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We study a Chinese policy that awards substantial tax cuts to
firms with R&D investment over a threshold or “notch.” Quasi-
experimental variation and administrative tax data show a signifi-
cant increase in reported R&D that is partly driven by firms rela-
beling expenses as R&D. Structural estimates show relabeling ac-
counts for 24.2% of reported R&D and that doubling R&D would
increase productivity by 9%. Policy simulations show that firm
selection and relabeling determine the cost-effectiveness of stimu-
lating R&D, that notch-based policies are more effective than tax
credits when relabeling is prevalent, and that modest spillovers jus-
tify the program from a welfare perspective.
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The belief that innovation is crucial for economic growth inspires governments
around the world to encourage R&D investment through tax incentives. While
these incentives are meant to stimulate real R&D expenditures, firms can also
respond by relabeling other expenses as R&D. Relabeling raises important ques-
tions about how tax incentives affect productivity growth. To what extent is
reported R&D real or relabeled? How does relabeling affect estimates of the pro-
ductivity effects of R&D? How should governments incentivize R&D while taking
relabeling behavior into account?

We answer these questions using a novel administrative dataset of corporate tax
returns of Chinese firms covering a period of sharp and changing tax incentives.
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Figure 1. : Cross-Country Comparison: R&D as Share of GDP
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Note: This figure plots the aggregate R&D Intensity, i.e., R&D expenditure as a share of GDP, in the
private sector for China, Canada, India, and the US. Chinese R&D intensity started in 1996 at 0.5%, a
similar level to India. It increased dramatically, by more than threefold, to above 1.5% in 2011, on par
with Canada. The R&D intensity of the US remained stable at 2.5% during the same period. The red
line marks the year of the tax reform. Source: World Bank (1995-2011).

China is the perfect laboratory to study fiscal incentives for R&D. Figure 1 shows
that China has experienced explosive growth in R&D investment even relative
to its rapid GDP expansion. In addition, the government is focused on fostering
technology-intensive industries as a source of future economic growth.

The tax incentive that we study—China’s InnoCom program—provides sub-
stantial corporate income tax cuts to firms that report R&D investment over a
given threshold or “notch.” Before 2008, firms with an R&D intensity (R&D
investment over revenue) above 5% could qualify for a special high-tech-firm sta-
tus that was accompanied by a lower average tax rate of 15%—a large reduction
from the statutory rate of 33%. After 2008, the government established three
thresholds at 3%, 4%, and 6% for firms in different size categories. By changing
average tax rates, as opposed to marginal incentives, the program generates very
large incentives for firms to increase reported R&D. Section I describes this fiscal
incentive and discusses the potential for relabeling of R&D.

We begin our analysis in Section II by showing graphically that tax notches have
significant effects on the distribution of reported R&D intensity. We show that
a large number of firms choose to locate at tax notches and that introducing the
tax cut led to a large increase in R&D investment. Using a group of firms that
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were unaffected prior to 2008, we show that the bunching patterns are driven
by the tax incentive and are not a spurious feature of the data. We quantify
the percentage increase in R&D investment that is due to the tax notch using a
bunching estimator (Kleven and Waseem, 2013). We find large increases in R&D
investment of 25% for large firms, 17% for medium firms, and 10% for small firms
in 2011.

We then analyze relabeling responses by exploiting the fact that, under Chi-
nese Accounting Standards, R&D is reported as a subcategory of administrative
expenses. Using our detailed tax data to separate R&D from other administra-
tive expenses, we provide graphical evidence that firms may relabel non-R&D
expenses as R&D to qualify for the tax cut. Specifically, we document that non-
R&D expenses drop significantly at the R&D notches, which suggests that the
increase in reported R&D is partly driven by relabeling of non-R&D expenses.
We also study other forms of manipulation, including relabeling of other expenses
as well as retiming of sales, and we do not find evidence of manipulation along
these margins.

We develop a model of R&D investment and relabeling in Section III. Firms’
decisions to invest or relabel depend on tax incentives, the effect of R&D on pro-
ductivity, and the costs of relabeling, as well as on heterogeneous productivity
and adjustment costs. The model shows that the InnoCom program incentivizes
firms that would otherwise be at the low end of the R&D intensity distribution
to bunch at the notch. Firms in the model can bunch either by increasing real
R&D investments or by relabeling non-R&D expenses. The optimal real R&D
investment decision and relabeling strategy depends on the relative strength of
the cost of relabeling and the productivity elasticity of R&D. Our model allows
for rich patterns of firm heterogeneity. First, firms face heterogeneous adjustment
costs of investing in R&D, which rationalizes a highly dispersed R&D intensity
distribution. Second, the model allows for random certification costs that account
for non-R&D requirements of the InnoCom program and that explain why firms
close to the notch may not participate in the program. Overall, the model cap-
tures competing mechanisms for bunching—real R&D vs. relabeling—and is rich
enough to fit the main features of the data.

We estimate the model using a simulated method of moments approach in Sec-
tion IV. The main parameters of the model—the productivity elasticity of R&D
and the cost of relabeling—are informed by the bunching response in reported
R&D, the relabeling response at the notch, and the joint distribution of R&D and
productivity. By specifying the distributions of fixed and adjustment costs, the
model also characterizes how firms select into the program, which allows us to
study the effects of alternative policies. We estimate that, on average, 24.2% of
the reported R&D investment is due to relabeling and that a 100% increase in real
R&D would increase TFP by 9%. Our estimated model fits the data moments
very well. The structural estimates are also consistent with reduced-form bunch-
ing estimates, which provide a valuable cross-validation of the model. Our results
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are also robust to a number of checks that ensure that our main conclusions are
not artificially driven by the parameterization of the model.

In Section V, we use the estimated model to study how governments can best
incentivize R&D in the presence of relabeling. We first study the effects of chang-
ing the size of the tax cut and the location of the notch. Policies with a larger
tax cut and those with a notch at a lower R&D intensity select firms with lower
productivity, higher adjustment costs, and greater motives to relabel. Firm se-
lection into the program plays a crucial role in determining the economic effects
of the program and the fiscal cost of incentivizing real R&D.

As a second use of the model, we compare the fiscal effectiveness of the InnoCom
program to that of a linear tax credit. In a setting where firms have low incentives
to relabel, a linear tax credit is more effective at stimulating R&D. However, a
notch may be more effective than a linear tax credit when firms can relabel. The
key intuition is that, under a linear tax credit, the government’s monitoring efforts
are spread across many firms, which lowers firms’ relabeling costs. By focusing
monitoring efforts on fewer firms, an InnoCom-style program can raise the cost
of relabeling and incentivize real R&D at a lower fiscal cost. Governments may
thus prefer to deviate from standard incentives in the presence of relabeling (e.g.,
Best et al., 2015).

Fiscal incentives for R&D are often motivated by the possibility that firms may
under-invest in R&D in the presence of knowledge spillovers. As a final use of
our model, we study the welfare effects of the InnoCom program by extending
our empirical model into an equilibrium setting with potential R&D spillovers.
In the absence of externalities, the InnoCom program distorts firm behavior and
reduces tax revenue, leading to an overall reduction in welfare. We then calcu-
late the magnitude of R&D spillovers that could justify the InnoCom program.
The program is welfare neutral when spillovers are such that firm productivity
increases by 6.9% in response to a doubling of average R&D investment in the
economy. Since the empirical literature often estimates larger spillover effects
(e.g., Lucking, Bloom and Van Reenen, 2019), InnoCom-style programs can pos-
sibly improve welfare and help alleviate the under-investment in R&D.

Overall, this paper shows that relabeling is an important concern for both
understanding empirical facts surrounding R&D and designing policies aimed
at encouraging innovation. Relabeling affects the measurement of actual R&D
expenses, the contribution of R&D to TFP growth, and how tax incentives link
fiscal costs to economic growth. Policies that may otherwise be suboptimal—
such as notches—may be more effective at alleviating under-investment in R&D
than standard tax credits, especially when such policies target firms with better
prospects for technological improvement and limit the potential for relabeling.

This paper is related to a large literature analyzing the effects of tax incentives
for R&D investment. Hall and Van Reenen (2000) and Becker (2015) survey
this literature. The empirical evidence is concentrated in OECD countries, where
micro-level data on firm innovation and tax records have become increasingly
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available. While earlier work relied on matching and panel data methods, there
is an emerging literature that explores the effects of quasi-experimental variation
in tax incentives for R&D.1 This is the first paper to analyze R&D tax incentives
in a large emerging economy such as China. It is also one of the first studies
to use administrative tax data to study the link between fiscal incentives, R&D
investment, and firm-level productivity.

Previous research has long highlighted relabeling as an important challenge to
identifying the effects of tax incentives for R&D (Eisner, Albert and Sullivan,
1984; Mansfield and Switzer, 1985). This is a salient issue for policymakers in
developed countries (GAO, 2009; Bloom, Van Reenen and Williams, 2019) and
is likely a more severe problem in developing economies. We exploit unique firm-
level data to jointly model and estimate firms’ R&D bunching and relabeling
decisions. Our policy simulations also improve our understanding of the effective-
ness of different policies when firms may engage in relabeling.

Researchers and policymakers are concerned with the extent of misallocation of
innovation resources in China. Wei, Xie and Zhang (2017) show that state-owned
firms produce significantly fewer patents per yuan of investment than foreign
or private domestic firms. König et al. (2018) argue that R&D investments in
mainland China have smaller effects on productivity growth than those in Taiwan.
Our results show that the seemingly low return to reported R&D is an artifact
of relabeling and that tax incentives for R&D may be more costly in emerging
economies where the corporate tax is imperfectly enforced (Cai, Chen and Wang,
2018).

Finally, our paper is related to a recent literature that uses bunching methods
to estimate behavioral responses to taxation by analyzing the effects of sharp
economic incentives.2 While most of the literature studies kinks or notches in
taxable income, the notch in the InnoCom program targets a particular action:
R&D investment. We develop a simulated method of moments estimation ap-
proach that is consistent with results from reduced-form bunching estimators.
The model clarifies the interpretation of reduced-form estimates, as suggested
by Einav, Finkelstein and Schrimpf (2017).3 Our model quantifies the extent of
misreporting, measures the returns to real R&D, and simulates the effects of al-
ternative policies. The model also clarifies how selection and relabeling determine
the fiscal effectiveness and the welfare implications of a notch-based policy.4

1Recent examples include Agrawal, Rosell and Simcoe (2019), Dechezlepretre et al. (2016), Einiö
(2014), Guceri and Liu (2019), Akcigit et al. (2018), and Rao (2016).

2Kleven (2016) provides a recent survey. While these methods have been used to study a wide range
of behaviors, this paper is most related to a smaller literature analyzing firm-level responses (Devereux,
Liu and Loretz, 2014; Patel, Seegert and Smith, 2016; Liu et al., 2019; Almunia and Lopez-Rodriguez,
2018; Bachas and Soto, 2019).

3Lockwood (2018) also notes that reduced-form effects from bunching on notches are not sufficient
to analyze the effects of changes in policy. This result motivates the use of a structural model for policy
analysis.

4Blinder and Rosen (1985) discuss selection patterns under which notches can be desirable, and
Slemrod (2013) discusses administrative costs as a motivation for notches.
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I. Fiscal R&D Incentives and the Chinese Corporate

Income Tax

China had a relatively stable Enterprise Income Tax (EIT) system from 2000
to 2007. During this period, the EIT ran on a dual-track scheme with a base
tax rate of 33% for all domestic-owned enterprises (DOEs) and a preferential rate
for foreign-owned enterprises (FOEs) ranging from 15% to 24%. The government
implemented a major corporate tax reform in 2008 that eliminated the dual-track
system based on domestic/foreign ownership and established a common rate of
25%.5

This paper analyzes the InnoCom program, which targets qualifying high-tech
enterprises (HTEs) and awards them a flat 15% income tax rate. Since a firm’s
average tax rate can fall from 33% to 15%, this tax incentive is economically very
important and may lead firms to invest in projects with substantial fixed costs.
This program is most important for DOEs, including both state- and privately-
owned enterprises, as they are not eligible for many other tax breaks.

Table 1 outlines the requirements of the program and how they changed as part
of the 2008 reform. A crucial requirement of the program is that firms must have
an R&D intensity above a given threshold. The reform changed the threshold
from a common R&D intensity of 5%, to a size-dependent threshold with a lower
hurdle for medium and large firms, 4% and 3%, respectively, and a larger hurdle
of 6% for small firms. This requirement provides a large fiscal incentive to invest
above these thresholds, and the reform generates quasi-experimental variation
across firms of different size and ownership categories. Notably, because the
reform eliminated preferential tax rates for foreign firms, the incentive of FOEs
to qualify for the InnoCom program grew after the reform.

In addition to increasing R&D intensity, the InnoCom program requires firms
to employ college-educated workers and to sell “high-tech” products. Unlike the
R&D intensity requirement, these guidelines—such as which products are clas-
sified as high tech—are easily influenced. It is also hard for tax authorities to
verify the employment composition of a given firm. While these requirements
are not sharp incentives, they increase the cost of participating in the program.
Importantly, these costs may even prevent some firms from bunching at the notch
despite having an R&D intensity immediately below the notch. To capture this
cost of participating in the program, our model in Section III assumes that firms
differ by an unobserved fixed cost of certification.

As a final program requirement, firms have to actively apply for the program
and undergo a special audit. The reform improved enforcement of the program by
changing the certifying agency from the Local Ministry of Science and Technology
to a joint effort between the National Ministry of Science and Technology, the
Ministry of Finance, and the National Tax Bureau. By focusing enforcement
efforts on fewer firms, the InnoCom program increased the cost of relabeling

5We discuss details of other preferential tax policies in Appendix A.
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Table 1—: Requirements of the InnoCom Program

Requirement Before 2008 After 2008

R&D Intensity 5%
6% if sales < 50M
4% if 50M < sales < 200M
3% if sales > 200M

Sales of High 60% of total sales
Tech Products
Workers with 30% of workforce
College Degree
R&D Workers 10% of workforce
Certifying Local Ministry of Ministries of Science & Technology,
Agency Science & Technology Finance and National Tax Bureau

Note: Size thresholds in millions of RMB, where 50 M RMB ≈ 7.75 M USD and 200 M RMB ≈ 30 M
USD.

R&D relative to a more standard setting where all firms are able to claim an
R&D tax credit.6

Potential for Evasion and Relabeling

One concern is that firms’ reported R&D investment is contaminated by evasion
or relabeling. Relabeling of other expenses as R&D is a significant concern for
policymakers (GAO, 2009) and for academics studying the effects of R&D invest-
ment (Eisner, Albert and Sullivan, 1984; Mansfield and Switzer, 1985). In our
setting, the institutional environment limits some forms of evasion and suggests
that the most likely form of relabeling is the miscategorization of administrative
expenses as R&D.

The hypothesis that the entirety of the response is due to evasion is likely ruled
out by the requirements of the InnoCom certification.7 A second hypothesis is
that firms manipulate their reported R&D intensity by reporting “phantom ex-
penses” or by manipulating sales. China relies on a value-added tax (VAT) system
with third-party reporting, and China’s State Administration of Tax (SAT) keeps
records of transaction invoices between a given firm and its third-party business
partners. As in other settings (e.g., Kleven et al., 2011), this type of third-party
reporting limits the degree to which firms can completely make up “phantom”

6The original government regulations also require that firms operate in a number of selected state-
encouraged industries. Due to the breadth and vagueness of these industry definitions, this requirement
does not constitute a substantial hurdle. In addition, after the reform, the state authorities further
require that firms meet all these criteria in the previous three accounting years or from whenever the
firm is registered, in case the firm is less than three years old.

7Part of this certification includes an audit of the firm’s tax and financial standings. In addition, the
Chinese State Administration of Tax, together with the Ministry of Science and Technology, conducts
regular auditing of the InnoCom HTE firms.
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R&D expenses.
From conversations with the State Administration of Tax as well as with cor-

porate executives, we recognize that the most likely source of manipulation is the
miscategorization of expenses. This is a natural channel for relabeling since, in
the Chinese Accounting Standard, R&D is categorized under “Administrative Ex-
penses,” which includes various other expenses related to general management.8

Thus, firms may relabel non-R&D administrative expenditures as R&D to over-
report their R&D intensity. These types of expenses are easily shifted, and it
may be hard to identify relabeling in any given audit. Relabeling may also be
a way for firms to reach the R&D intensity threshold when it is hard for them
to perfectly forecast their sales. A firm with unexpectedly high sales, for in-
stance, might choose to characterize administrative expenses as R&D to meet the
InnoCom requirement for a given year.9 Our empirical strategy to detect relabel-
ing leverages these institutional features and exploits the detailed cost reporting
in our administrative tax data, which contain information on the breakdown of
operating expenses and R&D expenses.

II. Descriptive Evidence of Firms’ Responses to Tax Notches

We now describe our data and provide evidence that the R&D investment of
Chinese manufacturing firms responds to the InnoCom program. We then show
that part of this response may be due to relabeling. Specifically, we document
stark bunching patterns precisely above the tax notches, and we show that the
ratio of administrative expenses to sales drops sharply at the notch. These data
patterns motivate our model in Section III and inform the structural estimation
in Section IV.

A. Data and Summary Statistics

Our main data come from the Chinese State Administration of Tax (SAT,
2008-2011). The SAT is the counterpart of the IRS in China and is in charge
of tax collection and auditing. Our data are comprised of administrative enter-
prise income tax records for the years 2008–2011 (Appendix B discusses our data
sources). These panel data include information on firms’ total production, sales,
inputs, and R&D investment. The detailed cost breakdowns allow us to measure
different subcategories of administrative expenses. We use these data to construct
residualized measures of firm productivity.10 The SAT’s firm-level records of tax

8Examples include administrative worker salaries, business travel expenses, office equipment, etc.
While we interpret changes in administrative expenses as relabeling, they may also be consistent with
reallocating resources from other expenses toward R&D or more precise accounting of previously under-
counted R&D expenses. In Section IV, we explore how this interpretation affects our estimates.

9We do not find systematic evidence that firms relabel R&D intensity through other means. In
Section II, we show that sales are not manipulated around the R&D thresholds. Similarly, we do not
find evidence of manipulation of other expenses.

10See Appendix C for details, where we also show that we obtain similar productivity estimates using
the method of Ackerberg, Caves and Frazer (2015).
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Table 2—: Descriptive Statistics

A. State Administration of Tax Data 2008–2011

Mean Std p25 p50 p75 N

Sales (mil RMB) 118.263 1394.828 2.579 10.608 42.056 1202257
Fixed Asset (mil RMB) 32.912 390.406 0.402 2.089 10.743 1139038
# of Workers 175.402 852.494 17.000 48.000 136.000 1213497
R&D or not 0.081 0.273 0.000 0.000 0.000 1219630
R&D/Sales (%, if>0) 3.560 7.019 0.337 1.544 4.296 98258
Administrative 9.417 11.886 2.809 5.814 11.103 1171365
Expense/Sales (%)
TFP 2.058 0.522 1.638 2.007 2.434 1100845

B. Annual Survey of Manufacturing 2006–2007

Mean Std p25 p50 p75 N

Sales (mil RMB) 110.801 1066.080 10.760 23.750 59.513 638668
Fixed Asset (mil RMB) 42.517 701.282 1.630 4.492 13.370 638668
# of Workers 238.379 1170.327 50.000 95.000 200.000 638668
R&D or not 0.102 0.303 0.000 0.000 0.000 638668
R&D/Sales (%, if>0) 1.631 3.184 0.118 0.461 1.736 65267

Notes: Various sources; see Section II.A for details.

payments contain information on tax credits, such as the InnoCom program, as
well as other major tax breaks. This allows us to precisely characterize the effec-
tive tax rate for individual manufacturing firms. We supplement these data with
the Chinese Annual Survey of Manufacturing (ASM) (NBS, 2006-2007), which
extends our sample to the years 2006–2007.

Table 2 reports descriptive statistics of the firms in our analysis sample. In
panel A, we report summary statistics of our tax data for all surveyed manufac-
turing firms from 2008 to 2011. Our data are comprised of around 1.2 million
observations, with about 300, 000 firms in each year. A total of 8% of the sample
reports positive R&D. Among firms with positive R&D, the ratio of R&D to sales,
i.e., R&D intensity, is highly dispersed. The 25th, 50th, and 75th percentiles are
0.3%, 1.5%, and 4.3%, respectively. The administrative expense-to-sales ratio,
which is a potential margin for relabeling, is close to 5.8% at the median. While
our measure of residualized TFP is normalized by construction, the distribution
of productivity has a reasonable dispersion with an interquartile range of 0.8 log
points. As one might expect, firms with higher R&D intensities also have higher
values of TFP. For instance, large firms with R&D intensity below 3% have a
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(normalized) TFP of -1.5%, while firms with R&D intensity greater than 3%
have an average TFP of 2.7%.

Panel B of Table 2 reports summary statistics of Chinese manufacturing firms
with R&D activity in the ASM for the years 2006–2007. We have a similar sample
size of around 300, 000 firms per year. Firms in the ASM sample are noticeably
larger than those in the SAT sample, and the difference is more pronounced when
we look at lower quartiles (i.e., the 25th percentile) of the distribution of sales,
fixed assets, and the number of workers. This is consistent with the fact that
the ASM is weighted toward medium and large firms. The fraction of firms with
positive R&D is slightly larger than 10%, and R&D intensity ranges from 0.1%
to 1.7% at the 25th and 75th percentiles of this sample.

B. Bunching Response

We first analyze data from the post-2008 period since the multiple tax notches
based on firm size generate rich variation in R&D bunching patterns. Figure 2
plots the empirical distribution of the R&D intensity of Chinese firms in 2011.
We limit our sample to firms with R&D intensity between 0.5% and 15% to
focus on firms with non-trivial innovation activities. The first panel in Figure
2 shows the histogram of overall R&D intensity distribution. There are clear
bunching patterns at 3%, 4%, and 6% of R&D intensity, corresponding to the
three program thresholds. This first panel provides strong prima facie evidence
that fiscal incentives provided by the InnoCom program play an important role
in firms’ R&D investment choices.

To further validate that these R&D bunching patterns are motivated by this
specific policy, we plot the histograms of R&D intensity for the three different
size categories in the remaining panels of Figure 2. For firms with annual sales
below 50 million RMB, we find clear bunching at 6%, and we find no evidence of
bunching at other points. Similarly, for firms with annual sales between 50 million
and 200 million RMB, we find bunching only at 4%, while for firms with more
than 200 million RMB in annual sales, we observe bunching only at 3%. These
patterns are consistent with the size-dependent tax incentive in the InnoCom
program.11

11In comparison, Figure A.1 plots the empirical distribution of R&D intensity in the ASM for 2006–
2007. The InnoCom tax incentive was not size-dependent before 2008 and kicked in uniformly at a
5% R&D intensity. It is reassuring that we observe the R&D intensity bunching solely at 5% and no
significant spikes at 3%, 4%, and 6%.



VOL. VOL NO. ISSUE R&D INVESTMENT & TAX CUTS IN CHINA 11

Figure 2. : Bunching at Different Thresholds of R&D Intensity (2011)
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Note: This figure plots the empirical distribution of R&D intensity for all manufacturing firms with
R&D intensity between 0.5% and 15% in the Administrative Tax Return Database. Panel A reports
the pooled data distribution with all sizes of firms. Panels B, C, and D report the R&D intensity
distribution of small, medium, and large firms, respectively. Note that large fractions of the firms bunch
at the thresholds (6% for large, 4% for medium, and 3% for large) at which they qualify to apply for the
InnoCom certification. Source: Administrative Tax Return Database. See Section II.A for details.

We now compare bunching patterns before and after the 2008 tax reform. Fig-
ure 3 compares the R&D intensity distribution for large FOEs before and after
2008. Large FOEs have no clear pattern of bunching before 2008. This is con-
sistent with the fact that FOEs had a very favorable EIT treatment before the
reform, which severely reduced the appeal of the InnoCom program. In contrast,
FOEs start behaving like DOEs after 2008, when the InnoCom program became
one of the most important tax breaks for FOEs. Their R&D intensity distribu-
tion shows a clear bunching pattern at 3% after the reform, which is the exact
threshold required for these firms to qualify as HTEs. The figure demonstrates
that the change in the EIT system had a large impact on firm behavior.
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Figure 3. : Effects of the 2008 Tax Reform on the Bunching of Foreign-Owned
Large Companies

A. Bunching before 2008 Tax Reform
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B. Bunching after 2008 Tax Reform
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Note: This figure compares the R&D intensity distribution for large foreign-owned firms before and after
the 2008 tax reform. To make the two samples comparable, the figure plots only firms that we observe
in both the SAT and ASM data. The tax reform eliminated the preferential corporate income tax for
foreign-owned firms and increased their incentives to qualify for the InnoCom program. Compared with
panel A, panel B shows that these firms increased their bunching behavior substantially after 2008.
Source: Administrative Tax Return Database and Annual Survey of Manufacturers. See Section II.A for
details.
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While Figures 2–3 show that the InnoCom program led to pronounced bunching
patterns in the distribution of R&D intensity, these graphs alone do not allow us
to quantify the overall increase in R&D. One approach to quantifying the increase
in R&D is to use the observed density of R&D intensity, f1(·), to infer the density
in the counterfactual world without the InnoCom program, f0(·). This approach
relies on the assumption that only firms with R&D intensity in a given region
[d∗−, d∗+] respond to the program. This assumption allows us to use firms drawn
from f1(·) that are outside this region to estimate f0(·). Following the literature
(e.g., Kleven, 2016), we first group the data into bins of R&D intensity, d, and
then estimate the following flexible polynomial:

cj =

p∑
k=0

βk · (dj)k + γj · 1
[
d∗− ≤ dj ≤ d∗+

]
+ νj ,

where cj is the count of firms in the bin corresponding to R&D intensity dj and

p is the order of the polynomial regression. ĉj =
p∑

k=0

β̂k · (d)k is then an estimate

for f0 (d) . Intuitively, when only firms in the exclusion region [d∗−, d∗+] respond

to the program, f̂0 (d) will be equal to f1(·) outside this region. To ensure that
the estimation is not contaminated by firm responses to the program, d∗− and
d∗+ are determined by a data-driven procedure that ensures that f̂0 (·) has the
same mass over the excluded region as f1(·).12

12Specifically, we use K-fold cross-validation to select p, d∗−, and d∗+ assuming that f0(·) is downward-
sloping. We obtain standard errors by bootstrapping residuals. See Appendix D for details. Appendix E
shows that our results are robust to excluding firms with extensive-margin responses. Appendix I shows
that the assumption that only firms in [d∗−, d∗+] respond to the program is consistent with our model
in Section III.
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Figure 4. : Estimated Counterfactual Densities of R&D Intensity

A. Small Firms (2009)
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B. Medium Firms (2009)
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C. Large Firms (2009)
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P-value (M=B) = 0.2762
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Note: This figure reports the results of our bunching estimator for small, medium, and large firms in
2009 and 2011. In each panel, we plot the empirical density of R&D intensity in red and the estimated
counterfactual R&D intensity in blue. The lower bound d∗− and upper bound d∗+ for the excluded
region are indicated by vertical dashed lines. ∆d is the percentage increase in R&D in the excluded
region, and a∗ is the fraction of firms that are constrained from participating in the program. We report
the p-value of the test that the missing mass equals the excess mass. See Section II.B for details. Source:
Administrative Tax Return Database.
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Figure 4. : (Cont.) Estimated Counterfactual Densities of R&D Intensity

D. Small Firms (2011)
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E. Medium Firms (2011)
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F. Large Firms (2011)
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Note: This figure reports the results of our bunching estimator for small, medium, and large firms in
2009 and 2011. In each panel, we plot the empirical density of R&D intensity in red and the estimated
counterfactual R&D intensity in blue. The lower bound d∗− and upper bound d∗+ for the excluded
region are indicated by vertical dashed lines. ∆d is the percentage increase in R&D in the excluded
region, and a∗ is the fraction of firms that are constrained from participating in the program. We report
the p-value of the test that the missing mass equals the excess mass. See Section II.B for details. Source:
Administrative Tax Return Database.
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Figure 4 displays the results of this estimation. In each panel, the red line with
diamond markers displays the observed distribution of R&D intensity f1(·), the
vertical dashed lines display the omitted region, and the blue line displays the
estimated counterfactual density f̂0(·). To characterize the impact of bunching
on average R&D intensity, we compute ∆d as the percentage increase in average
R&D intensity for firms in the exclusion region.13 Panels A and D report results
for small firms in 2009 and 2011, including the percentage increases in R&D over
the excluded region of ∆d = 5.4%–10.3%. The size of these effects is constrained
by the fact that many firms are not able to respond to the program. The fraction
of firms that do not respond to the program in 2011 is a∗ = 79.6%.14,15 Panels B
and E show larger responses for medium firms, with ∆d of 17%. These average
increases are driven by heterogeneous firm-level responses. Firms immediately
below the notch only require a marginal increase in R&D, while firms at d∗− see
much larger R&D increases. Panels C and F report the results for large firms,
where we estimate ∆d = 15.6% for 2009 and ∆d = 24.5% for 2011. These graphs
also show that even large firms may be unable to satisfy some of the requirements
of the program, since 50%–64% of firms that could have participated in the pro-
gram opt not to do so. These results show that bunching patterns are persistent
over time.16 Appendix E shows that these bunching estimates are robust to a
battery of specification tests.17 Figure 4 contributes to our understanding of the
effects of the InnoCom program by quantifying the average increase in R&D, by
clarifying the significant heterogeneity in firm-level responses, and by showing
that firms face idiosyncratic barriers to fulfilling the non-R&D requirements of
the program.

13We use f1(·) and f̂0(·) to directly calculate E[d|Notch, d ∈ (d∗−, d∗+)] and E[d|No Notch, d ∈
(d∗−, d∗+)], respectively. ∆d is then the increase in R&D relative to the average R&D intensity in
the exclusion region.

14Because the total mass of firms that could have responded is given by
∫ α
d∗− f̂0(v)dv, for a given notch

α, the fraction of firms that do not respond is a∗ =
∫ α
d∗− f1(v)dv/

∫ α
d∗− f̂0(v)dv. Note that small firms

may be constrained in their ability to increase investment to a significant degree or to develop a new
product. In addition, a higher failure rate among small firms implies that a long process of certification
may never pay off in lower taxes.

15These graphs also report that we cannot reject the specification test that f̂0(·) has the same mass
as f1(·) over the excluded region for all types of firms.

16Consistent with the intent of the program, firms’ bunching patterns are persistent over time: 76%
of firms that report an R&D intensity greater than the notch in 2011 also bunched in 2010. For this
reason, our model considers the choice of R&D as a medium-term investment plan.

17Specifically, we show that our estimator is able to recover a null effect in the absence of a notch and
that our results are robust to excluding firms with extensive-margin responses and to excluding state-
owned enterprises, low-tech firms, or low-profitability firms from the estimation. We also find similar
estimates when we vary the choices of (p, d∗−, d∗+), and we even obtain similar estimates when we rely
only on data above d∗+ to estimate the counterfactual density. Our results are also robust to using data
from large foreign firms before 2008 that were not subject to the incentives of the InnoCom program to
inform the shape of the density in the excluded region. This check uses the insight of Blomquist and
Newey (2017) that variation in non-linear incentives can help in identifying responses when bunching
approaches are used.
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Figure 5. : Empirical Evidence of Relabeling
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Note: This figure plots the non-R&D administrative expense-to-sales ratio at each level of R&D intensity.
The green dots/line are for the large firms, the red dots/line are for the medium firms, and the blue
dots/line are for the small firms. The threshold of R&D intensity for firms to qualify for InnoCom
certification differs by firm size: 6% for small firms, 4% for medium firms, and 3% for large firms. For
each size category, there is a pronounced drop in the administrative expense-to-sales ratio when the R&D
intensity approaches the required threshold. Source: Administrative Tax Return Database. See Section
II for details.

C. Detecting Relabeling of R&D Investment

We now explore the degree to which the bunching response may be due to ex-
pense misreporting. Figure 5 explores how the ratio of non-R&D administrative
expenses to sales is related to R&D intensity. For each size group, this figure
groups firms into bins of R&D intensity and plots the mean non-R&D admin-
istrative expense-to-sales ratio for each bin. We report the data along with an
estimated cubic regression of the expense ratio on R&D intensity with heteroge-
neous coefficients above and below the notches. The green squares are for large
firms, red diamonds for medium firms, and blue dots for small firms. There is an
obvious discontinuous jump downward at the notch for each size category. This
drop suggests that some firms that report R&D intensity at the notch may partly
relabel non-R&D expenses as R&D to qualify for the policy. When firms are
farther away from the bunching threshold, there is no systemic difference in the
administrative expense-to-sales ratio. This pattern is consistent with the hypoth-
esis that firms miscategorize non-R&D expenses as R&D when they approach the
bunching thresholds.18

18The existence of different thresholds across size groups also allows us to rule out other explanations
for these discontinuities. In particular, there is no observable discontinuity when we impose the “wrong”
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The structural breaks in Figure 5 are statistically significant for all three groups.
Large firms see a drop of 0.8% of sales, which corresponds to 26% of the R&D
intensity required to participate in the program. Small and medium firms see
drops of 1.4% and 1.3%, respectively (see Table A.2). Because firms select into the
program based on idiosyncratic factors (e.g., productivity, adjustment and certifi-
cation costs), these estimates do not have a causal interpretation.19 Nonetheless,
these estimates present strong descriptive evidence that firms may respond to the
InnoCom program by relabeling non-R&D expenses.

Lack of Sales Manipulation

The stark bunching patterns in Figures 2–4 raise the concern that firms may
also manipulate their sales. There are two ways in which firms may do this. First,
since the incentives of the InnoCom program are stated in terms of R&D intensity
(R&D/Sales), firms could increase their R&D intensity by under-reporting sales.
Panel A in Figure 6 plots firms’ log sales relative to their R&D intensity. For
each group of firms, we report average log sales for small bins of R&D intensity
as well as an estimated cubic regression that is allowed to vary below and above
each threshold. If firms under-report sales to achieve the target, we might expect
a sudden drop in sales to the right of each threshold. In contrast, this figure
shows that both the data and the estimated polynomial regressions are remarkably
stable at each notch.20 One reason for this result is that, in addition to the limits
placed by third-party reporting in the VAT system, firm managers may not want
to misreport sales, as these are seen as a measure of their job performance.

Second, if a firm wants to be categorized as a larger firm to qualify for a lower
R&D intensity threshold, it may over-report sales. Panels B and C in Figure 6
show the histogram of firms around the size thresholds. Since larger firms face
lower R&D intensity thresholds, we might expect firms to bunch on the right of
the size threshold. These figures show that firms do not respond to the incentives
by manipulating their size.21 Overall, it does not appear that firms misreport
sales to quality for the InnoCom program. One reason for this result is that, in
addition to the limits placed by third-party reporting in the VAT system, firm
managers may not want to misreport sales, as these are seen as a measure of their
job performance.

thresholds of the other size groups. In Appendix G, we explore whether firms adjust other costs that
are not in the administrative cost category, and we show that firms do not respond to the program by
manipulating other expenses. We also conduct a similar set of analysis focusing on the ratio of R&D
to total administrative expenses. In this case, expense miscategorization would result in discontinuous
increases in this ratio at the notch. This is confirmed in Table A.4 and in Figure A.2.

19Appendix F uses the methods of Diamond and Persson (2016) to estimate causal effects of the notch.
Consistent with Figure 5, we estimate that the program led to a significant decrease in the average
administrative cost ratio for firms in the excluded region, and we also find a statistically significant
increase in TFP.

20Table A.3 reports statistically insignificant estimates of the structural breaks at these notches.
21In our estimations, we further restrict our sample to exclude firms that are close to the size threshold,

and this does not affect our estimates.
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Figure 6. : Lack of Sales Manipulation
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C. Lack of Firm Size Manipulation: Medium and Large Firms
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Note: This figure examines the potential manipulation of sales data. Panel A shows that firms do not
manipulate sales by under-reporting their sales to reach their respective notch. Panels B and C show that
firms do not attempt to over-report their sales to move into the next size category and thus reduce the
threshold of R&D intensity needed to qualify for the InnoCom program. Overall, there is no evidence of
sales manipulation. Source: Administrative Tax Return Database and Annual Survey of Manufacturers.
See Section II for details.
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The data patterns discussed in this section reveal a number of facts that moti-
vate our model. First, the dispersed density of R&D intensity suggests firms face
heterogeneous costs of adjusting R&D expenditures. Second, the InnoCom pro-
gram led to significant increases in reported R&D investment for firms close to the
notch. Third, the overall increase in R&D is driven by heterogeneous responses
that depend on firms’ pre-existing innovation activities. Fourth, differences in
TFP between firms with low and high levels of R&D intensity suggest both that
R&D investment may increase productivity and that firms may select into the
InnoCom program partly based on heterogeneous adjustment costs of R&D in-
vestment. Fifth, the fact that many firms with R&D intensity close to the notch
do not participate in the InnoCom program suggests firms face different obsta-
cles that prevent them from obtaining the InnoCom certification. Finally, sharp
drops in other administrative expenses at program notches suggest that firms in-
flate reported R&D expenditures by relabeling administrative expenses as R&D.
A model of firm behavior that is consistent with these facts must therefore ac-
count for firm differences in underlying productivity as well as idiosyncratic costs
of both adjusting R&D and obtaining the InnoCom certification. In addition, it
is important to consider that firms may respond to the program by investing in
R&D (to increase future productivity) or by relabeling other expenses (to obtain
a preferential tax rate).

III. A Model of R&D Investment and Corporate Tax Notches

This section develops a model of R&D investment where firms can respond
to notches in the corporate income tax schedule by investing in R&D and by
relabeling non-R&D expenses. The model is motivated by the empirical facts
in the previous section and shows that these data patterns inform structural
parameters that are key for studying the effectiveness of alternative tax incentives.

A. Model Setup

Consider a firm i with a unit cost function c(φit, wt) = wt exp{−φit}, where wt
is the price of inputs.22 φit is log TFP and has the following law of motion:

φi,t = ρφi,t−1 + ε ln(Di,t−1) + uit,(1)

where Di,t−1 is R&D investment and ui,t ∼ i.i.d. N(0, σ2). Because our empirical
analysis focuses on firms with non-trivial R&D, this law of motion applies to
firms with Di,t−1 > 0.23 This setup is consistent with the R&D literature where
knowledge capital depreciates over time (captured by ρ) and is influenced by R&D
expenditures (captured by ε).

22We provide additional model details in Appendix H. Note that any homothetic production function
with Hicks-neutral productivity admits this representation.

23If firms do not engage in R&D, we assume that their productivity process is φit = ρφi,t−1 + uit. In
Appendix L, we further generalize our setup to allow knowledge spillovers across firms.
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We assume that the firm faces a demand function with a constant elasticity:
θ > 1. This setup implies that firm sales are given by θπit and that we can write
expected profits as follows:

E[πit] = π̃itD
(θ−1)ε
i,t−1 ,

where π̃it ∝ E[exp{(θ−1)φit}|φi,t−1] measures the non-R&D expected profitability
of the firm.

In our empirical setting, firms are only eligible to apply to the InnoCom program
after demonstrating high levels of R&D over a three-year period (see Section I).
Since firms commit to maintaining sustained levels of R&D to obtain the tax cut,
the relevant investment margin is a medium-term decision. We therefore model
the firm’s investment decision as a two-period problem.

R&D Choice under a Linear Tax

We first model how R&D investment decisions would respond to a linear income
tax:

max
Di1

(1− t1) (πi1 −Di1 − g(Di1, θπi1)) + β(1− t2)π̃i2D
(θ−1)ε
i1 .

In addition to the direct R&D investment cost Di1, firms pay a cost g(Di1, θπi1)
to adjust their R&D. Following the investment literature, we adopt a quadratic

formulation for g(Di1, θπi1) = b × θπ1i
2

[
Di1
θπ1i

]2
. Absent adjustment costs, our

model would predict a deterministic relationship between log R&D and log TFP.
In reality, however, the distribution of R&D investment in China varies signif-
icantly across firms, even conditional on firm TFP. This variability reflects the
fact that firms have different opportunities to improve their technology and face
different costs of implementing R&D projects. Our model incorporates these real-
world features by assuming that firms face heterogeneous adjustment frictions b
of conducting R&D.

The optimal choice of D∗i1 is given by:24

FOC : −(1− t1)

(
1 + b

[
Di1

θπi1

])
+ β(1− t2)ε(θ − 1)D

(θ−1)ε−1
i1 π̃i2 = 0.

The marginal benefit of R&D depends on the potentially unobserved, firm-specific
productivity φi1, as it determines non-R&D profitability, π̃i2. The marginal cost,
on the other hand, is linear in R&D and depends on the heterogeneous adjustment
cost b. Intuitively, the law of motion for TFP (Equation 1) implies that increasing
R&D has a proportional increase in the TFP of all units of production within a
firm. As a result, firm’s R&D expenditure is increasing in φi1. Since adjustment
costs are proportional to firm size, they limit the scale effect of R&D investment

24As we discuss in Appendix H, we assume (θ−1)ε < 1 to ensure a well-behaved second-order condition.
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and play an important role connecting the distribution of TFP to the distribution
of R&D intensity.25

R&D intensity, defined as the R&D-to-sales ratio, has an ambiguous relation-
ship with φi1. To see this, we express the firm’s FOC in terms of the choice of
R&D intensity, di1 = Di1

θπi1
, such that

−(1− t1) (1 + bd∗i1)︸ ︷︷ ︸
Increase in Investment Cost

+β(1− t2)ε(θ − 1)d∗i1
(θ−1)ε−1 π̃i2

(θπi1)1−(θ−1)ε︸ ︷︷ ︸
Productivity Gain from R&D

= 0.(2)

This equation shows that the relation between d∗i1 and φi1 depends on whether

the term π̃i2
(θπi1)1−(θ−1)ε is increasing or decreasing in TFP. Because φi1 affects both

expected profitability (π̃i2) and current sales (πi1), ε plays an important role in
shaping the joint distribution of R&D intensity and TFP, a fact that we use in
the estimation of our model.

A Notch in the Corporate Income Tax

Assume now that the tax in the second period has the following structure,
modeled after the incentives in the InnoCom program:

t2 =

{
tLT2 if di1 < α
tHT2 if di1 ≥ α

,

where tLT2 > tHT2 and where LT/HT stands for low-tech/high-tech. In practice,
firms with high R&D intensity may not participate in the program if other con-
straints prevent them from hiring a sufficient number of technical employees, if
they do not obtain a significant fraction of their sales from high-tech products, or
if the compliance and registration costs are too high. We model these constraints
by assuming that firms pay a fixed cost of certification: c × θπ1i, where c varies
across firms.

A firm decides whether to bunch by comparing the value of the firm from
bunching, by setting d∗1 = α, to the value of the firm at its optimal R&D intensity
below the notch, i.e., d∗i1 from Equation 2. The value-to-sales ratio of the firm

conditional on bunching,
Π(α|tHT2 )
θπi1

, is given by:

Π(α|tHT2 )

θπi1
≡ (1−t1)

1

θ
+β(1−tHT2 )α(θ−1)ε π̃i2

(θπi1)1−(θ−1)ε
−(1−t1)

[
α

(
1 +

bα

2

)
+ c

]
.

25Appendix K.3 shows that the results of our empirical model are robust to allowing for more flexible
adjustment costs.
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Similarly, the value-to-sales ratio at the interior optimal d∗i1,
Π(d∗i1|tLT2 )

θπi1
, is:

Π(d∗i1|tLT2 )

θπi1
≡ (1−t1)

1

θ
+β(1−tLT2 )d∗i1

(θ−1)ε π̃i2

(θπi1)1−(θ−1)ε
−(1−t1)d∗i1

(
1 +

bd∗i1
2

)
.

A firm that previously chose d∗i1 < α will bunch at the notch if
Π(α|tHT2 )
θπi1

≥
Π(d∗i1|tLT2 )

θπi1
.

There are strong theoretical predictions regarding the effect of the tax notch
on the cross-sectional distribution of R&D intensity. To build intuition, we refer
to the simple case where the adjustment cost b is equal to zero. Substituting the
term π̃i2

(θπi1)1−(θ−1)ε using Equation 2, we can express the decision to bunch or not
as: (

d∗i1
α

)1−(θ−1)ε(1− tHT2

1− tLT2

)
1

(θ − 1)ε
− 1− c︸ ︷︷ ︸

Relative Profit from Bunching

≥ d∗i1
α

(
1

(θ − 1)ε
− 1

)
.︸ ︷︷ ︸

Relative Profit from Not Bunching

(3)
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Figure 7. : Theoretical Bunching Predictions
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Note: This figure provides intuition for when a firm decides to bunch and describes empirical implications
of our model for R&D investment and bunching. Panel A visualizes Equation 3 by plotting the relative

value from bunching,
(
d∗i1
α

)1−(θ−1)ε
(

1−tHT
2

1−tLT
2

)
1

(θ−1)ε
−1−c, and the relative profit from not bunching,

d∗i1
α

(
1

(θ−1)ε
− 1
)
, as functions of the optimal R&D intensity level in the absence of the notch, d∗i1.

Absent fixed costs (c = 0), the value from bunching exceeds the value of not bunching when d∗i1 ≈ α. All

firms with c = 0 and with d∗i1 ∈ [d∗−, α] decide to bunch. When ε is small, the profit from bunching is

steeper, which shifts the value of d∗− to the right and reduces the likelihood that firms will bunch. The
firm value from bunching shifts down for c > 0 so that firms with d∗i1 farther from α are less likely to
bunch. When c is large enough, firms with d∗i1 ≈ α may not participate in the program. Panel B shows
how the incentives of the InnoCom program impact the density of R&D intensity, f1(d), relative to a
counterfactual density without the program, f0(d). Panel C plots the relative firm value from relabeling
(from Equation 5) and shows that, by flattening the slope of this line, relabeling decreases the R&D
intensity of the marginal buncher. Panel D shows that the possibility of relabeling shifts d∗− to the left
and increases the likelihood that firms will bunch. See Section III for details.



VOL. VOL NO. ISSUE R&D INVESTMENT & TAX CUTS IN CHINA 25

Panel A of Figure 7 visualizes this inequality by plotting the relative profits from
bunching and not bunching as a function of R&D intensity. For firms that were

already close to the notch
(
d∗i1
α ≈ 1

)
, bunching has small costs and productivity

benefits, but the tax cut
(

1−tHT2

1−tLT2

)
> 1 incentivizes firms to bunch. This figure

shows that, when c = 0, bunching is optimal for firms with d∗i1 close to α. For
firms farther from the notch (as d∗i1 decreases from α), the additional investment
costs increase faster than the productivity benefits, which reduces firms’ incentive
to bunch. Let d∗− be the marginal firm such that Equation 3 holds with equality.
Firms with d∗i1 ∈ (d∗−, α) would decide to bunch at the notch, since the difference
between the left- and right-hand sides of Equation 3 is increasing in d∗i1. It can

also be shown that d∗− is decreasing in both (θ − 1)ε and
(

1−tHT2

1−tLT2

)
, so that we

would observe more bunching if firms have a higher valuation of R&D or if the
tax incentive is larger.

To visualize the role of fixed costs, Panel A of Figure 7 shows that the relative
profit from bunching shifts down as c increases. This implies that firms with d∗i1
farther from α are less likely to bunch at the notch. When c is large enough,
however, firms with d∗i1 ≈ α may not be able to participate in the program.
Panel B of Figure 7 depicts this prediction for the cross-sectional R&D intensity
distribution. The green dashed line plots f0(d): the distribution of optimal R&D
intensity under a linear tax. The black line plots f1(d): the density of R&D
intensity with a notch.26 In addition, the presence of adjustment costs implies
that each firm’s bunching decision depends on its idiosyncratic value of b. Firms
with similar productivity will therefore differ in how they respond to the InnoCom
program.27

B. Real and Relabeled R&D Investment under a Tax Notch

This section extends the model by allowing firms to inflate reported R&D ex-
penditures by relabeling non-R&D costs as R&D. Denote a firm’s reported level
of R&D spending by D̃i1. Firms qualify for the lower tax whenever D̃1 ≥ αθπ1.
We assume that firms face an expected cost of misreporting that is given by
h(Di1, D̃i1), which represents the likelihood of being caught and the punishment
from the tax authority. We further assume that the cost of misreporting is pro-
portional to the reported R&D and depends on the percentage of misreported

R&D, δi1 = D̃i1−Di1
D̃i1

, so that:

h(Di1, D̃i1) = D̃i1h̃ (δi1) ,

26Note that, in the special case of no fixed costs, the range (d∗−, α) would be dominated by the notch
α and there would be an empty region below the notch. This prediction is not consistent with the data
patterns that we documented in Section II.

27Equation H.6 generalizes Equation 3 by including both adjustment and fixed costs.
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where h̃ satisfies h̃(0) = 0 and h̃′(·) ≥ 0.28

Notice first that if a firm decides not to bunch at the level αθπ1, it does not
have an incentive to misreport R&D spending, as doing so would not affect total
profits or the tax rate. However, a firm might find it optimal to report D̃1 = αθπ1

even if it actually invested in a lower level of R&D. Conditional on bunching, the
firm’s optimal relabeling strategy solves the following problem:

max
DKi1

(1− t1)

(
πi1 −DK

i1 − θπi1c−
bθπi1

2

[
DK
i1

θπi1

]2
)
− αθπ1h̃

(
αθπ1 −DK

i1

αθπ1

)
+β(1− tHT2 )π̃i2(DK

i1 )(θ−1)ε

The first-order condition for relabeling in terms of the real R&D intensity dK1 =
DK1
θπ1

is then:

0 = −(1− t1)
(
1 + bdK∗i1

)
+ h̃′

(
1− dK∗i1

α

)
︸ ︷︷ ︸

Increase in Investment Cost and Reduction in Relabeling Cost

(4)

+ β(1− tHT2 )ε(θ − 1)dK∗i1
(θ−1)ε−1 π̃i2

(θπi1)1−(θ−1)ε︸ ︷︷ ︸
Productivity Gain from Real R&D

.

Comparing Equation 5 with the first-order condition Equation 2 for d∗i1 in the
case without relabeling, we find that—despite the presence of relabeling—firms
generally increase their real R&D intensity when they bunch, i.e., dK∗i1 > d∗i1.
The marginal incentive of investing in real R&D is higher for two reasons. First,
since certified firms face a lower tax rate, tHT2 < tLT2 , the after-tax benefits of
productivity improvements are larger. Second, real R&D investment also makes it
less likely that a firm will be caught and punished for its relabeling behavior. This
feature is known as the avoidance-facilitating effect, whereby real R&D lowers
the marginal cost of relabeling (Slemrod and Gillitzer, 2013). Based on dK∗i1 ,
we define the fraction of relabeled R&D δ∗i1 = 1 − dK∗i1 /α and the resulting firm
value Π(dK∗i1 , α|tHT2 ) from reporting R&D intensity α and conducting real R&D
intensity dK∗i1 .

When firms can relabel, they decide whether to bunch by comparing the firm
value from the optimal relabeling strategy, Π(dK∗i1 , α|tHT2 ), with the firm value at
the optimal interior solution, Π(d∗i1, d

∗
i1|tLT2 ). To gain further intuition, consider

the simple case where b = c = 0. Using Equation 2 to simplify Π(dK∗i1 , α|tHT2 ), it

28Our formulation of h̃(·) is consistent with general features of evasion cost functions in the literature
(Slemrod, 2001). We assume that the misreporting cost depends on δ (the percentage of misreported
R&D) because the InnoCom program is based on R&D intensity rather than total R&D expenditures.
Appendix K.4 shows that the results of our empirical model are robust to an alternative relabeling cost
function that can accommodate separable relabeling costs.
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follows that firms decide to bunch when the following inequality holds:(
dK∗i1
α

)(θ−1)ε(
d∗i1
α

)1−(θ−1)ε(1− tHT2

1− tLT2

)
1

(θ − 1)ε
− dK∗i1

α︸ ︷︷ ︸
Relative Profit from Bunching

− h̃(δ∗i1)

α(1− t1)︸ ︷︷ ︸
Relabeling Cost

(5)

≥ d∗i1
α

(
1

(θ − 1)ε
− 1

)
.︸ ︷︷ ︸

Relative Profit from Not Bunching

Equations 3 and 5 are very similar and are identical in the case when c = 0 and
dK∗i1 = α —i.e., when there is no relabeling δ∗i1 = 0.

Panel C of Figure 7 visualizes Equation 5 to show how the possibility of relabel-
ing impacts a firm’s decision to bunch. Intuitively, since firms can elect to report
truthfully (δ = 0), firms’ profits from bunching in the case with relabeling are
greater than in the case without relabeling. Matching this intuition, the figure
shows that the value of firms from bunching and relabeling is greater than in the
case without relabeling. The figure also shows that, when relabeling is possible,
the marginal firm (such that Equation 5 holds with equality) will have a lower
threshold d∗−. Panel D of Figure 7 shows that we should see more bunching when
firms can misreport R&D, such that the observed bunching patterns likely com-
bine real increases in R&D with increases in relabeling. Therefore, while Equation
3 provides a tight connection between the extent of bunching and ε, Equation 5
shows that it is crucial to account for relabeling when bunching patterns are used
to infer the returns to R&D.

IV. Structural Estimation

The previous section described a model motivated by the data patterns in
Section II. The model links the observed bunching patterns to the distributions of
productivity, adjustment costs, and certification costs, and allows firms to respond
to tax incentives through productivity-enhancing investments in real R&D as well
as through misreporting. This section proposes a method of simulated moments
(MSM) framework to estimate the structural parameters of the model and uses
these estimates to quantify the extent of relabeling and the increase in real R&D.

A. Estimation Framework

We first discuss how we parameterize the model. We begin by calibrating θ,
which we set at θ = 5 based on the survey by Head and Mayer (2014).29 We use
the fact that the evolution of productivity in Equation 1 is an AR(1) process with

29This value implies a gross markup of θ
θ−1

= 1.25. We calibrate θ since, without data on physi-

cal production quantities, we are not able to separately identify this parameter from the productivity
distribution.
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persistence ρ and a normally distributed shock with variance σ2. Given a value
of θ, the persistence and volatility of log value-added of non-R&D performing
firms map directly into ρ and σ2, which yields the following calibrated values of
ρ = 0.725 and σ = 0.385. This process implies a stationary normal distribution
for the underlying productivity φ1. Finally, we set β = 0.925.

We now parameterize the distributions of b and c, which we assume are i.i.d.
across firms. We assume b is log-normally distributed, b ∼ LN (µb, σ

2
b ), and that c

has an exponential distribution, c ∼ EXP(µc). We adopt the following functional

form for the costs of relabeling: exp{ηδ}−1
η , where δ is the fraction of reported

R&D corresponding to relabeling. While it is necessary to specify a functional
form, this specification is quite flexible, as the function can be linear, convex, or
concave depending on the value of η (e.g., Notowidigdo, 2019).

We use the method of simulated moments to estimate the parameters Ω =
{ε, η, µb, σb, µc}. For a given value of these parameters, we simulate productivity
and adjustment and fixed costs for 30,000 firms. We determine whether each
firm finds it optimal to bunch depending on the firm’s optimal R&D investment
conditional on not bunching (Equation 2) and the optimal relabeling strategy
conditional on bunching (Equation 5). Based on these firm-level decisions, we
compute data moments that are analogous to those discussed in Section II. We
obtain the simulated moments by repeating this process 10 times and averag-
ing over these instances. Our estimate of Ω minimizes the difference between
data moments and moments generated by the distribution of simulated firms as
measured by the criterion function:

Q(Ω) =

[
mD(Ω)
mB(Ω)

]′
W

[
mD(Ω)
mB(Ω)

]
,

where W is a bootstrapped covariance weighting matrix. mD(Ω) and mB(Ω)
are moment conditions based on the descriptive statistics and on the bunching
estimator, respectively. Because large firms account for more than 80% of all
R&D investment (see Figure A.4), we use data for this group of firms to estimate
the structural model.
mD(Ω) includes four types of moments based on the data patterns in Section II.

The first set of moments uses information from the histogram of R&D intensity.
We include the fraction of firms falling in three equally spaced intervals below the
3% notch (i.e., [0.003, 0.012], [0.012, 0.021], and [0.021, 0.03]).30 We summarize
the top of the R&D intensity distribution by including moments that measure the
fraction of firms falling in three equally spaced intervals between 5% and 9% (i.e.,
[0.05, 0.063], [0.063, 0.076], and [0.076, 0.09]). Second, we include the average
R&D intensity for firms that potentially respond to the InnoCom program (i.e.,
over the interval [0.03,0.05]). Third, we include the average TFP for firms below
and above the notch. As we discuss below, these moments play an important

30As in Figures 2–4, we exclude observations that are very close to conducting no R&D.
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role in identifying key model parameters. Finally, we include the drop in the
administrative cost ratio from Figure 5. This last moment plays an important
role in disciplining the costs of relabeling.

Our initial model relies solely on the moments in mD(Ω) to estimate the model.
For robustness, we show that we obtain similar structural estimates when we also
consider additional moments based on the bunching estimator mB(Ω). These
moments include the following: (1) the lower threshold of the excluded region
d∗−; (2) the fraction of firms in the excluded region that do not bunch a∗; and
(3) the percentage increase in R&D intensity over the excluded region ∆d. In
this case, our model parameters are additionally disciplined by the results from
Figure 4.

Identification

While each of the simulated moments depends on multiple parameters, we give
a heuristic description of the data patterns that identify each parameter.

Consider first the model that only relies on moments based on descriptive data
patterns mD(Ω). We start by discussing the identification of the distribution of
fixed and adjustment costs. First, the parameters of the distribution of adjust-
ment costs, µb and σb, are identified by the distribution of R&D intensity below
the notch and in the top of the R&D intensity distribution. Next, given that the
R&D intensity distribution is smooth, intuitively, there are three determinants
of the excess mass of firms above the notch (over the interval [3,5]). Firms are
more likely to bunch when the average certification cost µc is lower, when R&D
has a larger effect on productivity ε, or when it is easier to relabel (lower η).
The drop in the administrative cost ratio at the notch disciplines the relabeling
cost η. The sorting of more productive firms into higher R&D intensity bins
helps determine ε. Given η and ε, the magnitude of the certification cost µc is
determined by the average R&D intensity right above the notch as well as the
density of firm R&D right below the notch. This heuristic argument shows that
our model is over-identified since our descriptive data patterns include the full
empirical distribution of R&D intensity.

One benefit of using the additional moments in mB(Ω) is that these moments
compare the observed density of R&D to a flexibly estimated counterfactual den-
sity without the program. This density extracts additional information including
the minimum bunching point d∗−, the average increase in reported R&D ∆d, and
the fraction of firms not bunching a∗. Similar to the excess mass of firms above
the notch, these moments jointly inform the three parameters that determine
bunching: ε, η, and µc, providing additional over-identifying restrictions.
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Table 3—: Structural Estimates

A. Point Estimates

TFP Elasticity Relabeling Distribution of Distribution of
of R&D Cost Adjustment Costs Fixed Costs

ε η µb σb µc

Model 1: Excluding Bunching Moments
Estimate 0.089 5.900 7.989 2.047 0.687
Standard Error (0.002) (0.493) (0.086) (0.076) (0.062)

Model 2: All Moments
Estimate 0.091 6.755 8.011 2.014 0.532
Standard Error (0.002) (0.449) (0.075) (0.073) (0.012)

Note: Estimates based on calibrated values of θ = 5, ρ = 0.725, and σ = 0.385. Model 1 estimates the
structural parameters using all moments except the bunching estimates. Model 2 uses all the available
moments to estimate the structural parameters. See Section IV for estimation details.

B. Simulated vs. Data Moments

Data Simulated
Model 1: Model 2:

Excluding Bunching All Moments

R&D Dist. Moments: mD(Ω)

Below the notch (%)
[0.3, 1.2] 0.373 0.382 0.379
[1.2, 2.1] 0.113 0.157 0.146
[2.1, 3] 0.067 0.080 0.069
Above manipulated region (%)
[5, 6.3] 0.056 0.055 0.057
[6.3, 7.6] 0.026 0.037 0.038
[7.6, 9] 0.012 0.026 0.027
Mean R&D intensity [3%, 5%] 0.037 0.035 0.035
Average TFP below notch -0.015 -0.017 -0.020
Average TFP above notch 0.027 0.023 0.025
Admin cost ratio break at notch 0.9% 0.8% 0.7%

Bunching Moments: mB(Ω)

Bunching Point d−∗ 0.009 (0.009) 0.010
Increase in Reported R&D: ∆d 0.157 (0.124) 0.150
Fraction of firms not bunching 0.641 (0.738) 0.665

Note: This table compares the moments generated by our simulations with those from the data. The
simulation is based on 30, 000 firms. The moments that are not targeted by model 1 are in parentheses.
The table shows our model does a remarkable job of matching 10 (13) moments from the data using a
relatively parsimonious model based on 5 parameters.
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B. Estimates of Structural Parameters

Table 3 reports estimates of our structural parameters: (ε, η, µb, σb, µc). Panel
A reports parameter estimates and standard errors for our two models. All the
estimates are statistically significant in both models. We estimate remarkably
similar parameters when we rely on the descriptive moments mD(Ω) or when we
also include the bunching moments mB(Ω) in the estimation. Thus, while the
bunching moments provide independent information, our model’s quantification
of the forces that generate the R&D bunching patterns are also consistent with
those moments.

Consider the estimate of the returns to R&D, ε. The estimate from the full
model in Table 3 panel A implies that doubling R&D increases measured TFP
by 9%. Hall, Mairesse and Mohnen (2010) survey the extensive literature on this
R&D elasticity in similar production function setups. Our estimate lies within
the broad range of previous results, that is, between 2% and 17%. Since most
previous studies use micro-data from developed countries, it is interesting to see
that the returns to R&D of Chinese firms are comparable in magnitude.

Consider now the relabeling cost parameter, η. The estimates from both models
are around 6. These values indicate that, at the margin, the cost of relabeling
is highly convex in terms of δ. That is, it is easy for firms to overstate their
R&D by a small amount, but the cost rises quickly for firms that are farther away
from the required threshold α. To understand this result, note that the marginal
benefit of relabeling includes reductions in investment costs and in adjustment
costs, which include technological opportunity constraints. For this reason, firms
that face a higher shadow cost of R&D (i.e., a higher b) will be more willing to
engage in relabeling. On average, we calculate that firms’ realized relabeling cost
is 9.8% of the implicit R&D savings. Finally, the estimated certification cost is
quite modest: for the firms that decide to bunch and certify as high-tech firms,
the fixed certification cost is on average 4.4% of their expected profit.

Panel B of Table 3 compares the simulated moments with the data moments
and shows that our models do a very good job of matching the data. The first
model—based only on descriptive moments—replicates the distribution of firm-
level R&D intensity, the bunching pattern, and the break in the administrative
cost ratio very well. This model also matches the positive correlation between
R&D intensity and measured productivity. Studying the predicted values of the
(untargeted) bunching moments, we find that they match the data moments quite
closely. The second column of Panel B reports the simulated moments for the
full model. As would be expected, this model trades off a slightly better fit of the
bunching moments for slight deviations from the baseline descriptive moments.
However, these trade-offs are very minor: both models do a remarkable job of
fitting the data.

Because the model is consistent with both sets of moments, one of the benefits
of adding mB(Ω) in the full model is an increase in the precision of the estimated
parameters. While the full model features smaller standard errors for all the
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parameters, the biggest difference is in the standard error of µc, which drops from
0.06 to 0.01. This increased precision follows from the rationale that the bunching
moments extract information from the counterfactual R&D intensity that we
estimated in Section II.B, including the fraction of firms that are below the notch
and that do not bunch. These additional restrictions reduced the uncertainty of
the estimate for certification cost µc.

Benchmark Model Implications

Given our model estimates, we can simulate our full model to gain a deeper
understanding of how heterogeneous firms respond to the existing policy.

First, we find that firms that comply with the policy are positively selected on
several margins. Complier firms are, on average, 13.5% more productive than
firms in the excluded region that do not comply with the policy. They also have
idiosyncratic adjustment costs that are 24.3% lower than non-compliers, which
indicates much better technological opportunities from R&D investment. Finally,
they also have substantially smaller certification costs.

Second, our model shows that 24.2% of the reported R&D investment is due
to relabeling, on average. This fraction is dispersed across firms, with the 10th
percentile firm relabeling 4.3% and the 90th percentile relabeling 42.3%. This dis-
persion is driven mostly by dispersion in the adjustment costs, b. Conditional on
firm productivity, firms with higher adjustment costs relabel a higher fraction of
their R&D. Intuitively, firms with limited technological opportunities are willing
to risk punishment for relabeling to reach the program threshold.

Lastly, we also find heterogeneous increases in real R&D for complying firms.
Our model suggests that the distribution of real R&D investment is such that
the 10th percentile firm sees an increase of 10.4%, the 90th percentile firm an
increase of 29.0%, and the median firm an increase of 16.4%. This dispersion in
investment then results in a dispersed distribution of gains in TFP.

C. Robustness and Sensitivity

We now show that our structural estimates are robust to relaxing many of the
assumptions of our structural model. We discuss each of these cases in more detail
in Appendix K.

We first investigate the parametric assumption that total factor productivity
exp(φ1) follows a log-normal distribution. We find that the distribution of mea-
sured empirical TFP closely matches that of a log-normal distribution, which
implies that this assumption is consistent with our data (see Appendix K.1).

In Appendix K.2, we discuss estimates from alternative models that allow het-
erogeneous εs and a constant b. While these models result in similar average
values of ε and b, the models do not match the data as well as our benchmark
model. Specifically, these models cannot match the joint distribution of TFP and
R&D intensity.
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One potential concern is that firms’ adjustment costs may depend on the scale of
a given firm. In Appendix K.3, we estimate an extended adjustment cost function
that allows these costs to vary by firm size. Our results show that adjustment
costs do not exhibit a firm-size bias and that we obtain very similar estimates of
our main parameters with a more flexible adjustment cost function.

An additional concern is that our structural estimates may be influenced by
the functional form of the relabeling costs. Appendix K.4 reports results from an
alternative formulation that can accommodate relabeling costs that are separable
from real choices. This model results in similar estimates of the productivity
effects of R&D and implies a similar fraction of relabeled R&D as our baseline
model.

As we mention in Section I, it is possible that the drop in administrative costs
that we observe in Figure 5 may be partly driven by a real reallocation of re-
sources. For instance, firms may reduce administrative costs if the tax incentive
causes them to pay closer attention to their accounting of R&D expenses or if
firms substitute inputs in response to the policy. In Appendix K.5, we explore
this issue by assuming that 25% of the drop in administrative costs in Figure 5
is due to real responses and 75% is due to relabeling. As we show in Table A.7,
while this assumption implies slightly larger costs of relabeling, it does not impact
the rest of our structural estimates.

An important force in the model is the selection of firms into the InnoCom pro-
gram. This selection is driven by differences in firm productivity and fixed costs,
which we assume to be independently distributed. Appendix K.6 shows that our
results are robust to allowing fixed costs to be correlated with firm productivity.
Specifically, we show that an expanded model that allows an arbitrary correla-
tion between c and φ yields a negligible correlation between these parameters and
results in very similar estimates of our structural parameters.

As we discuss above, the productivity elasticity of R&D, ε, is partly identified by
the productivity difference between firms above and below the notch. To ensure
our estimates are robust to our measurement of productivity, in Appendix K.7,
we report results where we replace these moments with alternative measures of
firm productivity based on the methods of Ackerberg, Caves and Frazer (2015).
Our results are robust to using these alternative productivity moments.

An additional way to validate our structural model is to test out-of-sample
predictions. In Appendix F.1, we use the methods of Diamond and Persson (2016)
to estimate treatment effects of the InnoCom program. As we show in Appendix
K.8, the estimated model implies increases in firm-level TFP and relabeling that
are consistent with reduced-form estimates of the effects of the InnoCom program
on the administrative cost ratio and on TFP growth.

Finally, we evaluate the sensitivity of our point estimates to each individual
moment. We calculate the local derivative of our estimated parameters in the full
model with respect to each moment using the methods of Andrews, Gentzkow and
Shapiro (2017). In general, the sensitivity matrix conforms with our heuristic dis-
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cussion above. The joint distribution of TFP and R&D intensity are important
determinants of ε. The extent of bunching, measured by the mean R&D intensity
between [3%, 5%], is also informative of the gains from innovation. The struc-
tural break in the administrative cost-to-sales ratio is by far the most important
determinant of evasion cost η. We report the complete set of sensitivity results
for ε and η in Figure A.10.

Overall, the structural model exploits the estimates from our descriptive and
bunching analysis for identification and is able to replicate these data patterns
quite well. While the structural model combines information from multiple mo-
ments and leverages functional form assumptions to increase the precision of the
estimates, the benefit of the bunching approach is that it places no restrictions on
the parameters of the model. By estimating a model that is consistent with both
approaches, we reduce the risk that functional form assumptions are constraining
the estimated parameters in ways that would bias the effects of the InnoCom
program. For these reasons, the model provides a robust micro-foundation for
simulating the effects of counterfactual policies.

V. Simulating Counterfactual Policies

We now use our model estimates to simulate the effects of alternative R&D tax
incentives, and we quantify their implications for reported R&D investment, real
R&D investment, tax revenue, productivity growth, and welfare. We first simulate
alternative versions of the InnoCom program that vary the tax advantage and the
location of the notch. We then compare our results with a counterfactual policy
that follows a more standard investment tax credit. Finally, we consider whether
knowledge spillovers can justify the InnoCom program from a welfare perspective.

A. Alternative Notches and Tax Cuts

We analyze alternative versions of the InnoCom program that vary the tax
advantage and the location of the notch for two reasons. First, even though stan-
dard policy recommendations avoid prescribing discontinuous incentives, notches
are present in many settings (Slemrod, 2013) and may be justified in cases where
governments can use them as a way to limit relabeling (Best et al., 2015). Second,
given the explosive growth in R&D in China and the fact that the government
has chosen to use this policy, it is important to understand the economic and
fiscal consequences of this type of policy.

Figures 8-9 study the effects of changing the preferential tax rate for three
values of the notch: 2%, 3%, and 6%. Each line shows the change in a given
outcome from moving the preferential tax rate to between 10% and 22% for a
given notch, relative to the current benchmark where α = 0.03 and tHT2 = 15%.
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Figure 8. : Simulated Counterfactual Policies: Selection and Relabeling
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Note: These figures report the effects of different policy parameters on the selection of firms into the
InnoCom program and on aggregate outcomes of interest. Panels A and B show that lower preferential
tax rates select firms with higher adjustment costs and lower productivity. Panels C and D show how
real and relabeled R&D respond to changes in parameters of the policy. See Section V for details on the
structural model and the simulation.

Panels A and B of Figure 8 analyze how changes in the policy parameters affect
the characteristics of the compliers. We find that higher values of the notch lead
to a selection of more productive firms and of firms with lower adjustment costs,
on average. This graph also shows that, as we increase the tax break for high-
tech firms (lower the preferential tax rate), the program selects firms with lower
productivity and higher adjustment costs. The selection effect is more pronounced
for adjustment costs than for productivity. For instance, when we change the
threshold from 3% to 2%, the average adjustment cost for the compliers almost
doubles, while the productivity is only around 2% lower. These results show that
there are decreasing returns from expanding the InnoCom program by increasing
the tax advantage and that a larger tax break might exacerbate misallocation
of R&D by incentivizing R&D investment in firms with lower productivity and
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Figure 9. : Simulated Counterfactual Policies: Productivity and Fiscal Cost of
Stimulus

A. Average TFP Increase (Excluded Region)
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B. Tax Revenue Cost of Stimulating Real R&D

0 5 10 15

Percentage Increase in Total Real R&D (%)

1

1.5

2

2.5

3

3.5

4

4.5

E
la

st
ic

ity
 o

f T
ax

 to
 R

&
D

 R
at

io

10
11

12
13

14
15

16
17

18
19

20
21

10
11

12
13

14
15

16
17

18
19

20
21

10
11

12
13

14
15

16
17

18
19

20
21

Benchmark: =.03,t H=0.15
=.02
=.03
=.06

Note: These figures report the effects of different policy parameters on aggregate outcomes of interest.
Panel A shows how different reforms affect TFP. Panel B plots the elasticity of the tax cost to the
government to the real R&D increase. This figure represents the fiscal cost curve of incentivizing R&D
investment for the government and shows that notches that target larger firms have lower fiscal costs.
See Section V for details on the structural model and the simulation.
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higher adjustment costs.
Panels C and D of Figure 8 show how real R&D investment and relabeling re-

spond to changes in the InnoCom program. Panel C shows that there is more real
investment when firms face a lower preferential tax rate. However, the fraction
of R&D due to relabeling also increases in the size of the tax cut. As panel D
illustrates, when we set the notch threshold at 6%, moving the preferential tax
rate from 21% to 10% increases the fraction of reported R&D attributable to
relabeling by almost 10 percentage points.

Panel A of Figure 9 plots the average growth in productivity induced by the
InnoCom program for firms in the excluded region. This effect is driven by two
forces. First, as in panel C of Figure 8, complier firms invest more when the
preferential tax rate is lower. Second, the fraction of firms that participate in
the program also increases with a lower preferential tax rate. When α = 3% and
the preferential tax is reduced to 10%, the average firm sees a TFP increase of
1.4%. This is a larger increase than in the benchmark case, where firms see a
0.8% increase in TFP.

Finally, we use our simulations to answer the question: What is the lowest-cost
policy for a government that wants to increase R&D by a given amount? To
answer this question, we first estimate the elasticity of the tax revenue cost to
the real increase in R&D investment for different values of α and tHT . We then
plot these ratios in panel B of Figure 9 according to the total increase in real
R&D. This graph thus represents the cost frontiers for a government that wants
to increase real R&D by a given amount. The current policy of α = 3% and
tHT = 15% corresponds to a cost ratio of about 2.5. The black line shows that a
policy defined by α = 6% and tHT = 17% would result in a similar increase in real
R&D investment, but at a lower average cost. Alternatively, a policy defined by
α = 6% and a larger tax advantage tHT = 12% would result in twice as large of an
increase in R&D investment for a similar tax-to-R&D ratio. This result is driven
by the fact that policies with larger α positively select more productive firms as
well as firms with better technological opportunities. Nonetheless, as shown in
panel D of Figure 8, policies with lower preferential tax rates invite relabeling.

These simulations show that the effectiveness of notch-based programs depends
strongly on firm selection. Stronger incentives for R&D may misallocate R&D to
firms with worse technological opportunities. Moreover, incentives that encourage
R&D investment at the lowest cost to taxpayers may lead firms to engage in
relabeling activities, which are likely socially undesirable.

B. R&D Tax Credit

A more common R&D subsidy policy is the R&D tax credit, which is prevalent
in a large number of European and North American countries. We now use
our estimated model to evaluate the effects of drastically changing the Chinese
InnoCom program to an R&D tax credit system comparable to that of the US.
While the US system has numerous accounting details, we define it by its two
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most fundamental features: the base amount D̄i and the tax credit rate τ . The
US government provides a credit of τ = 20% for qualified R&D expenditures that
exceed the base amount D̄i.

31

If firms find it optimal to not misreport (δ∗ = 0), then the R&D tax credit
effectively reduces the marginal cost of real R&D, DK , by (1− t1)τ . When there
is no relabeling, an R&D tax credit is a relatively cheap way to induce incremental
R&D investment. Indeed, the tax-to-R&D elasticity equals (1−t1)τ ≈ 0.15, which
is significantly more effective than the 2.5 elasticity of the benchmark InnoCom
program. If we impose the estimated cost of relabeling of η = 6.76, as in our
benchmark case, firms find it very costly to misreport and set δ∗ = 0. In this
case, the R&D tax credit system is a superior policy.

In practice, however, the cost of relabeling η is likely to depend on the gov-
ernment’s enforcement capability and on the number of firms that need to be
monitored. Specifically, η is likely to be lower under an R&D tax credit system
since the tax authority will need to audit all firms. This implies that individual
firms will face lower costs of relabeling. With positive misreporting, the cost-
effectiveness of the R&D credit quickly worsens. To see this, note that the R&D
tax credit is calculated as:

(1− t1)τ

[
DK∗

1− δ∗
−D∗1

]
≡ (1− t1)τ

[
(DK∗ −D∗1) +

δ∗

1− δ∗
DK∗

]
.

If firms relabel δ∗ > 0 of reported R&D, then the effective tax cost of inducing

the marginal dollar of real R&D becomes (1− t1)τ [1 + δ∗

1−δ∗
DK∗

DK∗−D∗
1
]. When the

incremental real R&D, DK −D∗1, is small, the misreported R&D dominates the
tax-to-real R&D elasticity. When we rescale the relabeling cost to match our
benchmark relabeling of δ∗ = 0.24, our simulated model implies a tax-to-R&D
elasticity of 4.13. This higher fiscal cost is largely driven by relabeling. Intuitively,
firms were already at their interior optimum. The tax credit therefore induces
mostly a relabeling response, with a very small increase in real R&D. In this case,
the large relabeling response yields the surprising result that an InnoCom-style
program is more effective at stimulating real R&D than a linear tax credit.

This analysis reveals that the choice of subsidy critically depends on the costs
of relabeling. Using our model’s estimates of firm-level R&D adjustment costs

31Since D̄i typically depends on an average of R&D intensity in previous years, it is natural to assume
that D̄i = D∗

i1, the interior optimum. We can thus set up the firm’s optimal R&D decision problem as:

max
DK ,δ

(1− t1)
[
π1 − g(DK , θπ1)

]
−DK + t1

(
DK

1− δ

)
+ (1− t1)τ

(
DK

1− δ
−D∗

i1

)
−
DK

1− δ
h(δ) + β(1− t2)E[π2|DK ].

Note that the misreporting decision, δ, is separable from the real R&D choice, DK . Thus, the optimal
proportional evasion δ∗ is determined by the evasion cost, η; the R&D tax credit, τ ; and the corporate
tax rate, t1. Given the optimal evasion decision δ∗, firms choose real R&D amount DK .
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and returns to R&D, we search for the relabeling cost parameter that equalizes
the fiscal cost of an R&D tax credit regime with the InnoCom program. We find
that when we increase the evasion cost level such that it implies a lower fraction
of relabeling of 13.85% (in contrast to 24.2% in our benchmark), the R&D tax
credit policy achieves the same fiscal elasticity of 2.5. Therefore, a tax credit is a
more cost-effective policy if the government can significantly increase the cost of
relabeling. However, this may come at the cost of devoting additional government
resources to detecting relabeling.

C. Welfare Implications

Governments often justify the use of fiscal incentives for R&D with the ar-
gument that innovative activities have positive spillover effects on the rest of
the economy. When individual firms neglect these positive externalities, aggre-
gate R&D investment may be lower than is socially optimal (see, e.g, Bloom,
Van Reenen and Williams, 2019). We now study whether the InnoCom program
can be justified as a tool to alleviate this market failure.

To consider this question, we extend our single-agent framework to an equi-
librium setting and consider the aggregate implications of this policy.32 As in
Section III, individual firms i engage in monopolistic competition. Let Ct denote
the CES composite good that is assembled from the output of all firms. Firm
optimization implies that the price of the composite good in period t is given by
Pt = θ

θ−1Φ−1
t , where Φθ−1

t =
∑

i exp{(θ−1)φi,t} is an aggregate measure of firms’
log-productivity, φi,t, and where θ denotes the constant elasticity of demand.

As in our empirical setting, we assume that a subset of firms, NR&D, engages
in R&D.33 We consider the role of spillovers by assuming that φi,t follows an
expanded version of Equation 1:34

φi,t = ρφi,t−1 +ε ln(Di,t−1)+ ζSt−1 +uit, where St−1 =
1

NR&D

NR&D∑
i=1

ln(Di,t−1).

Past investments in R&D influence aggregate productivity Φt by directly increas-
ing own-firm productivity as well as through potential spillovers effects when
ζ > 0.

32See Appendix L for detailed derivations. While previous analyses relied solely on individual firm
decisions, the results in this section further assume that firms correctly anticipate the future prices
implied by aggregate R&D.

33Table 2 shows that 8–10% of firms in our data engage in R&D. Since these firms are on average
more productive, the sales share of the R&D sector is close to 35%.

34The evolution of log productivity for non-R&D-performing firms is similar but excludes the term
ε ln(Di,t−1). In Appendix L, we show that, since the choice of Di,t−1 is invariant to St−1, our previous
analyses are not affected by the presence of spillover effects. For simplicity, we assume that St−1 is a
simple average of all R&D-performing firms; see Bloom, Van Reenen and Williams (2019) for a discussion
of different weighted averages used in the empirical literature and Benhabib, Perla and Tonetti (2017);
König et al. (2018) for a discussion of models of imitation and technology diffusion.
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We consider a representative household that derives utility C1−γ
t Gγt from pri-

vate consumption, Ct, and a public good, Gt. The household uses a per-period
endowment L and after-tax firm profits to purchase Ct at price Pt. The govern-
ment produces the public good Gt with a linear transformation of Ct, which is
financed by taxing corporate profits.35

We now show how the InnoCom program impacts social welfare. To do so, we
denote aggregate R&D expenditures gross of adjustment and fixed costs by:

D1 =
NR&D∑
i=1

(Di,1 + gi(Di,1, θπi,1) + I(InnoComi)ci) ,

where I(InnoComi) is an indicator for the event that firm i is in the InnoCom pro-
gram. Similarly, H1 =

∑
i I(InnoComi)h(Di,1, D̃i,1) denotes aggregate relabeling

costs and

τ =
(tLT − tHT )

∑
i I(InnoComi)πi,2∑
i πi,2

is the fiscal cost of the InnoCom program relative to aggregate profits. Social
welfare is then:

(6) Φ1(L−D1 −H1)

(
1− t

θ

)1−γ ( t
θ

)γ
+ βΦ2L

(
1− t

θ
+
τ

θ

)1−γ ( t
θ
− τ

θ

)γ
.

Welfare in each period combines three factors. Welfare increases with Φt since
higher productivity lowers the price of the composite good. Welfare is also in-
creasing in the resources expended in a given period. Finally, welfare depends on
the allocation of resources between private and public consumption.36

Equation 6 presents a welfare accounting of the costs and benefits of the In-
noCom program. First, the InnoCom program lowers first-period spending by
D1 +H1. Second, the fiscal cost of the InnoCom program raises the share of pri-
vate consumption by τ

θ at the expense of the public good. Finally, by increasing
R&D investment, the InnoCom program raises Φ2. This last effect is more pro-
nounced when R&D has spillover effects on the productivity of other firms, i.e.,
ζ > 0.

We calibrate three additional parameters to implement Equation 6. First, we
use the fact that, in the absence of the InnoCom program, the tax rate t = γθ
maximizes social welfare. We thus set γ = t

θ = 25%
5 = 5%, which is the value

35This setup builds on Samuelson (1954); Atkinson and Stern (1974) by incorporating a productive
use of government funds that justifies the existing corporate tax rate. Corporate tax cuts would be
trivially beneficial if tax revenue is not used for productive purposes, i.e., when γ = 0. Our results
are robust to assuming that government production wastes a constant fraction of its budget, so that
Gt = (1− waste)Ct.

36In the first period, the private expenditure share is 1 − t
θ

, and the public goods share is t
θ
. In the

case without the InnoCom program, where the optimal tax is given by t = θγ, the consumption mix of
Equation 6 takes the familiar Cobb-Douglas form (1− γ)1−γ (γ)γ .
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of γ that rationalizes the observed tax rate.37 Second, we normalize L to equal
payments to labor implied by our model. Finally, we calibrate the importance
of the R&D sector such that the aggregate sales share of R&D-performing firms
matches the share observed in our data.

We start by using Equation 6 to evaluate the welfare loss in the case where
ζ = 0. In the absence of spillover effects, the InnoCom program leads to (1)
firm costs related to certification, compliance, and relabeling, (2) over-investment
in R&D—a form of inter-temporal distortion—and (3) under-provision of public
goods, which distorts the consumption mix. Our model estimates imply that
welfare decreases by 0.14% in this case. While all three channels contribute
to the welfare loss, the first channel has the largest effect. With the InnoCom
program, aggregate efficiency, Φ2/Φ1, improves by 0.12% more than without the
program. We find that, because the consumption loss from the additional R&D
spending (including adjustment costs) increases by slightly more than 0.13%, the
program has a very small inter-temporal distortion. The welfare loss of 0.14%
is almost completely accounted for by the increase in certification and relabeling
costs. The intuition is that, while channels (2) and (3) transfer resources across
time or types of consumption, certification and relabeling costs are unproductive
uses of resources.38

We now use Equation 6 to find the value ζ̂ such that the InnoCom program for
large firms (i.e., α = 0.03, tHT = 0.15) yields the same welfare as the case without

the InnoCom program. Using our estimated model, we find that ζ̂ = 0.069. This
value of ζ̂ implies that a firm’s log-productivity would increase by 6.9% if all R&D
firms doubled their R&D investment. When spillovers are small, i.e., ζ < 0.069,
the distortions discussed above exceed the gains from incentivizing R&D.

The InnoCom program can be justified from a welfare perspective as long as
spillover effects are larger than ζ̂.39 Compared to empirical estimates, ζ̂ is rela-
tively small. For instance, Bloom, Mark and John (2013) and Lucking, Bloom
and Van Reenen (2019) estimate significantly larger values of ζ ≈ 0.20. When we
set ζ = 0.20, we find that welfare increases by 0.27% and aggregate productivity
increases by 0.53%. These results suggests that the InnoCom program may be a
valuable policy tool to alleviate the under-investment in R&D.

The results of our policy simulations highlight the promises and limitations of
an InnoCom-style program. Section V.B shows that such a program may be more

37Estimates of γ in the US range from 0.11 to 0.26 (Suárez Serrato and Wingender, 2014; Fajgelbaum
et al., 2018).

38Slemrod (2006) discusses the compliance costs of business taxes and argues that compliance costs
should be incorporated in welfare analyses of tax systems.

39Our framework makes three implicit assumptions that imply that our estimate of ζ̂ is a conservatively
high value. First, our static model implies that firms expect an instant and sizable equilibrium price
response to R&D tax policy, which may depress R&D investment. Second, by holding L constant, our
model assumes that Φt is the only source of gains. Finally, in contrast to empirical approaches to
estimating ζ that condition spillover pools on geographic or technological distance, we assume a broad
spillover pool that includes all firms. Models with a more rigid equilibrium price response, where income
can increase in response to productivity growth, or with narrower spillover pools would all imply a lower

value of ζ̂.
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effective than a linear tax credit at stimulating R&D investment when relabeling
is a significant concern. While Section V.C shows that an InnoCom-style program
can be justified from a welfare perspective under moderate spillover effects, the
simulations in Section V.A also reveal the limits of this approach. Specifically,
Figure 8 shows that the potential to scale-up InnoCom-style programs is limited
by the fact that more generous tax credits or more accessible notches draw in firms
that are less productive and that have higher adjustment costs, which exacerbates
the prevalence of relabeling.

VI. Conclusions

Governments around the world devote considerable tax resources to incentiviz-
ing R&D investment. However, there is widespread concern that firms respond
by relabeling other expenses as R&D expenditures. This paper takes advantage
of a large fiscal incentive and detailed administrative tax data to analyze these
margins in the important case of China. We provide striking graphical evidence
consistent with both large reported responses and significant scope for relabeling.
These results suggest misreporting of R&D may contaminate estimates of the
effectiveness of R&D investment and may lead to misallocation of R&D toward
firms with less innovative projects.

Optimal subsidies for R&D depend on the fiscal cost for the government and the
potential positive externalities of R&D investment on other firms’ productivity.
We provide a useful metric that traces the government’s trade-off between own-
firm productivity growth and tax revenues. We also provide a bound on the size
of the externality that would justify this government intervention.

Finally, while we find evidence consistent with relabeling, the unusual structure
of the InnoCom program, characterized by pre-registration and auditing, may
limit the scope of relabeling and evasion. In contrast, R&D investment tax credits
may be more susceptible to relabeling in developing and even developed countries.
As this paper demonstrates, accounting for relabeling has important implications
for the design of R&D subsidies.
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