
Pre-test with Caution: Event-study Estimates After
Testing for Parallel Trends

By Jonathan Roth∗

This paper discusses two important limitations of the common
practice of testing for pre-existing differences in trends (“pre-
trends”) when using difference-in-differences and related methods.
First, conventional pre-trends tests may have low power. Second,
conditioning the analysis on the result of a pre-test can distort esti-
mation and inference, potentially exacerbating the bias of point es-
timates and undercoverage of confidence intervals. I analyze these
issues both in theory and in simulations calibrated to a survey of
recent papers in leading economics journals, which suggest that
these limitations are important in practice. I conclude with prac-
tical recommendations for mitigating these issues. Keywords:
difference-in-differences, pre-trends, pre-testing

When using difference-in-differences and related methods, researchers often test
for pre-treatment differences in trends (“pre-trends”) as a way of assessing the
plausibility of the parallel trends assumption. These tests are remarkably com-
mon: my review of publications in three leading economics between 2014 and 2018
found 70 papers that use an “event-study plot” to visually test for pre-trends (see
Section I for details).

This paper highlights two limitations with the practice of pre-testing for pre-
trends. First, conventional pre-tests may have low power, meaning that pre-
existing trends that produce meaningful bias in the treatment effects estimates
may not be detected with substantial probability. Second, conditioning the analy-
sis on the result of a pre-trends test induces distortions to estimation and inference
from pre-testing. In other words, the draws of the data that survive a pre-test are
a selected sample from the true data-generating process. Because of this selection,
the bias caused by a violation of parallel trends can actually be worse conditional
on passing the pre-test. Taken together, these results imply that pre-trends tests
may be ineffective in avoiding biases from violations of parallel trends and can
even exacerbate these biases.

I begin in Section I by illustrating the practical importance of these issues
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in data-generating processes (DGPs) calibrated to a systematic survey of recent
papers in three leading economics journals. I consider simulations in which the
pre-trends test “passes” if no pre-treatment coefficient is individually statistically
significant (and rejects otherwise). I evaluate the power of this pre-test when
the true data-generating process has a linear violation of parallel trends. I find
that linear violations of parallel trends that would be detected only 50 percent
of the time can produce large biases in the treatment effects estimates and lead
confidence intervals (CIs) to substantially undercover the true effect. In the most
extreme case, the bias from a trend detected only half the time is larger than the
estimated treatment effect and a nominal 95% CI contains the true parameter
only 24% of the time. I also find that the bias in the selected draws of the data
where no significant pre-trend is detected can be quite different from the average
(unconditional) bias under the same DGP. The bias conditional on passing the
pre-test is larger than the unconditional bias in most specifications – and can be
over twice as large – indicating important additional distortions from pre-testing.

In Section II, I provide a theoretical treatment of the distribution of event-study
estimates after surviving a pre-test for pre-trends. The analysis clarifies how pre-
testing will affect the properties of estimates and CIs for the treatment effect under
more general DGPs than in the simulations in Section I (e.g. with non-linear
violations of parallel trends). It also clarifies the implications of using pre-tests
as a screening device for publication. I begin by deriving the bias and variance
of treatment effect estimates conditional on surviving the test for pre-existing
trends. In general, the bias after surviving a pre-test can be larger or smaller
than the unconditional bias. I show, however, that under homoskedasticity the
bias will always be larger after surviving the pre-test whenever the difference
in trends is monotonically increasing over time. My results also suggest that
conditioning on the result of the pre-test can affect the coverage rates of CIs,
although the direction of the impact is ambiguous. Finally, a stylized model of
the publication process illustrates that screening papers based on pre-trends can
either reduce or increase the bias in published work, with tradeoffs between the
power of the pre-test to prevent biased estimates from being published and the
distortions from pre-testing.

I conclude with practical recommendations for applied researchers in Section III.
I describe simple diagnostics that researchers can conduct to evaluate when the
limitations of pre-trends testing are likely to be severe, and provide software for
their implementation. I also briefly highlight alternative approaches that avoid the
pre-test altogether by exploiting economic knowledge about how parallel trends
may be violated.

Related Literature. This paper highlights econometric issues with pre-testing
for pre-trends. A large literature has considered issues arising from a pre-testing
or model-selection step in a variety of other econometric and statistical settings.
Early work on pre-testing includes Keynes (1939) and Friedman (1940); for more
recent examples, see Giles and Giles (1993), Leeb and Pötscher (2005), Lee et al.
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(2016), and Andrews (2018), among many others. Requiring an insignificant pre-
trend to publish a paper can also be viewed as a form of publication bias, a
topic which has been studied extensively (e.g., Rothstein, Sutton and Borenstein
(2005), Christensen and Miguel (2016), Snyder and Zhuo (2018), Andrews and
Kasy (2019)).

This paper also contributes to a large body of work on the econometrics of
difference-in-differences and related research designs in particular. A topic of
substantial recent interest has been the failure of standard two-way fixed effects
(TWFE) models to recover a sensible causal estimand in settings with staggered
treatment timing and heterogenous treatment effects, even under a suitable par-
allel trends assumption (Borusyak and Jaravel, 2016; Sun and Abraham, 2020;
de Chaisemartin and D’Haultfœuille, 2020; Goodman-Bacon, 2021; Callaway and
Sant’Anna, 2020; Athey and Imbens, 2021). This paper highlights a conceptually
distinct issue: even if we were willing to rule out treatment effect heterogeneity
(or use a method robust to it), conventional pre-tests may do a poor job detecting
violations of the relevant parallel trends assumption. See Remark 1 for further
connection to this literature.

Recent papers by Freyaldenhoven, Hansen and Shapiro (2019, FHS), Kahn-
Lang and Lang (2020), and Bilinski and Hatfield (2020, BH) have cautioned
that pre-trends tests may have low power to detect meaningful violations of par-
allel trends. I contribute to this work by providing empirical evidence on the
power of pre-tests from a systematic review of recent papers. I also provide novel
theoretical and empirical evidence on the additional statistical distortions from
pre-testing. See Section III for discussion of the alterative approaches proposed
by BH and FHS.

I. Survey of Recent Papers

A. Selecting the sample of papers

I searched on Google Scholar for occurrences of the phrase “event study” in
papers published in the American Economic Review, AEJ: Applied Economics,
and AEJ: Economic Policy between 2014 and June 2018.1 I chose the phrase
“event study” since researchers often evaluate pre-trends in an event-study plot.

The search returned 70 total papers that include a figure that the authors
describe as an event-study plot. I exclude 43 papers for which data to replicate
the main event-study plot were unavailable.2 I further exclude 9 papers that do
not report standard errors,3 and 3 that do not normalize their estimates relative
to a pre-treatment period.4 Finally, I exclude 3 papers that do not attribute a

1I include papers that were forthcoming as of June 2018 if data was available on the AEA website.
2This includes one paper where the replication code produced different results from the published

paper.
3Although standard errors could be estimated from the replication data, I wish to rely on the authors’

choice of clustering method.
4This rules out financial event-studies examining the time series of returns of an asset.
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causal interpretation to their estimates so that I can benchmark the magnitude of
biases from differential trends relative to the estimated causal effects. This yields
a final sample of 12 papers. For papers that present multiple event-study plots,
I focus on the first plot meeting the criteria above, which I view as a reasonable
proxy for the main specification.

B. What pre-tests are researchers using?

The most common formal criterion for evaluating pre-trends appears to be the
individual significance of the pre-treatment coefficients, although this criterion
does not appear to be universally applied. All 12 papers in my final sample show
an event-plot with pointwise confidence intervals that allows for the evaluation
of individual (but not joint) significance of the pre-treatment coefficients. Five of
the 12 papers directly discuss individual significance.5 Only one paper reports a
test of joint significance (and it also discusses individual significance), and none
of the papers discusses what magnitude of pre-trend can be rejected by the data.
Several of the papers, however, appeal only to a visual inspection of the plot
without specifying formal criteria. Further, Table 1 makes clear that a statistically
significant pre-period coefficient does not necessarily preclude publication: there
is at least one statistically significant pre-period coefficient in three of the 12
papers in my final sample, and in two papers the pre-period coefficients are also
jointly significant.6 Although this evidence suggests that not all papers use the
individual significance of pre-treatment coefficients as their pre-testing criterion,
I nevertheless focus my analysis on this criterion given its prominence in applied
work.

C. Evaluating power and pre-test bias in practice

I now evaluate the power of conventional pre-tests and the distortions from
pre-testing in data-generating processes calibrated to my survey of recent papers.

Data-generating processes. All of the papers in the survey plot a vector of
coefficients β̂, which has subvectors β̂pre ∈ RK and β̂post ∈ RM corresponding
with the periods before and after a treatment occurs. In the simulations below, I
consider calibrated data-generating processes (DGPs) in which

(1) β̂ ∼ N (β, Σ) ,

5Two other papers write that the plot shows “no significant” or “marginally significant” pre-trends,
but it is not clear what type of significance they are referring to.

6In none of the papers is the slope of the best-fit line through the pre-period coefficients significant
at the 5% level. However, no paper mentions this as a criterion of interest, and one case falls just short
of significance with a t-statistic of 1.95.
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where the mean β satisfies the causal decomposition

(2) β =

(
δpre
δpost

)
︸ ︷︷ ︸

δ

+

(
0

τpost

)
︸ ︷︷ ︸

τ

,

where τ is a vector of causal effects assumed to be zero in the pre-treatment period,
and δ is the bias from a difference in trends. All of the papers report standard
errors based on the asymptotic normal approximation (1). I impose that this
normal approximation holds exactly in finite-sample so that any biases or coverage
issues are the results of issues with violations of parallel trends and/or pre-testing
rather than the asymptotic distribution providing a poor approximation in finite
sample.

Calibrating the model. For each paper in my survey, I calibrate the finite-
sample normal model (1) so that the number of pre-treatment and post-treatment
periods matches that in the original paper. I set Σ to be the estimated variance-
covariance matrix from the specification in the original paper, using whatever
clustering method was specified by the authors. I set τpost equal to the estimated

coefficients β̂post, although this choice has no impact on the results.7 The bias from
the difference in trends δ is calibrated based on the power calculations described
below.

Power calculations. For each study in my sample, I evaluate the power of
pre-trends tests to detect linear violations of parallel trends. In light of the
emphasis in published work on the individual statistical significance of the pre-
period coefficients, I base my calculations on pre-tests that check this criterion for
all pre-treatment coefficients (using 95% CIs). To be precise, I consider a pre-test
that “passes” if there is no individually significant pre-treatment coefficient —
that is, the test checks whether β̂pre ∈ BNIS(Σ), where BNIS(Σ) = {β ∈ RK :

|βt| ≤ 1.96σt, for all t} and σt is the standard error of β̂pre,t. I calculate the
power of such tests against linear violations of parallel trends with a slope of γ,
so that the element of δ corresponding with relative time t is δt = γ · t. I then
compute the value of γ for which the probability of passing the pre-test is 50 or
80 percent, i.e. P (β̂pre ∈ BNIS) = 0.5 or 0.8. I choose 80 percent since this is
often used as a benchmark for the minimum detectable effect in power analyses
(Cohen, 1988). I refer to the resulting values, γ0.5 and γ0.8, as the slopes against
which pre-tests have 50 or 80 percent power.8

Target Parameter and Estimator. For simplicity, I focus on estimation of

7Specifically, the distribution of β̂post conditional on a pre-test of β̂pre is equivariant with respect to
τpost, and thus has no impact on bias or coverage for τpost.

8The power of the pre-test under a slope γ could easily be calculated via simulation. However, under
the normality assumption, these probabilities can actually be calculated analytically using results from
Cartinhour (1990) and Manjunath and Wilhelm (2012), which I implement using the R package tmvtnorm.
A similar approach is applied for the bias and coverage calculations described below. I have verified that
simulations yield similar results to the analytical approach.
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a scalar estimand of the form τ∗ = l′τpost (l ∈ RM ). Researchers are often
interested in the average treatment effect across all post-treatment periods, and
so in the main text I focus on estimation of τ̄ = 1

M (τ1 + ...+ τM ). I also consider
estimation of the effect for the first period after treatment, τ1. I focus on the
natural plug-in estimate of τ∗ under parallel trends, τ̂ = l′β̂post, and the associated
CI, CIτ∗ = τ̂ ± 1.96στ̂ , where σ2

τ̂ = l′Σl.
Bias and size calculations. I evaluate the performance of these estimators and
CIs under data-generating processes with linear violations of parallel trends with
slopes γ0.5 or γ0.8. Specifically, I calculate the unconditional bias E [τ̂ − τ∗], and

the bias conditional on passing the pre-test E
[
τ̂ − τ∗ | β̂pre ∈ BNIS(Σ)

]
. Analo-

gously, I calculate the size (i.e. null rejection probability) of CIτ∗ both uncondi-
tionally and conditionally, P (τ∗ 6∈ CIτ∗) and P (τ∗ 6∈ CIτ∗ |βpre ∈ BNIS(Σ)).
Results. My results indicate that pre-trends tests often have low power against
violations of parallel trends that would produce meaningful bias in the treatment
effects estimates. The green circles in Figure 1 show the bias for the average effect
(τ̄) from a linear difference in trends which would be detected 80% of the time
(γ0.8). These biases are benchmarked relative to the magnitude of the treatment
effect estimate in the original paper (plotted in blue). The bias from such a
trend is often of a magnitude comparable to, and in some cases larger than,
the estimated treatment effect! This implies that the slope of the differential
trend needs to be quite large in order to achieve 80% power (and power will be
even lower for smaller violations). As a result of these biases, traditional CIs
exhibit substantial undercoverage under these violations of parallel trends, as
shown in Table 2. Although the true parameter should nominally fall outside a
95% confidence interval no more than 5% of the time, in several specifications this
occurs over 50% of the time. Results for the first period after treatment (τ1) and
using a 50% power threshold (γ0.5) show qualitatively similar patterns, although
somewhat less extreme, and are presented in the Online Appendix.

I also find substantial distortions from pre-testing. The red triangles in Figure
1 show the bias for τ̄ conditional on surviving the pre-test. As can be seen,
the conditional bias can be different from, and in most cases worse than, the
unconditional bias. Table 3 summarizes the additional bias from pre-testing as a
fraction of the unconditional bias: for the trend against which pre-tests have 50
percent power, the pre-test bias can be as much as 103 percent of the unconditional
bias for τ1, and as much as 48 percent for τ̄ .9 Moreover, the pre-test bias and the
bias from trend go in the same direction in all but two of the studies in the sample
when the estimand is τ̄ , and all but three of the studies when it is τ1. Thus, in most
cases the bias from pre-testing exacerbates the bias from the underlying trend.
Similarly, Table 2 shows that the null rejection rates for 95% CIs conditional on
passing the pre-test can differ substantially from the unconditional null rejection

9We expect the bias from pre-testing to be a larger fraction of the unconditional bias for periods
closer to treatment, since the unconditional bias from the differential trend grows linearly in the number
of periods after treatment, whereas the pre-test bias need not grow over time.
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rates, and are worse in many cases.
Intuition. Some intuition for why the power of pre-trends tests may be low is
as follows. Consider the case where we have one pre-treatment and one post-
treatment coefficient (M = K = 1), the two coefficients have the same variance
(Σ11 = Σ22), and the true treatment effect is zero. Under a linear trend, δpre =

−δpost, and so by symmetry the probability that the CI for β̂pre contains 0 is

the same as the probability that the CI for β̂post contains 0. Thus, if the pre-test

rejects zero half the time, then the CI for β̂post will reject zero half the time as well
– that is, 10 times more often than a 95% CI is supposed to reject the true effect!
This problem becomes even more severe when we have multiple post-treatment
periods, since the bias from a linear trend grows over time. Likewise, it becomes
less severe as we add more pre-treatment periods, which raises the probability of
detecting a significant pre-trend.

It is worth highlighting, however, that these comparative statics with respect
to the number of periods are somewhat particular to the assumed linear form for
the pre-trend. Adding additional pre-treatment periods may not help the power
of the pre-test if we expect treatment status to be determined only by events close
to the time of treatment — in a study using COVID-19 cases as the outcome,
for example, it would not be very informative to check for parallel pre-trends for
years prior to 2019.

This two-period example can also provide some intuition for why pre-testing
can exacerbate bias. If there is an upward-sloping trend so that βpre < 0, then

draws of the data where we the pre-test passes will tend to have β̂pre > βpre. But

if β̂post and β̂pre are positively correlated, then β̂post will also tend to be above
βpost, exacerbating the bias from the upward-sloping pre-existing trend.

D. Caveats and Discussion

An important caveat to these results is that by construction my sample only
includes papers that made it through the publication process at leading economics
journals and reported an event-study plot in the published manuscript. To the
extent that papers with insignificant pre-trends are more likely to be published, or
that analyses with significant pre-trends are not reported in the final manscript,
the sample may be biased towards papers where the power of pre-tests is low.

A second important caveat is that these results only directly provide evidence
about the power of pre-trends tests when there is a linear violation of parallel
trends.10 Assessing the power of pre-tests against linear violations of parallel
trends is a natural benchmark given that researchers worried about differential
trends often include parametric linear controls (e.g., Wolfers (2006); Dobkin et al.
(2018); Goodman-Bacon (2018)), which suggests that authors perceive linear vi-

10In the Online Appendix, I conduct a similar power analysis in which there are stochastic shocks
to the treated and control groups, and again find poor performance of standard pre-testing methods in
controlling size distortions from the differential trends.
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olations of parallel trends to be relevant in many cases. Nevertheless, one may be
interested in the power of pre-tests against non-linear violations of parallel trends
as well.11 Heuristically, these issues will be even more severe if the difference in
trends is becoming steeper over time. For instance, if the difference in trends is
growing exponentially over time, then it will be small in the pre-treatment period
(so rejecting the pre-test is unlikely), but the biases in the post-treatment period
will be quite large. Conversely, if the difference in trends were becoming shallower
over time (e.g., if it were logarithmic), then we would be more likely to detect the
steep pre-trend even though it produces a relatively small post-treatment bias.

II. Theoretical Analysis

A. Model

I analyze the normal model introduced in equations (1) and (2) above. The
main goal of our analysis will be to analyze the distribution of the post-treatment
coefficients β̂post conditional on passing a pre-test based on the pre-treatment

estimates β̂pre, i.e. conditional on the event β̂pre ∈ B(Σ) for some (measurable)
set B(Σ) potentially depending on the covariance matrix (e.g. individual or joint
tests of significance). For ease of notation, I consider the case where there is
one post-treatment period (M = 1) unless noted otherwise; all of the results
for M = 1 will then apply to each individual post-period coefficient (or linear
combinations thereof) in the case when M > 1.

Remark 1. The finite-sample normal model (1) can be be thought of as an
asymptotic approximation to a variety of estimators which yield asymptotically
normal coefficients,

√
N(β̂n − βn) →d N (0, Σ). Estimators yielding event-study

coefficients of this form (under suitable regularity conditions) include dynamic
TWFE estimators, the GMM estimator of Freyaldenhoven, Hansen and Shapiro
(2019), and methods for difference-in-differences conditional on covariates (Abadie,
2005; Heckman, Ichimura and Todd, 1997; Sant’Anna and Zhao, 2020). The re-
cent proposals by Callaway and Sant’Anna (2020) and Sun and Abraham (2020)
for constructing event-study estimates that have a sensible interpretation under
staggered treatment timing and treatment effect heterogeneity also yield asymp-
totically normal coefficients. The results here are thus directly applicable to these
estimators, which highlights that the issues surrounding pre-testing are distinct
from those related to the interpretation of TWFE models under heterogeneity. �

The Online Appendix shows that the results derived in the finite sample normal
model hold uniformly over a wide range of data-generating processes under which
the probability of passing the pre-test does not vanish asymptotically.12 The

11Indeed, if linear violations of parallel trends were the only concern, one could include parametric
controls and avoid the pre-test altogether.

12The condition that the probability of passing the pre-test does not vanish asymptotically requires
that the pre-treatment trend δpre be shrinking with the sample size. This local-to-0 approximation
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asymptotics also allow for the pre-test to depend on a consistently estimated
covariance matrix, Σ̂→p Σ.

B. Bias After Pre-testing

I begin by analyzing the bias of β̂post for τpost conditional on passing the pre-test.
The following result provides a formula for the conditional bias.

Proposition 1. For any conditioning set B(Σ),

E
[
β̂post | β̂pre ∈ B(Σ)

]
= τpost + δpost + Σ12Σ−1

22

(
E
[
β̂pre | β̂pre ∈ B(Σ)

]
− βpre

)
,

where Var

[(
β̂post
β̂pre

)]
=

(
Σ11 Σ12

Σ21 Σ22

)
.

Proof. Let β̃post = β̂post − Σ12Σ−1
22 β̂pre. By construction, cov(β̂pre, β̃post) = 0,

which by joint normality implies that β̂pre ⊥⊥ β̃post. Hence E
[
β̃post | β̂pre ∈ B(Σ)

]
=

E
[
β̃post

]
= βpost − Σ12Σ−1

22 βpre. The result then follows from taking conditional

expectations on both sides of the equation β̂post = β̃post + Σ12Σ−1
22 β̂pre.

The formula in Proposition 1 illustrates that the expectation of β̂post conditional
on passing the pre-test is the sum of i) the treatment effect of interest τpost, ii) the
unconditional bias δpost, and iii) an additional “pre-test bias” term, which depends
on the distortion to the mean of the pre-treatment coefficients from pre-testing
and the covariance between the pre-treatment and post-treatment coefficients.

An immediate implication of Proposition 1 is that when parallel trends holds
(δ = 0), β̂post remains unbiased for τpost after pre-testing so long as the pre-test is

such that E
[
β̂pre|β̂pre ∈ B

]
= 0. It is straightforward to verify that this condition

holds whenever the pre-test is symmetric in the sense that we reject the hypothesis
of parallel pre-trends for β̂pre if and only if we reject the hypothesis for −β̂pre, a
property which holds for two-sided tests of significance.

Sufficient conditions for bias exacerbation

In the simulations in Section I, we saw that for most specifications, the bias
of β̂post for τpost was worse conditional on passing the pre-test when there were
linear violations of parallel trends. I now show that under homoskedasticity, the
conditional bias will be worse than the unconditional bias whenever there is a
monotone (possibly non-linear) difference in trends.

captures the fact that in finite samples the pre-trend may be of a similar order of magnitude as the
sampling uncertainty in the data (as with γ0.5 and γ0.8). In a model with fixed δpre, the probability
of rejecting the pre-test would be either 0 or 1 asymptotically, which does not capture the fact that in
practice we are often uncertain whether the pre-trend is zero or not.
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Assumption 1. Σ has a common term σ2 on the diagonal and a common term
ρ > 0 off of the diagonal, with σ2 > ρ.13

When there is only one pre-treatment and one post-treatment coefficient, Assump-
tion 1 merely imposes that the pre-treatment and post-treatment coefficients are
positively correlated. In the more general case with multiple pre-treatment peri-
ods, Assumption 1 is implied by a suitable homoskedasticity assumption in the
canonical two-way fixed effects difference-in-differences model with non-staggered
timing. To see this, suppose that the data is generated from the model

yit = αi + φt +
∑
s 6=0

βs︸︷︷︸
τs+δs

×1[t = s]×Di + εit,(3)

where Di is an indicator for whether i is first treated at t = 1 or never treated. If
the researcher estimates βs via OLS, then the estimated coefficients will be given
by

β̂s = βs + ∆ε̄s −∆ε̄0,

where ∆ε̄t is the difference in the average residuals for the treatment and control
groups in period t. It follows immediately that if the εit are homoskedastic,

Var
[
β̂k

]
= 2Var [∆ε̄0] =: σ2 and Cov(β̂k, β̂j) = σ2/2 =: ρ, so Assumption 1

holds.
We now show that under Assumption 1, the bias after testing for significant

pre-treatment coefficients is worse than the unconditional bias under arbitrary
monotone violations of parallel trends. This result complements the findings in
Section I, since it allows for arbitrary non-linear violations of parallel trends but
imposes stronger assumptions on the covariance matrix.

Proposition 2 (Sign of bias under monotone trend). Suppose that there is an
upward pre-trend in the sense that δpre < 0 (elementwise) and δpost > 0.14 If
Assumption 1 holds, then

E
[
β̂post | β̂pre ∈ BNIS(Σ)

]
> βpost > τpost.

The analogous result holds replacing “>” with “<” and vice versa.

Proof. From Proposition 1, it suffices to show that Σ12Σ−1
22 (E

[
β̂pre | β̂pre ∈ B(Σ)

]
−

βpre) > 0. When K = 1, Σ12Σ−1
22 = ρ/σ2, which is positive by assumption. The

formula for the mean of a univariate truncated normal implies that E
[
β̂pre | β̂pre ∈ B(Σ)

]
−

βpre ∝ φ(−1.96−βpre/σ−1)−φ(1.96−βpre/σ−1), which is positive since βpre < 0

13If K = 1, it suffices to impose that Cov(β̂pre, β̂post) > 0.
14Technically, the restriction that δpre < 0 and δpost > 0 is somewhat weaker than monotonicity. It

allows, for instance, for δ−3 > δ−2, so long as both are less than 0.
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and φ(x) is decreasing in |x|. The argument for when K > 1 is similar but in-
volves some rather tedious algebra since the mean of a truncated multivariate
normal depends on the full covariance matrix. A full proof for the K > 1 case,
which adapts arguments from Papadopoulos (2013) to this setting, is given in the
Online Appendix.

Remark 2. Monotonicity of δ is often implied in the discussion of violations
of parallel trends in applied work. For instance, Lovenheim and Willen (2019)
argue that violations of parallel trends cannot explain their results because “pre-
[treatment] trends are either zero or in the wrong direction (i.e., opposite to
the direction of the treatment effect).” Nonetheless, there are economic settings
in which we do not expect monotonicity to hold, with the “Ashenfelter’s dip”
expected in job-training programs as a notable example (Ashenfelter, 1978). �

Remark 3. The homoskedasticity assumption is of course strong and unlikely
to hold exactly in practical applications. It may, however, be a reasonable ap-
proximation in many cases, as evidenced by the fact that the pre-test bias goes in
the direction predicted by Proposition 2 in most of the simulations in Section I.
Moreover, the fact that bias is exacerbated under homoskedasticity and arbitrary
monotone violations of parallel trends suggests that these issues extend beyond
the case of linear differences in trends considered in Section I. �

C. Variance after pre-testing

We now consider the variance of β̂post after pre-testing.

Proposition 3.

Var
[
β̂post|β̂pre ∈ B(Σ)

]
=

Var
[
β̂post

]
+ (Σ12Σ−1

22 )
(
Var

[
β̂pre | β̂pre ∈ B(Σ)

]
− Var

[
β̂pre

])
(Σ12Σ−1

22 )′.

Proof. The proof is analogous to the derivation of the mean in Proposition 1.
The result follows from taking conditional variances on both sides of the equation
β̂post = β̃post + Σ12Σ−1

22 β̂pre and using the fact that β̂pre ⊥⊥ β̃post.

Proposition 3 implies that the variance of β̂post will typically be smaller after
conditioning on the result of the pre-test. Indeed, this is the case when the
acceptance region for the pre-test is convex, a property which holds for most
tests of individual or joint significance.

Proposition 4 (Pre-testing reduces variance). Suppose that B(Σ) is a convex

set. Then Var
[
β̂post | β̂pre ∈ B(Σ)

]
≤ Var

[
β̂post

]
.

Proof. From Proposition 3, it suffices to show that(
Var

[
β̂pre | β̂pre ∈ B(Σ)

]
− Var

[
β̂pre

])
< 0.
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Papadopoulos (2013) showed that that this was the case for the scalar case K = 1,
exploiting the log-concavity of the normal distribution. This argument extends
naturally to the multivariate case; see the Online Appendix for details.

Since β̂post is unbiased conditional on passing the pre-test under parallel trends
(provided B is symmetric about 0), Proposition 4 suggests that typical confidence
intervals will tend to over-cover conditional on passing the pre-test under parallel
trends.15 Intuitively, this is because standard errors are based on estimates of
the unconditional variance, which is too large. When parallel trends is violated,
however, β̂post will be biased, and thus conventional CIs will tend to under-cover
if the bias is sufficiently large, as shown in the simulations in Section I.

D. Implications for Publication Rules

What do the results above imply about the use of pre-trends tests as a screening
device for publication? Our results so far imply that if all studies had the same
“true” difference in trends, then only publishing studies without significant pre-
trends would likely exacerbate the bias in published work owing to pre-test bias.
However, in practice not all attempted studies will have the same true difference
in trends. Requiring an insignificant pre-trend to publish may help to select
studies in which the true difference in trends is small. Requiring an insignificant
pre-trend to publish a paper thus has an ambiguous effect on average bias in
published work, depending on which of these effects dominates.

The following simple model clarifies these tradeoffs. Suppose parallel trends
holds (δ = 0) in fraction 1 − θ of studies and in the remaining θ fraction of
studies δ = δ̄ 6= 0. If all studies were published, regardless of pre-trends, then the
expected bias in published work would be

BiasNotest = P (δ = δ̄)δ̄post = θδ̄post.

On the other hand, if we only published the studies without a significant pre-trend
(β̂pre ∈ B(Σ)), the expected bias in published work would be

BiasPre−test = P (δ = δ̄ | β̂pre ∈ B(Σ))E
[
β̂post − τpost | β̂pre ∈ B(Σ)

]
.

Comparing the biases under the two publication regimes, we have

15This is not formally implied by the proposition, since the conditional distribution of β̂post may be
non-normal. It is, however, always the case in simulations based on the survey of papers in Section I; see
Table 2.
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(4)
BiasTest

BiasNotest
=
P (δ = δ̄ | β̂pre ∈ B(Σ))

P (δ = δ̄)︸ ︷︷ ︸
Relative fraction of biased
studies

·
E
[
β̂post − τpost | δ = δ̄, β̂pre ∈ B(Σ)

]
δ̄post︸ ︷︷ ︸

Ratio of bias when publish biased design

.

The first term represents the relative fraction of published studies with a biased
design (δ = δ̄) across the two regimes. This will tend to be less than 1, since the
pre-test will reject less frequently conditional on δ = 0. By contrast, the second
term is the ratio of the conditional and unconditional biases when δ = δ̄, which
will often be greater than 1 owing to pre-test bias (see Proposition 2).

The effect of requiring an insignificant on the bias in published work is thus
ambiguous, and depends on the relative magnitude of these two factors. When
is the pre-testing regime least effective (and potentially harmful)? It is straight-
forward to show that the first term in (4) converges to 1 if either i) θ → 1,
so that nearly all studies have the same true trend, or ii) the Bayes Factor,

P (β̂pre ∈ B(Σ) | δ = δ̄)/P (β̂pre ∈ B(Σ) | δ = 0) converges to 1, so that the pre-
test has no power to distinguish between a biased and unbiased design.

The pre-testing regime is thus ineffective at reducing bias when either the ex
ante credibility of studies (as proxied by 1 − θ) is low, or the pre-test is under-
powered (meaning the Bayes Factor is low). A similar analysis applies to the null
rejection probability in published studies.

III. Practical Recommendations

In light of the results in Section I, researchers relying on pre-trends tests should
assess whether their tests are likely to be well-powered against relevant violations
of parallel trends that would produce meaningful biases in the treatment effect
estimates. To facilitate such assessment, I provide the R package pretrends and
an accompanying Shiny application to conduct power analyses analogous to
those in Section I. The package can also assess the power of conventional pre-tests
against hypothesized non-linear trends, allowing the user to do power analyses for
the types of violations of parallel trends deemed to be most relevant in their con-
text. Relatedly, Freyaldenhoven et al. (2021) provide tools for visualizing possible
violations of parallel trends, and Bilinski and Hatfield (2018) propose alternative
approaches to pre-testing that examine what magnitude of the pre-trend can be
rejected. Paying careful attention to the power of pre-tests against economically
relevant alternatives (and their magnitudes) would be a substantial improvement
on the current practice of focusing on statistical significance. Nevertheless, doing
so does not avoid the issues of statistical distortions from pre-testing, nor does it
formally guarantee statistically valid inference on the treatment effect.

Researchers should therefore also consider alternative approaches that attempt
to avoid the pre-testing problem altogether. Freyaldenhoven, Hansen and Shapiro

https://github.com/jonathandroth/pretrends
https://github.com/jonathandroth/PretrendsPower
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(2019) propose an approach that exploits a covariate assumed to be affected by the
relevant confounding factors but not by the treatment itself. This covariate is then
used to adjust for the counterfactual difference in trends, thus avoiding the need
for non-zero pre-trends. Rambachan and Roth (2021) develop confidence sets for
the treatment effect that are valid under the assumption that the counterfactual
difference in trends in the post-treatment period cannot differ “too much” from
the difference in trends in the pre-treatment period. Their confidence sets directly
account for the uncertainty over the magnitude of the pre-treatment trend, and
thus avoid the need to test whether the pre-trends are zero. Their approach also
enables sensitivity analyses that show how much the post-treatment differences
in trends would need to differ from the pre-trends for specific conclusions (e.g. a
significant effect) to break down.

Regardless of the exact approach taken, I urge researchers to use context-specific
economic knowledge to inform the discussion and analysis of possible violations
of parallel trends. Bringing economic knowledge to bear on how parallel trends
might plausibly be violated in a given context will yield stronger, more credible
inferences than relying on the statistical significance of pre-trends tests alone.
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Figure 1. Original Estimates and Bias from Linear Trends for Which Pre-tests Have 80 Per-

cent Power – Average Treatment Effect

Note: I calculate the linear trend against which conventional pre-tests would reject 80 percent of the
time (γ0.8). The red triangles show the bias that would result from such a trend conditional on passing

the pre-test (E
[
τ̂ − τ∗ | β̂pre ∈ BNIS(Σ)

]
); the green circles show the unconditional bias from such a

trend (E [τ̂ − τ∗]). As a benchmark, I plot in blue the original OLS estimates and 95% CIs from the
paper. All values are normalized by the standard error of the estimated treatment effect and so the OLS
treatment effect estimate is positive. The estimand is the average of the treatment effects in all periods
after treatment began, τ∗ = τ̄ .
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Table 1—Summary of Pre-period Event-Study Coefficients

Note: This table provides information about the pre-period event-study coefficients in the papers re-
viewed. The table shows the number of pre-periods in the event-study, the number of the pre-period
coefficients that are significant at the 95% level, the maximum t-stat among those coefficients, the p-value
for a chi-squared test of joint significance, and the t-stat for the slope of the linear trend through the
pre-period coefficients. See Section I for more detail on the sample of papers reviewed.
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Conditional on
Unconditional Passing Pre-test

Slope of differential trend:
0 γ0.5 γ0.8 0 γ0.5 γ0.8

Bailey and Goodman-Bacon (2015) 0.05 0.61 0.94 0.05 0.62 0.95
Bosch and Campos-Vazquez (2014) 0.05 0.49 0.86 0.03 0.28 0.61
Deryugina (2017) 0.05 0.49 0.84 0.01 0.75 1.00
Deschenes et al. (2017) 0.05 0.09 0.14 0.03 0.09 0.25
Fitzpatrick and Lovenheim (2014) 0.05 0.41 0.75 0.05 0.50 0.87
Gallagher (2014) 0.05 0.19 0.44 0.04 0.22 0.54
He and Wang (2017) 0.05 0.54 0.88 0.05 0.63 0.95
Kuziemko et al. (2018) 0.05 0.28 0.53 0.04 0.20 0.42
Lafortune et al. (2017) 0.05 0.71 0.98 0.05 0.75 0.99
Markevich and Zhuravskaya (2018) 0.05 0.76 0.98 0.04 0.87 1.00
Tewari (2014) 0.05 0.20 0.55 0.04 0.25 0.72
Ujhelyi (2014) 0.05 0.29 0.60 0.04 0.36 0.76

Table 2—Null Rejection Probabilities for Nominal 5% Test of Average Treatment Effect

Under Linear Trends Against Which Pre-tests Have 50 or 80% Power

Note: This table shows null rejection probabilities, i.e. the probability that the true parameter falls
outside a nominal 95% confidence interval, under data-generating processes in which parallel trends
holds (slope of differential trend = 0) or in which there are linear violations of parallel trends that
conventional pre-tests would detect 50 or 80% of the time (γ0.5 and γ0.8). The first three columns
show unconditional null rejection probabilities, whereas the latter three columns condition on passing
the pre-test. The estimand is the average of the post-treatment causal effects, τ̄ .
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Estimand:
τ1 τ̄

Slope of differential trend:
Paper γ0.5 γ0.8 γ0.5 γ0.8

Bailey and Goodman-Bacon (2015) 51 56 1 2
Bosch and Campos-Vazquez (2014) -29 -34 -25 -29
Deryugina (2017) 103 120 30 35
Deschenes et al. (2017) 88 119 48 64
Fitzpatrick and Lovenheim (2014) 25 30 12 15
Gallagher (2014) 57 62 11 14
He and Wang (2017) 29 34 11 13
Kuziemko et al. (2018) -16 -20 -9 -11
Lafortune et al. (2017) -9 -10 5 5
Markevich and Zhuravskaya (2018) 52 62 13 15
Tewari (2014) 90 102 19 21
Ujhelyi (2014) 51 59 15 18

Table 3—Percent Additional Bias Conditional on Passing Pre-test

Note: This table shows the additional bias from conditioning on none of the pre-period coefficients
being statistically significant as a percentage of the unconditional bias, i.e. 100 · (Conditional Bias −
Unconditional Bias)/(Unconditional Bias). Biases are calculated under linear violations of parallel trends
with slopes γ0.5 and γ0.8, against which conventional pre-tests have 50 or 80% power. The estimand in
the first two columns is the treatment effect in the first period (τ1), and in the last two columns it is the
average effect across all post-treatment periods (τ̄).


