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Racial di↵erences in exposure to ambient air pollution have de-
clined significantly in the United States over the past 20 years.
This project links administrative Census microdata to newly avail-
able, spatially continuous high resolution measures of ambient
particulate pollution (PM2.5) to examine the underlying causes
and consequences of di↵erences in Black-White pollution expo-
sures. We begin by decomposing di↵erences in pollution exposure
into components explained by observable population characteris-
tics (e.g., income) versus those that remain unexplained. We then
use quantile regression methods to show that a significant portion
of the “unexplained” convergence in Black-White pollution expo-
sure can be attributed to di↵erential impacts of the Clean Air Act
(CAA) in African American and non-Hispanic White communi-
ties. Areas with larger Black populations saw greater CAA-related
declines in PM2.5 exposure. We show that the CAA has been the
single largest contributor to racial convergence in PM2.5 pollution
exposure in the U.S. since 2000 accounting for over 60 percent of
the reduction.

Landmark studies in the 1980s (see for example O�ce (1983), Chavis and Lee
(1987)) demonstrated that low income and/or racial minorities in the U.S. are
more likely to be exposed to environmental burdens. This issue had become so
politically important by the 1990s that President Clinton issued Executive Order
12898 in 1994, which ordered the U.S. Environmental Protection Agency (EPA)
to explicitly study this “environmental justice” question.1 However, despite its
large volume, the existing evidence about racial disparities in pollution exposure
is largely piecemeal and indirect.
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The evidence is piecemeal because pollution monitoring networks are sparse.
For example, fewer than 20 percent of U.S. counties contain a regulatory grade de-
vice capable of monitoring small particulates (Fowlie, Rubin and Walker, 2019).2

The evidence remains somewhat indirect because researchers have been forced to
use proxies for potential exposure such as distance to a polluting facility.3 Dis-
tance to a facility is an imperfect substitute for ambient air pollution exposure,
both for reasons related to air transport and because mobile sources of pollution
are also important contributors to local air quality. Hence, while we know that
there are racial di↵erences in the proximity to toxic facilities and hazardous waste
sites, it is less clear how these di↵erences translate into di↵erences in measured
exposures. Moreover, we know very little about why racial gaps in pollution
exposure may have changed over time.

This paper addresses these gaps in our knowledge using newly available national
data on ambient particulate matter (PM2.5) exposure from 2000 to 2015. Ad-
vances in remote sensing technology combined with machine learning prediction
tools have allowed researchers to combine data from satellite imagery, pollution
monitors, land use characteristics, chemical air transport models to generate fine-
grained (1km grid) measures of ambient air pollution levels for the entire United
States (Di et al., 2016a; van Donkelaar et al., 2016). We merge these granular
pollution data to individual survey responses from restricted versions of the 2000
Census and the 2001-2015 American Community Survey (ACS) at the Census
Block level.

The paper proceeds in four parts. We first use these data to document gaps in
ambient exposure to PM2.5 between African Americans and non-Hispanic Whites
and to show how these gaps changed over time from 2000 to 2015. Next, we ex-
plore whether these cross-sectional gaps in pollution exposure can be explained by
di↵erences in individual and/or neighborhood characteristics, as reported in the
Census or ACS. Third, we explore the extent to which changes in relative mobility
versus relative improvements in neighborhood air quality have contributed to the
changes in pollution gaps in pollution exposure over this time period. Lastly, we
use quantile regression methods proposed by Firpo, Fortin and Lemieux (2009) to

2Similarly, Hsiang, Oliva and Walker (2019) point out that out of 3144 counties, only 1289 have
monitors for any “criteria” air pollutant (i.e. pollutants regulated under the Clean Air Act) at any point
between 1990-2015.

3For example, several case studies on residential proximity to polluting industrial facilities find that
racial and ethnicity minority groups and/or lower socioeconomic status groups experienced closer average
proximity to industrial facilities compared with other groups, and that this pattern persists over time
(e.g., Abel and White (2011) who study Seattle, 1990 to 2007; Hipp and Lakon (2010) who study southern
California, 1990 to 2000; Pais, Crowder and Downey (2013) who examine a national cohort from 1990 to
2007). There are challenges to drawing causal inferences from this literature ranging from from ecological
fallacy (Depro, Timmins and O’Neil, 2015; Hsiang, Oliva and Walker, 2019) to problems associated with
assuming that people in geographic areas that do not contain hazards are not exposed to pollutants,
even when the hazards in question may lie close to geographic boundaries (Banzhaf, Ma and Timmins,
2019; Mohai and Saha, 2006; Mohai, Pellow and Roberts, 2009).Currie (2011) looks at all births in five
large states between 1989 and 2003 and shows that pregnant Black women are about 50% more likely to
live within 2000 meters of a toxic release inventory site and 100% more likely to live within 2000 meters
of a superfund site than pregnant White women.
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explore the extent to which the spatially targeted nature of the Clean Air Act, and
associated introduction of the PM2.5 National Ambient Air Quality Standards
(NAAQS), has a↵ected di↵erent parts of the national pollution distribution and,
in turn, the observed Black-White pollution gap in the United States.
The analysis confirms that African Americans tend to live in the most polluted

areas nationally. However, this Black-White gap in mean pollution exposure has
closed substantially since the turn of the century. The mean gap in pollution
exposure has converged from 1.5µg/m3 in 2000 to only 0.5µg/m3 in 2015. This
convergence alone could potentially account for almost 5% of the improvement
in relative life expectancy between Blacks/Whites over this time period.4 We
then explore the underlying cross-sectional correlates of the observed pollution
gaps by leveraging the individual microdata in the Census and ACS. We begin
by comparing the unconditional mean gap in pollution exposure between African
Americans and non-Hispanic Whites to the conditional mean pollution gap af-
ter controlling for individual characteristics (e.g., income, education, household
structure).5 We also examine whether individual characteristics are able to ex-
plain gaps in exposure at other quantiles of the pollution distribution, in the spirit
of DiNardo, Fortin and Lemieux (1996). We find that virtually none of the racial
di↵erence in exposure can be explained by di↵erences in individual or household-
level characteristics such as income, suggesting that only a small portion of the
observed convergence in pollution levels can be explained by relative changes in
these characteristics over time.
Mechanically, there are two remaining ways this narrowing of the pollution gap

could have occurred: Areas with relatively large shares of African Americans may
have enjoyed larger pollution reductions than other areas; or relative population
shares could have shifted in ways that benefited African Americans relative to
the non-Hispanic White population. We use a simple decomposition to show
that relative mobility di↵erences or changes in Black-White population shares
are not able to explain the observed convergence in pollution exposure. While
the White population has been gradually shifting to more urban and hence more
polluted areas, this phenomenon explains very little of the observed Black-White
convergence in pollution exposure when compared to the large and significant air
quality improvements in the average Black neighborhood over this time period.
The convergence in the racial gap in pollution exposure between 2000 and

2015 can be entirely accounted for by the fact that areas with larger shares of
African American residents showed the greatest improvement in air quality over
this time period. Why is this the case? We show that much of this improvement is
driven by the introduction of the PM2.5 National Ambient Air Quality Standards,
which greatly improved air quality in newly regulated areas — areas with higher
concentrations of African Americans. More specifically, we use unconditional

4See Section I below for a more complete description of this calculation.
5Throughout the paper, we use the term “conditional mean pollution gap” to reflect the di↵erence

left after adjusting (i.e. conditioning) for di↵erences in covariates. Formally, these gaps measure the
average of the conditional di↵erences that exist for each value of the covariates.



4 THE AMERICAN ECONOMIC REVIEW MONTH YEAR

quantile regression (Firpo, Fortin and Lemieux, 2009) in a di↵erence-in-di↵erences
setting to show how the introduction of the PM2.5 NAAQS a↵ected di↵erent
quantiles of the national pollution distribution. We then combine these quantile
regression estimates with the Black and White population shares in the respective
pollution quantiles to calculate that over 60 percent of the observed convergence
in mean PM2.5 di↵erences between Blacks and Whites over this time period can
be traced back to the spatially targeted nature of the CAA regulations.
This is the first paper, to our knowledge, that links nationally representative,

individual-level survey data to a national surface grid of PM2.5 pollution mea-
surements to explore cross-sectional di↵erences and trends in environmental in-
equality between racial groups.6 Moreover, we are not aware of any papers that
have explored the causal determinants of narrowing pollution gaps between racial
groups over time.7 Our data not only has useful features from a measurement per-
spective, allowing for higher quality measurement of the distribution of pollution
exposure than has been possible before, but it also allows us to answer questions
that cannot be addressed with public-use Census data. For example, the restricted
versions of the Census and ACS data (which provide block-level geographic in-
formation) allow us to distinguish between di↵erences in pollution exposure that
can be explained by di↵erences in individual characteristics (e.g., income) or dif-
ferences in neighborhood characteristics (e.g. average years of schooling). While
these findings are descriptive, we are able to explore, for the first time, how much
variation in pollution exposure might plausibly be explained by individual endow-
ments, and how much may instead be explained by aggregate, neighborhood-level
characteristics. Lastly, the spatially continuous PM2.5 measurements allow us to
create these statistics and perform these decompositions for the entire continental
U.S., as opposed to focusing on a single city or on communities that are proximate
to a toxic plant or a pollution monitor.
The second contribution of this paper is to explore the distributional e↵ects of

6A small but growing literature has begun using remote sensing data to measure the distribution of
environmental hazards (see e.g., Fowlie, Rubin and Walker (2019) for a recent overview and application).
A subset of this literature studies environmental inequality by merging remote-sensing data to Census
tract or Census block group demographic data. For example, Clark, Millet and Marshall (2014, 2017)
examine racial di↵erences in exposure to NO2 using 2006 Census Block-Group NO2 measurements linked
to the 2000 Decennial Census data, and Voorheis et al. (2017) examine di↵erences in exposure to NO2
and PM2.5 using satellite data combined with tract-level aggregates from the American Community
Survey.

7Relatively few U.S. studies have explored temporal trends in racial gaps in ambient air pollution or
transportation-related air pollution. Brajer and Hall (2005), studied ozone and coarse particulate matter
in southern California from 1990 to 1999, and found that on average, as air pollution decreased over
time, Asians and Hispanics experienced larger reductions in ozone concentrations but smaller reductions
in coarse particulate matter concentrations, compared with other groups. Kravitz-Wirtz et al. (2016),
studied nitrogen dioxide and particulate matter exposures in the United States for a cohort of 9,000
families from 1990 to 2009, and found that though exposures decreased over time, they remained higher
for Blacks and Hispanics than for Whites. Ard (2015) look at racial trends in exposures to toxic releases
from 1995 to 2004, using data on releases of 415 chemicals from 17,604 facilities reporting in the Toxic
Release Inventory. They find that potential exposure to toxics declined for all, but that African Americans
are still more exposed than Whites or Hispanics, even conditional on income and education. Voorheis
et al. (2017) uses administrative records and satellite data to compare within-person changes in pollution
exposure between Blacks and Whites.
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environmental policy and the Clean Air Act more specifically. While a substantial
literature examines the average e↵ects of the Clean Air Act on pollution exposure
and the harms that it causes (e.g., Chay and Greenstone (2003); Isen, Rossin-
Slater and Walker (2017)), we know of no other work that explores the impact
of the Clean Air Act on di↵erent empirical moments of the nationwide pollution
distribution. For example, we are able to address the question of how much the
CAA NAAQS have compressed the national pollution distribution, and to ask
which quantiles show the largest e↵ects? The advent of unconditional quantile
regression and related methods (Firpo, Fortin and Lemieux, 2009), combined
with the new availability of spatially continuous PM2.5 measurements, make such
analysis possible.
In summary, our study uses high-resolution PM2.5 data and restricted-access

Census data to measure gaps in racial exposure to pollution for a nationally
representative sample of the U.S. population. Our main innovation is to explore
the reasons why the racial gap has declined by asking what part of the decline can
be attributed to convergence in the individual and household-level characteristics
of African American and other households; how much can be explained by the
relative mobility of di↵erent racial groups (e.g., Blacks moving away from polluted
areas); how much can be explained by more rapid clean-up of historically Black
neighborhoods; and how much of the more rapid clean-up of historically Black
neighborhoods that we observe is due to the spatially targeted enforcement of the
CAA.
The rest of the paper proceeds as follows. Section I introduces the linked Cen-

sus and satellite derived pollution data and provides initial descriptive statistics
on environmental inequality between racial groups. Section II explores whether
these mean and quantile di↵erences can be explained by di↵erences in individual
characteristics and changes to those characteristics over time. Section III tests
for how the spatially targeted nature of the Clean Air Act a↵ects the national
distribution of PM2.5 exposure, and how these quantile changes map into the
observed Black-White gap in pollution exposure. Section IV concludes.

I. Data and Descriptive Statistics on Racial Gaps in Pollution Exposure

Environmental science has seen a recent explosion of research combining spatially-
continuous satellite measurements of pollution correlates (e.g., aerosol optical
depth) with other observable pollution correlates such as emissions inventories,
chemical transport models, land use characteristics, and weather patterns (see
e.g., Di et al. (2016a); van Donkelaar et al. (2016)). The basic idea is to build
a predictive model of a pollutant of interest (e.g., PM2.5) by correlating in-situ
EPA monitor data with the observable predictors of air pollution measures using
modern model selection techniques (e.g., cross-validated neural nets). Researchers
then use these models to predict air pollution “out of sample” for the large seg-
ments of the United States without existing pollution monitors but with satellite
measurements. We use data from Di et al. (2016a), who produce daily PM2.5
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concentrations at a 0.01 degree by 0.01 degree resolution (1km by 1km at the
equator) for the contiguous U.S. from 2000-2015.8,9 We spatially intersect this
gridded, raster data with Census block boundary files from the 2000 and 2010
Census, which we use to merge the pollution data to the individual survey re-
sponses from the 2000 Census and 2001-2015 ACS.
It is important to note that these pollution data are estimates of ground-level

pollution concentrations. These estimates perform well — on average, they match
the “ground truth” as measured by EPA monitors, with very high, in-sample mea-
sures of fit. However, there is some evidence that these satellite-derived measures
may deviate from the ground truth at the tails of the pollution exposure distribu-
tion. Fowlie, Rubin, and Walker (2019) show that two of the most commonly used
measures, Di et al. (2016a) and van Donkelaar et al. (2016), are biased downward
for high PM2.5 levels. It seems likely in our setting that these prediction errors
will attenuate measured disparities since African Americans are are more likely
that Whites to be located in the most highly polluted places. We will proceed
with our analyses treating the satellite data as if it were the truth, keeping in
mind the caveat that our results may be a lower bound on true racial gaps in
exposure.
We merge the pollution data with individual-level data from the 2000 Census

long form (1 in 6 U.S. households) (Bureau, 2010) and from the 2001-2015 Amer-
ican Community Surveys (Bureau, 2015) using household Census block locations.
Our primary comparisons focus on the non-Hispanic White and African Ameri-
can populations. We focus on gaps between African Americans and non-Hispanic
Whites because historically these have been the largest and most well-documented
gaps. Additionally, there are potential measurement issues in studying di↵erences
between Hispanics and non-Hispanic Whites over time. For example, studies
which have linked individual responses to the 2000 and 2010 Decennial Censuses
find evidence that Hispanic identity is more fluid over time than White or Black
racial identities (Liebler et al., 2017).
Figure 1 plots mean pollution exposure for both the African American (dotted

red line) and non-Hispanic White population (solid blue line) from 2000 to 2015.
The observed Black-White gap in mean pollution exposure was 1.6 micrograms
per cubic meter (µg/m3) in 2000, narrowing to 0.54 µg/m3 in 2015. Although
African American exposure fell more, it was higher to begin with, so that the
percentage reduction is similar for both Blacks and Whites. However, since the
level of pollution exposure is important, that is our main focus. One way to
interpret the di↵erences in levels is to translate the gaps into racial di↵erences
in life-expectancy through the lens of a PM2.5 concentration-mortality response
function. Pope III, Ezzati and Dockery (2009) estimate that life expectancy is
reduced by 0.61 years for each 10 µg/m3 increase in sustained exposure to PM2.5.

8The published version of Di et al. (2016a) use data from 2000-2012. We received years 2013-2015
via direct correspondence with the authors.

9We have replicated most of the results in this project using similar data from van Donkelaar et al.
(2016), and the qualitative conclusions are very similar.
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Over this time period, the Black-White gap in life expectancy fell from about 5
years to 3.5 years (Arias, Xu and Kochanek, 2019). Thus, the observed 1 µg/m3

improvement in the Black-White pollution gap could potentially explain 4% of
this improvement in the Black-White mortality gap.10

Do these national gaps in pollution exposure exist at other geographic scales?
The national gaps in pollution exposure reflect both di↵erences in where Black
and White people live and within-area gaps in pollution exposure. For example,
the average, within-state di↵erences in pollution exposure could be the same as
the nationwide di↵erences, or the within-state gaps in pollution exposure could be
minimal indicating that African Americans simply live in more polluted states on
average. Appendix Figure B1 explores average, within-area gaps in exposure at
di↵erent geographic scales. We regress the pollution exposure of an individual on
an indicator for whether or not that individual is African American, controlling
for di↵erent sets of geographic fixed e↵ects. The red, hollow squares represent
the conditional mean di↵erence in pollution exposure between African Ameri-
cans and non-Hispanic White individuals after controlling for state fixed e↵ects.
These within-state di↵erences in exposure are smaller than the national mean
di↵erences in exposure, and they exhibit a flatter downward trend. The average
within-county di↵erences are smaller, and the within-tract di↵erences in exposure
are essentially zero. For example, in 2000, the average within-tract gap was only
0.012 µg/m3. In 2000, the unconditional, nationwide gap was 1.5 µg/m3, sug-
gesting that more than 99 percent of the national gap (1-0.012/1.542) is driven
by di↵erences in the census tracts where Whites and Blacks live rather than by
White and Black di↵erences in exposure within the average census tract. Table B1
shows the adjusted R-squareds from these regressions, indicating that almost all
of the variation in individual exposures is explained by census-tract fixed e↵ects.
Since the median census tract is 5 square kilometers, our 1km by 1km grid of
pollution measures is arguably fine enough to detect within census-tract di↵er-
ences in exposure. However, the calculations in this section suggest that these
di↵erences are negligible.

While Figures 1 and B1 present the mean and conditional mean Black-White
gap over time, the data also allow us to explore the entire distribution of pollution
exposure for each race group and how these distributions have changed over time.
Figure 2 plots the pollution densities, separately for the African American and
non-Hispanic White population in both 2000 and 2015.11 When comparing the x-
axis of both the 2000 and 2015 figures, it becomes clear that PM2.5 pollution levels
have fallen dramatically for both groups. For example, in 2000, the bulk of both
distributions lies above 10 µg/m3, while in 2015 the bulk of both distributions lies

10This is calculated as 0.61*(1/10)/1.5 years. Note that Arias, Xu and Kochanek (2019) only reports
Black-White gaps in life expectancy as far back as 2006. The 2000-2015 change in the Black-White life
expectancy was likely larger than 1.5, reducing the percentage contribution of PM2.5 in explaining this
improvement.

11Due to Census disclosure avoidance review, we were forced to trim the upper 97th and lower 3rd
percentiles of each pollution distribution.
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below that threshold. The other salient feature of these densities is that most of
the improvements for Blacks relative to Whites between 2000 and 2015 come from
compressing the upper portion of the pollution distribution, a point to which we
will return.

II. Decomposing Di↵erences in Pollution Exposure

What explains the observed di↵erences in pollution exposure? Perhaps lower
income individuals live in more polluted places, and di↵erences disappear or are
greatly attenuated when we condition on income. Or perhaps di↵erences in ed-
ucation and/or knowledge about the potential harms of PM2.5 exposure lead to
observed di↵erences in pollution exposure? The Census demographic data allow
us to explore the cross-sectional and time-series di↵erences in pollution exposure
between racial groups. The demographic data also allow us to begin to explore
the extent to which individual endowments can explain the observed di↵erences
and changes. Conditional on income di↵erences, does the observed Black-White
gap in pollution exposure remain? We focus on the following individual-level
characteristics measured in the Census long-form and ACS surveys: race, age,
gender, income, education, number of children, and home ownership. We also ex-
plore the role of neighborhood characteristics in explaining pollution disparities,
using census tract characteristics constructed from the underlying microdata, in-
cluding: Mean public assistance income, the teen pregnancy rate, average years
of schooling, the population share living in single family residences, and the home
ownership rate. Appendix Table B2 presents summary statistics of these vari-
ables, separately for non-Hispanic White and African American individuals in
our sample.

A. Conditional versus Unconditional Di↵erences in Pollution Exposure

The data show a large gap in pollution exposure in 2000, which fell consid-
erably over the next fifteen years. As a first step towards understanding the
reasons for the declining gap, we start by asking whether cross-sectional di↵er-
ences in exposure in any given year can be explained by di↵erences in individual
characteristics from the Census and ACS. One natural way to do this is to com-
pare the conditional mean di↵erences in pollution exposure between racial groups
to the unconditional mean di↵erences using the following linear regression model:

(1) Pi = �1 [African Americani] +X 0� + ✏i

where pollution for individual i is regressed on an indicator for whether or not
the individual is African American, controlling for individual demographic char-
acteristics in the vector (X). Specifically, we control for individual income, age,
education, number of children, gender, and an indicator for homeownership. Re-
gressions are weighted using survey weights, and inference is conducted with
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cluster-robust standard errors, clustering by commuting zone. Figure 3a plots
the coe�cient � and associated confidence intervals from 15 separate regressions,
one per year, representing the conditional mean di↵erences in Black-White pollu-
tion exposure over time. Figure 3b compares these estimates to the unconditional
mean di↵erences in pollution exposure over time. The lines look almost identi-
cal. This similarity implies that di↵erences in individual characteristics, such as
income, explain almost none of the cross-sectional di↵erences in pollution expo-
sure between African Americans and non-Hispanic Whites. This fact is shown
more formally in Appendix Table B3. Appendix Table B3 also shows that includ-
ing the covariates more flexibly adds little explanatory power.12 This conclusion
is striking considering that African American households have mean household
income more than $15,000 lower than non-Hispanic Whites (see Appendix Ta-
ble B2). These di↵erences in income and other characteristics explain almost
none of the observed di↵erences in pollution exposure. A.A1 formally decom-
poses these cross-sectional di↵erences in mean pollution exposure using methods
pioneered by Oaxaca (1973) and Blinder (1973). Observable di↵erences in indi-
vidual and household characteristics are able to explain at most 8 percent of the
gap in mean di↵erences in any given year. Of these characteristics, di↵erences in
homeownership rates tend to matter most (accounting for between 4-6 percent of
the total di↵erence). On net, African Americans are more likely to be renters,
and rental housing is disproportionately exposed to PM2.5.
Gaps in pollution exposure are also found at di↵erent points within the income

distribution. Table 1 presents the results from 10 separate estimates of � from
equation (1), where we stratify the data by income quintiles in both 2000 and
2015. At each quintile, the conditional gap remains similar to the unconditional
gap in a given year. Di↵erences in individual characteristics do little to explain
the mean di↵erences in pollution exposure within these income categories.
Equation (1) and the Oaxaca-Blinder exercise in A.A1 are well-suited for de-

composing di↵erences in mean Black-White pollution exposure. However, Fig-
ure 2 suggests that there exist additional racial di↵erences at di↵erent quantiles
of the pollution distribution. A natural question to ask is whether di↵erences
in individual or household characteristics are able to explain di↵erences in pollu-
tion exposure at other parts of the pollution distribution. DiNardo, Fortin and
Lemieux (1996) provide a straightforward semi-parametric approach to answering
this question. The basic idea is to estimate what the entire distribution of African
American pollution exposure would look like if African Americans had the same
observable characteristics as non-Hispanic Whites. In practice, this amounts to
constructing a weighting function that is then used to re-weight a kernel density
estimate of the African American pollution distribution to provide the relevant
counterfactual distribution African Americans would have experienced given the
same characteristics as non-Hispanic Whites. This weighting function boils down

12We have repeated all of our analyses using this more flexible set of controls and found that the
estimates were the same to the third decimal point.
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to estimating a conditional probability of being a non-Hispanic White individual
based on observable, demographic characteristics via a probit regression. This
conditional probability is then used, along with the unconditional probabilities of
being White/Black in our sample to reweight the African American kernel density
in a given year.
The results from this exercise are presented in Appendix Figure B2. Appendix

Figure B2a presents estimates of the counterfactual pollution distribution in 2000,
and Appendix Figure B2b presents estimates of the counterfactual pollution dis-
tribution in 2015. In both cases, the counterfactual density looks very similar
to the actual density, again suggesting that individual characteristics are able to
explain little of the observed pollution gap throughout the distribution. A.A2 and
Appendix Table B5 use methods proposed by Firpo, Fortin and Lemieux (2009)
to formally decompose the 10th, 50th, and 90th percentiles of the pollution dis-
tribution into the parts that can be explained by observable covariates versus the
part that remains unexplained. Once again, we find that little can be explained
by observable individual-level characteristics from Census data.

B. Controlling for neighborhood characteristics

While individual and/or household characteristics explain little of the Black-
White pollution gap, there is substantial racial segregation into di↵erent areas
within and across communities. Are the di↵erences in the socioeconomic charac-
teristics of Black andWhite neighborhoods able to explain these gaps in exposure?
Panel 2 of Appendix Table B2 presents mean census tract characteristics, sepa-
rately for non-Hispanic Whites and African Americans. African Americans not
only have di↵erent individual and household-level characteristics on average, but
they also tend to be concentrated in census tracts with a higher percentage of
relatively disadvantaged neighbors. Note that there is nothing mechanical about
this — if neighborhoods were perfectly integrated in terms of race and socioeco-
nomic status, then everyone would live in a similar census tract regardless of their
own characteristics. Hence, we can control for characteristics of neighborhoods
or census tracts as well as characteristics of individuals in equation (1) in order
to explore whether Black-White di↵erences in neighborhood characteristics (con-
ditional on individual characteristics) are able to explain some of the observed
di↵erences in PM2.5 exposure.
Figure 3c shows the results of adding neighborhood characteristics to equa-

tion (1), and Appendix Table B6 presents the associated Oaxaca-Blinder decom-
position. Specifically, we add census-tract level measures of mean public assis-
tance income, the teen pregnancy rate, years of schooling, the share living in
single family residences, the home ownership rate, miles of major highways, and
total facility PM2.5 emissions to equation (1). Figure 3c, which plots year-by-
year estimates of �, looks quite similar to Figure 3a. Namely, the conditional
gap in pollution exposure between African Americans and non-Hispanic Whites
is also not fully explained by mean di↵erences in neighborhood characteristics.
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Appendix Table B6 explores this result in greater detail. The table shows the
fraction of the gap that is “explained” and “unexplained” by each variable sep-
arately, as well as the combined e↵ect of these neighborhood characteristics. As
one can see from the “Explained” panel of Appendix Table B6, Black-White dif-
ferences in neighborhood characteristics explain 0.324 of the documented 1.617
gap in PM2.5 exposure. Most notably, the tract home ownership rate explains
the largest share of the di↵erence. In both 2000 and 2015, mean di↵erences in the
tract home ownership rate explain about 20 percent of the di↵erence in PM2.5
exposure. There are also substantial di↵erences in the returns or responsiveness
of individuals to di↵erences in neighborhood characteristics (i.e. Panel B); a one-
year increase in the mean Census tract education translates into substantially
less pollution exposure for Whites than it does for Blacks in our sample, which
is reflected in the relatively large di↵erence in estimated “slopes” on the “Tract
Years of Schooling” variable in Panel B.

The fact that African Americans live in di↵erent neighborhoods than non-
Hispanic Whites explains some of the gap in pollution exposure but also raises
further questions. Does the shrinking of the racial gap in pollution exposure
come from improvements in air quality in neighborhoods that have higher shares
of African Americans, or is the improvement due to the relative movement of
African Americans away from dirty neighborhoods towards cleaner ones? We
next present an additional decomposition which attempts to shed light on these
questions.

C. People versus Places: Understanding How Relative Mobility Has A↵ected Pollution
Disparities

One straightforward way to understand the role of mobility in contributing
to the convergence in pollution exposure between Blacks and Whites is to con-
sider what the pollution gap in 2015 would have been if we fixed individuals in
their 2000 locations but let pollution in their fixed Census blocks change to its
2015 level. For this counterfactual exercise, we use the public-use 100% count
population data from the 2000 Decennial Census at the Census block level. We
merge these data to the 2000 and 2015 Di et al. (2016a) data to calculate mean
exposure gaps using block-level population counts for non-Hispanic Whites and
African Americans. Table 2 presents results from this counterfactual exercise.
Columns (1) and (2) present the actual pollution levels experienced by Blacks
and Whites in 2000 and 2015, and the associated gap (row 3) and change in gap
(row 4). Column (3) of Table 2 shows the results of a counterfactual exercise,
where we simulate what the gap (and change in gap) would have been in 2015
if people’s locations had been held fixed. The last row of Column (3) tells us
that the change in the pollution gap would have been slightly smaller if individu-
als had been unable to move between 2000 and 2015. African Americans moved
to relatively cleaner places between 2000 and 2015, and the opposite is true for
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non-Hispanic Whites.13 If populations were fixed in their 2000 locations, the gain
would have been 0.89 µg/m3 versus the 1.02 µg/m3 actually experienced. Thus,
only 12.7% of the improvement in the exposure gap stems from di↵erences in
the mobility patterns between African Americans and non-Hispanic Whites over
this time period, leaving the rest to be explained by a greater improvement in
pollution in predominantly African American areas.
A.A3 presents additional results that explore the year-by-year changes in Black-

White population shares and pollution exposure or order to shed further light on
the role of mobility in explaining pollution gaps. This analysis shows that the
negative relationship between White population shares and pollution levels has
weakened over time. Even so, the role of relative mobility di↵erences in explaining
the closure of the gap remains small (certainly less than 15%).
Whether and how the mobility of Whites and Blacks is related to changes in

air quality over this time period is a di↵erent question. Are non-Hispanic Whites
moving into the cities that experienced the largest improvements in air quality?
It is possible that non-Hispanic Whites moved to the cities that were cleaning
up the most rapidly, but still increased their exposure to pollution. Suppose
an individual moved from the relatively less polluted suburbs towards the city
center in a city where air quality has improved. While this individual is moving
to an urban center that has cleaned up, their new air quality exposure may
remain above their previous exposure. We explore these issues in more detail in
subsequent sections.

III. The Clean Air Act and Relative Changes in Pollution Exposure

Thus far, we have documented that a) the Black-White gap in exposure to par-
ticulate matter has declined substantially since 2000, and b) neither individual
characteristics nor residential mobility of individuals appears to fully explain why
this gap has declined. Rather, it appears that the Black-White gap in exposure
has declined primarily because African American neighborhoods had greater im-
provements in air quality. But why did these particular neighborhoods experience
improvements in air quality? We hypothesize that a major reason for the narrow-
ing of the Black-White gap in air quality is that changes in the enforcement of
the Clean Air Act between 2000-2015 were more binding in predominantly Black
neighborhoods. We formally investigate this hypothesis below.
The CAA was first implemented in 1963, but the original legislation provided

limited federal oversight of state e↵orts and led to disappointing results. In re-
sponse, Congress enacted the Clean Air Act Amendments of 1970 and established

13This pattern is consistent with recent findings in urban economics which show that, after decades
of suburbanization, the urban population became Whiter and more college-educated in most large U.S.
cities after 2000 (Baum-Snow and Hartley, 2019; Couture and Handbury, 2017), and similarly, suburbs
have become more diverse. The shift in White population shares towards urban centers contributes to
higher levels of average pollution exposure among Whites than they would have experienced had they
remained in predominantly suburban locations.
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the EPA, which vastly increased federal power to address air pollution.14 The
CAA initially focused on common, dangerous, air pollutants known as “criteria
air pollutants.” Compliance was to be achieved through regulations governing
both stationary sources (e.g., factories) and mobile sources (e.g., cars).
For stationary sources, the CAA created pollutant-specific national ambient

air quality standards (NAAQS) that specify maximum allowable concentrations
of criterion air pollutants. NAAQS were initially established for sulfur dioxide
(SO2), carbon monoxide (CO), nitrogen dioxide (NO2), lead, particulates (TSP),
and eventually ozone (O3). Stationary source regulations focus primarily on ar-
eas that are out of compliance with the NAAQS. Each year in July, the EPA
determines the set of counties that are in violation or “nonattainment” of a par-
ticular NAAQS standard based on air pollution monitor measurements in those
or nearby counties. The consequences of being a “nonattainment” area can be
severe. State governments must develop a pollutant-specific plan, known as a
State Implementation Plan, describing how areas will improve air quality and
come into compliance. The EPA reviews these state plans. If a state fails to act
or develops an inadequate plan, the EPA can withhold federal funding for the
state air pollution control program, highway construction, and the construction
of sewage treatment plants. The EPA can also ban permits for construction of
major new and/or modified sources of a pollutant in communities that are out of
compliance with NAAQS. In addition, the EPA can impose its own federal plan
if it deems a state’s plan inadequate. Thus, the CAA gives the EPA sweeping
powers to take action to improve air quality, with or without state cooperation.
Since 1970, there have been two major amendments to the CAA, in 1977 and

1990, and hundreds of additional policies designed to respond to changing sci-
entific consensus about both the harms from pollution and feasible compliance
technologies. In 1997, the EPA tightened the NAAQS pertaining to ozone and
particles further, regulating fine particles less than 2.5 micrometers in diameter
(PM2.5) for the first time. The new standards were extremely controversial and
were challenged in the courts for years, but ultimately the EPA prevailed, and the
new standards were implemented in April 2005. The EPA revised the PM2.5 (24
hour) standard again in 2006, and the revision went into e↵ect in 2009. However,
since all counties which were in nonattainment of the annual PM2.5 standard in
2009 were also in nonattainment of the 24 hour standard, the 2009 designations
do not appear to have caused additional new areas to be subject to NAAQS
nonattainment regulations. We focus on the e↵ects of mandated reductions in
annual PM2.5 under the 1997 standards which finally began to be implemented
in 2005.
To what extent is the cleanup of predominantly African American areas a re-

sult of the implementation of these new standards? We have seen that African
Americans lived in more polluted places on average in 2000, and the initial impact

14Currie and Walker (2019) provide a more complete overview of the Clean Air Act and associated
research by economists.
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of the CAA was therefore likely to be greatest in these places. Figure 4a shows
the distribution of the African American and non-Hispanic White populations by
vigintile of PM2.5 levels in 2000; the former were much more likely to live in the
highest pollution deciles, while for Whites the situation is reversed. Figure 4b
shows that it was predominantly counties in the highest PM2.5 deciles that were
impacted by the enforcement of the standards in 2005. Hence, unless the initial
impact of stronger regulation was undone by re-sorting of population shares, we
would expect the regulations to close gaps between Blacks and Whites.
We begin by examining the e↵ect of these new air quality standards on pollu-

tion exposure in a standard di↵erence-in-di↵erence, event-study design. To better
mimic the way the regulations work in practice we adopt a slightly unconventional
regression model when compared to the existing literature. Whenever a county
exceeds the air quality standard based on a local monitoring station, the regula-
tor decides whether nearby or adjacent counties could also have contributed to
this violation. Thus, these nonattainment designations apply to “air regions” or
groups of counties in the same local market, typically not a single county. We
approximate these air region definitions using county-aggregates in the form of
commuting zones (CZs) or local labor markets.15 Figure 5 shows a map of the
2000-2015 changes in PM2.5. We overlay this map with the outline of the 62
commuting zones, consisting of 250 counties in 20 states, that were designated
as nonattainment areas in 2005. The figure illustrates that the largest reduc-
tions are concentrated the Eastern and Southeastern United States, areas with
higher shares of African American residents relative to other parts of the United
States that experienced less air quality improvement. The figure also suggests
that the areas targeted by the new standards were among those that experienced
the largest improvements in air quality.
We estimate an event study model of the following form:

(2) Pict =
2015X

t=2000

�t (1 [Nonattainc]⇥ 1[yeart = t]) + �c + ⇢t + ✏ict

where pollution Pict for person i residing in CZ c in year t is regressed on a series
of interaction terms for whether a CZ is newly designated as nonattainment for
the PM2.5 standard (1 [Nonattainc] = 1) interacted with a dummy for each year
before and after the regulations went into place. Equation (2) also controls for
county fixed e↵ects �c and (state-)year fixed e↵ects ⇢t. All regressions are weighted
using Census survey weights, and standard errors are clustered at the CZ level.
The coe�cients of interest, �t, compare the CZs that became newly regulated

15There is no formal EPA definition of “air regions”, as they are decided on a case-by-case basis.
Thus, air regions are only defined for nonattainment areas. Our use of commuting zone boundaries is
meant to approximate air region boundaries in the attainment areas. In practice, our results are not
sensitive to using either county or commuting zone boundaries to assign treatment/control, but we chose
the latter to better mimic the regulatory variation while also accounting for potential spatial correlation
in treatment.
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under the PM2.5 standard to areas that were in compliance with the standard,
before and after the regulations went into place. The identifying assumption is
that the newly regulated CZs would have trended similarly, in terms of pollution
levels, to the unregulated CZs in the absence of the treatment. Alternatively, the
identifying assumption relies on there being no common shock to the treated CZs
in the years after the regulations went into place. While these assumptions are
inherently untestable, the event study design a↵ords us a useful indirect test; we
can examine the event study coe�cients and trends leading up to the regulation
in pollution levels between the regulated and unregulated CZs and test whether
the two groups were trending similarly in the years prior to the regulation going
into place.
We also estimate a version of equation (2) with an additional, three-way inter-

action term between indicators for ever being in nonattainment status, year, and
whether the individual is African American.16 This “triple-di↵erence” regression
equation allows the impact of the CAA to vary di↵erentially by race (i.e. do Black
neighborhoods clean up more or less in newly regulated CZs when compared to
White neighborhoods)?

Figure 6 presents the estimated event-study coe�cients �̂t from a version of
equation (2) where the dependent variable is the pollution level for an individual
survey respondent in a given year. There are two main findings. First, in the
years leading up to the implementation of the regulation, the trends in air qual-
ity between the newly regulated counties and the unregulated counties are not
statistically di↵erent from zero. After 2005, when the policy was first enacted,
pollution levels in newly regulated counties fall by about 8% and remain there
through the end of our sample. Appendix Figure B4 estimates a version of equa-
tion (2), separately for non-Hispanic Whites and African Americans. There do
not seem to be significant di↵erences in treatment e↵ects between racial groups,
but we explore this potential heterogeneity further below.
Table 3 presents the di↵erence-in-di↵erence analog to Figure 6 and equation (2).

In particular, we replace the 1 [year = t] variable in equation (2) with a single
indicator equal to one for year >= 2005:

(3) Pict = � (1 [Nonattainc]⇥ 1 [yeart � 2005]) + �c + ⇢t +X 0⌘ + ✏ict

The regression coe�cient of interest � from this more parsimonious model tells
us the average di↵erence in pollution levels in the years after, relative to before,
comparing regulated counties to counties not subject to the regulation. Column
(1) suggests that PM2.5 levels fell by 1.23 µg/m3 in nonattainment counties in

16Formally, we estimate the following equation

Plet =
2015X

t=2000

�t (1 [Nonattainc]⇥ 1[yeart = t]⇥ 1[African Americani]) + �ict + �c + ⇢t +X0⌘ + ✏ict

where the vector �ict includes the full set of two-way interaction terms to facilitate interpretation.
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the years after the regulation went into place. Column (3) presents the same
model except the dependent variable has been transformed via the natural log.
As suggested by the figures, these estimates suggest that pollution levels in newly
regulated counties improved by about 8 percent in the years after the policy went
into place.

The even columns of Table 3 add a triple interaction between the county ever
being in non-attainment status, a post-2005 time period, and an indicator for
whether the individual is African American. Recall that African Americans and
non-Hispanic Whites tend to live in di↵erent parts of the same counties, so there is
scope for regulation at the county-level to have a di↵erential impact on di↵erent
communities within a county. These estimates suggest that the within-county
improvements in air quality were slightly less for African Americans than for
non-Hispanic Whites, though the di↵erences are not statistically significant in
any specification.

Columns (5) through (8) of Table 3 add state-by-year fixed e↵ects to equa-
tion (3) to control for any unobserved, statewide changes to air quality that are
common to all individuals in a given state-year. These controls substantially at-
tenuate the coe�cients from columns (1) through (4) by almost 50 percent. There
are potentially many reasons for this attenuation, having to do with unobserved,
time-varying correlated unobservables. From this point forward, we treat the es-
timates with state-by-year fixed e↵ects as our preferred specification in order to
flexibly control for this potential form of omitted variable bias.

Appendix Table B8 presents a range of alternative estimates to those presented
in Table 3. Columns (1) and (2) of Appendix Table B8 replicate the baseline
estimates in Table 3. Columns (3) and (4) replicate our analysis using PM2.5
exposure estimates from the EPA’s existing monitoring network, instead of our
satellite / remote-sensing PM2.5 estimates from Di et al. (2016a). Columns (5)
and (6) explore estimates that forego the use of Census survey weights. Lastly,
Columns (7) and (8) explore the role of spatial spillovers in leading to bias in
our existing estimates. Specifically, we show estimates from models that exclude
any adjacent/neighboring CZ’s that border a treated CZ in our analysis. These
estimates are a little larger than the baseline results in Table 3, indicating that
our main specification is conservative.

As Figure 2 shows, there have been large improvements over time in air qual-
ity for both African Americans and non-Hispanic Whites, much larger than the
treatment e↵ects seen in Table 3. Partly this reflects di↵erences in conditional
versus unconditional changes; Table 3 includes either year or state⇥year fixed
e↵ects, which net out a lot of nationwide or regional improvements in air quality.
In addition, these treatment e↵ect estimates reflect a specific aspect of the Clean
Air Act’s air quality regulations and apply primarily to stationary sources like
factories. Mobile-source regulations, such as tailpipe emissions, are national in
scope and have also led to significant national improvements in air quality over
this time period.
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While the estimates from Figure 6 and Table 3 tell us about the average ef-
fects in the treated counties, relative to the controls, they tell us little about
other parts of the pollution distribution that might otherwise be a↵ected by this
increased regulatory stringency. To explore the distributional impacts of the
PM2.5 NAAQS we turn to unconditional quantile regression estimates. We then
combine our di↵erence-in-di↵erence estimator with quantile regression methods
to estimate the counterfactual outcome distribution in the absence of the policy
intervention. We compare this no-regulation, counterfactual distribution to the
actual outcome distribution when subject to the policy intervention. We then go
further and calculate mean Black-White gap in pollution exposure in this coun-
terfactual world, to better understand the role of the CAA in contributing to the
convergence of Black-White pollution levels.

Recent advances in quantile regression allow us to estimate the causal e↵ect
of the Clean Air Act’s PM2.5 National Ambient Air Quality Standard on the
unconditional pollution distribution (Firpo et al. 2009). The basic idea is to
transform the problem by considering a covariate’s influence on population shares
rather than quantiles. By estimating how a covariate (e.g., nonattainment status)
a↵ects the share of the population below various pollution thresholds, the semi-
elasticities show the e↵ect of an increase in CAA regulatory stringency on the
cumulative distribution function (CDF) of pollution (see e.g., Chernozhukov et
al. 2013). We can then invert the impact of nonattainment on the CDF of
pollution to estimate the impact on a pollution quantile. The re-centered influence
function (RIF) regression approach proposed by Firpo et al. (2009) performs this
inversion using a local linear approximation to the counterfactual CDF, rescaling
the marginal e↵ect of the CAA on the population share above a pollution cuto↵
by the probability density of pollution at that cuto↵.

The relevant property of a re-centered influence function is that its expectation
equals the distributional statistic of interest. Since the mean of the RIF is equal to
the quantile, we can use the law of iterated expectations to go between conditional
and unconditional partial e↵ects. Firpo et al. (2009) show that a regression
of the RIF on covariates yields the approximate e↵ect of the covariates on the
distributional statistic of interest (applied to the unconditional distribution). This
feature of RIF regressions allows researchers to estimate how treatment e↵ects
(e.g., the e↵ects of the CAA PM2.5 regulations on county-year pollution levels)
map into the unconditional distribution of pollution. A.A2 provides a more formal
discussion.

In practice, this exercise entails first defining a series of pollution cuto↵s corre-
sponding to specified quantiles of the empirical pollution distribution, and then
for each cuto↵, estimating the e↵ect of the Clean Air Act’s PM2.5 NAAQS policy
on the probability of being above that cuto↵. We begin by creating 19 RIF statis-
tics, one for each pollution vigintile from the 5th to the 95th percentiles of the
pollution distribution. We then replace the dependent variable in equation (2)
with one of the RIF-quantile statistics. The event study coe�cients for each RIF-
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quantile can be interpreted as the e↵ect of the PM2.5 nonattainment designations
on the qth quantile of the unconditional PM2.5 exposure distribution.
Figure 7 presents nineteen separate regression estimates of � from equation (3),

where the dependent variable is replaced with the RIF counterpart for each pol-
lution quantile.17 The figure visually summarizes the e↵ect of the PM2.5 nonat-
tainment designation on di↵erent quantiles of the unconditional PM2.5 pollution
distribution. The estimates suggest that the most significant e↵ects of the new
standards were to improve air quality in areas between the 50th and 90th per-
centiles of PM2.5 distribution. This result must be true almost by construction,
as the PM2.5 standards only bind at the upper quantiles of the pollution distri-
bution. It may be surprising to see that the estimated e↵ect of the regulations are
smaller at the 95th percentile of the pollution distribution than at the 50th-80th
percentiles. This smaller e↵ect may be partly due to the severe di�culties EPA
and local regulators may have faced in addressing air quality problems in the
most severely polluted parts of the country (e.g., the San Joaquin Valley or parts
of Southern California). Appendix Figure B5 presents the event study specifi-
cation of these regressions to better understand both the temporal dynamics of
these treatment e↵ects and also to assess common trends, when using di↵erent
transformations of individual PM2.5 exposure.
Figure 8 presents RIF-Quantile regression results that estimate each quantile

specific RIF separately by race. This results in 38 versions of equation (3), and
the corresponding estimates are plotted in Figure 8. While the estimates from
Table 3 suggested there was little di↵erence in the treatment e↵ects of nonattain-
ment between African Americans and non-Hispanic Whites on average (see e.g.,
column (6)), the results in Figure 8 suggest that at the upper quantiles of the
pollution distribution, African Americans have seen larger improvements in air
quality relative to their non-Hispanic White counterparts. For visual clarity, we
have omitted the associated confidence intervals, but they are shown in Appendix
Figure B6. For most quantiles, the race-specific confidence intervals overlap with
one another, and thus it is di�cult to reject the null that the treatment e↵ects at
each quantile are equal. That being said, it is unlikely that sampling variability
alone could explain the fact that African Americans have larger treatment e↵ects
at every percentile above the 60th percentile of the pollution distribution.

A. What Fraction of Black-White Convergence is Attributable to the CAA Regulation
of PM2.5?

We can use the RIF estimates from Figure 8, combined with population shares
of African Americans and non-Hispanic Whites in each vigintile of the initial dis-
tribution of PM2.5, to compute counterfactual pollution levels in the absence of
the implementation of the nonattainment designations. For the calculations in

17These regressions use population weighted percentiles of pollution exposure. This is also done in
Figure 8.
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this exercise, we use tract-level population shares by race from the public-use
American Community Survey 5-year files. Table 4 walks through these calcu-
lations. Columns (1) and (2) of the top panel describe actual pollution levels
within each quantile bin in 2005 and 2015, respectively. Columns (3) and (4)
use estimates from Figure 8 to calculate what pollution in each quantile would
have been in 2015 in the absence of the CAA PM2.5 NAAQS implementation,
separately for African Americans and non-Hispanic Whites.
The second panel of Table 4 considers the counterfactual gap that would have

existed in 2015 in the absence of the CAA PM2.5 NAAQS. The actual gap in
2015 was 0.61 µg/m3, whereas the counterfactual gap is 0.97 µg/m3. The actual
change in the Black-White gap between 2005 and 2015 was 0.59 µg/m3, and the
implied counterfactual change is a narrowing of 0.23 µg/m3. Since, we would
have observed a 0.23 µg/m3 improvement in the Black-White gap in the absence
of the policy, we conclude that the CAA can account for over 60% of the relative
improvement in Black-White outcomes.18

B. Mobility Responses to CAA-Induced Improvements in PM2.5 Air Quality

Previous sections suggest that relative mobility plays a limited role in explaining
the convergence in PM2.5 exposure between African Americans and non-Hispanic
Whites. However, it still may be the case, that populations shifted in response
to the CAA-induced changes in air quality that may have implications for the
Black-White gap in PM2.5 exposure. For example, it could be the case that
cities that cleaned up the most due to the CAA saw relatively larger increases
in White population shares in subsequent years, unraveling some of the relative
gains between racial groups had population shares remained constant.
Appendix Figure B7 explores this mobility response in more detail. Figure B7a

plots the change in the Black population share between 2005 and 2015, separately
by pollution quantile; negative numbers imply a reduction in the Black share in
the particular quantile bin over this time period. These changes in population
are plotted against the RIF-quantile treatment e↵ects for Blacks in the respective
quantile (i.e. taken from Figure 8). We include a linear fit that suggests the areas
that saw the largest treatment e↵ects from the Clean Air Act’s nonattainment
designation are also the areas where the share of African Americans declined the
most. Figure B7b shows the opposite is true for non-Hispanic Whites. The quan-
tiles which saw the largest improvements in air quality for non-Hispanic Whites
saw the largest increases in White population shares over this time period. These
relative shifts in mobility served to o↵set some of the CAA-induced convergence
over this time period.
How does one reconcile the results in Figure B7 with the earlier mobility results

18This is calculated as (0.59-0.23)/0.59. Note, that we can do the same counterfactual using the
average population estimates from Table 3, weighting groups appropriately. The virtue of using the
RIF estimates stems from a more transparent analysis as to how the treatment e↵ect heterogeneity
disproportionately impacts places with high African American population shares.
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from Table 2 that suggested Whites have moved to relatively more polluted areas
in 2015 versus where they were in 2000? These findings are not necessarily incon-
sistent with one another. While Whites were moving to urban areas which tended
to be more polluted than the suburban areas they were leaving (i.e. Table 2),
they also tended to move to the urban areas that had experienced the largest
improvements in air quality between 2000-2015 (i.e. Figure B7). Said di↵erently,
the Clean Air Act improved air quality in cities that had relatively higher Black
population shares, but as those cities became cleaner they also became more
White.
Thus, while mobility seems to play a limited role in explaining the national

convergence in exposure gaps between racial groups, there is some evidence that
non-Hispanic Whites are moving to the set of urban areas that have experienced
the largest improvements in air quality over this time period. These areas had
relatively high Black population shares before the improvements, and thus di↵er-
ential mobility has o↵set some of the relative gains in pollution exposure between
these groups.

IV. Conclusion

This paper shows that racial di↵erences in ambient particulate exposure de-
clined significantly between 2000 and 2015. We add to the small but growing
literature using high-resolution, nationwide data on pollution to examine racial
di↵erences in potential pollution exposure. We focus on PM2.5 and show that
the gap between African Americans and non-Hispanic Whites narrowed from -1.6
µg/m3 in 2000 to -0.5 µg/m3 by 2015. To our knowledge, this is the first paper
to explore the underlying causal drivers that contributed to the narrowing of this
gap. We find that very little of the decline in the gap in mean exposure levels
can be accounted for by changes in mobility, individual, or neighborhood-level
characteristics. Similarly, we find that racial gaps in exposure have narrowed at
each quantile of the PM2.5 distribution, and that little of this narrowing can be
explained by the demographic characteristics available in Census data. Instead,
we find that virtually all of the closure of the gap is due to falling pollution levels
in the areas where African Americans are more likely to live. There is little evi-
dence that movement of African Americans to relatively cleaner neighborhoods or
non-Hispanic Whites to relatively dirtier neighborhoods has played a significant
role in the observed convergence.
Why then has pollution fallen more in areas that are home to greater numbers of

African Americans? Since African Americans have historically been concentrated
in areas with more polluted air, and because the CAA targets the dirtiest areas
for cleanup, it is reasonable to expect that the CAA could have a larger impact on
African Americans. However, set against this expectation are market forces that
might cause African Americans in search of lower rents to move away from newly
cleaner places. Our analysis shows that implementation of new PM2.5 standards
in 2005 sharply reduced pollution in a way that was sustained over time and is
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responsible for much of the closure of the racial gap in PM2.5 exposure between
2000 and 2015. We find some evidence, however, to suggest that changes in PM2.5
levels were associated with re-sorting of African Americans across areas in ways
that undid some of these gains.
These findings suggest that the CAA has likely played a significant role in reduc-

ing racial gaps in exposure to air pollution, because the legislation systematically
targeted the dirtiest areas for cleanup, and African Americans were more likely to
live in areas with dirty air. Hence, although it was not their primary intent, the
CAA has contributed to reductions in environmental inequality between racial
groups in the United States.
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Figure 1. : Trends in Pollution Exposure by Race

Notes: This figure plots mean PM2.5 exposure by year, separately for African-Americans and the non-

Hispanic White population. Source: Decennial Census, American Community Survey, and Di et al.

(2016).

(a) 2000 (b) 2015

Figure 2. : Distributions of Pollution Exposure, 2000 and 2015

Notes: This figure plots the PM2.5 density, separately for African-Americans and the non-Hispanic

White population in both 2000 and 2015. Due to Census disclosure avoidance review, we were forced

to trim the upper 97th and lower 3rd percentiles of each density. Source: Decennial Census, American

Community Survey, and Di et al. (2016).
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(a) Conditional Gap with 95%
Confidence Intervals
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(b) Conditional vs. Uncondi-
tional Gap
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(c) Conditional Gap, Controlling
for Tract Characteristics
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Figure 3. : Residual Black-White Pollution Gap: PM2.5

Notes: Figure (a) plots the regression coe�cients from 15 separate estimates of equation (1), regressing pollution on an indicator

for whether an individual is an African-American, controlling for individual and household characteristics. The coe�cient estimates

correspond to the conditional mean Black-White di↵erence in air pollution, after adjusting for di↵erences in observable individual and

household characteristics. Dashed lines correspond to 95 percent confidence intervals, where standard errors have been clustered by

commuting zone. Regressions are weighted using Census survey weights. Figure (b) compares the conditional mean coe�cients to

the unconditional mean di↵erences by year. Figure (c) replicates Figure (a) while also controlling for census tract or “neighborhood”

characteristics. See text for details. Source: Decennial Census, American Community Survey, and Di et al. (2016).
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(a) Distribution of African-American and non-Hispanic White population by
decile of PM2.5 in 2000
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(b) Counties impacted by the CAA, by decile of PM2.5 in 2005
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Figure 4. : Racial Distribution of Population and Impact of CAA by Pollution
Decile

Notes: Figure 4a plots population shares by pollution decile, separately for African American and non-

Hispanic Whites. Figure 4b shows the total number of counties subject to the Clean Air Act’s 1997

NAAQS PM2.5 standard, by pollution decile. Source: Decennial Census, American Community Survey,

EPA NAAQS Greenbook, and Di et al. (2016).
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Figure 5. : Spatial Distribution of PM2.5 Changes from 2000-2015, Overlaid with
Commuting Zones in Nonattainment of the PM2.5 National Ambient Air Quality
Standards

Notes: This figure plots the spatial distribution of 2000-2015 changes in PM2.5. We overlay this figure

with the outlines of all the commuting zones containing at least one nonattainment county in 2005 for

the Clean Air Act’s 1997 NAAQS PM2.5 standard. While the PM2.5 NAAQS was initially proposed in

1997, the first year of regulatory enforcement began in 2005. Source: Di et al. (2016), EPA NAAQS

Greenbook.
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Figure 6. : The E↵ect of the PM2.5 NAAQS on Newly Regulated Commuting
Zones

Notes: This figure plots the event-time coe�cient estimates from a version of equation (2), where the

dependent variable consists of PM2.5 exposure (µg/m3) for a given individual-year. The regression

model controls for county and year fixed e↵ects. The dashed lines represent 95% confidence intervals.

Regressions are weighted by Census survey weights and errors are clustered by commuting zone. Source:

Decennial Census, American Community Survey, EPA NAAQS Greenbook, Di et al. (2016).
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Figure 7. : RIF-Quantile Treatment E↵ects of the 2005 CAA PM2.5 NAAQS
Implementation

Notes: This figure plots the regression coe�cient �̂ from 19 separate versions of equation (3), where

the dependent variable consists of the RIF-Quantile transformation of the respective PM2.5 vigintile

(indicated by the x-axis). The regression model controls for county fixed e↵ects and state-by-year fixed

e↵ects. The solid red lines represent 95% confidence intervals. Regressions are weighted by Census survey

weights and errors are clustered by commuting zone. Source: Decennial Census, American Community

Survey, EPA NAAQS Greenbook, Di et al. (2016).
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Figure 8. : Race-Specific RIF-Quantile Treatment E↵ects of the 2005 CAA PM2.5
NAAQS Implementation

Notes: This figure plots the regression coe�cient �̂ from 38 separate versions of equation (3), 19 re-

gressions for each race, where the dependent variable consists of the RIF-Quantile transformation of

the respective PM2.5 vigintile (indicated by the x-axis). The regression model controls for county fixed

e↵ects and state-by-year fixed e↵ects. Regressions are weighted by Census survey weights and errors are

clustered by commuting zone. Source: Decennial Census, American Community Survey, EPA NAAQS

Greenbook, Di et al. (2016).
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Table 1—: Residual Black-White Pollution Gap by Income Quintile: PM2.5

Income Quintile
1 2 3 4 5

Panel A: Year 2000

1[African-American] 1.535 1.603 1.616 1.590 1.396
(0.180) (0.190) (0.193) (0.195) (0.183)

Observations 1791000 1967000 2397000 2277000 2204000

Panel B: Year 2015

1[African-American] 0.499 0.463 0.512 0.558 0.570
(0.097) (0.093) (0.096) (0.089) (0.099)

Observations 235000 223000 224000 226000 244000
Notes: This table presents the regression coe�cients from 10 separate estimates of equation (1), 5 per

panel. We regress pollution on an indicator for whether an individual is an African-American, controlling

for individual and household characteristics, and we stratify the data by income quintile. The coe�cient

estimates correspond to the conditional mean Black-White di↵erence in air pollution, after adjusting

for di↵erences in observable individual and household characteristics. Panel A does this for the year

2000, and Panel B repeats this exercise in 2015. Regressions are weighted using Census survey weights,

and standard errors are clustered by commuting zone. See text for details. Source: Decennial Census,

American Community Survey, and Di et al. (2016).
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Table 2—: Counterfactual Pollution Levels and Gaps Holding Location Fixed

(1) (2) (3)
Actual 2000 Actual 2015 Counterfactual 2015
Exposure Exposure using 2000 locations

White PM2.5 µg/m3 12.96 8.25 8.22
Black PM2.5 µg/m3 14.52 8.79 8.89

Black-White Di↵erence 1.56 0.54 0.67

Change in B-W Di↵ 1.02 0.89
Notes: Rows (1) and (2) of columns (1) and (2) present mean pollution exposure separately for African

American and non-Hispanic Whites in years 2000 and 2015. Row (3) presents the mean gap in pollution

exposure in either each year. Row (4) presents the change in Black-White gap between 2000 and 2015.

Column (3) presents a counterfactual exercise, whereby we ask what pollution levels would be and by

how much the gap would have converged between 2000-2015 if we fixed the population in their 2000

location and assigned the 2015 pollution levels for their respective Census block. Source: Decennial

Census, American Community Survey, and Di et al. (2016).
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Table 3—: The Impact of the 2005 Implementation of PM2.5 Standards on PM2.5 levels

(1) (2) (3) (4) (5) (6) (7) (8)
PM2.5 PM2.5 ln(PM2.5) ln(PM2.5) PM2.5 PM2.5 ln(PM2.5) ln(PM2.5)

PM2.5 Nonattain⇥Post -1.230 -1.237 -0.075 -0.076 -0.727 -0.726 -0.036 -0.036
(0.335) (0.334) (0.020) (0.020) (0.080) (0.082) (0.006) (0.006)

PM2.5 Non⇥Black⇥Post 0.149 0.008 0.048 0.004
(0.088) (0.007) (0.091) (0.005)

Year FE X X X X
State-Year FE X X X X
County FE X X X X X X X X

Observations 32360000 32360000 32360000 32360000 32360000 32360000 32360000 32360000

Notes: This table presents regression coe�cients from 8 separate versions of equation (3), one per column, where the dependent variable
consists of PM2.5 or ln(PM2.5) for an individual in a given year. Columns (2), (4), (6), and (8) add an additional interaction for African
Americans to test for heterogeneity in regulatory impacts for African Americans. Regressions are weighted by Census survey weights
and errors are clustered by commuting zone. Source: Decennial Census, American Community Survey, EPA NAAQS Greenbook, Di et
al. (2016).
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Table 4—: Calculating the E↵ect of CAA Regulations on the Black-White PM2.5
Gap

(1) (2) (3) (4) (5)
PM2.5 Actual Actual White Counterfactual Black Counterfactual
Quantile PM2.5 PM2.5 PM2.5 in 2015 PM2.5 in 2015

Bin in 2005 in 2015 Without CAA Without CAA

5 5.32 4.34 4.37 4.36
10 7.87 5.63 5.69 5.63
15 8.91 6.25 6.18 6.24
20 9.65 6.72 6.62 6.62
25 10.33 7.11 7.03 6.88
30 10.90 7.45 7.56 7.17
35 11.42 7.75 8.12 7.64
40 11.90 8.01 8.67 8.23
45 12.34 8.24 9.28 8.92
50 12.73 8.44 9.89 9.65
55 13.09 8.65 10.39 10.43
60 13.44 8.84 10.57 10.73
65 13.80 9.03 10.68 10.93
70 14.15 9.22 10.75 11.09
75 14.51 9.42 10.71 11.00
80 14.91 9.67 10.80 11.17
85 15.27 9.98 10.93 11.43
90 15.72 10.49 11.41 12.27
95 17.01 12.21 12.46 13.48

Main Counterfactual: Including 2005-2015 Mobility Responses

2005 Actual Black-White Gap: 1.20
2015 Counterfactual Black-White Gap: 0.97
Counterfactual Change in Black-White Gap: -0.23
Actual Change in Black-White Gap: -0.59
% of Actual Gap Attributable to CAA: 61.2%

Notes: This table presents calculations used to explore what fraction of the observed racial convergence

in mean PM2.5 levels can be attributed to the regulatory variation embedded into the Clean Air Act’s

2005 PM2.5 NAAQS. The top panel describes actual pollution levels within each quantile bin in 2000

and 2015. Columns (4) and (5) use estimates from Figure 10 to calculate what pollution would be

in 2015 in the absence of the CAA PM2.5 NAAQS implementation, separately for African Americans

and non-Hispanic Whites. The second panel computes the counterfactual gap in 2015 in the absence of

the CAA NAAQS and the implied 2005-2015 change in the gap. Source: Decennial Census, American

Community Survey, EPA NAAQS Greenbook, Di et al. (2016).

(Bureau, 2013) (Di et al., 2016b) (Manson et al., 2018) (USDA, 2019) (EPA,
2022a) (EPA, 2022b) (van Donkelaar et al., 2019) (Walker, 2016)
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