controlling for individual-level variables, such as prox-
ies for other-regarding preferences, risk preferences and proneness to mistakes,
and experienced length of the first ten repeated games (see Table F.2 in the Ap-
pendix).19 The results are also robust to a re-estimation of treatment effects on
the basis of a dataset in which our data is merged with that of DBF (see Table
F.3 in the Appendix).20

With respect to the effects of c and δ on the cooperation rate, Figure 1 shows
that we have replicated the result of DBF that an increase in c or δ generally
leads to an increase in the cooperation rate in Sim after learning. A similar

19Overall, we find a positive relation in the first rounds between pro-sociality and risk-loving on the
one hand and cooperation on the other whereas our proxy for proneness to mistakes is less related to
cooperation. We also find that, in line with, for example, Engle-Warnick and Slonim (2006) and Dal Bó
and Fréchette (2018), the difference between expected and median realized length of the first ten repeated
games has a positive effect on cooperation after learning.

20DBF data are provided in “Replication Data for: The Evolution of Cooperation in Infinitely Re-
peated Games: Experimental Evidence”, American Economic Association, Inter-university Consortium
for Political and Social Research; http://doi.org/10.3886/E112401V1 (Dal Bó and Fréchette, 2019).

http://doi.org/10.3886/E112401V1
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Figure 2. Evolution of cooperation rates.

Note: The graphs show cooperation rates across first rounds of repeated games by treatment.

effect is also observed in Seq, even when focusing solely on the treatments with
δ > δ∗. In both Sim and Seq with δ > δ∗, the effect of c and δ on cooperation
is statistically significant (p ≤ 0.01 in probit regressions; see Table F.5 in the
Appendix). Although such an effect is not predicted in Seq among rational payoff-
maximizing players, it is consistent with the notion that players make mistakes,
as in a quantal response equilibrium. It is also consistent with players being
heterogeneous, for example in terms of social preferences, as outlined at the end
of Section I.

We now turn to the learning dynamics. Figure 2 illustrates how first-round
cooperation rates evolve across the fifty repeated games for each treatment.21 The
graphs show that some learning is necessary before the above-reported treatment
effects set in. In the treatment with δ = 0.5, c = 32, in which cooperation cannot
be sustained in equilibrium, the cooperation rate is first well above zero and
then sharply declines to a rate close to zero, whereas in the treatments in which
SizeBAD predicts a cooperation rate of one, the cooperation rate increases across
games. In Sim, the cooperation rate increases substantially only in treatments
δ = 0.75, c = 40 and δ = 0.75, c = 48, which are both characterized by a low
SizeBAD, and shows a decaying trend in the treatments with a higher SizeBAD.22

21Patterns by matching group are shown in Figure G.3 in the Appendix.
22Probit regressions with standard errors clustered at the matching-group level corroborate the result.

For each treatment, we regress the first-round cooperation choice on a time trend. In Seq, the average
marginal effect is positive and statistically significant for δ > δ∗ (p ≤ 0.021) and negative and significant
for δ < δ∗ (p < 0.001). In Sim, a positive and significant effect is obtained for δ = 0.75, c = 40 and
δ = 0.75, c = 48 (p = 0.021 and p < 0.001, respectively), while the effect is negative and significant for
δ = 0.5, c = 32 and δ = 0.5, c = 40 (p < 0.001 and p < 0.001, respectively). The effect is not statistically
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B. Cooperation Rates by Role in the Sequential PDs

In this section, we further study what drives cooperation in the sequential PDs
after learning. Figure 3 splits up the cooperation rate in Seq by role according
to: first-mover cooperation rate; second-mover cooperation rate conditional on
cooperation by the first mover (which we shall refer to as the conditional coop-
eration rate); and second-mover cooperation rate conditional on defection by the
first mover. The first observation is that the conditional cooperation rate among
second movers ranges from 43.9 to 95.4 percent depending on the treatment, and
it is in all treatments significantly higher than the cooperation rate conditional
on the first mover defecting (p < 0.001). Overall, second movers rarely cooper-
ate if the matched first mover defects. This provides support for our focus on
conditional cooperation as the most important cooperative strategy for second
movers.

The second observation is that in the three treatments in which the difference
in SizeBAD between Seq and Sim is highest, the first-mover cooperation rate and
the second-mover conditional cooperation rate in Seq are both higher than the
cooperation rate in Sim (p ≤ 0.007 and p < 0.001, respectively). This supports a
key feature of the SizeBAD predictions, namely that sequentiality does not just
reduce strategic uncertainty for second movers relative to players who move simul-
taneously, but also for first movers. Such an effect is not observed in treatments
δ = 0.75, c = 48 and δ = 0.75, c = 40, in which differences in SizeBAD between
Sim and Seq are low (p ≥ 0.357 for first movers and p ≥ 0.320 for second movers).
In treatment δ = 0.5, c = 32, in which cooperation cannot be supported in equilib-
rium, the second-mover conditional cooperation rate is substantially higher than
the cooperation rate in Sim (p < 0.001), while the first-mover cooperation rate is
not (p = 0.079).

The third observation, also in line with the SizeBAD predictions, is that both
the first-mover cooperation rate and the second-mover conditional cooperation
rate are higher in the treatments with δ > δ∗ than in the treatment with δ < δ∗

(p < 0.001 and p < 0.001, respectively).23

If we focus on whether first- and second-mover choices are aligned, then three
other noteworthy patterns emerge from Figure 3. First, in treatment δ = 0.5, c =
32, the conditional cooperation rate of second movers is well above the cooperation
rate of first movers (p < 0.001). Second, in the treatments with δ > δ∗, the first-
mover cooperation rate and the second-mover conditional cooperation rate are

significant for δ = 0.5, c = 48 and δ = 0.75, c = 32 (p = 0.182 and p = 0.748, respectively).
23If we compare δ = 0.5, c = 32 to δ = 0.5, c = 40, then we get respectively p < 0.001 and p = 0.014,

while if we compare δ = 0.5, c = 32 to δ = 0.75, c = 32, we get p < 0.001 and p = 0.001. For an overview
of the statistical test results of treatment comparisons, see Table F.4 in the Appendix. Moreover, as
shown in Figure G.5 in the Appendix, with δ < δ∗ the first-mover cooperation rate tends to decrease
over time (negative linear trend with p = 0.004) while the second-mover conditional cooperation rate
shows no trend (p = 0.980), whereas with δ > δ∗, both cooperation rates increase over time (positive
linear trend with p ≤ 0.054 and p ≤ 0.029, respectively).
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Figure 3. Cooperation rates by role.

Note: The graph shows first-round cooperation rates of P1, cooperation rates of P2 conditional on P1
defecting or cooperating, and cooperation rates in Sim, and 95% confidence intervals across the last
20 repeated games depending on the SizeBAD (including treatment labels). Estimates and confidence
intervals are based on predictions from probit regressions run on treatment-role dummies with clustered
standard errors at the matching group level.

relatively well-aligned.24 Third, both cooperation rates are positively related to c
and δ, even for δ > δ∗ (p ≤ 0.012 for both c and δ in probit regressions excluding
treatment δ = 0.5, c = 32). These patterns cannot be explained based on a
strict interpretation of the SizeBAD predictions, but are consistent with a quantal
response explanation or with the notion that players are heterogeneous. In the
next section, we examine the results more closely at the individual and matching-
group levels and provide evidence that supports a heterogeneity interpretation.

C. Disaggregated Analysis

Second Movers. — We have shown that the conditional cooperation rate of sec-
ond movers is well above zero in treatment δ = 0.5, c = 32 (with δ < δ∗) and well
below 1 in treatments δ = 0.5, c = 40 and δ = 0.75, c = 32 (with δ > δ∗). This
implies either that some second movers often behave differently than a rational
payoff-maximizer (consistent with a heterogeneity interpretation) or that most
second movers sometimes behave differently than a rational payoff-maximizer
(consistent with quantal response behavior). In order to differentiate between

24Specifically, p = 0.013 in δ = 0.5, c = 40, p = 0.516 in δ = 0.5, c = 48, p = 0.017 in δ = 0.75, c = 32,
p = 0.850 in δ = 0.75, c = 40, and p = 0.816 in δ = 0.75, c = 48.
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Figure 4. Conditional cooperation rates by subject.

Note: The graphs show first-round defection and cooperation rates in the role of second mover by
subjects in Seq, conditional on the matched first mover cooperating. In δ = 0.5, c = 32, 6 second movers
never encountered cooperation by the first mover, while the remaining 54 second movers encountered
cooperation by the first mover between 1 and 12 times with a median of 3. In the other treatments, all
second movers encountered cooperation by the first mover at least 4 times with the median ranging from
12.5 to 22 across the 5 treatments.

these two explanations, we examine the frequency with which each subject co-
operates in the role of second mover, conditional on the first mover cooperating.
If second movers are homogeneous in the extent to which they deviate from the
predicted choice, as is the case in representative-player models like the quantal
response model, then the share of conditionally cooperative choices should be
similar across subjects in a given treatment. Alternatively, if second movers are
heterogeneous in the sense that some of them systematically deviate from the ra-
tional payoff-maximizing benchmark, then the share of conditionally cooperative
choices should differ across subjects in a given treatment.

As can be seen in Figure 4, most of the conditional cooperation choices in
treatment δ = 0.5, c = 32 can be attributed to just a few subjects.25 These
subjects can be viewed as conditional cooperation types; types who conditionally
cooperate because they have a preference to do so. In the treatments with δ > δ∗,
where conditional cooperation types cannot be identified because they pool with
payoff maximizers, many more subjects always or almost always conditionally
cooperate.

Moreover, Figure 4 shows that the opposite pattern emerges in treatments
δ = 0.75, c = 48; δ = 0.5, c = 48; and δ = 0.75, c = 40. Here, very few subjects

25For identification purposes, all analyses reported in this section include data from the first rounds
of all the repeated games. Focusing on the last 20 repeated games would leave little power to perform
disaggregated analyses.
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are responsible for the majority of defection choices. Given that in these treat-
ments, the decision to defect is more costly for second movers than in the other
treatments, these subjects seem to have a strong taste for defection. We conclude
therefore that a representative-player model does not suffice to explain disaggre-
gated patterns of behavior of second movers. Instead, it appears to be necessary
to allow for heterogeneity. This is backed up by an analysis which statistically
compares distributions of observed choices shown Figure 4 to iid choices (see Sec-
tion D in the Appendix for a detailed description). Overall, the findings closely
align with the notion that second movers are heterogeneous with respect to their
cooperation preference. This is illustrated in Section C.4 in the Appendix, in
which we show that the data are well-represented by a heterogeneity model with
payoff-maximizing, pro-social, and spiteful types.

First Movers. — Building on the insight that second movers come in types,
we now focus more closely on behavior of first movers. Although the theoreti-
cal framework we use to formulate hypotheses builds on common knowledge of
utilities, this assumption seems unrealistic if players are heterogeneous, especially
in the anonymous context of our lab experiment. Instead, we assume that par-
ticipants learn the distribution of second-mover types in their matching group
during the course of the experiment, but do not know the specific type of their
game partner (as in Kartal and Müller, 2018).26 With this in mind, we can com-
pare observed choices of first movers to choices that expected-payoff maximizers
would make if they were faced with the same second-mover choices.

For each first mover, we first compute the conditional cooperation rate she
encountered in her matching group across first rounds of all repeated games.
Figure 5a shows these encountered conditional cooperation rates by treatment and
matching group. The dashed horizontal lines refer to the conditional cooperation
rate that leaves an expected-payoff-maximizing first mover indifferent between
the repeated-game strategies of defection and cooperation. As can be seen, there
is substantial variation across matching groups and treatments in the extent to
which the conditional cooperation rate encountered by first movers deviates from
the indifference threshold. Taking the encountered conditional cooperation rate
as given, we calculate for each first mover the (normalized) difference between the
expected payoff of the cooperative strategy and that of the defection strategy. A
risk-neutral first mover is better off cooperating (defecting) when the difference
is positive (negative) and is indifferent when the difference is zero. We then plot
the first-mover cooperation rates aggregated by matching group as a function of
the (normalized) payoff difference. If all first movers would be expected-payoff
maximizers, then their cooperation rates would jump straight to one when the
indifference threshold is crossed. Figure 5b shows that their cooperation rates are

26Recall that at the start of each repeated game participants are randomly allocated partners within
matching groups and they randomly switch roles. Thus, in a sense each matching group constitutes a
different ‘population’ of players.
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Figure 5. Cooperation rates by matching groups.

Note: Panel (a) shows the conditional cooperation rates encountered by first movers across first rounds of
all repeated games by treatment and matching group. The horizontal lines represent the conditional co-
operation rate that leaves a payoff-maximizing first mover indifferent between defection and cooperation.
Treatments are ordered by the SizeBAD in Sim. Panel (b) shows first-mover cooperation rates across
first rounds of all repeated games as a function of the normalized difference between the expected payoffs
from cooperation and defection, given the encountered conditional cooperation rate. Each dot in the
graph corresponds to a matching group, and the 6 different shapes correspond to the 6 parametrizations
in the experiment.

close to zero in matching groups where the payoff difference is negative (in four
of the six matching groups in treatment δ = 0.5, c = 32) and that it increases as
the payoff difference increases. Once cooperation is much more profitable than
defection, then the cooperation rate stays close to one. We conjecture that the
lack of a sudden jump at the threshold is due to heterogeneity of first movers.
For example, the pattern is consistent with a substantial fraction of first movers
being averse to disadvantageous inequality (see Section C.4 in the Appendix).

Within-Subject Analysis. — Given that subjects make choices in both roles,
additional insights related to heterogeneity can be obtained by investigating the
choice patterns within subjects. We focus on the correlation between the condi-
tional cooperation rate as a second mover, on the one hand, and the extent to
which the cooperation rate as a first mover differs from the optimal first-mover
cooperation rate, on the other hand. We define this optimal rate as the coop-
eration rate of a first mover who maximizes expected payoff while taking into
account the conditional cooperation rate she encountered, as introduced in III.C.
In most cases, it is equal to zero for δ = 0.5, c = 32 and to one for the other
treatments. Scatter plots by treatment are shown in Figure G.6 in the Appendix.

The first finding is that in the treatments with δ > δ∗, the correlation is overall
positive and strong (p ≤ 0.018). Players thus tend to cooperate as a first mover to
almost the same extent that they conditionally cooperate as a second mover. We
conjecture that this result is largely due to payoff maximizers having an incentive
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to cooperate in both roles, which makes them behave similarly to conditional
cooperation types. The second finding is that no positive correlation is detected
in treatment δ = 0.5, c = 32, in which δ < δ∗. This result is consistent with
the fact that payoff maximizers now have no incentive to conditionally cooperate
as a second mover, nor to cooperate as a first mover. Any choice other than
defection in δ = 0.5, c = 32 can thus be attributed to behavior that differs from
rational payoff maximization (such as, for example, other-regarding behavior or
quantal responses). Given that as a first mover one is faced with higher strategic
risk than as a second mover, there is no reason to expect that players who prefer
to conditionally cooperate in δ = 0.5, c = 32 as a second mover also prefer to
cooperate as a first mover.

To further illustrate how players in δ = 0.5, c = 32 make choices in different
roles, we split up conditional cooperation types according to their behavior as a
first mover. For simplicity, players are defined as conditional cooperation types
if they conditionally cooperate more than half the time when encountering coop-
eration from the matched first mover. We find that 78% of them (14 out of 18)
cooperate less frequently as a first mover than what is optimal and 17% (3 out
of 18) cooperate more frequently than what is optimal. Among the other play-
ers, the percentages are 53% (19 out of 36) and 42% (15 out of 36), respectively,
indicating a more balanced distribution. Although power is too low to provide
conclusive statistical support, these findings suggest that conditional cooperation
types tend to be more averse to disadvantageous inequality than other players.

IV. Conclusion

Failure to coordinate on efficient outcomes is largely due to individuals avoiding
strategic risk (Van Huyck, Battalio and Beil, 1990, 1991). A similar logic applies
with respect to cooperation in repeated games. Cooperation rates are highest
in games where conditionally cooperative strategies involve little risk (Blonski,
Ockenfels and Spagnolo, 2011; Dal Bó and Fréchette, 2011). We use this in-
sight to predict that introducing sequentiality in games that are characterized by
substantial strategic risk may facilitate cooperation by reducing that risk. The
experiment we carry out shows that the prediction is borne out by the data.
In games where it is difficult for players to achieve mutual cooperation — even
though it can be supported in equilibrium — introducing sequentiality increases
the cooperation rate by around 40 percentage points. In games where coopera-
tion is not supported in equilibrium or where it is supported but strategic risk is
particularly low, cooperation rates are close to zero or 100 percent respectively,
independent of sequentiality. We thus conclude that individuals strongly react to
sequentiality in environments with coordination problems that are the result of
substantial strategic risk.

In modeling decision-making it is not always clear whether a simultaneous-move
setting or a sequential-move setting is most appropriate. We show that behavior
strongly depends on the setting, implying that possible policy implications may
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strongly depend on whether a simultaneous-move or sequential-move setting is
ultimately chosen. The results also have implications for behavioral mechanism
design. If a designer’s goal is to achieve and sustain high efficiency levels, it is
optimal that players decide sequentially and that second movers have information
about the decision of the first mover. Consider, for instance, the issue of climate
change, in which long-run incentives are arguably large enough for it to be optimal
that countries engage in a cooperative mitigation of greenhouse gas emissions
(Dutta and Radner, 2004; Calzolari, Casari and Ghidoni, 2018). If a country
commits to a policy of reducing emissions in anticipation that other countries
will follow suit, then those other countries will indeed have an increased incentive
to do so because the risk of free-riding has been reduced. This may be good
news for environmental policy makers because convincing one country or even a
small group of countries to commit to environmentally-friendly actions is arguably
easier to achieve than convincing all countries. Sequentiality might therefore help
countries coordinate to achieve socially optimal outcomes. The same is true of
other contexts, such as trade and employer-employee relations. Nevertheless,
it is an open question as to whether the strong efficiency-enhancing effect of
sequentiality is also achieved if the game’s parameters are uncertain, which is a
more realistic assumption in most applications. The result of Wilson and Vespa
(2020) that cooperation does not predominate in a sequential-move setting with
asymmetric information about payoffs suggests that this is not necessarily the
case.

An alternative instrument that can in principle reduce strategic uncertainty
is pre-play communication (see, for example, Arechar et al., 2017) and it ap-
pears that sequentiality can overcome some of its disadvantages. First, given
that communication is not consequential on monetary payoffs, it has no effect
on predictions based on equilibrium refinements or on concepts such as the basin
of attraction of a particular strategy (Crawford, 1998). In contrast, sequential-
ity does affect monetary payoffs because it allows the second mover to avoid the
sucker payoff. Second, the efficacy of communication in increasing coordination
appears to be quite sensitive to the communication protocol, which makes imple-
mentation less straightforward than introducing sequentiality (see, for example,
Cooper et al., 1992; Andersson and Wengström, 2012, for evidence from simple
coordination games).27

Our results have implications for the interpretation of behavior in PD games
played in (quasi-)continuous time (see, for example, Friedman and Oprea, 2012;
Bigoni et al., 2015). Cooperation rates in (quasi-)continuous time are typically
very high but the reasons are not entirely understood. These games differ in at

27That said, it also holds that pre-play communication can trigger behavioral responses that go beyond
removing strategic uncertainty and can foster cooperation even if this is not an equilibrium outcome, for
example by appealing to honesty (Gneezy, 2005) or inducing guilt aversion (Charness and Dufwenberg,
2006). To illustrate, pre-play chat has been shown to increase cooperation in one-shot interactions (see
Balliet, 2010, for a meta-analysis) or in repeated simultaneous games in which cooperation cannot be
sustained in equilibrium (Kartal and Müller, 2018).
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least three respects from discrete-time simultaneous PDs: (a) the frequency of the
(albeit shorter) interactions is higher in each repeated game; (b) players move de
facto sequentially, i.e. they observe the partner’s choice before making a choice;
and (c) players choose the timing of their moves. Friedman and Oprea (2012)
show that frequency of interaction increases the cooperation rate in discrete-time
PDs; however our experiment shows that sequentiality on its own may also lead
to a substantial increase in cooperation, provided that cooperation is sustainable
in equilibrium. The sequential-move nature of games played in (quasi-)continuous
time may thus be one of the structural characteristics that leads to the higher
cooperation rate. This is consistent with the results of an experiment in which
strategic uncertainty is removed by freezing choices for a few seconds, which
is shown to increase cooperation (Calford and Oprea, 2017). Strategically, a
sequential PD is similar to a simultaneous PD in which the choice of one of the
players is frozen for one period.

Our analysis builds on a framework in which it is assumed that payoff-maximizing
players choose between always defecting and conditional cooperation under com-
mon knowledge. This makes it possible to construct a simple measure of the
degree of strategic uncertainty and helps to formalize the difference between
sequential-move and simultaneous-move PDs. Thus, the approach is not meant
to provide an accurate description of how individuals play. There are at least two
ways in which behavior can be plausibly expected to deviate from the assump-
tions. First, players may follow strategies other than always defect or conditional
cooperation. Results of strategy estimations show that by far the majority of the
cooperative strategies involve conditional cooperation à la grim trigger or tit-for-
tat (see Section E in the Appendix).28 This, and the fact that we are dealing with
relatively short games, gives us confidence that the simplification of the repeated
games to binary-choice games is not overly simplistic.29

Second, players may not all be perfect payoff maximizers with common knowl-
edge. We have shown that some form of heterogeneity is needed in order to explain
all aspects of the data. To do so, we have used an example on other-regarding
preferences but a similar intuition holds if there is heterogeneity in risk preferences
or in the strength of quantal responses.30 A key element is that the heterogeneity
introduces individual-specific trade-offs between a conditional cooperation strat-

28An exception is the strategy to first defect and then switch to tit-for-tat (D-TFT), which is partic-
ularly popular among first movers and to some extent in the case of simultaneous moves, in the game in
which cooperation cannot be sustained in equilibrium. We speculate that this may have to do with the
fact that D-TFT protects a player from the sucker payoff if matched with a defecting partner and at the
same time achieves mutual cooperation if the partner is lenient.

29One might argue that the finding that the conditional cooperation rate of second movers is well
below 100% even if δ > δ∗ is related to the beliefs of second movers. In particular, if the second mover
believes that the first mover either always defects or always cooperates, then it would be optimal for
her to always defect. However, given that in the treatments with δ > δ∗ and intermediate gains from
cooperation less than 2% of the first movers is estimated to always cooperate, holding such a belief would
be largely irrational. We therefore feel that this is not a sufficient explanation.

30For example, risk-averse (risk-seeking) players will prefer conditional cooperation less (more) than
always defect.
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egy and an always-defect strategy, which introduce smoothness into the aggregate
effect of the game’s parameters on the cooperation rate, even in sequential-move
games with δ > δ∗. A promising model that incorporates strategic risk and at the
same time predicts smoothness is that of Kartal and Müller (2018). The model
provides a micro-economic foundation for strategic uncertainty by assuming that
players have heterogeneous and unobservable tastes.
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Dal Bó, Pedro, and Guillaume R Fréchette. 2018. “On the determinants
of cooperation in infinitely repeated games: A survey.” Journal of Economic
Literature, 56(1): 60–114.
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Embrey, Matthew, Guillaume R Fréchette, and Sevgi Yuksel. 2018. “Co-
operation in the finitely repeated prisoner’s dilemma.” Quarterly Journal of
Economics, 133(1): 211–224.

http://doi.org/10.3886/E112401V1
http://doi.org/10.3886/E112401V1


VOL. XX NO. XX EFFECT OF SEQUENTIALITY ON COOPERATION 21

Engle-Warnick, Jim, and Robert L Slonim. 2006. “Learning to trust in
indefinitely repeated games.” Games and Economic Behavior, 54(1): 95–114.

Fehr, Ernst, and Klaus M. Schmidt. 1999. “A theory of fairness, competition,
and cooperation.” Quarterly Journal of Economics, 114: 817–868.

Fehr, Ernst, Georg Kirchsteiger, and Arno Riedl. 1993. “Does fairness
prevent market clearing? An experimental investigation.” Quarterly Journal of
Economics, 108: 1912–1917.

Fischbacher, Urs. 2007. “z-Tree: Zurich toolbox for ready-made economic ex-
periments.” Experimental Economics, 10(2): 171–178.

Friedman, Daniel, and Ryan Oprea. 2012. “A continuous dilemma.” Amer-
ican Economic Review, 102(1): 337–63.

Friedman, James W. 1971. “A non-cooperative equilibrium for supergames.”
Review of Economic Studies, 38(1): 1–12.

Fudenberg, Drew, and Eric Maskin. 1986. “The folk theorem in re-
peated games with discounting or with incomplete information.” Econometrica,
54(3): 533–554.

Ghidoni, Riccardo, and Sigrid Suetens. n.d.. “Data and Code for: The Ef-
fect of Sequentiality on Cooperation in Repeated Games.” American Economic
Association [publisher], Inter-university Consortium for Political and Social Re-
search [distributor]. http://doi.org/xx.

Gneezy, Uri. 2005. “Deception: The role of consequences.” American Economic
Review, 95(1): 384–394.

Greif, Avner. 1993. “Contract enforceability and economic institutions in
early trade: The Maghribi traders’ coalition.” American Economic Review,
83(3): 525–548.
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