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We provide a general framework to analyze competition between
any number of symmetric two-sided transaction platforms, in
which buyers and sellers can multihome. We show how key prim-
itives such as the number of platforms, the fraction of buyers that
find multihoming costly, the value of transactions, and the degree
of user heterogeneity jointly determine the level and structure of
platform fees. Even though platform entry always reduces the total
fee level, whether it shifts the fee structure in favor of buyers or
sellers depends on whether most of the buyers are singlehoming or
multihoming.
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A growing number of two-sided platforms intermediate transactions between
buyers and sellers (or providers) of products and services. Ride-hailing plat-
forms (Uber and Lyft), meal/grocery delivery platforms (Doordash, Grubhub,
Postmates and UberEats), hotel booking platforms (Booking.com and Expedia),
e-commerce marketplaces (Amazon, Lazada, Shopee, Taobao), and payment card
platforms (AMEX, MasterCard and Visa) are well known examples. Our interest
in studying these markets stems from the observation that these markets have
matured with multiple platforms competing head-to-head, and with no sign of
tipping to any one player.

There is by now a large literature on multi-sided platforms, which we will
briefly review later. The examples of two-sided platforms listed above have several
key features that are under-examined in the existing literature: (i) oligopolistic
platforms compete by charging transaction based-fees on each side; (ii) sellers are
free to join multiple competing platforms (a phenomenon known in the literature
as “multihoming”), which they typically do, and (iii) buyers are free to join
multiple competing platforms, and to decide which of these platforms to complete
a transaction on, if any. In particular, it has become increasingly easy for users
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on both sides to multihome, following advancements in tools that make it easier
for buyers to compare the options across multiple platforms.1

In our framework, which is built upon the seminal contribution by Rochet
and Tirole (2003), users (buyers and sellers) have heterogenous valuations over
transaction (or interaction) benefits, and platforms charge users on each side
per-transaction fees. In the baseline setup, all users can costlessly join multiple
platforms. Platforms are differentiated from the buyers’ perspective, but are iden-
tical from the sellers’ perspective. This captures the fact that in many two-sided
market settings, sellers view competing platforms as more or less homogenous,
while buyers usually have idiosyncratic preferences for using particular platforms
over others.

We focus on the equilibrium fees that emerge from platform competition. The
preference buyers have towards using certain platforms (i.e., buyer loyalty to each
platform) means that even though all buyers and sellers are multihoming, each
platform has some market power over sellers. This reflects that sellers may lose too
much business if they try to divert buyers to transact through lower fee platforms
by delisting from platforms that charge more. If buyers have high platform loyalty,
the equilibrium resembles a “competitive bottleneck” type outcome (Armstrong,
2006; Armstrong and Wright, 2007) in which platform competition is focused on
attracting buyers and exploiting sellers. Total fees are also high in this case. If,
on the other hand, buyers have very little platform loyalty, it is easy for sellers
to divert buyers to use the lowest-fee platform to make transactions without
worrying about buyers dropping out. In this case platforms have little market
power over sellers (so seller fees tend to be low relative to buyer fees) and total
fees are competed down close to cost. Thus, our framework highlights that the
specific homing patterns of buyers and sellers do not automatically lead to specific
market outcomes because one also has to take into account multihoming users’
preferences for transacting on certain platforms and not others. Notably, such a
feature is absent in membership-based platform models.

Our first major result is on how increased platform competition (i.e. entry)
affects the platforms’ equilibrium total fees (the sum of fees charged on both
sides) and the fee structure (the allocation of fees across the two sides). We find
competition always decreases the total fee. This result reflects two effects, and
their interaction with the cross-subsidization mechanism in two-sided markets.
First, platform entry intensifies buyer-side competition by making platforms more
substitutable for buyers. Second, greater platform substitutability implies a lower
buyer loyalty to each platform, which intensifies seller-side competition because
sellers can divert more buyers to use low seller-fee platforms when they quit a
high seller-fee platform. Clearly, both effects decrease the total fee. As for the

1For example, in the ride-hailing market, advancements in mobile phone technology and fare-
comparison “metasearch” aggregators such as Google Maps, BellHop and RideGuru, allow more riders
to easily compare fares across different ride-hailing apps, resulting in more active multihoming by riders.
Similar aggregators have also become quite widely used for hotel booking platforms (Kayak and Trivago)
and are currently emerging for food delivery platforms (Foodboss and Mealme).
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fee structure, we find that, under fairly general conditions, seller-side competition
tends to dominate and so the seller fee decreases. The lower seller fee then implies
a smaller profit margin on the seller side from attracting buyers (i.e., a weaker
incentive to cross-subsidize buyers), so that platforms increase their buyer fees in
response. We illustrate this result, as well as others below, with a logit-exponential
specification of the model that affords closed form solutions.

Our second set of results explore what happens if some buyers face a cost
to multihome. This gives rise to a partial multihoming equilibrium with a mix
of multihoming and singlehoming users on the buyer side. Starting from our
baseline setting with two-sided multihoming, a decrease in the fraction of buyers
multihoming decreases fees to buyers, and increases fees to sellers and total fees.
Intuitively, having fewer multihoming buyers makes it harder for sellers to divert
buyers’ transactions, increasing the platforms’ market power over sellers. As a
corollary, this result implies that buyer multihoming reduces the tendency for high
seller fees that typically arises in the competitive bottleneck case when buyers
all singlehome. Furthermore, our result is obtained in a setting in which user
heterogeneity is with respect to transaction benefits and fees are per transaction,
rather than these being membership based as in the previous literature looking
at the implications of multihoming, e.g., Belleflamme and Peitz (2019a).

Interestingly, we find there is a non-trivial interaction between buyers’ homing
behavior and the effects of platform competition. Even though increased platform
competition always reduces the total fee charged to the two sides, whether it shifts
the fee structure in favor of buyers or sellers depends on whether most of the
buyers are singlehoming or multihoming. When most of the buyers multihome,
increased platform competition induces platforms to compete more intensely for
sellers, as in the baseline setup. However, when most of the buyers singlehome,
platforms have monopoly power over providing access to their buyers for the
multihoming sellers and so entry induces platforms to compete more intensely for
buyers rather than for sellers.

Our third set of result explores various determinants of buyer loyalty to plat-
forms, which, as noted above, play an important role in our equilibrium charac-
terization. We focus on changes in the distribution of buyer and seller preferences.
First, increasing the value buyers put on transacting with sellers (relative to not
transacting) means that buyers will care more about whether a transaction oc-
curs and less about the choice of which platform carries out the transaction. This
indicates a lower buyer loyalty to platforms, which lowers the platforms’ market
power over sellers. A similar reasoning applies if we increase buyer heterogeneity
when the buyer-side fee is positive. A greater heterogeneity dampens buyers’ sen-
sitivity towards the net cost of using platforms, meaning they become more willing
to transact through any of the platforms, which indicates a lower loyalty and a
lower market power over sellers. Meanwhile, increasing the value sellers put on
transacting or seller heterogeneity has the opposite effect, giving platforms more
market power over sellers.
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Relevant literature

The literature on two-sided markets starts with the seminal papers by Cail-
laud and Jullien (2003), Rochet and Tirole (2003, 2006), and Armstrong (2006),
which provide a basic foundation for studying pricing schemes by monopoly and
duopoly platforms.2 Among these papers, our study is closest to Rochet and
Tirole (2003), which we build on by allowing for more than two platforms to
compete, transaction-specific buyer surpluses, and richer homing behavior on the
buyer side. A key modelling difference is we explicitly model the underlying dis-
tribution of buyers’ and sellers’ valuations over interaction benefits rather than
expressing the formula in terms of reduced-form demand functions. Our micro-
founded approach offers three key benefits. First, it clarifies the nature of buyer
loyalty to each platform in terms of buyer multihoming costs, platform differenti-
ation, and user interaction values. Second, it provides comparative static results
with respect to platform entry for any number of competing platforms. And third,
it allows us to draw comparisons with the “competitive bottleneck” literature, re-
vealing a non-trivial interaction between the effects of platform entry and homing
behaviors of buyers.3

In developing and investigating a model of oligopolistic platform competition,
our study relates closely to the recent contributions by Tan and Zhou (2021) and
Anderson and Peitz (2020). Tan and Zhou (2021) presents a model of oligopolis-
tic multi-sided platform competition rooted in the membership pricing model of
Armstrong (2006). They provide important insights on the impact of platform
entry and on the extent of excessive or insufficient platform entry. However, their
framework focuses on singlehoming users on both sides and does not consider
transaction fees and heterogeneity in interaction benefits, which are the focus of
our study. Anderson and Peitz (2020) analyze oligopolistic media markets with
singlehoming viewers and multihoming advertisers (analogous to buyers and sell-
ers in our setup, assuming ad-loving viewers). In their two-sided pricing extension,
the platform sets a per-viewer fee on the advertiser side and a participation fee on
the viewer side. They show that both sides are better off with platform entry, con-
sistent with our observations in Section III.B even though we allow both sides of
users to multihome. Nonetheless, the underlying economic reasoning behind their
result is quite different because viewers in their model make only participation
decisions while buyers in our model make transaction decisions in addition.4

2Subsequent developments in the two-sided market literature extend the canonical two-sided frame-
work in various directions. Among others, Weyl (2010) provides a more general model of a monopoly
two-sided platform and examines the source of welfare distortions in platform pricing; Hagiu (2006)
considers platform pricing and commitment issues when two sides of the market do not participate si-
multaneously; Jullien and Pavan (2019) consider platform pricing under dispersed information; Karle,
Peitz and Reisinger (2020) explore how the phenomenon of platform market tipping relates to the pres-
ence of seller competition on platforms.

3In the subsequent sections, we also compare our results in Propositions 1 and 3 to those obtained
by Rochet and Tirole.

4In a slightly different vein, Correia-da Silva et al. (2019) and Adachi, Sato and Tremblay (2022)
consider homogeneous oligopolistic two-sided platforms that compete in a Cournot setup in which the
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As mentioned above, when buyers are loyal to particular platforms, our re-
sults resemble the classic “competitive bottleneck” result obtained by Armstrong
(2006), Armstrong and Wright (2007), and recently revisited by Belleflamme and
Peitz (2019a). These studies typically start with a configuration of singlehoming
on both sides, and show that multihoming on one side leads to a competitive
bottleneck, whereby platforms no longer need to compete for the multihoming
side due to the monopoly power over providing exclusive access to each (single-
homing) user on the other side. Thus, in these studies, buyer-side multihoming
would shift the fee structure in favor of sellers by shutting down competition on
the buyer side. In contrast, we specify that buyers and sellers are always free to
multihome in our baseline setting, and explore factors that affect buyer loyalty to
platforms (including whether some buyers only singlehome or some buyers have
strong preferences to only transact on particular platforms). Another difference is
our model does not assume standalone participation benefits for buyers and sell-
ers, making the model more suitable for describing platforms where users derive
their benefits solely through interaction and transaction activities.
One paper that does consider two-sided multihoming is Bakos and Halaburda

(2020), although also in the framework of Armstrong (2006). They compare
two-sided multihoming with the benchmarks of two-sided singlehoming and com-
petitive bottleneck, showing that two-sided multihoming eliminates the strategic
interdependence between the two sides in platform pricing (so that the two plat-
forms have no incentive to cross-subsidize across the two sides). A key ingredient
for their result is that the market is fully covered on both sides. In our framework,
in which the market is not fully covered on either side, strategic interdependence is
restored. Jeitschko and Tremblay (2020) consider a model with heterogenous in-
teraction benefits but assume that platforms charge membership fees. They show
that a variety of possible homing configurations can arise in the equilibrium, in-
cluding the case with a mix of multihoming and singlehoming on both sides of the
market. Such an equilibrium multiplicity does not arise in our setup because we
focus on platforms that charges transaction fees, which constitute an “insulating
tariff” (Weyl, 2010) whereby users’ participation decisions are independent of the
(expected) mass of participating user on the opposite site.
At a more general level, our analysis on the impact of user multihoming behav-

ior and its interaction with platform entry relates to several recent papers in the
media literature that investigate similar issues (Ambrus, Calvano and Reisinger,
2016; Athey, Calvano and Gans, 2018; Anderson, Foros and Kind, 2019). Ambrus
et al. and Athey et al. show that multihoming by media consumers can either in-
crease or decrease the equilibrium number of ads that platforms admit, depending
on the correlation of consumers preference and the extent to which advertisements
generate negative externalities on consumers. Anderson et al. consider a model of
multihoming media consumption based on the Salop (1979) circular city model,
deriving the interesting property of “incremental value pricing” whereby platform

platforms commit to quantity choices and the membership prices on each side adjust to clear the market.
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entry has no effect on consumers but harms advertisers.
The rest of the paper proceeds as follows. Section I lays out the main model,

the equilibrium of which is characterized in Section II. Section III investigates
the impact of platform entry, Section IV investigates buyer multihoming cost and
the interaction with platform entry, while Section V investigates various other
factors that influence buyer loyalty. Finally, Section VI concludes. All proofs and
omitted derivations are relegated to the Appendix.

I. Model setup

There is a set N = {1, .., n} of n ≥ 1 platforms which compete for a continuum
of buyers and a continuum of sellers, both of measure one. Buyers and sellers
wish to “interact” or “transact” with each other to create economic value. If
we consider any buyer/seller pair, then we can assume without loss of generality
that each such pair corresponds to one potential transaction. Each transaction
must occur through one of the platforms, and it can occur only if there exists at
least one platform that both sides of the buyer-seller pair join.5 Let pi =

(
pbi , p

s
i

)
denote the fees charged by platform i to buyers and sellers for each transaction
facilitated.
□ Sellers. Following Rochet and Tirole (2003), we assume that seller surpluses

do not vary across platforms. Each seller is indexed by a draw of per-transaction
surplus, v. The net seller utility from each transaction through platform i is
v − psi , while the utility from not transacting is normalized to zero. Specifically,
v ∈ [v, v̄] (where v ≥ −∞ and v̄ ≤ ∞) is drawn i.i.d across sellers from cumulative
distribution function (CDF) G with density function g, in which 1 − G is log-
concave.
□ Buyers. Transaction decisions are endogenously initiated by buyers. For

each potential transaction with a given seller v, if a buyer transacts with the seller
and does so through platform i ∈ N, the net utility is

b0 + ϵi − pbi .

Here, b0 is a buyer-seller specific component that measures the intensity to which a
buyer desires a transaction (gross value for transaction) with the seller. It is drawn
i.i.d across buyers and transactions, but invariant across platforms. Then, ϵi is a
buyer-platform match component that measures buyer preference for transaction
platforms, and it is drawn i.i.d across buyers and platforms. Utility provided by
the outside option (of not transacting) is zero. For all i ∈ N, let F be the common
CDF for ϵi ∈ [ϵ, ϵ̄] (where ϵ ≥ −∞ and ϵ̄ ≤ ∞) with log-concave density f . To
simplify the notation and avoid the need to carry a negative sign throughout our

5By reframing each transaction as “platform-intermediated transactions” and the outside option
below as “direct transactions”, the model easily allows for scenarios where buyers and sellers can interact
directly, e.g., payment card platforms and cash-based direct transactions. See Rochet and Tirole (2002,
2003), Wright (2004a) and Bedre-Defolie and Calvano (2013) for such interpretations.
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analysis, denote ϵ0 ≡ −b0 and F0 be the CDF for ϵ0 ∈ [ϵ0, ϵ̄0] with log-concave
density f0. Finally, we assume that v, ϵ0, and ϵi for i ∈ N are independently
drawn.
□ Platforms. We allow transaction fees, pi =

(
pbi , p

s
i

)
, to be negative (e.g

negative buyer fees in the case of rewards in payment platforms, and negative
seller fees in the case of ride-hailing apps’ payments to riders). Facilitating each
transaction involves a marginal cost of c, which is assumed to be constant and
symmetric across all platforms. We focus on the transactional aspect of plat-
forms and abstract from any participation benefits (or costs) and fees. Therefore,
platform i’s profit is written as

Πi (pi;p−i) =
(
pbi + psi − c

)
Qi (pi;p−i) ,

where p−i is the fees set by all other platforms excluding i while Qi is the total
volume of transactions facilitated by platform i, which will be determined in
Section II.
□ Participation multihoming. Both buyers and sellers are always allowed to

join multiple platforms. In the baseline, we assume that participation is costless.
Note if both sides multihome, the choice of which of these platform to use for
a transaction is a-priori indeterminate. Following Rochet and Tirole (2003) and
consistent with each of our motivating examples (e.g., ride-hailing services and
payment card platforms), we assume that whenever a seller is available on multiple
platforms, the buyer is the one that chooses which platform to complete the
transaction on.6

□ Timing and equilibrium. The timing of the game is summarized as follows:

1) All n platforms simultaneously set their transaction fees with platform i’s
being pi=

(
pbi , p

s
i

)
;

2) Given the platform fee profile P = (p1, ...,pn), sellers and buyers observe
all fees and their realized draws v and (ϵ1, ..., ϵn) and simultaneously decide
which platform(s) to join.7

3) For each potential transaction, buyers observe their realized b0 and choose
whether to transact, and if so, through which platform.

Note we are assuming buyers’ preferences across platforms are fixed but whether
they want to make a transaction or not varies with each potential transaction. Our
equilibrium concept is pure-strategy subgame perfect Nash equilibrium (SPNE),

6Indeed, the U.S. Supreme Court decision on Ohio v. American Express allows American Express
to continue to prevent sellers from steering buyers to rival (cheaper) card platforms using monetary or
non-monetary incentives, thereby ensuring it is buyers alone that decide which payment card they will
use.

7Assuming that buyers do not observe the seller-side fees, which may be more realistic in some cases,
does not change our analysis. See also the discussion in Section IV.
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and we focus only on symmetric equilibria where all platforms set the same fees.
As a tie-breaking rule, we assume that, whenever a user is indifferent between
joining and not joining a platform, she breaks the tie in favor of joining.

Discussion of the modelling features

□ Model specification. Certain asymmetries across the two sides are key to
our framework: namely, that there are platform-specific shocks across buyers but
not across sellers, and buyers rather than sellers choose which platform to use
for a transaction. On the other hand, some other asymmetries are not critical.
We could easily add an ex-post transaction specific match value v0 for sellers
to parallel b0 on the buyer side. That would be redundant given sellers only
make joining decisions, and so we drop this for the sake of notational simplicity.
Similarly, we could easily add an ex-ante buyer-specific match value b to parallel
v on the seller side. That would be redundant as well given we already have ex-
post buyer-transaction specific match values b0, and so we also drop this for the
sake of notational simplicity. Thus, allowing for ex-ante and ex-post platform-
independent shocks for both buyers and sellers is easily incorporated. Our choice
that buyers’ platform-specific match values are drawn ex-ante rather than (or in
addition to) being drawn ex-post does not matter for the baseline model given all
buyers multihome, but matters for the extension to partial multihoming. If the
shocks are drawn ex-post rather than ex-ante, buyers that face a cost to multihome
would view platforms as homogenous when choosing which platform(s) to join,
which in the partial multihoming case would raise the possibility of a mixed
strategy pricing equilibrium. Alternatively, if the shocks are drawn ex-post in
addition to the existing ex-ante shock, the partial multihoming case is no longer
as tractable given the quasi-demand of singlehoming and multihoming buyers
would take different forms.
□ Illustrative example. As an illustration, we consider ride-hailing services.8

Drivers (sellers) are indexed by their type v, which is proportional to the differ-
ences in utility of the driver between driving and idling. It is typically negative
due to the effort and cost involved with driving (recall that v can be negative).
The market has a large number of routes, and at any point in time each route
is occupied by a driver. Consider a rider (buyer) who wants to travel on a given

8A similar illustration applies to hotel booking platforms, e-commerce marketplaces, meal and gro-
cery delivery platforms, and payment platforms: buyers choose the channel of transaction in all these
examples if we reinterpret the outside option as “direct transactions”, as in footnote 5. One complication
is that seller pricing and pass-through arises in these examples. Our model remains applicable provided
sellers do not set prices to extract the benefits buyers get from transacting through platforms (net of
buyer transaction fees), which holds if (i) sellers cannot price discriminate across buyers that transact
through different channels; and (ii) sellers are local monopolists and there is a sufficiently large additional
group of buyers who always avoid transacting directly, or sellers compete but buyers do not observe their
platform participation decisions when deciding which seller to go to. Feature (i), also known as “price
coherence”, is often enforced by platforms, either explicitly through price parity clauses (Edelman and
Wright, 2015) or implicitly through ranking algorithms (Hunold, Kesler and Laitenberger, 2020). Fea-
ture (ii) has been invoked in the payment card literature; see, Section IV(ii) of Wright (2004a) for an
explanation and references therein.
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route that happens to be occupied by a driver v. If the driver on this route is
unavailable on any of the ride-hailing platforms, the rider is unable to reach this
driver and has to use alternative forms of transport (e.g., public transport) to
travel on this route, obtaining utility normalized to zero. If the driver is available
on platform i, then the rider chooses between engaging with the driver or using
alternative forms of transport, depending on whether b0 + ϵi − pbi is greater than
zero. Here, b0 is the rider-specific value for the convenience of using a ride-hailing
service, and ϵi represents idiosyncratic preference for ride-hailing platform i. This
idiosyncratic preference could reflect brand-affiliation, convenience of using the
rider’s preferred form of payment on the platform, safety features, the user inter-
face, among other factors. Multihoming riders compare the net utility of the ride
across platforms (that have access to the driver), and then order through one of
the platforms.
□ Network effects. In our model, there is a network effect at the market level

because each buyer (seller) benefits from having access to more sellers (buyers)
because there are more transactions that can potentially be made. However,
as will be seen below, when sellers multihome in the equilibrium, this partially
shuts down the network effect at the level of individual platforms, in that buyers’
ability to access sellers does not depend on sellers being available on a particular
platform. However, buyers still benefit from having more sellers available on
any given platform, since this increases the likelihood they will be able to make
transactions on their preferred platform. Meanwhile, network effects also still
play an important role in sellers’ participation decisions. Due to the heterogeneity
in buyer preferences across platforms, sellers’ participation decisions have to take
into account the number of unique buyers they can gain access to on each platform
i (since otherwise these buyers may not want to buy via other platforms j ̸= i).

II. Equilibrium analysis

A. Decisions of buyers and sellers

□ Choice of transaction medium. Consider a buyer that has joined a set
Θb of platforms who wishes to transact with a seller v that has joined a set Θv

of platforms. The buyer can either perform the transaction through one of the
of platforms (that the pair has joined in common) or opt for the outside option
(not transacting). Thus, the buyer uses platform i ∈ Θb ∩Θv if

b0 + ϵi − pbi > max
j∈Θb∩Θv

{
b0 + ϵj − pbj , 0

}
.

Given that ϵ0 = −b0, the condition becomes

ϵi − pbi ≥ max
j∈Θb∩Θv

{
ϵj − pbj , ϵ0

}
.
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As will be seen later, we will focus on the participation equilibrium in which all
buyers multihome on all platforms, i.e. Θb = N for all buyers, so that Θb ∩Θv =
Θv. For each seller v, denote the mass of buyers who wish to transact with the
seller and do so using platform i ∈ Θv, as

(1) B
(Θv)
i ≡ Pr

(
ϵi − pbi ≥ max

j∈Θv

{
ϵj − pbj , ϵ0

})
for any Θv ⊆ N.

From (1), note that a seller, by selecting the platform(s) she wants to join, can
restrict the set of platforms that buyers can choose from to make their transac-
tions. It should be emphasized that (1), also known as “buyer quasi-demand”,
does not necessarily equal to the mass of buyers who have joined i given that the
transaction choice is endogenous.

Denote the symmetric fee equilibrium under multihoming buyers as p̂ = (p̂b, p̂s).
We consider a platform i which deviates from the equilibrium and sets pi= (pbi , p

s
i ) ̸=

p̂. Whenever convenient, we use N−i ≡ N\ {i} to denote the set of all platforms
excluding i.

□ Buyer participation. It is straightforward to see that the assumptions of
(i) buyers get to choose the final medium for transaction and (ii) zero joining
cost, together, imply that it is a weakly dominant strategy for any given buyer
to join all platforms, regardless of the fees set by the platforms.9 Thus, given
our tie-breaking rule, we focus on the participation equilibrium with all buyers
multihome on all platforms.

□ Seller participation. The profile of seller participation generally depends
on how the seller fee set by platform i compares to other platforms. To derive
the equilibrium fees, let us focus on the participation profile after an upward
deviation by platform i, that is, psi ≥ p̂s.

Given psi ≥ p̂s and that all platforms j ̸= i set the lowest seller fee p̂s, it is clear
that a seller either joins no platforms, joins all platforms except i (i.e., N−i), or
joins all platforms including i (i.e., N). For a seller v, the net surplus from joining
all platforms including i is

(v − p̂s)
∑
j∈N−i

B
(N)
j + (v − psi )B

(N)
i

as illustrated in Figure 1 below (with i = 1 and N−i = {2, 3}).
If the seller quits platform i (in response to i’s higher seller fee), it faces the

9More formally, consider a buyer who contemplates joining an additional platform i after already
joining another platform j. The additional participation on platform i is weakly beneficial for two reasons.
First, the buyer gains access to any sellers who are available on platform i but not available on platform
j, and this additional access is strictly beneficial if ϵi − pbi > ϵ0. Second, even if joining platform i does
not provide any additional access, a buyer can switch his transaction over to platform i if it provides a
higher utility than transacting through platform j, i.e. if ϵi − pbi ≥ ϵj − pbj . We relax the assumption of

zero joining cost in Section IV.



VOL. VOL NO. ISSUE MULTIHOMING AND PLATFORM COMPETITION 11

Figure 1. : When seller v joins all platforms (including i), buyers’
idiosyncratic preferences mean that they spread across platforms 1,
2, and 3 to complete their transaction with the seller (for those that
prefer transacting over not transacting).

following trade-off. First, it will divert some of the buyers who initially use
platform i to switch to platforms j ∈ N−i. This raises the transactions on each
of these platforms by

B
(N−i)
j −B

(N)
j > 0

and allows the seller to enjoy the lower fee for each of these diverted transactions.
Second, given that the market is not fully covered, some buyers will stop transact-
ing (choosing the outside option) instead of transacting through other platforms.
The seller will lose access to these buyers’ transactions. To proceed, we define
the following notation:

DEFINITION 1: For each given profile of buyer fees (pb1, ..., p
b
n), buyers’ loyalty

to platform i ∈ N is defined as

(2) σi ≡
B

(N−i)
0 −B

(N)
0

B
(N)
i

∈ (0, 1).

where B
(Θv)
0 = Pr(ϵ0 ≥ maxj∈Θv{ϵj − pbj}).

Here σi measures buyer loyalty (in their transaction behavior) in the sense that
it indicates the fraction of buyers who stop transacting when platform i ceases to
be available for transactions with a given seller.10 Note that σi is relevant even

10Our definition of loyalty is related to the concept of the aggregate diversion ratio (ADR) by Katz
and Shapiro (2003), which measures the fraction of the total sales lost by a firm i (when its price rises by
a small percentage amount) that are captured by all of the competing firms j ̸= i. The inverse of buyer
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though buyers are multihoming on all platforms. Buyers can consider all options
but may still have strong preferences towards using certain platforms to complete
transactions, and be very reluctant to use others. Then, the change in seller v’s
net surplus from quitting the most expensive platform i can be written as

(3) (psi − p̂s) (1− σi)B
(N)
i︸ ︷︷ ︸

gain from diverting buyers to cheaper platforms

− (v − psi )σiB
(N)
i︸ ︷︷ ︸

foregone transactions

,

where the two components indicate the trade-off between saving on fees and
attracting fewer transactions, as illustrated in Figure 2 below.

Figure 2. : When seller v quits platform 1, a fraction 1−σ1 of buyers
who were using platform 1 to transact with the seller would switch
to use platforms 2 and 3, while the remaining fraction σ1 of buyers
stop transacting with the seller altogether.

Solving for the indifference condition associated with (3) yields seller partici-
pation decisions:

LEMMA 1: Suppose psi ≥ p̂s. There exists a threshold

v̂ =
psi − p̂s

σi
+ p̂s

such that a seller of type v joins no platform if v < p̂s, joins all platforms j ̸= i
if p̂s ≤ v < v̂, and joins all platforms including i if v ≥ v̂.

loyalty, 1 − σi, is analogous to ADR in the sense that 1 − σi similarly measures the fraction of buyers
who switch to the competing platforms. The key distinction is that in the definition of 1 − σi it is as if
buyers face an infinitely higher price to use platform i rather than the small percentage increase used to
define ADR, reflecting that sellers delist from platform i in our case.



VOL. VOL NO. ISSUE MULTIHOMING AND PLATFORM COMPETITION 13

Notice that the term σi plays a significant role in understanding how sellers react
to changes in seller fees set by platforms. From (2), we can interpret the term σi
as measuring the extent to which buyers cannot be diverted in their transaction
decisions.

If σi is close to one, it means that platform i is not substitutable by other
platforms j ̸= i for buyers who prefer i the most. Whenever platform i is not
available for transactions with a particular seller, many existing buyers who have
joined platform i will simply stop transacting with the seller (even though they
have the option to transact with the seller through other platforms). In other
words, it is hard for each seller to divert buyers to transact through the platform
that the seller prefers. Thus, a large σi means that sellers are less likely to quit
platform i following an increase in psi , i.e.,

dv̂

dpsi
=

1

σi

is small. If σi is close to zero instead, buyers on platform i are unlikely to stop
transacting, so that it is easy for sellers to divert the buyers’ choice of platform
for completing transactions. In this case, sellers are more likely to quit platform
i following an increase in psi , i.e.,

dv̂
dpsi

is large.

□ Volume of transactions. Recall that each buyer-seller pair corresponds
to one potential transaction. To derive the number of transactions Qi facilitated
by the deviating platform i, we count the number of buyers who use i to transact
with each seller v, and sum this up over the set of all sellers that are available on
platform i. That is, for all pbi ̸= p̂b and psi ≥ p̂s, we have

Qi (pi; p̂) |psi≥p̂s =

∫
{v|i∈Θv}

B
(Θv)
i dG(v)

= (1−G (v̂))B
(N)
i ,(4)

where the second equality is due to Lemma 1. In short, platform i’s increase in
psi trades off between fewer sellers participating (hence fewer transactions) and a
higher fee.

We relegate the demand derivation for the more complicated case of psi < p̂s to
Section A.A1 of the Appendix and provide a sketch of the analysis here. When
platform i sets psi < p̂s, each seller faces a trade-off that is similar to, but the
reverse of (3): by quitting the more expensive platforms j ̸= i, the seller gains
from diverting some buyers to use the cheaper platform i but loses transactions
with buyers who switch to the outside option. Thus, in response to psi < p̂s,
some sellers join strictly less than n platforms (while still joining platform i).
Specifically, there exists a sequence of cutoffs v̂n ≥ v̂n−1 ≥ ... ≥ v̂1 = psi such
that a seller joins m platforms (including i) if and only if v ∈ [v̂m, v̂m+1), where
m ∈ {1, 2..., n−1}. When buyers want to transact with sellers that join less than
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n platforms, they have fewer platforms to choose from, which implies that they
are more likely to use platform i (if they transact at all). As such, platform i’s
decrease in psi trades off between inducing sellers to multihome on fewer other
platforms (which results in more transactions) and earning a lower fee.
Imposing specific distribution functions allows us to express the volume of trans-

action (for psi < p̂s) in a simpler form. Suppose F and F0 correspond to the
Gumbel distributions with a common scale parameter µ and location parameters
β and β0 respectively (and normalize β = 0 without loss of generality). In this
case, buyer quasi-demand in (1) follows the standard logit form widely used in
the industrial organization literature:

(5) B
(Θv)
i =

exp
{
−pbi/µ

}
exp {β0/µ}+

∑
j∈Θv exp{−pbj/µ}

.

In Section A.A1 of the Appendix, we show that (5) implies v̂m = (p̂s−psi ) exp
{
−pbi/µ

}
+

p̂s is independent of m for all m ≥ 2. As such, each seller either joins all platforms
including i, joins only platform i, or joins no platforms, and so

Qi (pi; p̂) |psi<p̂s = (1−G (v̂m))B
(N)
i + (G (v̂m)−G(psi ))B

({i})
i .

B. Equilibrium fees

We now characterize the equilibrium in the first stage. In what follows, we
assume that platform i’s profit function

Πi =
(
pbi + psi − c

)
Qi (pi; p̂)

is quasi-concave in (psi , p
b
i).

11 In Section A.A6 of the Appendix, we show that a
sufficient condition for quasi-concavity is that buyer quasi-demand takes the logit
form (5) and that G is linear.12

For any arbitrarily given (symmetric) buyer fee pb, we define the buyer inverse
semi-elasticity as

(6) X(pb;n) ≡

∣∣∣∣∣ B
(N)
i

∂B
(N)
i /∂pbi

∣∣∣∣∣
pbi=pbj=pb

,

11Our derivation below focuses on the upward deviation psi ≥ p̂s. In Section B of the Online Appendix,
we verify that Qi is always continuous, and that platforms cannot profitably deviate from the equilibrium
in (8) by slightly decreasing psi . The assumption of quasi-concavity rules out large deviations being
profitable.

12Beyond the case of the standard logit demand, we numerically check in Section B of the Online
Appendix that the profit function is indeed quasi-concave when F , F0, and G follow combinations of
commonly used distribution functions such as Normal, Exponential, and Gumbel, suggesting that the
quasi-concavity of the profit function may indeed hold quite generally.



VOL. VOL NO. ISSUE MULTIHOMING AND PLATFORM COMPETITION 15

which is a standard index that measures the competitive markup a firm can ex-
tract from buyers in a given equilibrium with n competing firms (Perloff and
Salop, 1985). Similarly, we define the buyer loyalty index as the symmetric coun-
terpart of (2):

(7) σ(pb;n) ≡ σi|pbi=pbj=pb ∈ (0, 1)

which captures buyers’ tendency to stop transacting when their most-preferred
platform ceases to be available for transactions, i.e., how difficult it is for sellers
to divert buyers’ transactions across platforms.

The standard first-order condition for optimal pricing leads to the following
equilibrium.13

PROPOSITION 1: A pure symmetric pricing equilibrium is characterized by all
n platforms setting p̂ =

(
p̂b, p̂s

)
that solves

(8) p̂b + p̂s − c = X(p̂b;n) =
1−G(p̂s)

g(p̂s)
σ(p̂b;n).

Moreover, the solution p̂ is unique, i.e., the symmetric equilibrium pinned down
by (8) is unique.

The example below shows that (8) has a closed-form solution for a logit-
exponential specification. We will use this example to illustrate several results
throughout the paper.

EXAMPLE 1: (Logit-exponential). Suppose F and F0 correspond to the Gum-
bel distributions with a common scale parameter µ and location parameters β and
β0 respectively (and normalize β = 0). Then, expressions (6) and (7) become

X(pb;n) = µ

(
exp {β0/µ}+ n exp

{
−pb/µ

}
exp {β0/µ}+ (n− 1) exp {−pb/µ}

)
(9)

σ(pb;n) =
exp {β0/µ}

exp {β0/µ}+ (n− 1) exp {−pb/µ}
.

Suppose further that G corresponds to the exponential distribution with inverse
scale parameter θ > 0. Assuming that θµ < 1 and that β0 is not too small so that

13An assumption implicit in this equilibrium characterization is that the distribution supports are
large enough such that platforms’ optimal prices are interior solutions.
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boundary constraints do not bind,14 the solution to (8) is

(10) p̂b = µ ln

(
nθµ

1− θµ

)
− β0 and p̂s = c+

nµ

n− (1− θµ)
− p̂b.

At the equilibrium prices, X(p̂b;n) = 1
θσ(p̂

b;n) = nµ
n−(1−θµ) .

Condition (8) can be intuitively understood as the intersection of equilibrium
conditions for the competition in the buyer-side and seller-side markets. To see
this, we first denote P b (ps) as a function defined implicitly by pb that solves

(11) pb = c︸︷︷︸
cost

+ X(pb)︸ ︷︷ ︸
market power over buyers

− ps︸︷︷︸
cross-subsidy due to revenue from sellers

and denote P s(pb) as a function defined implicitly by ps that solves

(12) ps = c︸︷︷︸
cost

+
1−G(ps)

g(ps)
σ(pb;n)︸ ︷︷ ︸

market power over sellers

− pb︸︷︷︸
cross-subsidy due to revenue from buyers

.

For each arbitrarily given (common) seller-side fee, P b (ps) defined by (11) can
be understood as a curve that maps out the “one-sided” equilibrium buyer fee.
Likewise, P s(pb) is a curve that maps out the “one-sided” equilibrium seller fee for
each arbitrarily given buyer fee. Then, the equilibrium (8) is simply the unique
intersection of the P s(pb) and P b (ps) curves, each representing the equilibrium
condition on each side of the market.

This reinterpretation of the equilibrium provides an intuitive way to under-
stand Proposition 1. Expression (11) represents the standard oligopoly pricing
equilibrium (in setting the buyer fee) with competitive markup X, except that
the price is adjusted downward (upward) because the platform is compensated by
the positive (negative) seller fee collected from each transaction. Expression (12)
is the sum of cost, adjusted by the buyer fee, plus the standard monopoly pricing

markup 1−G(P s)
g(P s) that is discounted by the buyer loyalty index, σ < 1. The dis-

count reflects that platform market power over sellers increases when it becomes
harder for sellers to divert buyers to transact through different platforms. We
discuss the implications of this equilibrium condition in the next subsection.

14Specifically, we require p̂s ≥ 0 given the exponential distribution has a non-negative support. More
generally, we can introduce an additive shifter to the exponential distribution to allow the interior solution
of p̂s to take negative values. See, e.g, the discussion in Section IV.C.
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C. Discussion

□ Comparison with pure membership models. The pricing equations (11)
and (12) in our pure transaction pricing model somewhat resemble those obtained
in the pure membership pricing models of Armstrong (2006), Belleflamme and
Peitz (2019a), and Tan and Zhou (2021) in the sense that there is a “cross-subsidy
adjustment” on each side due to the two-sidedness of the market. However, there
is a key conceptual difference in terms of how the subsidy adjustment arises in
these two classes of models.

To see this, consider the determination of the seller fee (a similar logic applies for
the buyer fee). In membership pricing models, the subsidy adjustment reflects the
cross-group membership externality, whereby an increase in seller participation
raises buyers’ willingness to pay for platform membership. In cases where the
cross-group externality is negative, e.g., if we replace “sellers” with “advertisers”,
then the subsidy adjustment would have a negative sign. However, in transaction
pricing models, the cross-group externality is irrelevant in the determination of
transaction fees. Instead, any subsidy adjustment in the transaction fees reflects
the “usage externality” emphasized by Rochet and Tirole (2003, 2006) — an
additional transaction caused by an increase in seller participation has a cost
of c but generates an offsetting subsidy of pb, so this subsidy should be taken
into account in setting the price to sellers, and vice-versa. Moreover, the sign of
the cross-subsidy adjustment is primarily determined by the nature of the value
distributions of buyers and sellers.

□ Membership fee component. Consistent with our motivating examples,
we have focused on platforms charging per-transaction fees. A natural extension
is to allow platforms to charge two-part tariffs that include membership fees (in
addition to transaction fees). In Section C of the Online Appendix, we focus on
the case of logit buyer quasi-demand and show that Proposition 1 remains an
equilibrium in this extended setup if buyer and seller beliefs are such that buyers
and sellers coordinate on not participating on platforms that charge strictly posi-
tive membership fees (to either buyers or sellers) whenever this is an equilibrium
in the resulting subgame.15 Such beliefs capture the idea that facing competition
with other platforms, membership fees make it more difficult for a platform to
attract users, perhaps explaining why few platforms charge such fees in practice.16

15The key step is to show that no platform can profitably deviate from the equilibrium in Proposition
1 by setting negative membership fees. The intuition of the result is that negative membership fees are
a less effective instrument to expand the deviating platform’s transaction volume compared to lowering
its transaction fees.

16If we allow for other types of beliefs, then a platform may be able to profitably deviate by sig-
nificantly lowering its buyer transaction fees while adjusting (positive) buyer membership fees to keep
the platform’s buyer-side revenue unchanged. This maneuver makes it harder for sellers to divert buy-
ers’ transaction away from the deviating platform (as the buyer membership fee is sunk at the point of
transaction), allowing the platform to charge a higher seller transaction fee. Consequently, characterizing
the pricing equilibrium in this case is difficult and goes beyond the scope of the current paper. This
complexity arises due to two-sided multihoming, which is a feature absent in previous two-sided market
models with two-part tariffs, e.g., Reisinger (2014).
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□ Significance of index σ. In our model of usage externality, multihoming in
participation does not automatically imply certain market outcomes because one
has to take into account users’ transaction behavior, which is summarized by σ. In
our setup, all buyers are free to join all platforms and so they all fully multihome
in terms of their participation. Yet, if σ → 1, buyers’ transaction pattern would
exhibit a strong tendency of being loyal to a single platform, in the sense that
they are likely to stop transacting whenever their most-preferred platform ceases
to be available even though they have joined other alternative platforms. The
resulting buyers’ singlehoming-type behavior in transactions generate the famil-
iar “competitive bottleneck” outcome (Armstrong, 2006; Armstrong and Wright,
2007) despite the multihoming in participation. That is, buyers behave as if they
only participate on a single platform. Platforms exert monopoly power over sell-
ers (letting σ → 1 in (12)) and compete intensely for buyers. Such a competitive
bottleneck disappears in the opposite case of σ → 0, whereby buyers’ transaction
pattern reflects a strong willingness to switch to other platforms whenever any
particular platform is no longer available (this case is only possible if n ≥ 2).

The index σ helps to make clear the nature of the platforms’ market power over
sellers, whereby the elasticity of seller participation is closely related to buyers’
behavior (even if we ignore any cross-subsidization effect). In the extreme case
where σ → 0, each buyer necessarily purchases one product from each seller in
equilibrium, and buyers are willing to do so through any of the n platforms. In
this case, platforms have zero market power over sellers (recall that sellers view
platforms as homogenous) because if one platform tries to charge more, sellers
can always divert sales through one of the alternative (cheaper) platforms without
losing any transactions. Thus, in our framework, each platform’s market power
over sellers stems primarily from the possibility that sellers may lose access to
some buyers when they delist from the platform.

Finally, in the special case of n = 2 and the F0 is a degenerate distribution
at ϵ0 = 0 (i.e., each buyer obtains the same surplus from all potential trans-
actions on the same platform), (8) recovers the duopoly equilibrium of Rochet
and Tirole (2003, Proposition 3). We show that their pricing formula general-
izes to oligopolistic platforms with transaction-specific buyer surpluses. A key
difference is we express the formula in terms of the underlying distributions of
buyers’ and sellers’ valuations over interaction benefits. This allows us to have a
micro-founded understanding of the nature of the index σ, and the comparative
statics of the factors which drive it, which we explore in Sections III-V.17

17Rochet and Tirole (2003) label the term σ as the buyer “singlehoming index”. We use the word
“buyer loyalty ”to highlight that σ is not necessarily tied to the homing behavior of buyers.



VOL. VOL NO. ISSUE MULTIHOMING AND PLATFORM COMPETITION 19

III. Platform entry

A. Fee implications

In this section we explore how increased platform competition (i.e. entry) affects
the platforms’ equilibrium total fee and fee structure. We start by examining how
an increase in n affects: (i) the competition for sellers captured by (12), which
depends on σ(pb;n); and (ii) the competition for buyers captured by (11), which
depends on X(pb;n). Then, we combine these to obtain the overall effect of an
increase in n.
We first state the following lemma, which we have proven in the proof of Propo-

sition 1.

LEMMA 2: For each given pb:

• The buyer loyalty index σ(pb;n) defined in (7) is decreasing in n.

• The buyer inverse semi-elasticity X(pb;n) defined in (6) is decreasing in n.

□ Intensified seller-side competition (∂σ/∂n < 0). When n increases, the
first part of Lemma 2 implies that buyer loyalty decreases because the platforms
become more substitutable. Sellers find it easier to divert buyers to transact
through different platforms, so that they are more likely to quit platforms that
charge high seller fees. Thus, the seller-side competition, as captured by the
seller-side curve P s

(
pb
)
in (12), becomes more intense when n increases. We write

P s(pb;n) to make explicit this dependency on n. Graphically, when the number
of platforms increases from n1 to n2, the seller-side curve shifts downward from
the solid line P s(pb;n1) to the dotted line P s(pb;n2), as shown in Figure 3.
All else equal, the shift in the seller-side curve has two effects: (i) it decreases

the equilibrium seller fee directly ; and (ii) it increases the equilibrium buyer fee
indirectly through the movement along the P b(ps) curve. The latter effect re-
flects the well-known seesaw effect in the two-sided market literature (Rochet
and Tirole, 2006): when the seller fee decreases by ∆ps < 0 (due to intensified
competition for sellers), the effective marginal cost of servicing buyers, c− ps, in-
creases. It becomes less valuable for platforms to attract transactions by buyers
so that the buyer fee increases by

(13) ∆pb ≈ ∂P b(ps)

∂ps
∆ps =

−∆ps

1− ∂
∂ps

1−G(ps)
g(ps)︸ ︷︷ ︸

>0 (see-saw effect)

.

Nonetheless, log-concavity of 1−G implies an incomplete pass-through property,
meaning that (13) is smaller than ∆pb in magnitude and so the equilibrium total
fee decreases.
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Figure 3. : Intensified competition for sellers (n2 > n1)

□ Intensified buyer-side competition (∂X/∂n < 0). The second part of
Lemma 2 implies that the equilibrium buyer-side competitive markup, X, de-
creases with n. This reflects the standard intuition that platforms are more sub-
stitutable for buyers when buyers have more platforms to choose from.18 Conse-
quently, the buyer-side competition, as captured by the buyer-side curve P b (ps)
in (11) becomes more intense. Graphically, when the number of platforms in-
creases from n1 to n2, the buyer-side curve shifts downward from the solid line
P b (ps;n1) to the dotted line P b (ps;n2) in Figure 4.

All else equal, the shift in the buyer-side curve has a direct effect of decreasing
the equilibrium buyer fee, but its indirect effect on the equilibrium seller fee can
be ambiguous, depending on the shape of P s(pb) curve. Specifically, when the
buyer fee decreases by ∆pb < 0 (due to intensified competition for buyers), the
seller fee changes by

∆ps ≈ ∂P s(pb)

∂pb
∆pb

=
−∆pb

1− ∂X/∂ps︸ ︷︷ ︸
>0 (see-saw effect)

+
∂σ/∂pb

1− ∂X/∂ps
∆pb︸ ︷︷ ︸

<0 (decreased loyalty due to downward pressure on X)

(14)

18This is an extension of the result by Zhou (2017) which considers the case where F0 is a degenerate
distribution at ϵ0 = 0.
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Figure 4. : Intensified competition for buyers (n2 > n1)

A lower buyer fee means it becomes less valuable to attract sellers to participate
and so the seller fee increases, as represented by the positive see-saw effect in
(14). At the same time, the downward pressure on buyer fee reduces buyer loyalty
(∂σ/∂pb > 0) because when the outside option becomes relatively less attractive
for buyers, it is easier for each seller to divert buyers’ transactions. This channel,
as represented by the negative second term in (14), exerts a downward pressure
on the seller fee. Nonetheless, log-concavity of density functions f and f0 implies
an incomplete pass-through property, meaning that (14) is smaller than ∆pb in
magnitude and so the equilibrium total fee must decrease.

□ Overall effect of competition. In sum, an increase in n affects the equilib-
rium fees via two separate effects: intensified competition for sellers (∂σ/∂n < 0)
and intensified competition for buyers (∂X/∂n ≤ 0). These two effects lead to an
unambiguous decrease in the equilibrium total fee, but the corresponding changes
in p̂b and p̂s are ambiguous in general. In particular, the two-sidedness of the mar-
ket means that the initial decrease in p̂b and p̂s (due to intensified competition
for sellers and for buyers) has to be adjusted by the additional effects noted in
(13) and (14).

In the proof of the next proposition, we show that the overall effects of n on p̂b

and p̂s can be decomposed as:

dp̂b

dn
= (initial decrease in X due to n) - (net see-saw effect)
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and

dp̂s

dn
= (initial decrease in σ due to n) + (net see-saw effect)

+ (decrease in σ due to downward pressure on X),

where the net see-saw effect is negative if and only if the shift in the seller curve
(in Figure 3) dominates the shift in the buyer curve (in Figure 4), i.e.,

(15)

∣∣∣∣∂σ/∂nσ

∣∣∣∣ > ∣∣∣∣∂X/∂nX

∣∣∣∣
near the initial equilibrium point p̂b. Property (15) says that buyer loyalty in-
dex σ is more elastic with respect to changes in n compared to the buyer-side
competitive markup X. For instance, in our logit-exponential example, a simple

calculation shows
∣∣∣∂σ/∂nσ

∣∣∣− ∣∣∣∂X/∂nX

∣∣∣ = B
(N)
i = 1

n (1− θµ) > 0.

We find that a sufficient condition for (15) is that the density function f is
weakly decreasing. In this case, the effect of intensified competition for sellers
dominates, which leads to the following formal result that holds for all n ≥ 1.

PROPOSITION 2: (Increased platform competition) In the equilibrium charac-
terized by Proposition 1, an increase in n (i.e. platform entry) decreases the total
fee p̂s+ p̂b. Furthermore, an increase in n decreases p̂s if (15) holds, and increases
p̂b if density functions f and g are weakly decreasing.

A novel implication of Proposition 2 is that, when there is two-sided multihom-
ing, increased platform competition tends to shift the fee structure in favor of
sellers. The property (15) plays a key role in establishing this result. Interest-
ingly, the property depends only on the preference distribution of the buyers, i.e.,
F and F0. The sufficient condition of weakly decreasing density function f is sat-
isfied by some commonly used distributions such as the uniform distribution, the
exponential distribution, the power law distribution, and the generalized Pareto
distribution (for a certain range of parameter values). By way of comparison, lin-
ear demand (analogous to the uniform distribution) has been used in the related
literature (e.g., Rochet and Tirole, 2003; Armstrong, 2006; Bakos and Halaburda,
2020).19

Second, property (15) can be understood as follow. Broadly speaking, an in-
crease in n has two effects. First, it makes the platforms more substitutable,

19Weakly decreasing density f is certainly not a necessary condition for (15). In Section A.A6 of the
Appendix, we show that (15) holds as long as F and F0 correspond to Gumbel distribution, which does
not have monotone decreasing density. We also numerically verify that property (15) holds when F and
F0 follow normal, gamma, and power function distributions (provided the second order conditions for
equilibrium are satisfied). These suggest that (15) is indeed true quite generally whenever second order
conditions hold.
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which raises the within-market competitive pressure, thus decreasing both X and
σ. Second, it triggers a market expansion effect. This market expansion effect
decreases the relative attractiveness of the buyers’ outside option and so σ, thus
reinforcing the first effect. In contrast, the market expansion effect increases X,
thus partially mitigating the first effect on X. As a result, X tends to be less
elastic towards changes in n than is σ, explaining why property (15) holds under
fairly general distributional assumptions.

Finally, weakly decreasing densities f and g guarantee that the (negative) net
see-saw effect has a relatively large magnitude which dominates the initial de-
crease in X in (13), and so p̂b unambiguously increases with n. Notice that
weakly decreasing densities are not necessary conditions. In our logit-exponential
example, it is clear from (10) that p̂b increases with n while p̂s decreases with n
even though the Gumbel distribution does not have a monotone decreasing den-
sity. Nonetheless, in more general cases, the net see-saw effect could be weak so
that p̂b decreases (or is non-monotone) when n increases. This is the case when,
for example, the density functions are increasing with sufficiently steep gradients.

B. Surplus implications

To discuss the surplus implications of platform competition, let us define ex-
pected per-transaction surplus for buyers and sellers as

V b(p̂b) ≡
∫ ϵ̄0

ϵ0

∫ ϵ̄

ϵ
max

{
ϵ− p̂b, ϵ0

}
dFn (ϵ) dF0 (ϵ0)

V s (p̂s) ≡
∫ v̄

p̂s
(v − p̂s) dG (v) .

Then, buyer and seller surpluses are

BS = V b(p̂b) (1−G (p̂s)) and SS = V s (p̂s)

∫ ϵ̄0

ϵ0

1− F (ϵ0 + p̂b)ndF0 (ϵ0) .

Changes in fees can affect the surplus of each user side in two ways: (i) a
direct effect through the per-transaction surplus; and (ii) a transaction volume
effect. Thus, even if platform competition increases p̂b (hence a lower V b), buyer
surplus would still increase if the competition decreases p̂s by a sufficiently large
magnitude (more sellers available for transactions). Likewise, a decrease in p̂s

does not necessarily increase seller surplus if the competition increases p̂b (fewer
transactions by buyers).

Consequently, the surplus implications of competition are ambiguous in gen-
eral even if we can pin down the price implications (i.e., when the conditions in
Proposition 2 hold). Nonetheless, in our logit-exponential example, we have the
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following formal result:20

COROLLARY 1: In the logit-exponential example, an increase in n (i.e. plat-
form entry) increases buyer surplus, seller surplus, and total surplus.

One interpretation of this result is that in the logit-exponential setting with all
buyers multihoming, the decrease in p̂s due to entry is significantly larger than
the increase in p̂b, so that: (i) on the seller side the positive effect through the
per-transaction surplus dominates the negative effect of transacting with fewer
buyers; (ii) on the buyer side, the negative effect through the per-transaction
surplus is dominated by the positive effect of transacting with more sellers. The
result illustrates the possibility that looking at the effect of entry (or mergers)
on prices charged to customers on one side alone can be a misleading guide to
whether customers on that side are better or worse off, and the importance of
taking into account feedback effects via the other side.

IV. Multihoming behavior of buyers

Recall that in our benchmark setting, each buyer faces zero joining cost re-
gardless of the number of platforms that he has already joined, and so all buyers
multihome on all platforms in the equilibrium. In Sections IV.A and IV.B, we
explore how the cost of buyers multihoming affects (i) the market equilibrium;
and (ii) the effects of platform entry. In Sections IV.C and IV.D, we discuss the
implications of these results in the specific applications of ride-hailing and pay-
ment card platforms. To keep the exposition brief, we focus on presenting the
main insights in this section and relegate the equilibrium analysis to Section D
of the Online Appendix.

A. A model of buyer partial multihoming

We allow some buyers to singlehome by extending the model in Section I as
follows. Suppose that buyers obtain some stand-alone participation benefit (can
be zero) from joining at least one platform and then incur a cost ψ (or a benefit
if ψ < 0) for each additional platform joined. Buyers have heterogenous ψ,
distributed according to some CDF Fψ.
Denote 1 − λ ≡ 1 − Fψ(0) as the fraction of buyers with ψ > 0. Provided

that these buyers expect each seller either multihomes on all platforms or joins
no platform (which we will show to be true in equilibrium), they do not expect
to gain additional access to sellers by joining more than one platform. Hence,
these buyers join at most one platform in the equilibrium, i.e., they singlehome.
The remaining fraction λ ≡ Fψ(0) of buyers have ψ ≤ 0 (i.e. there is some
non-negative stand-alone benefit from joining additional platforms), so that these

20See Section A.A7 of the Appendix for details.
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buyers multihome on all platforms in the equilibrium, as in the benchmark model.
Notice that λ = 1 corresponds to our benchmark setting.

To keep the exposition as simple as possible for this application, we assume
that singlehoming buyers observe only buyer fees and not seller fees.21 These
buyers hold passive beliefs (Hart and Tirole, 1990) on the unobserved seller fees,
meaning they believe seller fees are equal to the equilibrium levels whenever they
observe an off-equilibrium buyer fee. We consider the alternative assumption of
singlehoming buyers observing the seller side fees in Section D.1 of the Online
Appendix, focusing on the polar cases of λ→ 0 and λ→ 1.22

The derivation for this partial-multihoming model largely follows those in Sec-
tion II. We first note that the competition on the buyer side is independent of
λ in the equilibrium. To see this, consider a singlehoming buyer’s participation
decision. The buyer will join the platform that yields the highest expected util-
ity, taking into account the number of sellers on each of the platforms. Since the
buyer does not observe seller fees and holds passive beliefs, he takes psi as fixed at
the equilibrium level p̂s, which is the same across all platforms. Given this, the
singlehoming buyer expects the same set of sellers on each platform in the equi-
librium and he will join only the platform that gives the highest per-transaction
surplus. That is, he joins platform i if and only if ϵi − pbi ≥ maxj∈N{ϵj − pbj}.
After joining platform i, the buyer uses it for a transaction (with each seller) if
b0 + ϵi − pbi > 0, or equivalently if ϵi − pbi ≥ ϵ0. Therefore, the total mass of
singlehoming buyers who use platform i for transactions is

Pr

(
ϵi − pbi ≥ max

j∈N

{
ϵj − pbj , ϵ0

})
,

which is exactly (1) whenever Θv = N.

However, the presence of some singlehoming buyers means sellers, whenever
they quit one of the platforms, divert less buyers to other platforms for transac-
tions, i.e., the transaction loyalty index increases when λ decreases. This allows
platforms to exercise greater market power over sellers. Specifically, we can define
the counterpart of (7) for this environment:

(16) σλ(p
b;n) ≡ λσ(pb;n) + 1− λ.

21Recall in our benchmark setting with λ = 1, whether buyers observe seller fees or not does not
affect the analysis. Consistent with our assumption here, Janssen and Shelegia (2015) note that vertical
arrangements between sellers and platforms are typically confidential, and so are not observed by buyers.
Hagiu and Ha laburda (2014) and Belleflamme and Peitz (2019b) have analyzed the implications of this
informational assumption for pricing in two-sided markets.

22The key distinction in this case is that each platform can attract buyers with ψ > 0 by lowering its
seller fee (so that these buyers can transact with more sellers when they singlehome on the platform),
which leads to a new multiplicative coefficient that discounts the platform market power over sellers.
Assuming logit buyer quasi-demand, we show that if platforms are sufficiently differentiated from buyers’
perspective, then the qualitative insights in this section remain valid.
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Notice that σλ is decreasing in λ. If λ = 0 then σλ = 1, i.e., buyers cannot be
diverted to use other platforms for transactions because all of them join only one
platform. If λ = 1 then σλ < 1 defined here corresponds to the benchmark defini-
tion in (7). Thus, σλ relates buyer transaction behavior with their participation
homing behavior.
In this environment, a pure symmetric pricing equilibrium can be characterized

by all platforms choosing p̂ =
(
p̂b, p̂s

)
that uniquely solves

(17) p̂b + p̂s − c = X(p̂b;n) =
1−G (p̂s)

g (p̂s)
σλ(p̂

b;n).

Given that an increase in λ always decreases σλ but does not affect X, the logic
in Section III immediately implies the following result:

PROPOSITION 3: (Effect of buyer multihoming) In the equilibrium character-
ized by (17), a higher fraction of multihoming buyers (λ) increases p̂b, decreases
p̂s, and decreases the total fee p̂b + p̂s.

Proposition 3 is analogous to Proposition 5.3 of Rochet and Tirole (2003), but
there are three important differences. First, their result focuses on competing
associations (each that maximizes the volume of transactions) whereas our re-
sult considers proprietary platforms (that maximize profit). Second, our result
does not rely on demand linearity and can accommodate an arbitrary number
of platforms. Finally, their result is stated in terms of an exogenous increase
in σ (the “singlehoming index” in their terminology) but does not clarify how
does such an exogenous change relates to the homing behaviors of buyers.23 Our
approach provides a microfoundation that links such a change with the fraction
of buyers singlehoming due to multihoming costs. This approach also has impli-
cations for the competitive bottleneck theory (Armstrong, 2006; Armstrong and
Wright, 2007; Belleflamme and Peitz, 2019a) in that when more buyers multi-
home (an increase in λ), the competitive bottleneck initially faced by the seller
side is reduced.

B. Interaction with platform entry

We are interested in the interaction between the extent of buyer multihoming
(λ) and the number of platforms that are competing (n). Specifically, does homing
behaviors of buyer change the implications of platform entry in Proposition 2?

23In their primary example of an extended linear Hotelling model, such an exogenous increase in the
buyer loyalty index corresponds to an increase in the marginal transportation cost of buyers for distances
in the “noncompetitive hinterland” of the rival platform while holding constant the transportation cost
of all other segments of the Hotelling line.
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PROPOSITION 4: (Increased platform competition) In the equilibrium with partial-
multihoming buyers characterized by (17), an increase in n always decreases the
total fee.

1) If the fraction of buyers multihoming goes to zero (λ → 0), an increase in
n increases p̂s and decreases p̂b.

2) If the fraction of buyers multihoming goes to one (λ→ 1) and f and g are
weakly decreasing, an increase in n decreases p̂s and increases p̂b.

For the logit-exponential example, we prove in Section A.A7 of the Appendix
a complete characterization which shows both p̂s and p̂b decrease with n for
intermediate values of λ.

COROLLARY 2: In the logit-exponential example, there exist cutoffs λ̄1 = 1−θµ
and λ̄2 ∈

(
0, λ̄1

)
such that:

1) If λ < λ̄2, an increase in n increases p̂s and decreases p̂b.

2) If λ ∈ [λ̄2, λ̄1], an increase in n decreases p̂s and p̂b.

3) If λ > λ̄1, an increase in n decreases p̂s, and increases p̂b.

Proposition 4 highlights a novel finding of our paper: even though increased
platform competition always reduces the total fee charged to the two sides, whether
it shifts the fee structure in favor of buyers or sellers depends on whether most of
the buyers are singlehoming or multihoming. A key step in our proof is showing

that
∣∣∣∂σλ/∂nσλ/n

∣∣∣ decreases when λ decreases. That is, when more buyers are sin-

glehoming in participation, the loyalty index σλ becomes less responsive towards
changes in n.
Intuitively, when most of the buyers multihome (λ → 1), increased platform

competition induces platforms to compete more intensely for sellers, as explained
previously (following Proposition 2). However, when most of the buyers single-
home (λ → 0), platforms have monopoly power over providing access to their
buyers for the multihoming sellers. As such, increased platform competition in-
duces platforms to compete more intensely for buyers rather than for sellers (the
normal competitive bottleneck logic). We discuss the economic implication of this
result for specific markets in the next two subsections.

C. Application: ride-hailing platforms

In the context of ride-hailing platforms, for each trip the riders (buyers) enjoy
benefits while the drivers (sellers) incur efforts, so that pb > 0 > ps in practice.
Here, pb is the fare set by the platforms, the negative value of ps is the per-ride
driver gross earning (or wage). In this context, multihoming riders are those who
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compare and choose between multiple apps whenever they call for a ride, while
singlehoming riders are those who do not do so. To facilitate exposition, we focus
on the polar cases of all buyers singlehoming (λ = 0) and all buyers multihoming
(λ = 1), while noting that the general qualitative insights remain the same for
cases between these two extremes (λ ∈ (0, 1)).
Figure 5 numerically illustrates this application, assuming that c = 0.1, F and

F0 ∼ Gumbel with scale parameter µ = 3 and location parameters β = 0 and
β0 = −5, whileG follows the exponential distribution with inverse scale parameter
θ = x and an additively-shifted support of [−20,∞).

Figure 5. : A numerical example of a ride-hailing market

□ Platform competition. Buyer multihoming profoundly reverses the dy-
namics of platform competition. When riders are singlehoming, existing ride-
hailing platforms respond to entry by cutting the fare to attract riders, and then
reoptimize by offering less to drivers. However, when riders are multihoming, if
the incumbent platforms naively continue to respond by cutting fares and driver
wages, then some drivers will simply quit the lower-wage incumbents, knowing
that they can still access a large portion of riders through other higher-wage plat-
forms. Instead, our analysis suggests that the response in equilibrium would be
the reverse: platforms increase wages to attract drivers, and then reoptimize the
fare by charging more. The possibility of a fare increase following entry is in
contrast to the conventional one-sided logic that high final product prices (in this
case, rider fares) are caused by a lack of competition.24

□ Platform merger and exit. The industry of ride-hailing services has
witnessed several high profile merger cases in recent years, including Didi-Uber

24See also Bryan and Gans (2019) for an investigation of how the multihoming behaviour of riders
and drivers affects pricing (and welfare) when there are two competing ride-hailing platforms.
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in China (2016), Yandex-Uber in Russia (2017), Grab-Uber in South East Asia
(2018), and Careem-Uber in Middle East (2019). Notably, each of these mergers
has resulted in one of the platforms exiting the market entirely.25 Based on
analyzing what happens when n decreases by one, our analysis suggests that the
effect of these mergers on the platform fee structure depends critically on the
level of rider-multihoming. This provides an empirical implication: even in the
absence of any cost-efficiency gain from the merger, it is possible for such a merger
to result in lower fares for riders (if the extent of rider-multihoming is high) or
higher earnings for drivers (if the extent of rider-multihoming is low). Regardless
of the level of rider-multihoming, however, our model also predicts the total fee
charged to the two sides will increase.

D. Application: payment card platforms

Payment card platforms typically offer card holders (buyers) a variety of card-
usage benefits e.g., interest-free periods, cash rebates and loyalty rewards. Plat-
forms then make money by charging transaction fees on merchants (sellers), so
that ps > 0 > pb in practice. In this context, multihoming cardholders are those
who have multiple cards to choose from at the point of transactions, while sin-
glehoming cardholders are those who do not.
□ Platform competition and interchange fees. Policymakers in some ju-

risdictions, including Australia, Europe, and United Kingdom, have claimed that
payment card platforms set interchange fees too high. As summed up by Guthrie
and Wright (2007), these authorities appear to view the lack of competition be-
tween platforms as a possible cause of high interchange fees. However, Proposition
4 suggests that this view by the authorities is true only when most of the card-
holders are multihoming, whereby increasing inter-platform competition indeed
helps to reduce the interchange fee paid by the merchant side to the cardholder
side. Notably, the reverse view is true when the fraction of singlehoming cardhold-
ers is sufficiently large, whereby increasing inter-platform competition drives up
the interchange fee instead, which seems to match the empirical evidence better
(Rysman and Wright, 2015).

V. Value of transactions and user heterogeneity

In this section, we explore how the market equilibrium outcome depends on
value of transactions and user heterogeneity. Whenever applicable, we highlight
the role of index σ in understanding these comparative static exercises. To keep
the exposition brief, we relegate details and formal proofs of the propositions to
Section E of the Online Appendix.

25Therefore, these merger cases are different from standard horizontal mergers involving differentiated
products, where the merged entity would continue operating both of the original brands so as to maximize
their joint profit.
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We extend the model in Section I by introducing the following parameters:
(i) αb and αs, which shifts the buyer utility from transacting relative to not
transacting; (ii) γb > 0 and γs > 0, which indicates the heterogeneity of buyer
preferences and seller preferences. A buyer that uses platform i for a transaction
receives net utility26

(b0 + ϵi)γ
b + αb − pbi

while generating to the seller net utility

vγs + αs − psi .

The surplus from the outside option remains fixed at zero and all other specifica-
tions remain the same. One interpretation of the comparative static analysis in
this section is we are making comparisons within the classes of distributions that
are parameterized by location and scale parameters (αb, γb) (for the buyer value
distributions) and (αs, γs) (for the seller value distribution). This parameteriza-
tion allows us to shift distribution functions in a tractable manner.27

This extension is mathematically equivalent to applying a linear transformation
to the fees charged by each platform. The equilibrium condition is similar to (8)
in the benchmark model:

(18) p̂b + p̂s − c = γbX

(
p̂b − αb

γb
;n

)
=

1−G( p̂
s−αs

γs )

g( p̂
s−αs

γs )
γsσ

(
p̂b − αb

γb
;n

)
,

where X(.;n) and σ(.;n) are defined in (6) and (7).

PROPOSITION 5: (Value of transaction) In the equilibrium (18):

1) An increase in the value of transactions for buyers (αb) increases p̂b, de-
creases p̂s, and increases p̂b + p̂s.

2) An increase in the value of transactions for sellers (αs) increases p̂s, de-
creases p̂b, and increases p̂b + p̂s.

The first part of Proposition 5 implies that an increase in αb which increases the
value buyers put on transacting with sellers (relative to not transacting) makes
competition for sellers more intense. This is intuitive. There are two relevant

26Notice that if γb = 0 then all buyers are homogenous. Our formulation follows the standard models
of oligopolistic price competition (Anderson, de Palma and Thisse, 1992; Anderson and Peitz, 2020),
which typically impose a common scale parameter to all idiosyncratic components of utility functions.

27The parameters in this section have natural counterparts to the parameters in the logit-exponential
example. Specifically, the Gumbel scale parameter µ corresponds to γb, the Gumbel location parameter
β0 of distribution F0 corresponds to −αb, while the inverse scale parameter of the exponential distribution
θ corresponds to 1/γs.
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forces here. First, a higher αb raises platforms’ market power over buyers (they
strongly desire transactions now) because transactions can only occur through
platforms. Through the see-saw effect, this exerts a downward pressure on p̂s. The
second force is more novel: when buyers highly value transacting with sellers, they
are willing to use any platform for transaction (as opposed to not transacting).
This makes it easier for each seller to, through her participation decision, divert
buyers to use the platform that the seller desires. Consequently, platforms have
weaker market power over the sellers, which exerts additional downward pressure
on p̂s. In the extreme case where αb → ∞, the outside option becomes irrelevant
and σ → 0, implying that platforms would have no market power over sellers.
For the second part of Proposition 5, a higher αs allows platform to charge

a higher p̂s and, through the see-saw effect, exerts a downward pressure on p̂b.
In practice, an increase in α may correspond to sellers extracting more surplus
from transactions (while leaving buyer surplus unaffected) or an industry-wide
increase in the convenience benefit that platforms offer to the sellers. This result
extends the insights of Proposition 5.1 of Rochet and Tirole (2003), which focuses
on duopolistic competing associations (which maximize volume of transactions
instead of profits).

PROPOSITION 6: (User heterogeneity) In the equilibrium (18):

1) Suppose αb is small enough, then an increase in the extent of buyer hetero-
geneity (γb) increases p̂b, decreases p̂s, and increases p̂b + p̂s.

2) Suppose αs is small enough, then an increase in the extent of seller hetero-
geneity (γs) increases p̂s, decreases p̂b, and increases p̂b + p̂s.

We first discuss the first result (γb) of Proposition 6. We first observe from (18)
that the effect of an increase in γb critically depends on the sign of p̂b−αb. Suppose
αb is small enough so that p̂b − αb > 0 (so platform-mediated transactions are
relatively costly). An increase in γb raises the attractiveness of platform-mediated
transactions (relative to the outside option) by dampening buyers’ sensitivity
towards the net cost of using platforms. Buyers are less likely to stop transacting,
so that sellers find it easier to divert buyers’ transactions, in the sense that index
σ decreases. This weakens platforms’ market power over sellers. As for the
buyer side, γb has standard two effects: (i) increased differentiation between the
platforms; and (ii) dampened buyer sensitivity towards the net cost of using
platforms, which expands the market size. Both effects raise the market power
platforms have over buyers.
The case of p̂b − αb ≤ 0 (so the transaction is subsidized on net) is more

complicated.28 In this case, an increase in γb decreases the attractiveness of

28See Section 7.2 of Anderson, de Palma and Thisse (1992) for a similar discussion in the context of
oligopolistic firms selling differentiated products.
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platform-mediated transactions by dampening buyer sensitivity towards the net
subsidy of using platforms p̂b−αb ≤ 0. This is in contrast to the previous case of
small αb. Consequently, the index σ increases, strengthening platforms’ market
power over the sellers. As for the buyer side, the effect of γb is unclear because
it now has a market contraction effect, which offsets (and potentially dominates)
the increase in market power from increased differentiation. The overall effect of
γb on the equilibrium fee is generally ambiguous in this case.
Finally, the effects of γs in the second part of Proposition 6 follow a similar

reasoning as in the first part, in the sense that the effects depend also on the sign
of p̂s − αs. The only exception is that the mechanism through the loyalty index
is absent in this case.

VI. Conclusion

This paper investigated two-sided market pricing by oligopolistic platforms
when platforms set transaction fees on both user sides. We provided a frame-
work which allows the underlying economic forces determining platform pricing
to be analyzed. The following table summarizes the findings of our various com-
parative statics exercises.

An increase in Change in Shift in
total fee fee structure

extent of buyer multihoming (λ) − favors sellers
number of platforms (n) when λ is large − favors sellers*
number of platforms (n) when λ is small − favors buyers
value of transactions for buyers (αb) + favors sellers
value of transactions for sellers (αs) + favors buyers
buyer heterogeneity when αb is small + favors sellers
seller heterogeneity when αs is small + favors buyers

Note: “ + ” = increase; “ − ” = decrease;

* = with additional conditions specified in Proposition 2.

Our findings echo the general view in the two-sided market literature that
one-sided logic may be misleading in making inferences in two-sided markets
(e.g., Wright, 2004b). First, seemingly buyer-friendly measures that facilitate
multihoming and switching across platforms, such as the growing popularity of
metasearch aggregators, may primarily benefit sellers by making it more attractive
for sellers to divert transactions onto a cheaper platform. Second, in a two-sided
context, more platform competition does not necessarily drive down both prices;
indeed we find, more platform competition can increase buyer-side prices when
there is a lot of multihoming among buyers, and it can increase seller-side prices
when there is little multihoming among buyers.
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There are two built-in asymmetries across the two sides in our model (i) buyers
choose the platform to make their transaction on; (ii) sellers treat platforms as
homogenous. It would be interesting to explore relaxing these. One possibility is
to allow sellers to directly influence buyer decisions on which platform to transact
on (e.g., allow ride-hailing drivers to observe destinations and reject orders). An-
other direction is to extend the framework to study what happens if platforms are
differentiated from the sellers’ perspective as well. This would potentially gener-
ate richer equilibrium configurations where some sellers multihome on a subset of
platforms while other sellers multihome on all platforms.

It would be interesting to allow platforms to influence homing behaviors of buyer
and sellers through strategies such as exclusive contracts, product design, offering
subscription contracts, usage bundling (Sato, 2021), or limiting the effectiveness
of multihoming tools (Athey, Calvano and Gans, 2018). Our current setup is not
well suited for this investigation as we rely on symmetry to make our analysis
tractable. For a recent advancement in this direction, see Haan, Stoffers and
Zwart (2021).

Finally, one can try to incorporate seller competition more explicitly into the
current framework, which is particularly relevant when the sellers are merchants
that compete on price. In our analysis of seller participation, an implicit assump-
tion is that potential transactions with each seller are irreplaceable. Allowing for
seller competition should increase the buyer loyalty index because it weakens the
ability of each seller to divert buyers by delisting from a more expensive platform.
Future research could formalize this result, and see whether increased seller com-
petition indeed leads platforms to increase their fees to sellers and in total, while
decreasing their fees to buyers.

Appendix

A1. Further details of demand derivation

In this appendix, we complete the demand derivation by considering the seller
participation profile under a downward deviation psi < p̂s. It is obvious that if a
seller joins at least one platform, then the seller must also join platform i given
that i charges the lowest seller fee. A seller will join i as long as v ≥ psi . However,
the fact that all other platforms j ̸= i set p̂s does not necessarily imply that the
seller will join all these platforms together in a “block”. This is because when
psi < p̂s, any additional platform that a seller joins will divert additional buyers
away from the lowest-fee platform i to the newly joined platform. Therefore, the
number of platforms a seller multihomes on will depend on v in general.

Consider a seller who chooses to join platform i together with m − 1 other
(symmetric) platforms. We denote this set of platforms as Ni,m (the seller joins
m platforms in total, including i). Note that Ni,1 = {i} and Ni,n = N so m is
bounded between 1 and n. The corresponding number of buyers who use i for
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transactions is

B
(Ni,m)
i = Pr

(
ϵi − pbi ≥ max

j∈Ni,m

{
ϵj − pbj , ϵ0

})
.

Clearly a higher m implies more buyers diverted from platform i since B
(Ni,m)
i

decreases with m. With a slight abuse of notation, let

B
(Ni,m)
0 = Pr

(
ϵ0 ≥ max

j∈Ni,m

{
ϵj − pbj , ϵi − pbi

})
.

The following lemma states sellers’ multihoming decision formally:

LEMMA 3: Suppose psi < p̂s. For m = 2, ..., n, define cutoffs

(A1) v̂m ≡ (p̂s − psi )
B

(Ni,m)
i −B

(Ni,m+1)
i

B
(Ni,m)
0 −B

(Ni,m+1)
0

+ p̂s.

A type v seller joins no platform if v ∈ [v, psi ), joins only platform i if v ∈ [psi , v̂2),
joins platform i together with m−1 randomly chosen symmetric platform(s) from
j ̸= i if v ∈ [v̂m, v̂m+1), and joins all platforms if v > v̂n.

PROOF:

Consider a type v seller that has joined platform i and that is contemplating
whether to join one of the platforms j ̸= i in addition. The utility of joining i

alone (so m = 1) is (v − psi )B
(Ni,0)
i , so this is superior than joining no platforms

as long as v ≥ psi . Meanwhile the utility from joining another platform j ̸= i

(so that m = 2) is (v − psi )B
(Ni,1)
i + (v − p̂s)B

(Ni,1)
j . Comparing the two utilities

yields the first cutoff

v̂2 ≡ (p̂s − psi )
B

(Ni,0)
i −B

(Ni,1)
i

−B(Ni,0)
i +B

(Ni,1)
i +B

(Ni,1)
j

+p̂s = (p̂s − psi )
B

(Ni,0)
i −B

(Ni,1)
i

B
(Ni,0)
0 −B

(Ni,1)
0

+p̂s.

Now suppose a seller has joined the set of platforms Ni,m−1, i.e., platform i
plus m − 2 other platforms. Owing to the symmetry of all platforms j ̸= i, the

seller’s utility can be written as (v − psi )B
(Ni,m−1)
i + (m− 2) (v − p̂s)B

(Ni,m−1)
j .

The utility of joining one more platform — so that the seller joins platform i

plus m other platforms, i.e. the set of platforms Ni,m, is (v − psi )B
(Ni,m)
i + (m−

1) (v − p̂s)B
(Ni,m)
j . Comparing the two utilities yields cutoffs v̂m (A1) for all

m ≤ n.

Combining this with the case of upward deviation derived in the main text, the
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complete demand function faced by platform i is piece-wise defined by

(A2) Qi

(
pbi , p

s
i ; p̂
)
=

{ ∑n
m=1 [G (v̂m+1)−G (v̂m)]B

(Ni,m)
i if psi < p̂s

(1−G (v̂))B
(N)
i if psi ≥ p̂s

}
,

where we denote v̂1 ≡ psi and v̂n+1 ≡ v̄ (so that G (v̂n) = 1). Note that when psi <
p̂s, the volume takes into account sellers’ heterogenous multihoming behavior.
Figure A1 provides an illustration of function (A2) assuming n = 3:

Figure A1. : Seller multihoming and the associated transactions by buyers
through platform i.

The left panel of Figure A1 depicts Qi
(
pbi , p

s
i ; p̂
)
when psi ≥ p̂s. In this case,

only sellers with v ≥ v̂ join platform i, and the mass of buyers who use platform

i to transact with each of these sellers is B
(N)
i , that is, those who find i most

attractive when all n platforms are available for transactions. The right panel
of Figure A1 depicts the case of psi < p̂s, where recall m denotes the number
of platforms that a seller multihomes on in addition to platform i. Sellers with
v ∈ [psi , v̂1) join platform i exclusively, so that buyers who transact with these
sellers can only choose between transacting through i or transacting directly. The

mass of buyers who use i to transact with these sellers is B
(Ni,1)
i , that is, those

who find i more attractive than the outside option. Sellers with v ∈ [v̂2, v̂3) join
platform i and a randomly selected platform j ̸= i, so that buyers who transact
with these sellers can choose between transacting through i, j, or transacting
directly. Notably, the mass of buyers who use i to transact with these sellers
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is B
(Ni,2)
i , which is smaller than B

(Ni,1)
i due to the availability of an additional

alternative platform for transactions.

If B
(.)
i satisfies the IIA property, it implies the ratio B

(Ni,m)
i /B

(Ni,m)
0 is indepen-

dent ofm. Denote the said constant ratio as χ. Through algebraic manipulations,
we can simplify v̂m in (A1) as

(A3) v̂m = (p̂s − psi )χ+ p̂s,

which is independent of m.

A2. Proof of Proposition 1

We first state and prove the following two lemmas, which also prove Lemma 2
in the main text.

LEMMA 4: Buyer-side inverse semi-elasticity X(p;n) defined in (6) is decreas-
ing in n and p.

PROOF:

Let ϵ(n) denote the highest order statistic (out of n draws of ϵ), and denote

X̄ (ϵ0 + p;n) =
1
n (1− F (ϵ0 + p)n)∫ ϵ̄

ϵ0+p [f (ϵ)] dF (ϵ)n−1 + f (ϵ0 + p)F (ϵ0 + p)n−1

as the buyer inverse semi-elasticity for given non-random outside option ϵ0 + p.
Then, from definition (6) and exploiting the alternative expression of∫ ϵ̄0

ϵ0

∫ ϵ̄

ϵ
1−F

(
max

{
ϵ, ϵ0 + pb

})
dF (ϵ)n−1 dF0 (ϵ0) =

1

n

∫ ϵ̄−p

ϵ
[1− F (ϵ0 + p)n] dF0 (ϵ0) ,

we can rewrite X (p;n) as

1

X (p;n)
=

∫ ϵ̄0

ϵ0

[
1

X̄ (ϵ0 + p;n)

][
(1− F (ϵ0 + p)n)∫ ϵ̄−p

ϵ [1− F (ϵ0 + p)n] dF0 (ϵ0)

]
dF0 (ϵ0) .

Define a new random variable ϵ̃0 ≡ ϵ0 + p with support over [ϵ0 + p, ϵ̄0 + p], and
define the cdf of ϵ̃0 conditioned on it being smaller than ϵ(n):

(A4) H (x;n, p) ≡ Pr
(
ϵ̃0 < x|ϵ̃0 < ϵ(n)

)
=

∫ x
ϵ0+p (1− F (ϵ̃0)

n) f0 (ϵ̃0 − p) dϵ̃0∫ ϵ̄
ϵ0+p (1− F (ϵ̃0)

n) f0 (ϵ̃0 − p) dϵ̃0
.
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Then,
1

X (p;n)
=

∫ ϵ̄0+p

ϵ0+p

[
1

X̄ (ϵ̃0;n)

]
dH (ϵ̃0;n, p) .

Lemma 4 of Zhou (2017) shows that 1/X̄ (ϵ̃0;n) is increasing in ϵ̃0 and n. Hence,
to conclude that 1

X(p;n) is increasing in p and n, it remains to show that the

conditional random variable ϵ̃0|ϵ̃0<ϵ(n)
is increasing in n and p in the sense of first-

order stochastic dominance (FOSD), i.e. H (x;n, p) is decreasing in p and n at
each given x.

Claim: ϵ̃0|ϵ̃0<ϵ(n)
is FOSD increasing in p. From the cdf function, the relevant

derivative ∂H(x;n,p)
∂p can be shown to be negative if

(A5)

∫ x
ϵ0+p [1− F (ϵ̃0)

n] f ′0 (ϵ̃0 − p) dϵ̃0∫ x
ϵ0+p [1− F (ϵ̃0)

n] f0 (ϵ̃0 − p) dϵ̃0
≥

∫ ϵ̄0+p
ϵ0+p [1− F (ϵ̃0)

n] f ′0 (ϵ̃0 − p) dϵ̃0∫ ϵ̄0+p
ϵ0+p [1− F (ϵ̃0)

n] f0 (ϵ̃0 − p) dϵ̃0
.

Given x ≤ ϵ̄, establishing (A5) is equivalent to showing that the left-hand side of
(A5) is decreasing in x. If we define the distribution function

H̃ (y;x) = Pr
(
ϵ̃0 < y|ϵ̃0 < max

{
ϵ(n), x

})
=

∫ y
ϵ0+p [1− F (ϵ̃0)

n] f0 (ϵ̃0 − p) dϵ̃0∫ x
ϵ0+p [1− F (ϵ̃0)

n] f0 (ϵ̃0 − p) dϵ̃0
for y ∈ [ϵ+ p, x] ,

then we can rewrite the left-hand side of (A5) as
∫ x
ϵ0+p

[
f ′0(y−p)
f0(y−p)

]
dH̃ (y;x). Log-

concavity of f0 implies that
f ′0(y−p)
f0(y−p) is decreasing in y. Meanwhile it is easily

verified from its definition, that H̃ (y;x) is FOSD increasing in x. Therefore, we
conclude that the left-hand side of (A5) is decreasing in x, so that inequality (A5)
indeed holds.

Claim: ϵ̃0|ϵ̃0<ϵ(n)
is FOSD increasing in n. From the cdf function, the relevant

derivative ∂H(x;n,p)
∂n can be shown to be negative if

(A6)∫ x
ϵ0+p [− lnF (ϵ̃0)F (ϵ̃0)

n] f0 (ϵ̃0 − p) dϵ̃0∫ x
ϵ0+p [1− F (ϵ̃0)

n] f0 (ϵ̃0 − p) dϵ̃0
≤

∫ ϵ̄0+p
ϵ0+p [− lnF (ϵ̃0)F (ϵ̃0)

n] f0 (ϵ̃0 − p) dϵ̃0∫ ϵ̄0+p
ϵ0+p [1− F (ϵ̃0)

n] f0 (ϵ̃0 − p) dϵ̃0
,

so that ∂H(x;n,p)
∂n ≤ 0 if the left-hand side of (A6) is increasing in x. Applying

the same technique used in the previous claim, we can write the left-hand side of
(A6) as ∫ x

ϵ0+p

[
− lnF (y)F (y)n

1− F (y)n

]
dH̃ (y;x) .
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Since − lnF (y) ≥ 0, we know that − lnF (y)F (y)n

1−F (y)n
is increasing in y. This fact,

together with the fact that H̃ (y;x) is FOSD increasing in x, implies that the
left-hand side of (A6) is increasing in x, and so the inequality in (A6) indeed
holds.

LEMMA 5: The buyer loyalty index σ(p;n) defined in (7) is strictly decreasing
in n and increasing in p.

PROOF:

Recall σ (p;n) is

σ (p;n) =
Pr
(
ϵ0 ≥ maxj∈N−i {ϵj − p}

)
− Pr (ϵ0 ≥ maxj∈N {ϵj − p})

Pr (ϵi ≥ maxj∈N {ϵj − p, ϵ0})
.

Rewrite it as:

σ (p;n) =

∫ ϵ̄0
ϵ0

[
nF (ϵ0 + p)n−1 (1− F (ϵ0 + p))

]
dF0 (ϵ0)∫ ϵ̄0

ϵ0
[1− F (ϵ0 + p)n] dF0 (ϵ0)

= Pr
(
ϵ(n−1) < ϵ̃0|ϵ(n) > ϵ̃0

)
,

where ϵ̃0 ≡ ϵ0 + p. To show σ (p;n) strictly increases with p, we write

σ (p;n) =

∫ ϵ̄0+p

ϵ0+p
Pr
(
ϵ(n−1) < y|ϵ(n) > y

)
Pr
(
ϵ̃0 = y|ϵ̃0 < ϵ(n)

)
dy

=

∫ ϵ̄0+p

ϵ0+p
Pr
(
ϵ(n−1) < y|ϵ(n) > y

)
dH (ϵ̃0;n, p) ,(A7)

where H (ϵ̃0;n, p) is the conditional distribution function defined in (A4). We
first observe that Pr

(
ϵ(n−1) < y|ϵ(n) > y

)
is strictly increasing in y:

Pr
(
ϵ(n−1) < y|ϵ(n) > y

)
=

nF (y)n−1 (1− F (y))

(1− F (y)n)

d

dy
Pr
(
ϵ(n−1) < y|ϵ(n) > y

)
=

1− F (y)− 1
n (1− F (y)n)

(1− F (y)n)2
f (y)n2 > 0.

We also know from the proof of Lemma 4 that the conditional random variable
ϵ̃0|ϵ̃0<ϵ(n)

associated with cdf H is FOSD increasing in p. This fact, together with

the observation that the integrand of (A7) is an increasing function, imply that
σ (p;n) is strictly increasing in p as required.
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To show σ (p;n) strictly decreases with n, we write

σ (p;n) =

∫ ϵ̄0

ϵ0

Pr
(
ϵ(n−1) < ϵ̃0|ϵ(n) = y

)
Pr
(
ϵ(n) = y|ϵ(n) > ϵ̃0

)
dy.

Then, we make the following two claims:
Claim: For arbitrary constant y ∈ [ϵ, ϵ̄], Pr

(
ϵ(n−1) < ϵ̃0|ϵ(n) = y

)
is strictly

decreasing in n and y. By definition,

Pr
(
ϵ(n−1) < ϵ̃0|ϵ(n) = y

)
=

∫ ϵ̄0+p
ϵ0+p nF (min {ϵ̃0, y})n−1 f (y) dF0 (ϵ̃0 − p)

nF (y)n−1 f (y)

=

∫ ϵ̄0+p

ϵ0+p

(
F (min {ϵ̃0, y})

F (y)

)n−1

dF0 (ϵ̃0 − p) ,

which is clearly strictly decreasing in n and y.
Claim: ϵ(n)|ϵ(n)>ϵ̃0 is FOSD increasing in n. By definition, the corresponding

CDF is

Pr
(
ϵ(n) < x|ϵ(n) > ϵ̃0

)
=

∫ ϵ̄0+p
ϵ0+p [F (x)n − F (min {ϵ̃0, x})n] dF0 (ϵ̃0 − p)∫ ϵ̄0+p

ϵ0+p [1− F (min {ϵ̃0, x})n] dF0 (ϵ̃0 − p)

=

∫ ϵ̄0+p

ϵ0+p

[
F (x)n − F (min {ϵ̃0, x})n

1− F (min {ϵ̃0, x})n
]
dH (ϵ̃0;n, p) ,

where H (ϵ̃0;n, p) is the conditional distribution function defined in (A4). We first
observe that the integrand is decreasing in n: showing this is equivalent to showing
that an arbitrary sequence an−1

bn−1 , (1 < a < b) is decreasing in n, which is easily
verified. Likewise, the integrand is decreasing in ϵ̃0. These two observations,
together with the proven result that the conditional random variable ϵ̃0|ϵ̃0<ϵ(n)

associated with cdf H is FOSD increasing in n, implies Pr
(
ϵ(n) < x|ϵ(n) > ϵ̃0

)
is

decreasing in n as required.
Using these two claims, we have for any n′ ≥ n,

σ (p;n)

>

∫ ϵ̄0

ϵ0

Pr
(
ϵ(n′−1) < ϵ̃0|ϵ(n′) = y

)
Pr
(
ϵ(n) = y|ϵ(n) > ϵ̃0

)
dy

≥
∫ ϵ̄0

ϵ0

Pr
(
ϵ(n′−1) < ϵ̃0|ϵ(n′) = y

)
Pr
(
ϵ(n′) = y|ϵ(n′) > ϵ̃0

)
dy

= Pr
(
ϵ(n′−1) < ϵ̃0|ϵ(n′) > ϵ̃0

)
= σ

(
p;n′

)
.

So σ (p;n) is indeed strictly decreasing in n.
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To prove Proposition 1, we first note that the demand derivatives, after impos-
ing symmetry, are

Qi (p̂; p̂) = (1−G (p̂s))

∫ ϵ̄0

ϵ0

∫ ϵ̄

ϵ
1− F

(
max

{
ϵ, ϵ0 + p̂b

})
dF (ϵ)n−1 dF0 (ϵ0)

dQi (p̂; p̂)

dpbi
= − (1−G (p̂s))

∫ ϵ̄0

ϵ0

∫ ϵ̄

ϵ
f
(
max

{
ϵ, ϵ0 + p̂b

})
dF (ϵ)n−1 dF0 (ϵ0) .

dQi (p̂; p̂)

dpsi
=

−g (p̂s)
σ(pb;n)

B
(N)
i |pbi=p̂b .

The standard first-order condition yields (8). To prove the existence and unique-
ness of p̂b and p̂s, we rearrange the first equality in (8) as p̂s = c+X(p̂b)− p̂b and
substitute it into the second equality to get

(A8)
X(p̂b)

σ(p̂b)
=

1−G(c+X(p̂b)− p̂b)

g(c+X(p̂b)− p̂b)
.

The left-hand side of (A8) is decreasing in p̂b by Lemmas 4 and 5, while the
right-hand side of (A8) is increasing in p̂b by log-concavity of 1−G and Lemma
4. Hence, any solution p̂b to (A8) must be unique, while p̂s can be uniquely
determined from the first equality in (8).

A3. Proof of Proposition 2

Denote M (p̂s) ≡ 1−G(p̂s)
g(p̂s) , and let the derivatives of X and σ with respect to

the first argument be denoted X ′ and σ′. Total differentiation of (8), in matrix
form, gives

(A9)

[
1−X ′ 1

1−Mσ′ 1− σ ∂M∂p̂s

][
dp̂b

dn
dp̂s

dn

]
=

[
∂X
∂n
M ∂σ

∂n

]
.

Since X ′ ≤ 0, ∂M∂p̂s < 0, and σ′ > 0 (Lemma 4 and Lemma 5), the matrix in (A9)
has determinant

(A10) Det ≡
(
1−X ′)(1− σ

∂M

∂p̂s

)
︸ ︷︷ ︸

>1

− 1 +Mσ′ > 0.
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By Cramer’s rule, and substituting for the equilibrium conditionM = X
σ , we have

dp̂s

dn
=

1

Det

∣∣∣∣ 1−X ′ ∂X
∂n

1−Mσ′ M ∂σ
∂n

∣∣∣∣ = X

Det

−∂σ∂n X ′

σ︸ ︷︷ ︸
≤0

+
∂X

∂n

σ′

σ︸ ︷︷ ︸
≤0

+

(
1

σ

∂σ

∂n
− 1

X

∂X

∂n

) ;(A11)

dp̂b

dn
=

1

Det

∣∣∣∣ ∂X
∂n 1

M ∂σ
∂n 1− σ ∂M∂p̂s

∣∣∣∣ = X

Det

− σ

X

∂M

∂p̂s
∂X

∂n︸ ︷︷ ︸
≤0

−
(
1

σ

∂σ

∂n
− 1

X

∂X

∂n

) ,(A12)

where 1
σ
∂σ
∂n − 1

X
∂X
∂n indicates the net see-saw effect. We know ∂X

∂n ≤ 0 and ∂σ
∂n ≤ 0

(Lemma 4 and Lemma 5), therefore

dp̂s

dn
+
dp̂b

dn
=

1

Det

M
σ′∂X∂n︸ ︷︷ ︸

<0

− ∂σ

∂n
X ′︸ ︷︷ ︸

>0

− σ
∂M

∂p̂s
∂X

∂n︸ ︷︷ ︸
≥0

 ≤ 0.

Denote

Λ ≡
∫ ϵ̄−p

ϵ

∫ ϵ̄

0
f
(
max

{
ϵ, ϵ0 + p̂b

})
dF (ϵ)n−1 dF0 (ϵ0) ,

and let Λ′ be its partial derivative wrt n. If f is decreasing, the fact that F (ϵ)n−1

is FOSD increasing in n implies Λ′ ≤ 0. Computing the relevant derivatives, we
get

∂σ/∂n

σ
− ∂X/∂n

X
=

∫ ϵ̄ϵ
[
ln
(
F
(
ϵ0 + p̂b

))
F
(
ϵ0 + p̂b

)n−1 (
1− F

(
ϵ0 + p̂b

))]
dF0 (ϵ0)∫ ϵ̄

ϵ

[
F (ϵ0 + p̂b)

n−1
(1− F (ϵ0 + p̂b))

]
dF0 (ϵ0)

+
Λ′

Λ


< 0,

where the inequality is due to ln
(
F
(
ϵ0 + p̂b

))
< 0 and Λ′ ≤ 0. Thus, dp̂s

dn < 0
from (A11).

If g is decreasing, it implies that ∂M
∂p̂s ≥ −1 so (A12) implies

(A13)
dp̂b

dn
≥ 1

Det

[(
(1 + σ)

1

X

∂X

∂n
− 1

σ

∂σ

∂n

)]
.
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The right-hand side of (A13) is strictly positive if and only if

0 >

∫ ϵ̄
ϵ

[
ln
(
F
(
ϵ0 + p̂b

))
F
(
ϵ0 + p̂b

)n−1 (
1− F

(
ϵ0 + p̂b

))]
dF0 (ϵ0)∫ ϵ̄−p

ϵ

[
F (ϵ0 + p̂b)

n−1
(1− F (ϵ0 + p̂b))

]
dF0 (ϵ0)

+σ

(
1

n
+

∫ ϵ̄
ϵ

[
ln
(
F
(
ϵ0 + p̂b

))
F
(
ϵ0 + p̂b

)n]
dF0 (ϵ0)∫ ϵ̄

ϵ

[
1− F (ϵ0 + p̂b)

n]
dF0 (ϵ0)

)
+

Λ′

Λ
(1 + σ) .

We know Λ′ ≤ 0 if f is weakly decreasing. Meanwhile, applying L’Hopital rule
twice shows that the first two components converges to zero when p̂b → (ϵ̄− ϵ).
Moreover, calculating the first derivative shows that the sum of the first two
components to be increasing in p̂b, hence the sum is non-positive for all p̂b ≤ ϵ̄−ϵ.

A4. Proof of Proposition 3

Denote M ≡ 1−G(p̂s)
g(p̂s) . Applying total differentiation with respect to λ on (17)

and writing in matrix form,[
1−X ′ 1

1−Mσ′λ 1− σλ
∂M
∂p̂s

][
dp̂b

dλ
dp̂s

dλ

]
=

[
0

M ∂σλ
∂λ

]
.

Using the decomposition of σλ = λσ+1−λ, where σ ∈ [0, 1] is defined in (7), we
have [

1−X ′ 1

1− λMσ′ 1− (λσ + 1− λ)∂M∂p̂s

][
dp̂b

dλ
dp̂s

dλ

]
=

[
0

−M (1− σ)

]
,

where

Det ≡
∣∣∣∣ 1−X ′ 1

1− λMσ′ 1− (λσ + 1− λ)∂M∂p̂s

∣∣∣∣
=

(
1−X ′)(1− (λσ + 1− λ)

∂M

∂p̂s

)
︸ ︷︷ ︸

≥1

− 1 + λMσ′︸ ︷︷ ︸
>0

> 0.

By Cramer’s rule,

dp̂b

dλ
=
M (1− σ)

Det
> 0 and

dp̂s

dλ
=

− (1−X ′)M (1− σ)

Det
< 0.
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A5. Proof of Proposition 4

Similar to the proof of Proposition 3, we apply total differentiation with respect
to n on (17) and obtain matrix form,

[
1−X ′ 1

1− λMσ′ 1− (λσ + 1− λ)∂M∂p̂s

][
dp̂b

dn
dp̂s

dn

]
=

[
∂X
∂n

λM ∂σ
∂n

]
.

Let Det > 0 be the determinant of the matrix. By Cramer’s rule:

dp̂s

dn
=

1

Det

∣∣∣∣ 1−X ′ ∂X
∂n

1− λMσ′ λM ∂σ
∂n

∣∣∣∣ .
We next decompose dp̂s

dn into two components that corresponds to the derivative
with respect to n when λ→ 1 and when λ→ 0:

dp̂s

dn
=

1

Det

(
λ
(
1−X ′)M∂σ

∂n
−λ
(
1−Mσ′

) ∂X
∂n

+ (1− λ)
∂X

∂n

)
=

1

Det

(
Det×

(
λ
dp̂s

dn
|λ=1

)
− (1− λ)

∂X

∂n

)
,

where Det is scalar (A10) and dp̂s

dn |λ=1 is (A11). Following similar steps, we can

decompose dp̂b

dn as

dp̂b

dn
=

1

Det

(
Det×

(
λ
dp̂b

dn
|λ=1

)
+ (1− λ)

∂X

∂n

(
1− ∂M

∂p̂s

))
,

where dp̂b
dn |λ=1 is (A12).

If λ → 0, then dp̂s

dn → −1
Det

∂X
∂n ≥ 0 and dp̂b

dn → 1
Det

∂X
∂n

(
1− ∂M

∂p̂s

)
≤ 0. Next, if f

and g are decreasing then dp̂s

dn |λ=1 < 0 and dp̂b

dn |λ=1 > 0 by Proposition 2. Thus, if

λ→ 1, continuity implies dp̂s

dn → dp̂s

dn |λ=1 < 0 and dp̂b

dn → dp̂b

dn |λ=1 > 0. Finally, the
sum is

dp̂s

dn
+
dp̂b

dn
= λ

Det

Det

(
dp̂b

dn
|λ=1 +

dp̂s

dn
|λ=1

)
+

1− λ

Det

∂X

∂n

(
−∂M
∂p̂s

)
≤ 0

by Proposition 2.
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A6. Results for logit buyer quasi-demand

In this section, we analyze the case of F and F0 ∼ Gumbel(µ) with a common
scale parameter µ, where (9) applies. We first prove the quasi-concavity of the
profit function when G is linear:

LEMMA 6: If F , F0 ∼ Gumbel(µ), and G is linear over [v, v̄], then for all
pi =

(
psi , p

b
i

)
,

Qi (pi; p̂) =

(
1− v̂m − v

v̂m − v

)
×

exp
{
−pbi/µ

}
1 + exp

{
−pbi/µ

}
+ (n− 1) exp {−p̂b/µ}

,

where v̂m = psi + (psi − p̂s) (n− 1) exp
{
−p̂b/µ

}
. Moreover, Qi (pi; p̂) is globally

log-concave in pi.

PROOF:
We first consider psi ≥ p̂s. Substituting for the logit demand form and simplify-

ing, Lemma 1 implies the result immediately. When psi < p̂s, logit demand form
and (A3) implies

v̂m = (p̂s − psi )
B

(Ni,m)
i

B
(Ni,m)
0

+ p̂s = (p̂s − psi ) exp
{
−pbi/µ

}
+ p̂s,

which is independent of m, so

Qi (pi; p̂) |psi<p̂s

=

(
1−G (v̂m) + (G (v̂m)−G (psi ))

B
(Ni,1)
i

B
(Ni,n)
i

)
B

(Ni,n)
i

=

(
1−G (v̂m) + (G (v̂m)−G (psi ))

(
1 +

(n− 1) exp
{
−p̂b/µ

}
1 + exp

{
−pbi/µ

} ))
B

(Ni,n)
i

=

(
1−G (psi ) +

(
G (v̂m)−G (psi )

v̂m − psi

)
(p̂s − psi ) (n− 1) exp

{
−p̂b/µ

})
B

(N)
i

where the final line uses v̂m − psi = (1 + exp
{
−pbi/γ

}
)(p̂s − psi ) and B

(Ni,n−1)
i =

B
(N)
i . Linearity of G implies

Qi (pi; p̂) |psi<p̂s =

(
1−

(
psi − v

v̄ − v

)
+

(
1

v̄ − v

)
(p̂s − psi ) (n− 1) exp

{
−p̂b/µ

})
B

(N)
i

=

(
1− v̂m − v

v̄ − v

)
B

(N)
i .
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Finally, Qi (pi; p̂) is multiplicatively separable in psi and pbi , whereby each mul-
tiplicative component is obviously log-concave in psi and pbi respectively (a logit-
demand form is necessarily log-concave). Given that log-concavity is preserved
by multiplication, we conclude that Qi (pi; p̂) is log-concave in pi =

(
psi , p

b
i

)
.

The following lemma is analogous to the second part of Proposition 2 in the
main text. Note that the condition (A14) below requires that seller quasi-demand
1−G is not too log-concave, that is, ϵs is not too high relative to n. We first note
that ϵs > 0 if 1−G is strictly log-concave, ϵs ≥ 1 if 1−G is concave, and ϵs ≤ 1
if 1 − G is convex. The latter implies that (A14) is immediately satisfied by all
distributions with weakly decreasing densities (whereby 1−G is convex).

LEMMA 7: Suppose F , F0 ∼ Gumbel(µ). In the equilibrium characterized by
Proposition 1, an increase in n always decreases seller fee p̂s, and increases buyer
fee p̂b if in addition

(A14) 4 (n− 1) > ϵs (p) for all p ∈ [v, v̄] ,

where ϵs (p) ≡ − d
dp

(
1−G(p)
g(p)

)
is the log-curvature index of seller quasi-demand.

PROOF:

Following the proof of Proposition 2, it suffices to verify

1

σ

∂σ

∂n
− 1

X

∂X

∂n
=

− exp
{
−p̂b/µ

}
1 + n exp {−p̂b/µ}

< 0,

which follows from simple algebraic manipulations. Meanwhile, ∂M∂p̂s = −ϵs (p) ≤ 0

by definition, so (A12) implies

dp̂b

dn
=

1

Det

[
1

X

∂X

∂n
− 1

σ

∂σ

∂n
+ ϵs

σ

X

∂X

∂n

]
.

Substituting for the corresponding expressions,

dp̂b

dn
=

1

Det

(
γ exp

{
−p̂b/µ

}2

[1 + (n− 1) exp {−p̂b/µ}]3

)([
1 + (n− 1) exp

{
−p̂b/µ

}]2
exp {−p̂b/µ}

− ϵs

)
.

Using the inequality of arithmetic and geometric means, we can bound
[1+(n−1) exp{−p̂b/µ}]2

exp{−p̂b/µ} ≥
4 (n− 1), so that condition (A14) implies the result.
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A7. Results for logit-exponential example

We first prove the surplus implications of platform entry stated in Section III.B.
Given the closed-form solution (10) and the logit buyer quasi-demand form, we
can express equilibrium buyer and seller surpluses as

BS = µ ln
(
exp {β0/µ}+ n exp

{
−p̂b/µ

})
(1−G (p̂s))

= µ ln

(
exp {β0/µ}

θµ

)
(1−G (p̂s))

and

SS =

(∫ ∞

p̂s
(v − p̂s) dG (v)

)
(1− θµ)

The total surplus is

TS = BS + SS + nΠ∗
i

= BS +

(∫ ∞

p̂s

(
v + p̂b − c

)
dG (v)

)
(1− θµ) .

From (10), an increase in n decreases p̂s and increases p̂b, thus raising BS, SS,
and TS.

We now prove Corollary 2. In the partial multihoming model in Section IV, if
the parameters satisfy (n− 1) (1− λ) < nθµ < n, then the equilibrium fees are

p̂b = µ ln

(
nθµ− (n− 1) (1− λ)

(1− θµ) exp {β0/µ}

)
p̂s = c+

(1− λ+ λn)µ

θµ− λ+ λn
− p̂b.

Taking derivative with respect to n:

dp̂b

dn
=

µ (λ− 1 + θµ)

nθµ− (n− 1) (1− λ)
> 0

if and only if λ > λ̄1 ≡ 1− θµ; while

dp̂s

dn
= − λµ (1− θµ)

(λn− λ+ θµ)2
− µ (λ− 1 + θµ)

nθµ− (n− 1) (1− λ)
.

Clearly, dp̂s

dn |λ=0 > 0 and dp̂s

dn |λ>λ̄1 < 0. It remains to show dp̂s

dn is single-crossing
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in λ, which can be easily verified by checking that

µ

(λn− λ+ θµ)2
dp̂s

dn
= −λ (1− θµ)− (λ− 1 + θµ) (λn− λ+ θµ)2

nθµ− (n− 1) (1− λ)

is decreasing in λ. Hence, intermediate value theorem implies the existence of the
required unique threshold λ̄2 ∈

(
0, λ̄1

)
where dp̂s

dn < 0 if and only if λ > λ̄2.

*
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