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Abstract

This paper studies the impacts of work-from-home (WFH) in the housing market from both
intercity and intracity perspectives. Our results confirm the theoretical prediction that WFH
puts downward pressure on housing prices and rents in high-productivity counties, a result
of workers starting to relocate to cheaper metro areas during the pandemic without forsaking
their desirable jobs. We also show that WFH tends to flatten intracity house-price gradients,
weakening the price premium associated with good job access.
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1. Introduction

Cities differ in their abilities to attract workers and firms. San Francisco has an advan-

tage in attracting workers over a city like Detroit because of its desirable attributes, including

warmer winters and milder summers, less air pollution, and lower average crime levels. Dis-

persion in productivity also leads to differences in cities’ abilities to attract workers. Some

locations have a productive advantage over others because of a dense spatial concentration of

jobs, creating agglomeration economies, or a favorable industry mix. Housing costs and wages

adjust across space to arbitrage away these advantages. In a spatial hedonic equilibrium, where

price signals and city characteristics are linked, high productivity leads to high rents and high

wages, whereas high amenities are associated with high rents but lead to low wages.

In this paper, we explore how the spatial hedonic equilibrium is affected by the introduction

of a work-from-home (WFH) option. Since a WFH-induced shift in the equilibrium alters

the connections between where people live and what they earn and pay for housing, it is of

utmost importance to understand the nature of the shift. To this end, we model WFH as

an unbundling technology that allows an individual to live in one city and work in another.

Breaking the link between workplace and residence allows for spatial arbitrage opportunities

that were not available in the past. Workers in expensive, high-productivity places can move

to cheaper, low-productivity areas while keeping their original productive jobs through remote

work. The media is full of anecdotal evidence of such relocations (see Bindley, 2020; Dillon,

2021), although firm statistical evidence has yet to be presented. Another possibility, less

∗ Brueckner: University of California, Irvine (e-mail: jkbrueck@uci.edu); Kahn: University of Southern
California (e-mail: kahnme@usc.edu); Lin: Unison Consulting (e-mail: garylin1990@gmail.com). We thank
David Agrawal, Spencer Banzhaf, Kristian Behrens, Sofia Franco, Jessie Handbury, Camille Landais, Kangoh
Lee, Andrii Parkhomenko, Weihua Zhao, and two referees for helpful comments, and we also thank participants
in the Syracuse University online Conference on Urban Economics and the Paris School of Economics online
Seminar on Telework and Spatial Inequalities for additional feedback. The usual disclaimer applies.
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anticipated in popular discussions, is that WFH allows workers to move to high-amenity places

without changing jobs. Both types of relocations have price effects, leading to a new spatial

hedonic equilibrium.

To highlight these new possiblities, we develop a simple Rosen-Roback model with homo-

geneous workers.1 When cities differ only in productivities and WFH is introduced, workers

move to cheap, low-productivity places while telecommuting to their original jobs, matching

the anecdotal evidence. This residential relocation causes housing prices to fall in produc-

tive places and rise in the disadvantaged cities that receive the WFH migrants. By contrast,

when cities differ only in amenities, workers move to high amenity areas under WFH while

keeping their jobs in low-amenity cities. Housing prices then rise in the advantaged, high-

amenity places while falling in disadvantaged cities, a pattern opposite to the one in the

differential-productivity case. Underlying both outcomes are two key features of the new he-

donic equilibrium: wage equalization across cities, which must occur when people can work

anywhere; and a disconnect between a city’s population and employment levels, which are no

longer equal. In the differential-amenity case, wage equalization means that housing prices

alone adjust to equalize utilities (yielding stronger capitalization of amenities), whereas in the

differential-productivity case, wage equalization leads to equalization of housing prices as well.

In both cases, wage variation disappears as a utility-equalizing force, with housing prices doing

all the work in ensuring that cities are equally attractive to consumers. The resulting hedonic

equilibria are therefore novel, with features not previously seen in Rosen-Roback models.2

While these patterns show the possible intercity effects of WFH, intracity effects may

emerge as well. Workers who remain in their original city under WFH are likely to maintain

some physical connection to the workplace, commuting to it occasionally rather than com-

pletely severing the physical link. For such workers, WFH lowers commuting costs without

1 See Rosen (1979) and Roback (1982).
2 Discussion in the media speculates that firms might cut pay if remote workers face a lower cost of liv-

ing (see Buhayar, 2020), something that does not occur in our model. However, see Coy (2021) and Kamp
(2021) as well as an online statement about Zillow’s corporate pay policy says that when “you work for Zil-
low, your long-term earning potential is determined by how you perform, and will not be limited by where
you live.” See https://www.zillowgroup.com/news/why-zillow-group-is-de-emphasizing-location-as-
a-component-of-compensation-making-it-easier-for

-employees-to-move/.
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reducing them to zero, thereby lowering the value of access to the CBD. From the standard

urban model, lower-valued access implies a reduction in the city’s housing-price gradient, with

prices under WFH falling more slowly than before moving away from the CBD (the job-access

premium thus falls).

In the empirical section of the paper, we present evidence for both our intercity and intracity

hypotheses, relying on the growth of WFH during the pandemic year of 2020. We harmonize

information from several sources, using house-price and rent data from Zillow and productivity

and amenity measures from Albouy (2016). Using Dingel and Neiman’s (2020) industry-level

index of job shares in occupations that allow WFH, we create a county-level measure of WFH

potential. The measure equals a weighted average of their industry indices, with the weights

equal to industry employment shares in the county.

First, consistent with our intercity model, we show that the annual changes in both house

prices and rents between 2019 and 2020, when the COVID-19 pandemic spurred WFH, are

lower in high-productivity counties with high WFH potential.3 Second, using address-change

data, we show that these same counties experienced higher population outflows, confirming the

theoretical link between price changes and WFH-induced household relocation. Third, using

monthly data, we show that high productivity and high WFH potential lead to lower levels of

county house prices and rents in the months following December 2019. These results, which

are based on monthly price and rent levels, reinforce the previous results using annual price

changes between 2019-2020 at at finer temporal level. In contrast to these supportive results,

the main specification does not provide support for the model’s prediction of falling prices and

rents in low-amenity cities with high WFH potential.

Fourth, to test our intracity hypothesis of a declining house-price gradient under WFH, we

combine Zillow data at the zip-code level with data from Lee and Lin (2018a). We compute

monthly metro-area price gradients and show that high WFH potential in the metro area’s

central county is associated with a flattening of the price gradient during 2020, as expected.

Fifth, we also present regressions showing the effect of WFH on population inflows. These

3 A placebo test shows that these same effects were not present in previous years, when WFH played a
smaller role.
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regressions include a state tax effect, showing that WFH-induced changes in county inflows

were smaller in states with high top marginal income-tax rates.

We recognize the growth of WFH was not the only force affecting house-price behavior in

our focal year of 2020: the effects of the pandemic-induced recession were also present. How-

ever, the house-price effects of the recession at the national level have been hardly noticeable,

presumably because job losses were concentrated among lower-income workers (many of whom

were unable to work from home). While prices may have been supported by lower job losses in

high-WFH-potential counties, these effects should have been positive, not negative like those

that we predict and find empirically. As a result, we believe that our hypothesis tests are

credible despite the coincidence of the recession and the growth of WFH.

Our paper relates to a burgeoning literature on the impact of telecommuting and remote

work on the US economy. Early research by Rhee (2008) and Safirova (2002) has been com-

plemented by the recent studies of Althoff et al. (2020), Bartik et al. (2020), Brynjolfsson et

al. (2020), and Dingel and Neiman (2020). Within this literature, our work is most closely re-

lated to Behrens, Kichko and Thisse (2021), Delventhal and Parkhomenko (2020), Delventhal,

Kwon, and Parkhomenko (2020), and Larson and Zhao (2017), who build theoretical spatial

models to explore the local labor market effects of telecommuting and WFH. Our simpler the-

oretical model and reduced-form empirical approach adds to the insights from their models.

Our work is also connected to Davis, Ghent, and Gregory (2021), who estimate the elasticity

of substitution between office and home work, relying on a theoretical model.4

The paper proceeds as follows. Section 2 develops our theoretical predictions, while section

3 discusses the empirical model. Section 4 discusses the data, while section 5 presents our em-

pirical results. Section 6 offers perspective on the findings, and section 7 presents conclusions.

4 After our price-gradient work was complete, we became aware of a contemporaneous paper by Gupta et al.
(2021) that carries out a very similar exercise. They investigate changes in intracity price and rent gradients
between 2019 and 2020 and use the results to compare expectations about real-estate price growth between
suburbs and the central cities, relying on changes in the price-to-rent ratio. While we present similar price-
gradient results (though for a larger collection of metro areas), our main focus is on the intercity effects of
WFH. Similarly, a contemporaneous paper by Bloom and Ramani (2021) uses the same US Postal Service
address-change data we use to study population movements under WFH, finding evidence of relocation from
central cities to suburbs. Ouazad (2020) also finds evidence of increased suburbanization during 2020, but he
argues that long-run population growth across cities is more strongly associated with local fundamentals, such
as local productivity, than short-run shocks, including disasters and pandemics.
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2. Theory

2.1. Intercity analysis

2.1.1. Intercity model and equilibrium conditions

The intercity model has two cities, denoted s (San Francisco) and d (Detroit), with equal

fixed land areas and hence zero land supply elasticities, that together accommodate a total

population of 2N .5 The wage in city i is given by w(Li, αi), i = s, d, where Li is employment

and αi is a shift parameter that raises worker productivity and thus the wage (wα > 0). Since

this wage function is just the downward-sloping inverse demand curve for labor, wL < 0.

Without WFH, a city’s employment level equals its population Ni, so that the wage is given

by w(Ni, αi). Labor productivity is higher in city s than in city d (αs ≥ αd), and the cities

also differ in the amenities Ai they offer, with As ≥ Ad. City s is thus the high-productivity,

high-amenity city.

Consumers have identical preferences, with utility in city i given by the quasi-linear func-

tion u(ei, qi, Ai) = Ai+ei+v(qi), where qi is housing (land) consumption and ei is non-housing

consumption, i = s, d.6 With units of measurement for amenities and e being chosen appropri-

ately, their linear utility coefficients are the same and equal to unity. Letting pi denote the unit

housing price in city i, the consumer budget constraint is ei = w(Ni, αi)− piqi, which assumes

that the price of non-housing consumption (set to unity) is the same in both cities. Substitut-

ing this expression for ei allows utility to be rewritten as Ai + w(Ni, αi) + v(qi) − piqi. The

last two terms represent “net housing utility” (v minus housing cost), which can be written as

a function H(Ni) of population that decreases with Ni due to the positive effect of population

5 Replacing fixed land areas with a common upward-sloping housing supply function would have no qualitative
effect on the ensuing results. However, if the supply elasticities were to differ across cities (Glaeser and Gyourko,
2005; Saiz, 2010), the sizes of their population changes under WFH would be affected. Note also that rental
income from the city’s land flows to absentee landowners.

6 Remote work is assumed to have no effect on housing demand. The empirical study of Stanton and Tiwari
(2021) recognizes, however, that the houses of remote workers may need be larger to offer adequate office space.
The model of Behrens, Kichko and Thisse (2021) includes such an effect.
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on the housing price.7 Thus,

utilityi = Ai + w(Ni, αi) + H(Ni), i = s, d. (1)

Since both the wage and net housing utility decrease with Ni, utility also decreases with

population.8

In the equilibrium without WFH, the consumer utility expression in (1) is equalized be-

tween the two cities via migration, which is costless. The non-WFH equilibrium condition is

then

As + w(N∗

s , αs) + H(N∗

s ) = Ad + w(N∗

d , αd) + H(N∗

d ), (Non-WFH) (2)

where the asterisks denote non-WFH equilibrium values. An immediate implication of this

condition is N∗

s > N∗

d , so that city s is larger than city d, reflecting its amenity and productivity

advantages.9 With city s larger, its housing price is then higher than in city d (p∗s > p∗d).

Now suppose that WFH becomes feasible. Since an individual can now work in either

city regardless of where he or she lives, equilibrium requires indifference between the two work

locations, which in turn implies equalization of wages. As a result, w(L̃s, αs) = w(L̃d, αd)

must hold, where L̃s and L̃d are the employment levels under WFH in the two cities, which no

longer need to be the same as the city populations. With wages the same across cities, they

drop out of the equilibrium condition (2), so that regardless of where residents of the two cities

7 To derive the H function and its properties, city land areas are normalized at unity, yielding qi = 1/Ni.
The housing first-order condition (v′(qi) = pi) then yields H(Ni) = v(qi) − piqi = v(1/Ni) − v′(1/Ni)(1/Ni),
which is decreasing in Ni. This conclusion follows because differentiation yields H ′(Ni) = (1/N3

i
)v′′(1/Ni) < 0,

an expression proportional to minus the positive derivative of pi = v′(1/Ni) with respect to Ni.
8 While the model assumes a competitive labor market, Kahn and Tracy (2019) argue that, if labor market

power exists, it will be capitalized into local real-estate prices. They document that counties featuring more
concentrated employment (a higher HHI) indeeed have lower real-estate prices, with landowners thus bearing
part of the economic incidence of monopsony power. The rise of remote work would increase competitiveness
in such labor markets, as the outside option for local workers expands.

9 Suppose instead that the two cities had identical populations, both equal to N . Then, given As > Ad and
αs > αd, the LHS of (2) would be larger than the RHS. Since both sides of (2) are decreasing in population,
an increase in N∗

s along with a corresponding decrease in N∗

d
makes them equal, yielding N∗

s > N∗

d
.
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work, their utilities are equal when

As + H(Ñs) = Ad + H(Ñd), (WFH) (3)

where the Ñs and Ñd are the city populations under WFH. As in the non-WFH case, city s is

larger than d under WFH (with As > Ad, Ñs must exceed Ñd to equate the two sides of (3)).

Since Ñs > Ñd, the housing price in city s is again higher than in city d (p̃s > p̃d), canceling

its amenity advantage.

An implicit assumption under WFH is that a worker’s productivity at a given workplace

is unaffected by residential relocation to a different city. The popular discussion of WFH

sometimes argues otherwise, with work that is physically remote from colleagues viewed as

possibly less productive, thus commanding lower pay.10

2.1.2. Comparing the WFH and non-WFH equilibria

To compare the WFH and non-WFH equilibria, the first step is to rewrite (2) and (3) as

As − Ad + H(N∗

s ) − H(N∗

d ) = w(N∗

d , αd) − w(N∗

s , αs) (Non-WFH) (4)

As − Ad + H(Ñs) − H(Ñd) = 0 (WFH) (5)

From comparison of (4) and (5), the following conclusion emerges:11

Ñs > (<) N∗

s as w(N∗

d , αd) > (<) w(N∗

s , αs). (6)

In other words, WFH leads to an increase (decrease) in the population of city s when its wage

without WFH is lower (higher) than the non-WFH wage in city d.

Unfortunately, the sign of w(N∗

d , αd)−w(N∗

s , αs) is ambiguous in general, making it impos-

sible to carry out a general comparison of Ñs and N∗

s using (6). The source of the ambiguity is

10 See, for example, Buhayar (2020).
11 To verify (6), note that the LHS of (4) is positive if w(N∗

d
, αd) > w(N∗

s , αs), and that its magnitude must
be reduced to zero to satisfy the WFH condition in (5). Since H ′ < 0, this reduction requires an increase in Ns

with Nd falling in step, yielding Ñs > N∗

s . Reversing this argument, w(N∗

d
, αd) < w(N∗

s , αs) implies Ñs < N∗

s .
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that city s has dual advantages over city d, in both amenities and productivity. However, if city

s only has a single advantage, in either productivity or amenities, then definitive conclusions

can be reached, as follows.

City s has higher productivity. Suppose that As = Ad while αs > αd, so that the only

advantage of city s is higher productivity. Then, it is easily seen using (4) that w(N∗

d , αd) <

w(N∗

s , αs) holds, so that the wage is higher is city s than in city d, in parallel with the price of

housing.12 From (6), this inequality in turn implies Ñs < N∗

s , so that the population of city s

drops under WFH, with city d’s population rising.13 Since H(Ñs) = H(Ñd) must hold by (5)

when amenities are equal, these population changes end up equating the populations of the

two cities, so that Ñs = Ñd = N . Equal populations in turn imply equality of housing prices,

with p̃s = p̃d, so that prices drop in city s and rise in city d (p̃s < p∗s , p̃d > p∗d). Residents of

both cities thus earn equal wages and pay equal prices, ensuring equal utilities.

WFH breaks the link between employment and population levels, with employment exceed-

ing population in city s (as outward-migrants keep their jobs) and falling short of population

in city d.14 Correspondingly, L̃s > N∗

s and L̃d < N∗

d hold, so that employment rises above

its pre-WFH level of N∗

s in city s even though its population is falling, while employment

falls in city d even though its population is rising (see the online appendix for a proof). This

drop in employment means that some original residents of city d then work remotely in city s,

explaining its employment gain.

Summarizing yields

Proposition 1. When city s has only a productivity advantage, some of its residents
move to city d under WFH while keeping their original jobs. Population and the price
of housing then fall in city s, while city d’s population and housing price rise. Despite

12 When As = Ad, (4) becomes

H(N∗

s ) − H(N∗

d ) = w(N∗

d , αd) − w(N∗

s , αs). (f1)

Since N∗

s > N∗

d
holds from above, the LHS of (f1) is negative given H ′ < 0, implying negativity of the RHS

and thus w(N∗

d
, αd) < w(N∗

s
, αs).

13 Howard (2020) shows that migration into a city creates a beneficial construction boom. While fixed land
areas in our model rule out such an effect, a more detailed framework could capture this positive effect of WFH.
14 These conclusions follow because the WFH employment levels L̃s and L̃d lead to equal wages (w(L̃s, αs) =

w(L̃d, αd)), implying L̃s > L̃d given wN < 0, wα > 0 and thus L̃s > Ñs = N = Ñd > L̃d.
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its lower population, employment rises in city s, exceeding the population, while em-
ployment decreases in city d, falling short of its larger population. Along with the new
arrivals, some original residents of city d then work remotely in city s.

In generating these changes, WFH leads to a new hedonic equilibrium in the economy.

Prior to WFH, both the wage and the price of housing were higher in city s than in city d,

signaling the productivity difference between the cities. With WFH breaking the employment-

population link, wages and prices are then equated between the cities, so that market signals

no longer reveal the intercity productivity differential.

City s has higher amenities. Suppose instead that As > Ad holds while αs = αd = α, so

that the only advantage of city s is better amenities. Since N∗

s > N∗

d from above and wN < 0,

w(N∗

d , α) > w(N∗

s , α) is satisfied, so that the higher housing price in city s is now accompanied

by a lower wage. Since (6) then implies Ñs > N∗

s , the population of city s expands under

WFH, with residents relocating from city d. This population shift raises the housing price in

city s and lowers it in city d, so that p̃s > p∗s and p̃d < p∗d. Since city d’s outward migrants

keep their jobs, city d’s employment under WFH exceeds its population, while employment

falls short of population in city s.15 Correspondingly, the online appendix shows L̃s < N∗

s

and L̃d > N∗

d , so that employment falls in city s even though its population is rising, while

employment rises in city d even though its population is falling. The drop in employment in

city s means that some of its original residents then work remotely in city d, explaining its

employment gain.

Summarizing yields

Proposition 2. When city s has only an amenity advantage, some of city d’s residents
move to city s under WFH while keeping their original jobs. Population and the price of
housing then fall in city d, while population and the housing price rise in city s. Despite
its larger population, employment decreases in city s, falling short of its population,
while employment rises in city d, exceeding its smaller population. Along with the new
arrivals, some original residents of city s work remotely in city d.

In generating these changes, WFH again leads to a new hedonic equilibrium in the economy.

15 These conclusions follow because, when city s has only an amenity advantage, the wage equalization
condition w(L̃s, α) = w(L̃d, α) implies equalization of employment, or L̃s = L̃d = N . Since Ñs > Ñd, it follows

that Ñs > L̃s = N = L̃d > Ñd.
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Prior to WFH, city s had a higher housing price and a lower wage than city d, reflecting the

standard outcome in the Rosen-Roback model when cities differ only in amenities. Together,

these differences served to offset the amenity advantage of city s. With wages being equalized

under WFH, housing prices must then do all the work in equalizing utilities, requiring a larger

price differential than before. Therefore, in the new hedonic equilibrium, the role of wages

disappears while that of housing prices is accentuated.

Given the preceding results, the intuition underlying the effects of WFH is clear. When

city s has only a productivity advantage, workers can escape its high housing price by moving

to city d while keeping their productive city-s jobs, a movement that causes the population

in city s to fall short of employment. By equalizing populations, this shift eliminates the

housing price differential between the cities, mirroring the equalization of wages. When city

s has only an amenity advantage, wage equalization under WFH means that city-d workers

can move to enjoy the higher amenity level without the previous wage sacrifice, keeping their

city-d jobs. This movement causes population in city s to exceed employment and pushes up

the housing price enough to exactly cancel the utility benefit from the amenity differential. As

these adjustments unfold, population and employment move in opposite directions within each

city. In the productivity differential case, employment rises in city s as its population falls,

while in the amenity-differential case, employment falls in city s as its population rises (with

opposite changes in city d).

Note that the population changes in Proposition 1 match up with media anecdotes about

migration out of high-productivity cities. But the effects in Proposition 2, which are exactly

the opposite of those in Proposition 1, have been less anticipated in the popular discussion of

WFH. Observe also the opposing outcomes in the two propositions show why unambiguous

results cannot be derived when city s has both productivity and amenity advantages.

2.1.3. Wage effects of WFH

A final question concerns the wage changes experienced by the residents of the two cities

under WFH. To explain the outcome, let w̃α denote the uniform WFH wage when the cities

have different productivities (different α values) and let w̃A denote the uniform WFH wage

10



when the cities have different amenities.16 Analysis in the online appendix shows that, in the

differential-productivity case, w(N∗

s , αs) > w̃α > w(N∗

d , αd) holds, while in the differential-

amenity case, w(N∗

s , α) < w̃A < w(N∗

d , α) holds. Thus, the WFH wage lies between the pre-

WFH city-s and city-d wages in both cases. Stated in terms of wage changes, this conclusion

implies

Proposition 3.

(i) When city s has only a productivity advantage, its original residents earn a lower
wage under WFH, with the original residents of city d earning a higher wage.

(ii) When city s has only an amenity advantage, its original residents earn a higher
wage under WFH, with the original residents of city d earning a lower wage.

Drawing on Propositions 1 and 2, Proposition 3 yields a simple rule for telling whether a

city’s wage will rise or fall under WFH. The wage in a city falls (rises) when WFH causes its

employment level to exceed (fall short of) its population.

Finally, the welfare effects of WFH remain to be considered. With housing prices moving

in the same direction as wages in both cities in the differential-productivity case (Proposition

1 plus part (i) of Proposition 3), the welfare effects of WFH are ambiguous in this case. For

the same reason, the same conclusion applies in the differential-amenity case (Proposition 2

plus part (ii) of Proposition 3).17

2.1.4. Two comparative-static predictions

This section states two comparative-static results that are useful in the subsequent em-

pirical work. The results, which make intuitive sense, focus on the size of the housing-price

declines in the cities that lose population under WFH (city s in the differential-productivity

case and city d in the differential-amenity case). The results are proved in the online appendix

and are stated as follows:

16 Thus, w̃α = w(L̃s, αs) = w(L̃d, αd) and w̃A = w(L̃s, α) = w(L̃d, α), where the L̃s and L̃d values in the first
(second) set of equalities pertain to the case where city s has a productivity (amenity) advantage.
17 Sayantani (2021) adds a class of nonremote workers, who must work where they live, to the current model,

with little effect on the main results.
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Proposition 4.

(i) In the differential-productivity case, the WFH-induced housing-price decline in city
s is larger the higher is the city’s productivity level.

(ii) In the differential-amenity case, the WFH-induced housing-price decline in city d
tends to be smaller the higher is the city’s amenity level.

2.3. Intracity analysis

As we have seen, some workers under WFH live in a different city from their jobs and

thus never physically visit the workplace. This same freedom should also apply to workers

whose jobs and residences are in the same city, who could also work entirely from home, thus

incurring zero commuting costs. The upshot is that, in a WFH model that incorporates space,

commuting costs would equal zero for all workers in a city, regardless of whether or not their

jobs are local.

This outcome has implications for a spatial pattern of housing prices in such a model, an

issue that has not arisen in the nonspatial setting analyzed above. In the standard monocentric-

city model, the parameter t gives commuting cost per mile to the city center, which contains all

jobs (commuting cost per period from distance x is then tx). In the model, the housing price

p per square foot declines with distance x to compensate for longer commutes, and Wheaton

(1974) showed that this price gradient flattens as commuting cost t falls, with the required

compensating differential shrinking (see also Brueckner (1987)). Since WFH as portrayed in our

nonspatial model eliminates commuting costs, it would thus imply a zero price gradient within

cities. However, residents have other reasons (entertainment, dining) to visit the city center

(at cost per period of T per mile), which would maintain a negative but smaller price gradient

under WFH. Note also that a different hybrid WFH scheme, where workers visit the worksite a

few days per week, would help to maintain a negative (but smaller) price gradient under WFH,

although hybrid WFH would eliminate the possibility of intercity relocation. Empirically, this

discussion implies that estimated housing-price gradients in individual cities should flatten

under WFH, with the negative distance coefficient in the price regression becoming smaller in

absolute value.

These elements can be incorporated in the previous nonspatial model under certain as-
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sumptions, as follows. First, with their (now circular) land areas being fixed, cities do not

have flexible boundaries, in contrast to the monocentric model. Second, housing developers

impose uniform lot sizes, so that land consumption qi is uniform across space in each city

i. Third, the housing (land) price is set to satisfy the first-order condition for the consumer

living at the city center (with x = 0). Then (following (2) and using the definition of H),

the utility of the consumer living at distance x from the city i’s center equals amenities plus

the wage plus v(qi) − pi(x)qi − (t + T )x, where pi(x) is the housing price at distance x in

city i, t is commuting cost, and T is the cost of traveling to the city center for other reasons.

For utility to be spatially invariant, pi(x)qi + (t + T )x must equal a constant, which requires

pi(x) = p0
i −(t+T )x/qi, where p0

i is the housing price at the center. The housing-price gradient

is thus equal to −(t+T )/qi, and it decreases in absolute value to −T/qi when WFH eliminates

commuting cost (holding qi fixed).18 Adding space to the model in this fashion leaves all the

previous results (Propositions 1-4) unaffected, while generating the prediction that WFH tends

to reduce the housing-price gradient in both cities.19

3. Empirical frameworks

3.1. House-price-change regression

As explained in the introduction, our empirical work mostly explores the effects of WFH on

housing prices, building on both the intercity and intracity theoretical analysis. This section

explains the structure of the first of two empirical frameworks motivated by the intercity

analysis, which consists of a regression explaining the change in house prices between 2019

and 2020. In developing this framework, it is helpful to distinguish between “sending” and

“receiving” cities. Sending cities lose population under WFH, which is then “sent” to receiving

cities, whose populations increase. In the theoretical model, the sending city (city s in the

18 In this setup, p0

i
would replace pi as the price variable in the model. Observe also that the third assumption

above, which says that the first-order condition for housing consumption is v′(qi) = p0

i
, means that v′(qi) does

not equal the price pi(x) at locations away from the center, where prices are lower. This outcome is unpalatable,
but it is needed to put space into our nonspatial model without compromising its structure. A richer and more
detailed approach designed to properly allow both intercity and intracity analysis, as in some of the studies
cited in the introduction, could avoid this kind of shortcut.
19 With land areas fixed, the cities’ q levels (which appear in the gradient denominator) change with their

populations under WFH, possibly altering this conclusion. However, if the commuting-cost changes are large
relative to population changes, the conclusion will be accurate.
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differential-productivity case and city d in the differential-amenity case) sends population to

a single receiving city. In reality, however, the population leaving sending cities under WFH

will relocate to a multitude of receiving cities, with the housing-price impacts in any particular

receiving city likely being too small to measure. For this reason, our empirical analysis focuses

on price impacts in sending cities, which (according to the model) have either high productivity

or low amenities.

While all jobs in the model are homogeneous and can be done remotely, WFH in reality is

possible for some jobs and not for others, as documented by Dingell and Neiman (2020), whose

data we use (see below). As a result, the ability of workers to relocate and work remotely in

a different city depends on the WFH potential of the origin city’s jobs, which we measure in

a fashion described below. WFH potential thus partly determines a city’s potential role as a

sending city, but the city must also have features that will lead workers to relocate once WFH is

introduced (high productivity or low amenities). Guided by the theory, our empirical exercise

focuses on potential sending cities, which have both high WFH potential and, alternatively,

high productivity or low amenities.

The variables designed to capture the house-price effects of WFH in sending cities are

generated as follows. First, as explained in more detail below, our variables are measured at

the county, not the city, level. The variable PROD denotes the county-level job-productivity

measure, while QOL denotes the amenity (or quality-of-life) measure. The work-from-home

potential of the county’s jobs is denoted by WFHPOT. Construction of these variables is

explained below.

Our first set of regressions captures the determinants of the change in county-level house

prices between the pre-pandemic (pre-WFH) year of 2019 and the pandemic year of 2020, which

saw the widespread introduction of WFH. A variable that can gauge the impact of produc-

tivity on the WFH-induced house-price change is the interaction variable PROD×WFHPOT.

This variable will be large in sending counties, which have high productivity and high WFH

potential. To appraise the variable’s marginal effect on price changes in such counties, recall

from Proposition 4 that an increase in PROD, which increases the magnitude of the interac-

tion variable, leads to a larger decline in housing prices, holding WFHPOT fixed. In addition,
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a higher WFHPOT means that more workers can move under WFH, thus raising the price

decline at a given PROD level. With an increase in either element of the interaction variable

thus leading to a larger price decline, the variable’s effect on house-price changes in sending

counties should be negative.

While this discussion shows how house-price changes respond to the level of the interaction

variable in sending counties, where its magnitude is large, what can be said for other counties?

If PROD is low, then the county is not a sending county, which means that marginal increases

in either PROD or WFHPOT should have no house-price effect. As a result, the coefficient of

PROD×WFHPOT should be zero when PROD is low.

If PROD×WFHPOT appeared in a price-change regression run on a sample of all coun-

ties, both sending and receiving, then its estimated coefficient would be a blend of the neg-

ative and zero values expected in the former and latter counties. While this blending may

yield a negative coefficient, a superior approach is to allow the interaction coefficient to be

different across sending and receiving counties. This flexibility can be achieved by defin-

ing two dummy variables, high PROD and low PROD, which take the value 1 in counties

where PROD lies, respectively, above and below the median value among MSAs, equaling

zero otherwise.20 Then, the triple-interaction variables high PROD×PROD×WFHPOT and

low PROD×PROD×WFHPOT can be created, and their regression coefficients are expected to

be negative and zero, respectively. These variables allow the coefficient of PROD×WFHPOT

to differ between sending and receiving counties, where PROD is above or below the median.

This logic is illustrated in Figure 1, which shows the relation between ∆ log P and WFH-

POT for different values of PROD. When PROD takes a low value (PROD1, PROD2, or

PROD3), housing prices are low and workers have no incentive to move to another city. As

a result, prices are unaffected by the level of WFHPOT as well as by the level of PROD,

as shown in the horizontal line in the figure. However, when PROD takes a higher value

(PROD4 < PROD5 < PROD6), then an incentive to move exists, and the magnitude of the

20 Recall that PROD (and QOL) are MSA-level values assigned to component MSA counties. The variable
high PROD takes the value 1 if the PROD value for the county’s MSA is above the MSA median and zero
otherwise. With this assignment method, 575 out of 792 counties have high PROD = 1. By contrast, the
analogous variable high QOL described in the next paragraph takes the value 1 in a minority (352 out of 792)
of counties.
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price decline is larger the higher is WFHPOT (since more workers can then move). While the

curves relating ∆ log P to WFHPOT are therefore downward sloping for these PROD values, a

higher PROD value also yields a lower curve by Proposition 4(i). The regression specification

should therefore allow the relationship between ∆ log P and WFHPOT to be flat for low levels

of PROD while allowing it to be decreasing for high levels and for the slope in this range to

depend on the magnitude of PROD. The triple interaction specification achieves these goals.

A related logic applies to the interaction variable QOL×WFHPOT. Since high-QOL coun-

ties are not sending counties, the house-price change should be unaffected by marginal changes

in the county’s QOL and WFHPOT levels, suggesting a zero value for the interaction coef-

ficient. In sending counties, where QOL is low, Proposition 4 indicates that an increase in

QOL reduces the size of the price decline under WFH. However, by allowing more people to

move to high amenity cities, a larger WFHPOT makes the price decline larger for a given

QOL. As a result, the effects of QOL and WFHPOT go in opposite directions, yielding an

ambiguous effect for the QOL×WFHPOT interaction variable in low-QOL counties. Use of

the triple-interaction variables high QOL×QOL×WFHPOT and low QOL×QOL×WFHPOT

then allows a zero effect to emerge in high-QOL counties and either a positive or negative

coefficient to emerge low QOL counties depending on the relative strengths of the QOL and

WFHPOT effects.

Therefore, letting c be the county index, the preferred house-price change regression takes

the form

∆ log Pc = (7)

β0 + β1 high PRODc × PRODc × WFHPOTc + β2 low PRODc × PRODc ×WFHPOTc

+ β3 high QOLc × QOLc × WFPOTc + β4 low QOLc × QOLc × WFHPOTc + Zcγ + εc,

where Zc is a vector of control variables, which includes PRODc, QOLc, WFHPOTc, high

PRODc×PRODc, and high QOLc×QOLc, and εc is the error term. The remaining controls

are discussed below. In addition to using the change in house prices as the dependent variable,

this regression is also estimated using the 2019-2020 change in rents.
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A less-preferred version of (7) uses as covariates the original double-interaction variables,

whose coefficients reflect the blending effect discussed above. The relevant portion of the RHS

of this regression is α0 + α1 PRODc ×WFHPOTc + α2 QOLc ×WFHPOTc. A nonparametric

approach to the regression in (7) is also possible, but discussion of this approach is deferred

until presentation of the empirical results.

Figure 2 provides a schematic representation of the population flows predicted by the

model, which generate the predicted changes in house prices. The black vertical arrows il-

lustrate the model’s prediction that, when QOL is identical across cities (either high or low),

WFH causes a population flow from high-productivity to low-productivity cities. Conversely,

the grey horizontal arrows illustrate the prediction that, when PROD is identical across cities

(either high or low), WFH causes a population flow from low-QOL to high-QOL cities. The

premise of identical QOL or PROD across cities is, of course, fictitious, and actual popula-

tion flows may look like those indicated by the thin dotted arrows, with population moving,

say, from a low-QOL/high-PROD city to a high-QOL/low-PROD city (grey arrow) or from a

high-QOL/high-PROD city to a low-QOL/low-PROD city (black arrow). However, because

the regression coefficients have a ceteris-paribus interpretation, they allow us to test the pre-

dictions embodied in the thick vertical or horizontal arrows based on movements that may be

neither horizontal nor vertical.21

A final point is that, while the model predicts an absolute drop in house prices in sending

counties, the empirical expectation is only that price changes are smaller in such counties than

elsewhere. Other forces, such as the recession and a nationwide housing supply reduction in

2020 due to COVID fears among potential sellers, played a role in determining the overall level

of prices.

3.2. Population outflow regressions

The predicted housing prices changes that (7) captures are the consequence of population

21 This discussion suggests an idealized experiment that would allow a direct test of our predictions. Suppose
workers in one high-productivity city (A) are free to relocate under WFH, while workers in a second high-
productivity city (B) are not, possibly due to a city requirement that all work must be done in the office.
Then, we would expect house prices to drop in city A under WFH but to be unchanged in city B, a prediction
that could be tested by a direct comparison. This experiment is, of course, fanciful, requiring us to rely instead
on regression analysis.
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outlows in high-productivity counties (or low-QOL counties) with high WFH potential, as seen

in the theoretical model. With these outflows being the mirror image of the predicted price

declines, running the same regression as in (7) using outflows as the dependent variable can

give further credence to our story. To measure outflows, we use address-change data from

the US Postal Service, which has also been used by Bloom and Ramani (2021) and Kolko,

Badger and Bui (2021) for a similar purpose. The signs of the key coefficients should be the

reverse of those in (7), with high PROD×PROD×WFHPOT having a positive coefficient and

low QOL×QOL×WFHPOT having a negative coefficient.

3.3. Monthly house-price level regression

While the regression in (7) focuses on the annual 2019-2020 house-price change as well

as the change in rents, a different month-based regression shows the effect of WFH potential

and productivity on the levels of house prices and rents in each month of a 48-month window

around December 2019.

The monthly price-level regression, which uses the simpler double-interaction approach,

takes the following form:

log Pct = αc +
∑

t

[
δt(PRODc × WFHPOTc × gt) + µt(QOLc × WFHPOTc × gt)

+ (Zc × gt)γt

]
+ εct, (8)

where αc is a county fixed effect, t denotes months, the gt’s are month dummies, and Zc

again consists of control variables. Note that the right-hand variables in (8) are constant over

time but that the specification allows their price effects to vary by month. We expect high

productivity or low amenities to depress monthly house prices and rents after December 2019,

which in the productivity case implies a declining pattern of PROD×WFH coefficients over

the period. This same regression is also run using rent as the dependent variable.

3.4. Intracity empirical model

To investigate the intracity effects of WFH, we again use monthly house price data, now

measured at the zip-code level, and first regress prices on distance to the metro-area CBD,
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generating a price gradient for each MSA in each month of the same 48-month window.22

The estimated gradients are then used in a second-stage regression that relates their monthly

magnitudes to the WFH potential of the metro area’s central county. We expect the monthly

coefficients relating the price gradients to WFH potential to increase over the months following

December 2019, indicating less-negative values. This exercise borrows data from Lee and Lin

(2018b).

The first stage estimates MSA-specific price gradients, one for each month (using the same

48-month window as the price-level regressions in (8)). Thus, for each metro area m and month

t, we separately estimate the following equation:

log Pmzt = µmt + ρmt log DISTANCEmz + Xmzθmt + νmzt, (9)

where m denotes the metro area (MSA), z is the zip code, and t is the month. DISTANCE

denotes the distance from the zip-code centroid to the metro CBD, and X is a set of controls.

Note that all coefficients in (9) vary with the metro area and month.

In the second stage, the estimated distance coefficient ρ̂mt from (9) is regressed on the WFH

potential of the metro area’s principal-city county, allowing for month-specific coefficients:

ρ̂mt =
∑

t

ξt (WFHPOTm × gt) + κm + ηr(m)t + υmt, (10)

where κm is a metro-area fixed effect and ηr(m)t is a Census-division × month-year fixed effect

(r(m) is the division containing metro area m).23 We expect the ξt coefficient to rise across

months, indicating flattening of the price gradient in metro areas with high-WFH-potential

principal-city counties as time progresses.

22 By focusing on a single CBD, these regressions ignore the polycentricity of some cities. But since our goal
is to isolate a single price gradient, polycentricity cannot be taken into account, with our sole focus being on
distance to the city’s main employment center.
23 When there are multiple principal-city counties in a metro area, we use the population-weighted average of

the gradients from these counties.
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3.5. Identification issues

As usual, correlation between the focal regression covariates and the regression error term,

which contains unobservables affecting housing prices or the metro price gradients, could be a

source of bias. However, the monthly price-level regressions in (8) use county fixed effects, and

the monthly gradient regressions in (13) use metro-area fixed effects, with both regressions

covering a short time interval where most unobservables are fairly constant. As a result,

omitted variable bias is unlikely to be a serious issue in either of these regressions. County

fixed effects in the price-difference regression in (9) are differenced out, and while one could

argue that time-varying unobserved factors affecting county price changes might still lead to

bias, the possibility that our triple-interaction variables are correlated with the error term

seems slight, limiting any bias concerns.24

4. Data

4.1. Data on WFH potential

We measure WFH potential by combining 2018 data from County Business Patterns (the

most recent data available) with the industry-level remote work index constructed by Dingel

and Neiman (2020). For each NAICS3 industry, they measure the share of employment in

occupations that can be done from home based on occupational characteristics from the US

Department of Labor’s Occupation Information Network (O*NET). Intuitively, an industry

has a higher WFH potential if much of its employment is in occupations that require low levels

of face-to-face interaction, if work involves low levels of physical effort, and if it relies more on

information and communication technologies, such as e-mail. The WFH potential of county

c is the employment-weighted average of WFH potentials for the county’s industries (denoted

by WFHPOTj for industry j):

WFHPOTc =
∑

j∈J

sjcWFHPOTj , (11)

24 Inclusion of 2000 county COVID cases, implicitly a time-varying covariate since 2019 cases were zero, had
no effect on the main results (in addition, its coefficient was counterintuitively positive.)
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where sjc is the employment share of industry j in county c. Table 1 shows the counties

with the highest and lowest WFH potentials among the 100 largest counties. High-WFHPOT

counties are concentrated in the finance and insurance hubs of the Northeast corridor as well

as in the tech hubs of California. Low-WFHPOT counties are relatively less populous and

more likely to be located in the South and the West.

4.2. Housing price and rent data

Our source of county-level house price and rent data is Zillow (2020). House prices are

measured using the Zillow Home Value Index, which gives selling prices for typical for houses

and condominiums in a geographic area, and rents are measured by the Zillow Observed Rent

Index, which captures asking rents for representative units, but whose coverage of the country

is less extensive than that of the price index. These Zillow datasets are monthly time series,

which we aggregate to the yearly level for the price- and rent-change regressions. In addition,

the rent data, which are available at the zip-code level, are weighted by zip-code population

and aggregated to the county level using population data supplied by Manson et al. (2021)

and a geographic crosswalk supplied by US Department of Housing and Urban Development

(2020).

4.3. Amenity and productivity data

In addition to housing prices, critical to our analysis are measures of local amenities and

productivity. We source these key variables from Albouy (2015), who builds a Rosen-Roback

model to generate hedonic estimates of QOL and productivity at the metropolitan statistical

area (MSA) level. We assign these MSA-level estimates to counties based on 1999 metro area

standards, relying on the assumption that cross-county differences in amenities and produc-

tivity are small enough within MSAs that MSA values can be used.25 It is interesting to note

that a more-recent QOL measure developed by Carlino and Saiz (2019), based on the volume

of online photo postings of metro-area scenes, is strongly correlated with Albouy’s QOL mea-

sure (see their Figure 3). This outcome is not surprising given evidence that productivity and

25 We use the term MSA to refer to metro areas whose designation is either MSA or CMSA (the latter are
the largest MSAs).
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quality-of-life in US metro areas are fairly stable over time.26

4.5. Other data

As mentioned above, a county’s 2020 gross population outflow was captured using US

Postal Service (2020) address-change data. These data show outflows by the origin Zip codes

and were aggregated to the county level.27 For our control variables, we supplement the main

datasets with information on the share of the population with a college degree,28 the Wharton

Residential Land-Use Regulatory Index (WRLURI), measured for the county’s MSA (Gyourko,

Saiz and Summers, 2008), and a measure of terrain ruggedness, equal to the percent of the MSA

land area with slope greater than 15 degrees (both measures are taken from Albouy, 2016).

In addition, to capture the impacts of changing employment on house prices, the price-change

regression includes a variable known as the Bartik “instrument,” which equals the weighted

average of 2019-2020 sectoral employment changes at the national level, with the weights equal

to county-level sectoral job shares.29 Census-division fixed effects are also included.

The metro-area county sample includes 792 counties. However, Zillow rents are available

for only 269 counties, yielding a smaller sample for the rent regressions. Summary statistics

for the regression variables over the larger sample are shown in Table 2, and Figure 3 shows a

point scatter of WFH potentials and productivity for major MSAs, with the values expressed

as deviations from medians.30 The figure shows that WFH potential and productivity are

positively correlated (at the county level, the correlation equals 0.33).

26 One piece of evidence comes from Glaeser, Scheinman and Shliefer (1995), who show that a metro area’s
baseline characteristics (including QOL) determine its population growth over subsequent decades, which sug-
gests that characteristics evolve slowly from their baseline.
27 To separate household from business moves, the variable was set equal to the total Zip code outflow minus

the business outflow.
28 This share is the average county share of the college educated over the period 2014-2018 from the American

Community Survey (US Census Bureau (2018)).
29 National employment changes are between the second quarters of 2019 and 2020 (the latest available quarter

in the Quarterly Census of Employment and Wages). Local shares are from County Business Patterns 2018.
The Bartik instrument is omitted from the controls in (8).
30 MSA WFH values are found by averaging across component counties. Note that Detroit is shown as a

high-productivity city, in contrast to its status in the model of Section 2.
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5. Empirical results

5.1. Regressions using price and rent changes

Table 3 shows the estimation results for the 2019-2020 price-change regressions (columns 1-

4) and for the regressions using the change in the change in rents as dependent variable (columns

5-8). Column 1 of Table 3 shows that the high PROD×PROD× WFHPOT coefficient is signif-

icantly negative in the price-change regression based on the specification in (9). This result con-

firms the prediction that 2019-2020 house-price changes were smaller in high-productivity coun-

ties with high WFH potential. Moreover, as predicted, the low PROD×PROD×WFHPOT

coefficient is not significantly different from zero. While the high QOL×QOL×WFH coeffi-

cient is insignificant, matching predictions, the low QOL×QOL×WFH is also insignificant, an

outcome consistent with the prediction of an ambiguous sign for this interaction variable.

Dropping the insignificant triple QOL interactions leaves the coefficient pattern for triple

PROD interactions unchanged, as seen in column 2 of Table 3. Column 3 replaces the

triple interaction terms in column 1 with the double interactions PROD×WFHPOT and

QOL×WFHPOT, whose coefficients are likely to be a blend of the corresponding triple-

interaction coefficients. This expectation is confirmed by the significantly negative PROD×

WFHPOT coefficient and the insignificant QOL×WFHPOT coefficient. Column 4 follows

column 2 by dropping the insignificant interaction variable in column 3, with the remaining

PROD×WFHPOT coefficient again significantly negative.

The full regression results, including the coefficients on the control variables involving

separate elements of the interactions (PROD, QOL, WFHPOT, high PROD×PROD and

high QOL×PROD) are reported in the online appendix (Table A1), as are full results for

the regressions in Tables 4 and 5 below.

The interaction coefficients in columns 1–4 of Table 3 thus confirm the theory’s prediction

of downward pressure on house prices under WFH in counties with high productivity and high

WFH potential. House-price changes are also affected by some of the control variables. The

WRLURI coefficients are significantly positive in each of the columns 1–4, naturally indicat-

ing larger price changes in counties with greater land-use regulation. The college-education

coefficient is significantly negative in columns 1–4, showing that 2019-2020 price changes were
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lower in highly educated counties, a result that is not transparent and may reflect other factors

correlated with education. Unexpectedly, the Bartik coefficient is insignificant in each of these

columns, and the terrain-slope coefficients are insignificant as well.

Columns 5–8 of Table 3 show the rent-change regression results, with the specifications

matching those in columns 1–4. While the triple QOL interaction coefficients in column 5 are

insignificant, as in column 1, both of the PROD triple interactions are significantly negative.

Even though the negative high PROD×PROD×WFHPOT matches expectations, the signif-

icance of the low PROD×PROD×WFHPOT coefficient is unexpected, showing that house-

price changes were affected by the levels of PROD and WFHPOT in receiving counties, when

zero effects are anticipated. One possible explanation is that, among low-productivity coun-

ties, the highest productivity ones were actually sending (not receiving) counties for renters,

so that the above-median/below-median productivity split does not separate sending and re-

ceiving counties as well as it does for homeowners.

As for the control-variable coefficients in columns 5–8, changes relative to columns 1–4 are

that the Bartik coefficients become significantly positive, showing that a favorable employment

change has a positive effect on the 2019-2020 rent change, while WRLURI coefficients become

insignificant.

5.2. Outflow regressions

The downward pressure on prices and rents in counties with high-productivity and high

WFH potential are generated in the model by population outflows. To check whether out-

flows match up with the pattern of house-price changes seen in Table 3, Table 4 presents

the same regressions as in Table 3 but with the 2019-2020 change in the county population

outflow, normalized by total population, as the dependent variable (recall that the variable

comes from Postal Service data). As can be seen in the table, the main coefficient pattern is

the mirror image of the pattern in columns 1–4 of Table 3, with significantly positive triple

interaction coefficients wherever the coefficients in Table 3 are negative, and with insignificant

triple interaction coefficients wherever the Table 3 coefficients are insignificant. The double

interaction coefficients are also the mirror image of those in Table 3. This correspondence

provides strong support for the theoretical prediction that house-price changes under WFH
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are inversely associated with changes in household outflows.

As for the control variables, the significantly positive education coefficients in Table 4 are

the mirror image of the negative coefficients in Table 3, and the negative WRLURI coefficients

are the mirror image of the positive coefficients in columns 1–4 of Table 3 (indicating smaller

outflows in highly regulated counties). However, most of the other control-variable coefficients

are insignificant.

5.3. Nonparametric approach

A nonparametric approach to the regressions in Tables 3 and 4 is possible. Under this ap-

proach, the high PROD×PROD×WFHPOT and low PROD×PROD×WFHPOT variables are

replaced by the variables PROD Quartile i ×WFHPOT, i = 1, 2, 3, 4. The PROD Quartile i

component of this interaction variable is a dummy equal to 1 if the county’s PROD value

lies in the ith quartile and equal to zero otherwise, and it replaces the high PROD×PROD

and low PROD×PROD components of the previous variables, doing so with a finer quartile

breakdown.31 Since WFHPOT should have no effect on the house-price change in low-PROD-

quartile (non-sending) counties, the quartile interaction coefficients should be zero in these

counties. But since a higher WFHPOT should lead to a larger price decline in high-PROD-

quartile counties, the interaction coefficient should be negative in these counties. Looking

across PROD quartiles holding WFHPOT fixed, the house-price change is then smaller in

high- than in low-PROD-quartile counties, as in Proposition 4(i).32

The results are shown in Table 5. Column 1, which shows the house-price regression,

reveals much of the anticipated pattern for the PROD quartile interactions, with the quartile 1

coefficient insignificant and the quartile 4 coefficient significantly negative (the second quartile

coefficient, however, is significantly positive). In the rent regression in column 2, the quartile 1

31 In order to create roughly equal-size cells, the PROD and QOL quartiles are based on county, not MSA
counts, in contrast to the construction of the high PROD and high QOL dummies. In other words, to generate
quartiles, PROD is listed by county from highest to lowest, recognizing that county values within a given MSA
are repeated (similarly for QOL). If this county-level approach were taken in defining the high PROD and
high QOL dummies, similar results to those Tables 3 and 4 would emerge.
32 The logic of this approach is similar to that illustrated in Figure 1. For low PROD quartiles, the relationship

between ∆ logP and WFHPOT is flat, while it is downward-sloping for higher quartiles. Since the quartile
dummy captures both the high-low position of PROD as well as its magnitude, the nonparametric specification
captures both elements that the triple-interaction approach is designed to capture.
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coefficient is insignificant while the higher-quartile coefficients are all significantly negative and

ascending in absolute value. This pattern shows the anticipated insignificant rent effect in the

lowest productivity counties that was missing in Table 3. The outflow regression in column 3

also shows the anticipated PROD effects, with the quartile 1 coefficient insignificant and the

higher-quartile coefficients positive and ascending in value.

The interaction variables involving QOL are similarly altered under the nonparametric

approach. Since an increase in WFHPOT in low-QOL-quartile (sending) counties should lead

to a larger house-price decline, the interaction coefficients should be negative in lower quartiles

while being zero (insignificant) for higher QOL quartiles. Looking across QOL quartiles holding

WFHPOT fixed, the house-price change is then smaller (zero rather than negative) in high-

than in low-PROD-quartile counties, as in Proposition 4(ii). As can be seen in columns 1

and 2 of Table 5, these predictions are not met, with the quartile 1 coefficient positive, not

negative, and larger than the coefficients for the other quartiles (quartile 4 is omitted to prevent

collinearity). Therefore, while QOL results under the triple interaction approach are consistent

with the theory, the nonparametric QOL results are not. Since the main focus of the paper is

on productivity effects under WFH, where the triple-interaction and nonparametric approaches

agree, this outcome seems acceptable.

5.4. Further robustness checks

Table 6 presents further robustness checks for the price-change regressions in the main

specification of Table 3, focusing for simplicity only on the specification containing the single

PROD × WFH interaction, as in columns 3 and 7 of the table. Column 1 shows the results

of a price-change regression when metro-area counties other than the county containing the

area’s prinicipal city are dropped, reducing the sample size by about half, to 378. As can

be seen, the interaction coefficient remains significantly negative. This modification addresses

a potential concern that suburban MSA counties, where jobs may be less concentrated than

in the central county, are dispreferred for gauging the effects of WFH. While our results are

qualitatively unaffected by the modification, the concern may misplaced in any case given

job-decentralization trends in US cities.

Column 2 shows the effect of aggregating to the MSA level, which reduces the number of
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observations by almost three quarters, to 236. Nevertheless, the PROD × WFH coefficient

remains negative and significant.

Column 3 provides a placebo test by replacing the 2019-2020 house-price change by the

2018-2019 price change. Since WFH took off only in 2020, we would expect to see no WFH

effect on house-price changes between 2018 and 2019, and this expectation is confirmed by the

insignificant coefficient of PROD × WFHPOT in column 3. A regression using the 2017-2018

price change also yields an insignificant interaction coefficient. Therefore, our placebo tests

are successful, showing no WFH effects where they should not be present.33

Columns 4–6 of Table 6 show robustness checks when the rent change is the dependent

variable, and the results are similar to those in columns 1–3. The interaction coefficient

remains significantly negative when non-principal-city counties are excluded (column 4) and

when counties are aggregated to the MSA level (column 5). The placebo test is again successful,

with a regression using the 2018-2019 change in rents yielding an insignificant interaction

coefficient (column 6). Table 6 thus shows that the price- and rent-change effects of the

PROD×WFHPOT variable are highly robust.34 As for the controls, the sign and significance

pattern of the coefficients closely matches that of Table 3.

5.5. Monthly price-level regressions

The results of estimating the monthly price-level and rent-level regressions in (11) are

shown in Figure 4. The figure graphs the monthly magnitude of the PROD × WFH interaction

coefficients relative to the coefficient for December 2019, which is normalized to zero. As shown,

the regressions cover the period from 35 months prior to December 2019 through the end of

2020. The solid curve shows the estimated PROD × WFH coefficients, while the dotted lines

show the 95% confidence bounds. As can be seen, the magnitude of a county’s PROD × WFH

interaction variable has no effect on the monthly level of either housing prices or rents prior to

December 2019, with the confidence bands covering the horizontal axis. But after December

33 Note, however, that the PROD×WFH coefficient’s confidence interval from column 4 of Table 3 covers the
placebo point estimate in Table 5. Nevertheless, the first coefficient is significantly different from zero while
the second is not.
34 Additional regressions using the change in the price-to-rent ratio (a measure of future price growth) as

dependent variable show no WFH effect. Thus, prices and rents appeared to decline in step under WFH,
leaving their ratio unchanged.
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2019, house prices and rents in counties with a large interaction value dropped significantly

relative to their levels in this benchmark month, as predicted by the theory. This conclusion

follows since the confidence bounds lie below the horizontal axis after the benchmark month.35

The results in Figure 4 reinforce the conclusions of the price- and rent-change change

regressions from Table 3 at a more disaggregated level. The finding that monthly prices and

rents fell following the benchmark month in counties with high productivity and high WFH

potential matches the finding that average 2020 prices were lower than average 2019 prices in

such counties.

5.6. Monthly price-gradient regressions

The first step in exploring the effect of WFH potential on house-price gradients is estimation

of monthly price gradients at the MSA level. Zillow house-price data at the zip-code level in the

sample MSAs are used rather than county-level data, so as to provide more spatial variation

in prices, and the regressions include a variety of controls.36 The resulting regressions yield a

large number of price gradients across metro areas (of which there are 120) and months, and

the mean value is negative (equal to −0.108), as predicted by the urban model.37

Table 7 shows price-gradient regressions for the New York-Newark-Bridgeport CMSA for

the months of December 2019 and 2020. We find that zip-code-level home prices in the New

York metro area have a strong negative association with distance to the CBD in both periods.

Furthermore, the table shows a flattening of the intracity price gradient over the year between

these two months, as predicted.

The second-stage regression relates the estimated gradients to the WFH potential of the

35 Figure A1 in the online appendix, which uses bootstrapped standard errors, is very similar to Figure 4.
Figure A2 in the appendix also is a bootstrapped version of Figure 5 below.
36 The controls are zip-code-level measures of (log) distance to nearest river, distance to nearest lake, distance

to nearest coastline, average annual precipitation between 1971 and 2000, minimum temperature in January,
maximum temperature in July, average slope, log population density, and log average household income, all
drawn from Lee and Lin (2018b). Their data are measured at the census tract level, and we use a crosswalk
supplied by US Department of Housing and Urban Development (2020) to map tracts to zip codes. Note
that while house size should ideally be a control in such a regression (so that it has price-per-square-foot
interpretation), this variable is not available. However, inclusion of income helps offset this omission since it is
generally a strong determinant of house size.
37 Table A4 in the online appendix shows a regression that pools the data from all MSAs. Like that in Table

6, the pooled gradient also declines across the two months.
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principal county of the metro area. The theory predicts that price gradients should have

flattened (becoming less negative) in metro areas with high WFH potential, implying a positive

coefficient for the WFHPOT variable. Note that the metro area’s productivity or amenities

play no role in this prediction.

Following the structure of Figure 4, the results are shown in Figure 5, which graphs the

magnitude of the estimated monthly WFH coefficients over the same monthly window. The

coefficients are again normalized, with the December 2019 value set at zero, and confidence

bounds are again shown as dotted curves. As can be seen in the figure, WFH potential has no

effect on a metro area’s price gradient in the months prior to December 2019. This conclusion,

which is relative to the gradient in the benchmark month, follows because the confidence bands

cover the horizontal axis prior to that month. After the benchmark month, however, the

WFH coefficient becomes significantly larger than its benchmark value, as predicted, with the

confidence bands no longer covering the horizontal axis. Therefore, price gradients in counties

with high WFH potential flattened (becoming less negative) relative to their benchmark value

in the months following December 2019. This conclusion complements our evidence on the

intercity effects of WFH by showing that the value of CBD access fell in metro areas with high

WFH potential, leading to a smaller price premium for central locations.

5.7. Gauging the effect of WFH on population inflows

The results so far have focused on the price effects of predicted WFH-induced intercity

population outflows and household relocation within MSAs, with Table 4 also showing WFH

impacts on outflows themselves. Gauging the effect of population inflows is much less straight-

forward since inflows of remote workers into receiving counties will not depend on the WFH

potentials of jobs in those counties but rather on WFHPOT values for the various origin coun-

ties. The approach we adopt, which disconnects somewhat from the theory, argues that WFH

should have amplified previous population flows between counties. Accordingly, we use the

American Community Survey matrix of migration flows over the period 2015-2019 between

pairs of the 3000+ US counties (US Census Bureau, 2019), and we weight the flow Fji from

county j into county i by WFHPOTj , the WFH potential of the origin county. These weighted

values are then summed across j, with the result divided by county i’s 2015 population, Pi.
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The result is a WFHPOT-weighted ACS inflow measure for 2015-2019 (per capita), equal to

≡ (
∑

j WFHPOTjFji)/Pi.

The expectation is that this new variable will help explain the change in population inflows

between 2019 and 2020 as measured by US Postal Service data.38 The USPS inflow variable

is USPS inflow, and the dependent variable for the regression is the 2020-2019 difference in

the logs of USPS inflow, which equals the percentage change in the flow between those years.

This variable is regressed on the log of WFHPOT-weighted ACS inflow, 2015-2019 (per capita)

and several controls, including the receiving county’s PROD and QOL values as well as the

county’s state tax rate, which should have a negative effect (see Kleven, Landais, Muñoz and

Stantchevar, 2020, for evidence on taxes and migration).39 The results are shown in Table 8.

Column 1 uses the state’s 2021 top marginal tax rate as the tax variable (Tax Foundation,

2021), while column 2 uses the 2018 marginal tax rate for a household with an adjusted gross

income of $75,000 (Feenberg, 2018). As can be seen, the coefficient of the WFHPOT-weighted

ACS inflow variable is significantly positive in both regressions, showing that when pre-WFH

migration inflows came from counties with high WFH potentials, the onset of WFH raised

USPS-measured inflows, confirming expectations. In addition, a higher county QOL raises

migration inflows. The results in column 1 also show that, when the tax variable is the state’s

top marginal tax rate, a higher rate deters population inflows, as expected. However, when

the marginal tax rate of a middle-income household is used instead (column 2), the tax effect

is insignificant, suggesting that middle-income households may be insensitive to tax rates in

their migration decisions.

We also explored tax effects in unreported outflow regressions similar to those in Table 4,

finding only marginally significant tax coefficients. However, since these regressions were based

on outflows from a single sending county, whereas the regressions in Table 8 capture inflows to

a receiving county from all sending counties, tax effects are more likely to be measurable (in

this case via the receiving county’s state tax rate, not that of the sending county).

38 We prefer to create the dependent variable using a different data source than that used to create the
WFHPOT-weighted ACS inflow measure.
39 Note that, while the scaling of the WFHPOT-weighted ACS inflow measure is somewhat arbitrary, rescaling

would just alter the magnitude of the coefficient with no effect on its sign or significance.
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6. A new spatial hedonic equilibrium?

In the initial hedonic equilibrium, the high-productivity city in the theoretical model

started out with high wages and high housing prices, while the disadvantaged, low-productivity

city had low wages and prices. These differences served to equate utilities between the two

cities. In the model, the onset of WFH initiated a movement to a new hedonic equilibrium,

with housing prices falling in the high-productivity city as residents relocated to its low-price

counterpart (raising prices there) while keeping their original jobs. By documenting price

and rent decreases in high-productivity cities with high WFH potential, our empirical results

appear to show the beginnings of such an equilibrium shift.40 But with WFH being a recent

phenomenon, it appears that the economy still has a long way to go before reaching the new pre-

dicted equilibrium, where wages within high-WFH-potential occupations are equalized across

locations and the house-price premium in high-productivity cities wanes or disappears. Our

empirical results suggest, though, that we may headed in this direction, with market signals

of intercity productivity differences becoming muted or vanishing entirely, in stark contrast to

predictions of models in the Rosen-Roback tradition.41

Another possibility is that the WFH phenomenon is just temporary, simply being a re-

sponse to the COVID pandemic, and that the economy will eventually return to the pre-COVID

spatial equilibrium. While some media stories take this viewpoint, others argue that WFH

(including remote work from different cities) is here to stay. See, for example, Bindley (2021),

who describes how Silicon Valley firms are hiring nationally with no requirement that recruits

move to California. An intermediate possibility is that a potential threat of pay reductions for

remote workers moving to other cities (Buhayar, 2020) will constrain such relocations in the

long run. However, there seems little doubt that hybrid WFH arrangements (with workdays

40 In reality, WFH-induced relocations are sometimes between high-amenity, high productivity cities like San
Franciso and low-productivity cities that also have high amenities, such as frequently-mentioned destination
cities like Boise, Idaho, or Bozeman, Montana.
41 In a pre-WFH world with different size households, the high wages in high-productivity cities would be

worth more to a two-earner household than to a single-earner household, drawing the former households more
strongly to such places. But once WFH equalizes wages across workplaces, this location preference would
disappear. Note, however, that a world with variation in the number of earners per household would require a
new theoretical analysis. For a demonstration of how locational benefits can vary with the number of earners,
see Gyourko and Tracy (1991, Table 4).
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split between home and office) will be lasting for many workers, suggesting that the intracity

effects of WFH documented in the price-gradient regressions will be permanent.

While the model also predicts that WFH will spur movement out of low-amenity cities

toward nicer locations, our empirical results show no evidence of this kind of relocation so

far. Unlike in the model, moving between cities may be difficult in the short run without a

well-paid, high-productivity job, and since such jobs tend to be located in cities with favorable

amenities,42 there may be little opportunity for low-to-high-amenity relocations in the short

time span of our data. However, as the passage of time reduces migration frictions, we may see

evidence of migration out of low-amenity areas, provided that they have high WFH potential.

Such movements, which drive up housing prices in high-amenity cities, will serve to strengthen

the capitalization of amenities in the housing market, as shown in the model.43

While we have not empirically explored the wage impacts of WFH (see Proposition 3), it is

useful to ask what such an investigation would look like. The crucial equilibrium condition in

the model is wage equalization, which occurs for all workers since jobs are homogeneous. But an

empirical study would recognize that equalization would obtain only for jobs that can be done

remotely. The empirical implication is that, once a WFH equilibrium has been reached, wages

for jobs with high WFH potential should be independent of the place of employment and thus

independent of city characteristics. Empirically, one could test this prediction by regressing

the average wage on city characteristics, including amenities and productivity, along with the

WFH potential of the city’s jobs as well as WFHPOT interaction terms. The prediction would

be that the effects of these characteristics on wages (acting both through level and interaction

terms) would become weaker as WFH potential rises, disappearing entirely if all the city’s jobs

can be done remotely. Another related way of testing the wage-equalization hypothesis would

be to regress an intercity occupational wage-dispersion measure on the WFH potential of the

occupation, with a negative coefficient expected. In other words, occupations with high WFH

potential should exhibit low wage dispersion across cities. This kind of empirical work should

wait, however, for the effects of the WFH to fully play out across the economy.

42 The sample correlation between PROD and QOL is 0.35.
43 Note that this stronger capitalization will hurt retirees who move to high-amenity locations at the end of

their working life.
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7. Conclusion

This paper has studied, both theoretically and empirically, the impacts of WFH in the

housing market, taking both intercity and intracity perspectives. Our results confirm the the-

oretical prediction that WFH puts downward pressure on housing prices in high-productivity

counties, a result of workers starting to relocate to cheaper metro areas during the pandemic

without forsaking their desirable jobs. We also present evidence of the population flows that

are predicted to drive these price changes. Our results also show that WFH tends to flatten

intracity house-price gradients, weakening the price premium associated with good job access.

The WFH effects we identify have important economic incidence implications. Our empir-

ical results suggest that WFH imposes capital losses on real estate owners in high-productivity

cities, while renters in such cities tend to gain. The reverse effects are predicted to occur in

low-productivity cities. While these impacts are tied by the model to intercity migration, in-

tracity effects (due to relocation within cities and changes in price gradients) will tend to hurt

owners and benefit renters in central cities, where prices fall, while having the reverse effects

in the suburbs, where prices rise. Also on the intracity level, the reduction in commuting costs

due to WFH may also strengthen suburban-flight responses to disamenities such as crime and

high central-city taxes (Cullen and Levitt, 1999; Mieszkowski and Mills, 1983).

Possible public-sector impacts of WFH include downward pressure on the property tax rev-

enue of local governments (via lower housing prices) in places disfavored by WFH: central cities

and high-productivity metro areas. Another public-sector effect is a possible strengthening of

interjurisdictional tax competition (Wilson, 1999) as migration between jurisdictions becomes

easier, with remote workers mimicking the footloose star athletes studied by Kleven, Landais

and Saez (2013). This same tendency can also limit the market power of local public-sector

unions, who may settle for lower pay as WFH limits their ability to extract tax revenue from

increasingly footloose residents (Brueckner and Neumark, 2014; Diamond, 2017). Overall,

WFH will have a host of effects that researchers should continue to track as time progresses.
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Table 1. County Rankings of Work-from-Home Potential

Ranking County MSA WFH potential

1 New York County, NY New York, NY 0.5147
2 Fairfax County, VA Washington, DC 0.5118
3 District of Columbia, DC Washington, DC 0.4942
4 San Francisco County, CA San Francisco, CA 0.4900
5 Santa Clara County, CA San Francisco, CA 0.4884
6 Suffolk County, MA Boston, MA 0.4682
7 Middlesex County, MA Boston, MA 0.4676
8 Fulton County, GA Atlanta, GA 0.4500
9 Hennepin County, MN Minneapolis, MN 0.4366

10 Collin County, TX Dallas, TX 0.4224
...

...
...

...
91 Fresno County, CA Fresno, CA 0.2900
92 El Paso County, TX El Paso, TX 0.2864
93 Snohomish County, WA Seattle, WA 0.2817
94 Hidalgo County, TX McAllen, TX 0.2788
95 Lee County, FL Fort Myers, FL 0.2781
96 San Bernardino County, CA Los Angeles, CA 0.2774
97 Kern County, CA Bakersfield, CA 0.2717
98 San Joaquin County, CA Stockton, CA 0.2687
99 Clark County, NV Las Vegas, NV 0.2679

100 Riverside County, CA Los Angeles, CA 0.2574

Note: This table reports county rankings in terms of WFH potential for the 100 largest counties.
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Table 2. Summary Statistics

N Mean St. Dev. Min Max

Home price, 2020 792 244,233.80 147,937.30 58,736 1,427,988
Home price, 2019 792 233,481.90 143,371.20 57,392.08 1,413,393
Home price, 2018 792 224,900.30 143,268.80 55,022.42 1,396,384
Rent, 2020 269 1,631.33 465.23 713.62 4,541.56
Rent, 2019 269 1,580.39 477.56 671.00 4,553.26
Rent, 2018 269 1,527.53 468.75 637.11 4,458.52
Work-from-Home Potential (WFH) 792 0.30 0.06 0.18 0.69
Productivity (PROD) 792 −0.02 0.11 −0.26 0.29
Quality of Life (QOL) 792 −0.01 0.04 −0.10 0.18
Pct. MSA land steeper than 15 degrees 792 0.01 0.01 0.00 0.09
Wharton Residential Land-Use Regulation Index 792 −0.13 0.73 −1.76 4.31
Pct. pop. with a college education 792 0.29 0.11 0.09 0.79

Note: County-level home prices and rents are based on the Zillow Home Value Index (ZHVI) and Zillow Observed Rent
Index (ZORI), respectively, for all homes and condos/co-ops. Because county-level ZORI is unavailable, we map zip-code-
level ZORI to counties using a HUD crosswalk. Work-from-home potential is based on authors’ calculations using 2018
County Business Patterns and the Dingel and Neiman (2020) data. Metro-level productivity, quality of life, land steepness,
and Wharton Residential Land-Use Regulation Index come from Albouy (2016). College population shares come from 2014–
2018 American Community Survey.
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Table 4. Change in Population Outflows, 2019-2020

Dependent variable:
Change in log USPS migration outflows, 2019–2020

(1) (2) (3) (4)

Low_PROD × PROD × WFHPOT 1.529 1.617
(1.139) (1.149)

High_PROD × PROD × WFHPOT 1.862∗∗∗ 1.955∗∗∗

(0.483) (0.485)
Low_QOL × QOL × WFHPOT −0.869

(1.797)
High_QOL × QOL × WFHPOT 1.335

(1.463)
PROD × WFHPOT 1.866∗∗∗ 1.998∗∗∗

(0.477) (0.448)
QOL × WFHPOT 0.734

(1.064)
Pct. pop. with a college education 0.138∗∗∗ 0.134∗∗∗ 0.131∗∗∗ 0.129∗∗∗

(0.025) (0.025) (0.026) (0.026)
Pct. MSA land steeper than 15 degrees −0.364 −0.371 −0.318 −0.318

(0.274) (0.277) (0.268) (0.268)
Wharton Residential Land-Use Regulation Index −0.011∗ −0.011∗ −0.011∗ −0.011∗

(0.006) (0.006) (0.006) (0.006)
Bartik IV 2019-2020 −0.077 −0.063 −0.089 −0.073

(0.109) (0.108) (0.108) (0.106)

Observations 792 792 792 792
Adjusted R2 0.387 0.387 0.387 0.387
Sample metro metro metro metro
SE cluster MSA MSA MSA MSA

Note: Outcomes are county-level changes in log USPS migration outflows. USPS migration outflows are estimated us-
ing county-to-county U.S. Postal Service address changes. Control variables include census division fixed effects, WFH
potential, percent of population with a college education, MSA productivity, MSA quality of life, percent of MSA land
steeper than 15 degrees, the Wharton Residential Land-Use Regulation Index, and the 2019-2020 Bartik instrument.
The metro county sample includes all counties that are part of an MSA. Standard errors are clustered at the MSA level.
∗p <0.1; ∗∗p <0.05; ∗∗∗p <0.01.
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Table 5. Quartile Regressions, 2019-2020

Dependent variable:
Change in log home price, log rent,

or log USPS migration outflow, 2019–2020

Log home price Log rent
Log USPS migration

outflows

(1) (2) (3)

PROD_Quartile_1 X WFHPOT 0.033 0.0003 0.296
(0.049) (0.068) (0.204)

PROD_Quartile_2 X WFHPOT 0.100∗∗ −0.127∗∗ 0.401∗∗∗

(0.040) (0.054) (0.130)
PROD_Quartile_3 X WFHPOT 0.041 −0.175∗∗∗ 0.467∗∗∗

(0.030) (0.055) (0.174)
PROD_Quartile_4 X WFHPOT −0.069∗∗ −0.236∗∗∗ 0.623∗∗∗

(0.033) (0.043) (0.140)
QOL_Quartile_1 X WFHPOT 0.081∗∗ 0.093∗ −0.265∗

(0.035) (0.054) (0.153)
QOL_Quartile_2 X WFHPOT −0.003 0.042 −0.418∗∗

(0.034) (0.056) (0.164)
QOL_Quartile_3 X WFHPOT 0.022 0.070 −0.374∗∗∗

(0.034) (0.047) (0.140)
PROD_Quartile_1 −0.028 −0.066∗∗∗ 0.083∗

(0.018) (0.020) (0.046)
PROD_Quartile_2 −0.046∗∗∗ −0.034∗ 0.047

(0.016) (0.018) (0.030)
PROD_Quartile_3 −0.028∗ −0.016 0.041

(0.015) (0.015) (0.042)
QOL_Quartile_1 −0.018∗ −0.021 0.063

(0.011) (0.019) (0.047)
QOL_Quartile_2 0.008 0.001 0.117∗∗

(0.011) (0.020) (0.050)
QOL_Quartile_3 0.002 −0.016 0.106∗∗

(0.011) (0.016) (0.042)
Pct. pop. with a college education −0.032∗∗∗ −0.038∗∗∗ 0.161∗∗∗

(0.011) (0.010) (0.026)
Pct. MSA land steeper than 15 degrees −0.054 −0.227 −0.418

(0.088) (0.182) (0.286)
Wharton Residential Land-Use Regulation Index 0.006∗∗∗ −0.003 −0.008

(0.002) (0.003) (0.006)
Bartik IV 2019-2020 0.009 0.172∗∗ −0.142

(0.055) (0.082) (0.112)

Observations 792 269 792
Adjusted R2 0.151 0.495 0.365
Sample metro metro metro
SE cluster MSA MSA MSA

Note: Outcomes are county-level changes in log annual home prices and log rents for all homes and condos/co-ops and
county-level changes in log USPS migration outflows. Home prices and rents are based on the Zillow Home Value Index
and Zillow Observed Rent Index, respectively. USPS migration outflows are estimated using county-to-county U.S. Postal
Service address changes. Control variables include census division fixed effects, percent of population with a college educa-
tion, percent of MSA land steeper than 15 degrees, the Wharton Residential Land-Use Regulation Index, and the 2019-2020
Bartik instrument. The metro county sample includes all counties that are part of an MSA. Standard errors are clustered at
the MSA level. ∗p <0.1; ∗∗p <0.05; ∗∗∗p <0.01.
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Table 7. Intracity Zip-Code Home Price Gradients, New York-Newark-Bridgeport, NY-NJ-CT-PA

Dependent variable: Log home price

12/2019 12/2020
(1) (2)

Log dist. to CBD −0.269∗∗∗ −0.242∗∗∗

(0.020) (0.019)
Log dist. to nearest river 0.050∗∗∗ 0.047∗∗∗

(0.012) (0.012)
Log dist. to nearest lake −0.033∗∗∗ −0.033∗∗∗

(0.012) (0.012)
Log dist. to nearest coastline −0.045∗∗∗ −0.052∗∗∗

(0.010) (0.009)
Avg. annual precipitation 1971–2000 0.0001 0.0002

(0.0002) (0.0002)
Max temperature in July −0.127∗∗∗ −0.123∗∗∗

(0.014) (0.014)
Minimum temperature in January 0.099∗∗∗ 0.095∗∗∗

(0.012) (0.012)
Average slope 0.002 −0.001

(0.003) (0.003)
Log population density −0.051∗∗∗ −0.056∗∗∗

(0.012) (0.012)
Log avg. hhld. income 0.854∗∗∗ 0.814∗∗∗

(0.035) (0.035)

Observations 1,076 1,076
Adjusted R2 0.673 0.657

Note: The estimation equation is logPzt = αm +βt logDistCBDz + γtXz + εzt , where Pzt is the home price in-
dex of zip-code z, αm are metro area fixed effects, DistCBDz is distance from zip-code z to the central business
district, and Xz are zip-code covariates. Home price indices are based on the the zip-code-level Zillow Home
Value Index for all homes and condos/co-ops. Zip-code covariates are based on census tract-level data from
Lee and Lin (2018), which we map to zip-codes using a HUD crosswalk.
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Table 8: Change in Population Inflows, 2019-2020

Dependent variable:
Change in log USPS migration inflows, 2019–2020

(1) (2)
Log WFHPOT-weighted ACS migration inflows,
2015-2019 (per capita) 0.016∗∗ 0.019∗∗

(0.008) (0.008)
PROD −0.007 −0.016

(0.036) (0.033)
QOL 0.303∗∗∗ 0.268∗∗∗

(0.076) (0.076)
State’s top income tax rate −0.220∗∗

(0.110)
State’s income tax rate, single filer with $75,000 AGI −0.271

(0.183)

Observations 792 792
Adjusted R2 0.078 0.072
Sample metro metro
SE cluster MSA MSA

Note: Outcomes are county-level changes in log USPS migration inflows. USPS migration inflows are estimated
using county-to-county U.S. Postal Service address changes. The main regressor is log county-level WFH potential-
weighted ACS inflows per capita. The WFH potential-weighted ACS inflows for destination county i is defined as
∑ j WFHPOT j ·F ji, where WFHPOT j is the WFH potential of origin county j and F ji is the 2015-2019 American Com-
munity Survey migration flow from origin county j to destination county i. To express the WFH potential-weighted
migration inflows in per-capita terms, we adjust the variable by 2018 destination county population. Control variables
include MSA productivity, MSA quality of life, and state-level income tax rates, either as measured by states’ tax rate
for the top income bracket or states’ tax rate for single filers with $75,000 adjusted gross income. State-level top in-
come tax rates come from the the Tax Foundation, and state-level tax rates based on adjusted gross income come from
the National Bureau of Economic Research. The metro county sample includes all counties that are part of an MSA.
Standard errors are clustered at the MSA level. ∗p <0.1; ∗∗p <0.05; ∗∗∗p <0.01.
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 Δlog P 

 0 PROD1,2,3 

 WFHPOT 

PROD4

PROD5

PROD6 

Figure 1:  The need for a triple-interaction specification 

This figure shows the relation between Δlog P and WFHPOT for different values of PROD.  When PROD takes a low value (PROD1, PROD2, 
or PROD3), housing prices are low and workers have no incentive to move to another city.  As a result, prices are unaffected by the level of 
WFHPOT, as shown by the horizontal line.  When PROD takes a higher value (PROD4 < PROD5 < PROD6), an incentive to move exists, and 
the magnitude of the price decline is larger the higher is WFHPOT (since more workers can then move).  While the curves relating to Δlog P 
to WFHPOT are therefore downward sloping for these PROD values, a higher PROD value also yields a lower curve by Proposition 4(i).  The 
regression specification should therefore allow the relationship between Δlog P and WFHPOT to be flat for low levels of PROD while allowing 
it to be decreasing for high levels and for the slope to depend on the magnitude of PROD.  The triple interaction specification achieves these 
goals.  



QOL high         QOL low 

   PROD high 

   PROD low 

This figure provides a schematic representation of the population flows predicted by the model.  The black vertical 
arrows show that, when QOL is identical across cities (either high or low), WFH causes a population flow from high-
productivity to low-productivity cities.  The grey horizontal arrows show that, when PROD is identical across cities 
(either high or low), WFH causes a population flow from low-QOL to high-QOL cities.  However, actual population 
flows may look like those indicated by the thin dotted arrows, with population moving from a low-QOL/high-PROD 
city to a high-QOL/low-PROD city (grey arrow) or from a high-QOL/high-PROD city to a low-QOL/low-PROD city 
(black arrow). 

Figure 2: Population flows under WFH 
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Figure 3. Relationship Between WFH Potential and Productivity, MSA

Note: Figure plots the relationship between WFH potential and local productivity for the 15 most populous MSAs
(based on 2019 population) in each quadrant.
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Figure 5. Intracity Home Price Gradients, 2017–2020

Note: Figure plots the coefficients and 95 confidence intervals of the event study estimates. Outcomes are intracity
home price gradients based authors’ calculations. In the first stage, we estimate the intracity home price gradient
of each MSA with at least 30 zip-codes by separately regressing log zip-code-level Zillow Home Value Index on log
distance to the central business district, a set of exogenous amenities (log distances to nearest lake, river, and coastline;
the average annual precipitation 1971–2000, January minimum temperature, and July maximum temperature), average
slope, and a set of proxies for endogenous amenities (log population density and log average household income). In
the second stage, we estimate an event study equation by regressing the estimated intracity home price gradients on
the interactions of month-year dummies and principal-city counties’ WFH potential, controlling for MSA fixed effects
and month-year fixed effects. Standard errors are clustered at the MSA level.
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Online Appendix

A New Spatial Hedonic Equilibrium in the Emerging Work-from-Home Economy?

Jan K. Brueckner, Matthew E. Kahn and Gary C. Lin

A1. Employment comparisons and proof of Proposition 3

Employment relationships L̃s < N∗

s and L̃d > N∗

d stated prior to Proposition 2 follow

because N∗

s > N = L̃s and N∗

d < N = L̃d. It then follows that w(N∗

s , α) < w(L̃s, α), with

w(N∗

d , α) > w(L̃d, α) holding for city d, establishing Proposition 3 (ii). Therefore, the original

residents of city s (city d) earn a higher (lower) wage under WFH.

When the only advantage of city s is higher productivity, the previous results yield N∗

s >

Ñs < L̃s, which appears to imply that w(N∗

s , αs) could be larger or smaller than w(L̃s, αs),

and similarly for w(N∗

d , αd) and w(L̃d, αd). However, further analysis dispels this ambiguity,

as follows.

The first step is to note that the inequalities N∗

s > L̃s and N∗

d > L̃d cannot both hold

nor can the reverse of these two inequalities both hold. Either set of inequalities violates the

requirements that the city populations before WFH or the employment levels under WFH

individually sum to 2N . Therefore, the inequalities

N∗

s < L̃s, N∗

d > L̃d or N∗

s > L̃s, N∗

d < L̃d (a1)

must be satisfied. The second set of inequalities implies

w(N∗

s , αs) < w(L̃s, αs), w(N∗

d , αd) > w(L̃d, αd). (a2)

Since w(N∗

s , αs) > w(N∗

d , αd) holds when city s has only a productivity advantage, the in-

equalities in (a2) can be combined to yield

w(L̃s, αs) > w(N∗

s , αs) > w(N∗

d , αd) > w(L̃d, αd), (a3)

which violates the condition of wage equality under WFH (w(L̃s, αs) = w(L̃d, αd)). Therefore,

the first set of inequalities in (a1) must hold, establishing the claim made prior to Proposition
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1, and they imply

w(N∗

s , αs) > w(L̃s, αs), w(N∗

d , αd) < w(L̃d, αd), (a2)

establishing Proposition 3 (i).

A2. Proof of Proposition 4

Focusing first on the differential-productivity case, after substitution of N∗

d = 2N − N∗

s

and As = Ad in (2), differentiation yields ∂N∗

s /∂αs > 0, showing that higher productivity

in city s raises its population in the absence of WFH. Since the population of city s in the

WFH equilibrium (Ñs) is independent of αs, being equal to N , it follows that the change in

the population of city s with the introduction of WFH, equal to Ñs −N∗

s is smaller the larger

is αs. Thus, WFH yields a larger population decline in city s the higher its productivity. This

larger population drop in turn implies that the WFH-induced housing-price decline in city s

is larger the higher its productivity.

Turning to the differential-amenity case, after substituting αs = αd = α and N∗

s = 2N−N∗

d

in (2), differentiation yields ∂N∗

d/∂Ad > 0, so that a higher amenity level in city d raises its

population in the absence of WFH. However, in constrast to the differential-productivity case,

the population of city d is still affected by Ad under WFH, with ∂Ñd/∂Ad > 0. Although

both amenity derivatives are positive, the derivative under WFH tends to be larger, so that

∂(Ñd − N∗

d )/∂Ad > 0.44 Thus, WFH yields a smaller population decline in city d the higher

its amenity level. This smaller population decline in turn implies that the WFH-induced

housing-price decline in city d is smaller the higher its amenity level.

44 Differentiating (2) yields ∂N∗

d
/∂Ad = −1/(w′

s +H ′

s + w′

d
+H ′

d
> 0, where the subscripts denote evaluation

of the function in city s or city d and the prime on the wage functions denotes the population derivative.
Differentiation of (3) yields ∂Ñd/∂Ad = −1/(H̃ ′

s + H̃ ′

d
) > 0, where the tildes on the H functions denote

evaluation at the WFH equilibrium. The wage terms tend to make first denominator larger in absolute value
than the second, making the amenity’s effect on N∗

d
smaller than its effect on Ñd. However, the fact that the

H ′ functions in the two expressions are evaluated at different equilibria means that this conclusion is likely but
not guaranteed to hold (the likelihood grows if H ′′ is small in absolute value).
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Table A2. Change in Population Outflows, 2019-2020

Dependent variable:
Change in log USPS outflows, 2019–2020

(1) (2) (3) (4)

Low PROD × PROD × WFHPOT 1.529 1.617
(1.139) (1.149)

High PROD × PROD × WFHPOT 1.862∗∗∗ 1.955∗∗∗

(0.483) (0.485)
Low QOL × QOL × WFHPOT −0.869

(1.797)
High QOL × QOL × WFHPOT 1.335

(1.463)
PROD × WFHPOT 1.866∗∗∗ 1.998∗∗∗

(0.477) (0.448)
QOL × WFHPOT 0.734

(1.064)
High PROD × PROD −0.023 −0.028

(0.370) (0.368)
High QOL × QOL −0.640 0.052

(0.733) (0.208)
PROD −0.390 −0.414 −0.448∗∗∗ −0.485∗∗∗

(0.326) (0.328) (0.140) (0.131)
QOL 0.141∗∗ 0.182∗∗∗ 0.198∗∗∗ 0.197∗∗∗

(0.067) (0.049) (0.060) (0.059)
WFHPOT 0.138∗∗∗ 0.134∗∗∗ 0.131∗∗∗ 0.129∗∗∗

(0.025) (0.025) (0.026) (0.026)
Pct. pop. with a college education −0.364 −0.371 −0.318 −0.318

(0.274) (0.277) (0.268) (0.268)
Pct. MSA land steeper than 15 degrees −0.011∗ −0.011∗ −0.011∗ −0.011∗

(0.006) (0.006) (0.006) (0.006)
Wharton Residential Land-Use Regulation Index −0.077 −0.063 −0.089 −0.073

(0.109) (0.108) (0.108) (0.106)

Observations 792 792 792 792
Adjusted R2 0.387 0.387 0.387 0.387
Sample metro metro metro metro
SE cluster MSA MSA MSA MSA

Note: Outcomes are county-level changes in log USPS migration outflows. USPS population outflows are estimated using county-
to-county U.S. Postal Service address changes. Control variables include census division fixed effects, WFH potential, percent of
population with a college education, MSA productivity, MSA quality of life, percent of MSA land steeper than 15 degrees, the
Wharton Residential Land-Use Regulation Index, and the 2019-2020 Bartik instrument. The metro county sample includes all
counties that are part of an MSA. Standard errors are clustered at the MSA level. ∗p <0.1; ∗∗p <0.05; ∗∗∗p <0.01.
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Table A4. Intracity Zip-Code Home Price Gradients, All Metro Areas

Dependent variable: Log home price

12/2019 12/2020
(1) (2)

Log dist. to CBD −0.090∗∗∗ −0.087∗∗∗

(0.021) (0.020)
Log dist. to nearest river 0.014 0.014

(0.017) (0.016)
Log dist. to nearest lake −0.010 −0.012

(0.010) (0.010)
Log dist. to nearest coastline −0.018 −0.018

(0.014) (0.014)
Avg. annual precipitation 1971–2000 −0.0001 −0.00003

(0.0001) (0.0001)
Max temperature in July −0.035∗∗∗ −0.033∗∗∗

(0.006) (0.006)
Minimum temperature in January 0.040∗∗ 0.036∗∗

(0.016) (0.015)
Average slope 0.00005 −0.001

(0.003) (0.003)
Log population density 0.008 0.014

(0.010) (0.009)
Log avg. hhld. income 1.127∗∗∗ 1.108∗∗∗

(0.043) (0.042)

Observations 12,792 12,792
Adjusted R2 0.823 0.830

Note: The estimation equation is logPzt = αm +βt logDistCBDz + γtXz + εzt , where Pzt is the home price in-
dex of zip-code z, αm are metro area fixed effects, DistCBDz is distance from zip-code z to the central business
district, and Xz are zip-code covariates. Home price indices are based on the the zip-code-level Zillow Home
Value Index for all homes and condos/co-ops. Zip-code covariates are based on census tract-level data from
Lee and Lin (2018), which we map to zip-codes using a HUD crosswalk.
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Figure A2. Intracity Home Price Gradients, Bootstrapped Standard Errors, 2017–2020

Note: Figure plots the coefficients and 95 confidence intervals of the event study estimates. Outcomes are intracity
home price gradients based authors’ calculations. In the first stage, we estimate the intracity home price gradient
of each MSA with at least 30 zip-codes by separately regressing log zip-code-level Zillow Home Value Index on log
distance to the central business district, a set of exogenous amenities (log distances to nearest lake, river, and coastline;
the average annual precipitation 1971–2000, January minimum temperature, and July maximum temperature), average
slope, and a set of proxies for endogenous amenities (log population density and log average household income). In
the second stage, we estimate an event study equation by regressing the estimated intracity home price gradients on
the interactions of month-year dummies and principal-city counties’ WFH potential, controlling for MSA fixed effects
and month-year fixed effects. Standard errors are estimated using nonparametric bootstrap.
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