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Figure 1: Emissions Statistical Decomposition From United States Manufacturing
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Notes: This figure plots the observed and counterfactual trends in emissions for 6 separate pollutants based on the statistical

decomposition from equation (2). The solid line of each panel plots the counterfactual for what emissions would have looked like

in a world with the same composition of goods and techniques of production as was observed in the base year, 1990. The dashed

line represents what emissions would have looked like if we maintained the same production techniques (defined as emissions

per unit of output) as in the base year, 1990. The dashed-dotted line represents the actual observed emissions trends, which

consists of changes to both the scale, composition, and techniques associated with production since 1990. Source: NBER-CES

database, ASM, and NEI.
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Figure 2: Comparing Product-Level and Industry-Level Statistical Emissions Decompositions
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Notes: This figure plots observed and counterfactual trends in NOx emissions based on the statistical decomposition from

equation (2). The top, solid line plots the counterfactual emissions with the same composition of goods and techniques as in

1990. The middle two dashed lines represent emissions with the same emissions per unit of output as in 1990, using either the

industry level emissions factors or the product level emissions factors. The final line represents the actual observed emissions

trends, which consists of changes to both the scale, composition, and techniques associated with production since 1990. Source:

NBER-CES database, ASM, and NEI.

Figure 3: Historic Values of Preference Shocks, 1990-2008
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Notes: This figure plots the time path of shocks to expenditure shares that we recover from the model outlined in Section II

and derived using equation (22). The model delivers the value of the indicated shock for each of the 17 industries in our sample

in each year. Here, we summarize the results graphically by plotting the unweighted mean separately for both dirty industries

(solid line) and clean industries (dotted line). As described in the main text, dirty industries are defined as those with a value

of the pollution elasticity ↵s above the economy-wide mean of 0.011, and clean industries are defined as those with a value of

this pollution elasticity below 0.011.
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Figure 4: Historic Values of Endogenous Variables, 1990-2008.
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(d) U.S. Firm Entry
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Notes: This figure plots the time path of endogenous variables that we recover from the model outlined in Section II. The

model delivers the value of firm entry changes for each of the 17 industries in our sample in each year. Here, we summarize

the results graphically by plotting the unweighted mean for the indicated country-year. In subfigures (c) and (d) we plot the

unweighted mean separately for both dirty industries or clean industries. As described in the main text, dirty industries are

defined as those with a value of the pollution elasticity ↵s above the economy-wide mean of 0.011, and clean industries are

defined as those with a value of this pollution elasticity below 0.011.

Figure 5: Counterfactual Pollution Intensity Under Arbitrary Shocks to Foreign Competitiveness, by Sector
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Notes: This figure plots 6 separate counterfactual exercises for each sector. In each counterfactual, foreign competitiveness takes

on a value ranging from 0.50 to 2 times baseline levels, in 0.25 increments. For each counterfactual, we measure the resulting

change in NOx pollution intensity, which is indicated on the y-axis, with the baseline value normalized to 100. Pollution intensity

is defined as pollution emissions per real unit output. Each grey line describes pollution intensity for a single sector, and the

blue line shows the cross-sector mean.
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Table 1: Statistical Decomposition - 2008 Values

CO NOx PM10 PM2.5 SO2 VOC
(1) (2) (3) (4) (5) (6)

Panel A: Baseline Values

Scale (Census) 1.32 1.32 1.32 1.32 1.32 1.32
Scale & Composition (NEI+Census) 1.24 1.30 1.19 1.18 0.99 1.42
Scale, Composition, & Technique (NEI) 0.34 0.49 0.22 0.24 0.35 0.31

Panel B: Single-Product Plants

Scale (Census) 1.32 1.32 1.32 1.32 1.32 1.32
Scale & Composition (NEI+Census) 0.93 1.08 0.95 0.89 1.09 1.19
Scale, Composition, & Technique (NEI) 0.34 0.49 0.22 0.24 0.35 0.31

Panel C: Uniform Apportionment

Scale (Census) 1.32 1.32 1.32 1.32 1.32 1.32
Scale & Composition (NEI+Census) 1.33 1.40 1.27 1.25 1.06 1.46
Scale, Composition, & Technique (NEI) 0.34 0.49 0.22 0.24 0.35 0.31

Notes: This table displays the observed and counterfactual 2008 levels of emissions for 6 separate pollutants, relative to their
1990 values. The full counterfactual trend lines are plotted in Appendix Figure 1. The counterfactuals stem from the statistical
decomposition embodied in equation (2). “Scale” refers to the counterfactual for what emissions would have looked like in
a world with the same composition of goods and techniques of production as was observed in the base year, 1990. “Scale
& Composition” refer to what emissions would have looked like if we maintained the same production techniques (defined as
emissions per unit of output) as in the base year, 1990. “Scale, Composition, & Technique” refers to the actual observed
emissions trends, which consists of changes to both the scale, composition, and techniques associated with production since
1990. Source: NBER-CES database, ASM, and NEI.
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Table 2: Sector Definitions

Code Description ISIC Rev. 3 Codes

1 Food, beverages, tobacco 15-16
2 Textiles, apparel, fur, leather 17-19
3 Wood products 20
4 Paper and publishing 21-22
5 Coke, refined petroleum, nuclear fuel 23
6 Chemicals 24
7 Rubber and plastics 25
8 Other non-metallic minerals 26
9 Basic metals 27
10 Fabricated metals 28
11 Machinery and equipment 29
12 O�ce, accounting, computing, and electrical machinery 30-31
13 Radio, television, communication equipment 32
14 Medical, precision, and optical, watches, clocks 33
15 Motor vehicles, trailers 34
16 Other transport equipment 35
17 Furniture, manufactures n.e.c., recycling 36-37

Notes: This table presents the sector definitions used in the analysis and their corresponding two-digit International Standard

Industrial Classification, third revision (ISIC Rev. 3) codes.
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Table 3: Estimates of Pollution Elasticity, by Pollutant

Total
(Main Estimates) CO NOx PM10 PM2.5 SO2 VOCs

Sector (1) (2) (3) (4) (5) (6) (7)

Food, Beverages, Tobacco 0.0040 0.0016 0.0054 0.0057 0.0061 0.0047 0.0054
Textiles, Apparel, Fur, Leather 0.0022 0.0004 0.0024 0.0013 0.0013 0.0028 0.0064
Wood Products 0.0103 0.0101 0.0089 0.0183 0.0252 0.0030 0.0142
Paper and Publishing 0.0223 0.0204 0.0275 0.0161 0.0222 0.0275 0.0172
Coke, Refined Petroleum, Fuels 0.0212 0.0151 0.0248 0.0066 0.0089 0.0354 0.0224
Chemicals 0.0205 0.0243 0.0241 0.0081 0.0089 0.0159 0.0265
Rubber and Plastics 0.0048 0.0008 0.0038 0.0021 0.0023 0.0042 0.0191
Other Non-metallic Minerals 0.0303 0.0048 0.0539 0.0972 0.0713 0.0363 0.0064
Basic Metals 0.0557 0.1033 0.0218 0.0227 0.0295 0.0450 0.0159
Fabricated Metals 0.0019 0.0003 0.0016 0.0007 0.0009 0.0011 0.0085
Machinery and Equipment 0.0015 0.0010 0.0014 0.0011 0.0015 0.0014 0.0034
O�ce, Computing, Electrical 0.0023 0.0031 0.0011 0.0010 0.0013 0.0022 0.0028
Radio, Television, Communication 0.0005 0.0003 0.0005 0.0002 0.0002 0.0004 0.0014
Medical, Precision, and Optical 0.0014 0.0001 0.0039 0.0014 0.0021 0.0013 0.0025
Motor Vehicles, Trailers 0.0016 0.0004 0.0010 0.0003 0.0004 0.0011 0.0068
Other Transport Equipment 0.0019 0.0003 0.0025 0.0015 0.0013 0.0018 0.0060
Furniture, Other, Recycling 0.0047 0.0005 0.0024 0.0027 0.0037 0.0027 0.0219

Notes: This table presents estimates of the pollution elasticity for each sector and pollutant. Column (1) corresponds to column (2) of Table 2 that is calculated

using the economy-wide estimate of 0.011 from Table 1, scaled across industries by the tons pollution per dollar costs from column (1) of Table 2. Columns (2)-(7)

scale the economy-wide value of 0.011 according to the tons of each pollutant emitted per dollar of cost inputs.

7



Table 4: Relationship Between Implied Manufacturing Pollution Tax and NOx Budget Program

(1) (2) (3) (4)

1[NBPr]⇥ 1[NBPRegulateds]⇥ 1[Yeart > 2002] 1.195 1.195 1.186 1.186
(0.422) (0.424) (0.404) (0.405)

N 1583 1583 1583 1583

Industry⇥region FE X X X X
Industry⇥year FE X X
Region⇥year FE X X

Notes: This table reports regression coe�cients from 4 separate versions of equation (24), one per column. The dependent

variable in all regressions is the model-driven measure of pollution taxes for a region⇥industry⇥year. All specifications control

for the lower order interaction terms that ensure identification of the di↵erence-in-di↵erence-in-di↵erences regression equation

presented above. Standard errors are clustered by industry⇥region and are in parentheses.
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B Theory

This appendix derives results of the model in more detail. We begin by summarizing the main notation.

o: origin country

d: destination country

s: sector

Lo: factor supply

wo: nominal wage

fod,s: fixed cost for firm from country o to sell in country d

lod,s: labor used to produce qod,s, some of which is used for pollution abatement

pod,s: price of goods shipped o ! d

qod,s: quantity of goods shipped o ! d

rod,s: revenue from goods shipped o ! d

zod,s: units of pollution emitted to produce qod,s

Xod,s: Total national value of exports from o ! d

bo,s: location parameter of Pareto distribution (i.e., country-sector productivity)

co,s: variable cost of production

f e
o,s: fixed cost for firm to make a productivity draw

to,s: tax imposed on each unit of pollution z

Eo,s: national expenditure on sector s

Ro,s: national revenue from sector s

M e
o,s: attempted entrants

Mo,s: successful entrants

NXo,s: net exports (exports minus imports)

Po,s: price index

Zo,s: national pollution emissions

e: emissions rate, i.e., tons pollution per unit output, ⌘ z/q

': productivity draw (output per unit labor)

!: indexes varieties

a: a firm’s abatement expenditure (share of factors for abatement, not production)

G(·), g(·): Productivity distribution and density

↵s: pollution elasticity

�s: elasticity of substitution

✓s: shape parameter of Pareto productivity distribution

�d,s: Cobb-Douglas expenditure share

'⇤
od,s: productivity which makes a firm earn zero profits from exporting to d

⇡od,s: profit from o to d trade for a firm in sector s

⌧od,s: iceberg trade cost

�od,s: share of country d’s expenditure in sector s going to country o

9



II.A Intermediate Results Used to Derive Expressions from the Main Text

This subsection describes several intermediate steps that will be used below to derive results shown in
the main text. Several parts of this subsection mirror more standard models of heterogeneous firms with
monopolistic competition except they incorporate pollution taxes and abatement.

Consumers

Solving the representative agent’s utility-maximization problem for the optimal quantity qod,s gives the
following consumer demand for variety ! in destination country d:

qod,s (!) =
(pod,s (!))

��s

(Pd,s)
1��s

Ed,s (25)

where the price index (the cost of one unit of utility) is

Pd,s =

"
X

o

Z

!2⌦o,s

pod,s (!)
1��s

# 1
1��s

(26)

Firms

Firms engage in monopolistic competition. They choose prices pod,s and abatement investments a to maxi-
mize profits. Recall from main text equation (10) that the firm’s first-order condition for pollution abatement
is

1� a =

✓
wo

'to,s

↵s

1� ↵s

◆↵s

(27)

Combining this with the first-order condition for prices implies that prices equal a constant markup over
marginal costs:

pod,s(') =
�s

�s � 1

co,s⌧od,s
'1�↵s

(28)

where

co,s ⌘
(to,s)

↵s (wo)
1�↵s

(↵s)
↵s (1� ↵s)

1�↵s

In some of the following results, a simpler expression for firm profits is useful:

⇡od,s(') =
rod,s(')

�s
� wdfod,s. (29)

where a firm’s revenues are rod,s(') ⌘ pod,s(')qod,s(') This expression can be derived from the firm’s profit
function by substituting in abatement (27) and prices (28) then simplifying. Finally, several derivations below
use the following part of Assumption 2 from Section II.A of the main text, restated here for convenience:

lod,s(') =
qod,s(')

'(1� a('))
(30)
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Productivity Distribution

The Pareto productivity distribution from equation (5) of the main text is restated here for convenience:

G('; bo,s) = 1� (bo,s)✓s

'✓s
(31)

Several results below use the conditional density, which in general is g('|' > '⇤
od,s) = g(')/(1 � G['⇤

od,s]),
where g(') is the unconditional density. For the Pareto distribution, the conditional density is

g('|' > '⇤
od,s) = ✓s

('⇤
od,s)

✓s

'✓s+1
(32)

Cuto↵ Productivity

Let '⇤
od,s describe the productivity level which makes a firm earn zero profits from exporting to destination

d, and therefore which makes a firm indi↵erent about whether to export to d. In other words, if ⇡od,s(') is
the profit that a firm with productivity ' in origin country o and sector s earns from exporting to destination
country d, then this cuto↵ is implicitly given by ⇡od,s('⇤

od,s) = 0. Combining consumer demand (25) with
firm profits (29) lets us write the cuto↵ implicitly as

wdfod,s =
1

�s

pod,s('⇤
od,s)

1��s

P (1��s)
d,s

Ed,s

Substituting in prices (28) then solving for '⇤
od,s gives

'⇤
od,s =

 
�s

�s � 1

co,s⌧od,s
Pd,s

✓
�swdfod,s

Ed,s

◆ 1
�s�1

! 1
1�↵s

(33)

Free Entry

In equilibrium, the fixed cost of drawing a productivity must equal an entrepreneur’s expected profit from
drawing a productivity:

wof
e
o,s = (1�G['⇤

oo,s])E[⇡|' > '⇤
oo,s]

Here '⇤
oo,s is the productivity level which makes a firm earn zero profits from producing domestically.

Substituting in prices (28), profits (29), the Pareto conditional density (32), and the cuto↵ productivity (33)
gives

f e
o,s

✓s � (�s � 1)(1� ↵s)

(�s � 1)(1� ↵s)
=
X

d

(bo,s)✓s

('⇤
od,s)

✓s

wd

wo
fod,s (34)

This concludes our explanation of intermediate steps, and we now combine several of these results to
derive equations highlighted in the main text.

II.B Deriving Equation (26), the Sector-Specific Price Index

We obtain the price index for a country and sector by rewriting the price index (26) as

P (1��s)
d,s =

X

o

Z Mod,s

0
pod,s(v)

1��sdv
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where Mod,s is the mass of firms exporting. Substituting in prices (28), the Pareto conditional density (32),
and the productivity cuto↵ (33) lets us rewrite this price index as

(Pd,s)
� ✓s

1�↵s =
X

o

M e
o,s

✓
wo

bo,s

◆�✓s

(⌧od,s)
� ✓s

1�↵s (fod,s)
1� ✓s

(1�↵s)(�s�1) (to,s)
� ↵s✓s

1�↵s

✓
Ed,s

wd

◆ ✓s
(1�↵s)(�s�1)�1

�s (35)

where M e
o,s is the mass of entrepreneurs drawing a productivity, Ed,s is total expenditure, and �s is a

constant.1

II.C Deriving Bilateral Expenditure Shares

The value of bilateral trade equals the proportion of firms exporting, times the mass of firms operating,
times exports per exporter:

Xod,s =
Pr(' > '⇤

od,s)

Pr(' > '⇤
oo,s)

Mo,sE[rod,s|' > '⇤
od,s]

=
M e

o,s (wo/bo,s)
�✓s (⌧od,s)

� ✓s
1�↵s (fod,s)

1� ✓s
(�s�1)(1�↵s) (to,s)

� ↵s✓s
1�↵s

(Pd,s)
� ✓s

1�↵s

✓
Ed,s

wd

◆ ✓s
(�s�1)(1�↵s)

(wd)�s (36)

The second equality follows from using demand (25), prices (28), the Pareto distribution (31), free entry (34),
and the cuto↵ productivity (33). Here Ed,s denotes the expenditure of country d on goods from sector s, and
we have collected parameters into the constant �s. This constant has the same value as in equation (35).
We can then write �od,s, the share of country d’s expenditure on sector s that is purchased from country o,
as

�od,s =
M e

o,s (wo/bo,s)
�✓s (to,s)

� ↵s✓s
1�↵s (⌧od,s)

� ✓s
1�↵s (fod,s)

1� ✓s
(�s�1)(1�↵s)

P
iMi,s (wi/bi,s)

�✓s (to,s)
� ↵s✓s

1�↵s (⌧id,s)
� ✓s

1�↵s (fid,s)
1� ✓s

(�s�1)(1�↵s)

(37)

II.D Deriving Equation (11), the Second Equilibrium Condition

To derive the second equilibrium condition in equation (11), we substitute in the cuto↵ productivity (33), the
free entry condition (34), and the price index (35). This gives the following version of the second equilibrium
condition:

f e
o,s

�s✓s
(�s � 1) (1� ↵s)

=
X

d

(wo)
�1 (wo/bo,s)

�✓s (⌧od,s)
� ✓s

1�↵s (fod,s)
1� ✓s

(�s�1)(1�↵s) (to,s)
� ↵s✓s

1�↵s

P
iM

e
i,s (wi/bi,s)

�✓s (⌧id,s)
� ✓s

1�↵s (fid,s)
1� ✓s

(�s�1)(1�↵s) (ti,s)
� ↵s✓s

1�↵s

Ed,s

Substituting in the definitions of the price index from (35) and bilateral trade from (36) gives equation (11)
from the main text. The version of this equilibrium equation shown in the main text is short and intuitive.
The version of this equation shown above is more practically useful for deriving the second equilibrium
condition in changes and relating it to changes in trade costs, productivity, and environmental regulation.

II.E Deriving Equation (12), the First Equilibrium Condition in Changes

Recall the first equilibrium condition in levels, equation (9) from the main text:

Lo = Le
o + Lp

o + Lt
o + Lm

o + Lnx
o

1The positive constant is given by �s = (�s)
1� �s✓s

(�s�1)(1�↵s)

(�s�1)
� ✓s

1�↵s

(↵s)
↵s✓s
1�↵s

(1�↵s)�✓s
✓s

✓s�(�s�1)(1�↵s)
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This shows that labor in this model is demanded for five purposes: firm entry; production and abatement;
pollution taxes; market entry; and net exports. We explain each in turn, then sum them to describe total
labor demand.

First, labor in this model is used to pay the fixed cost for drawing a productivity (in other words, labor
is demanded for firm entry). The labor demanded for this purpose equals the mass of entrepreneurs drawing
a productivity times the fixed cost per draw:

Le
o,s = M e

o,sf
e
o,s

Second, labor in this model is used to producing widgets and abating pollution. The labor demanded for
this purpose equals the mass of entrepreneurs drawing a productivity times expected labor for production
and pollution abatement:

Lp
o,s = M e

o,sE[lod,s(')⌧od,s]
= M e

o,s✓sf
e
o,s

The second equality follows from substituting in several terms: lod,s(') = qod,s(')/('(1 � a('))) from
assumption 2; demand (25); abatement investments (27); prices (28); the Pareto conditional density (32);
and free entry (34).

Third, labor in this model is used to pay pollution taxes. The quantity of labor demanded for this
purpose equals total expenditure on pollution taxes divided by the wage rate

Lt
d,s =

td,sZd,s

wd

=
↵s

1� ↵s
✓sM

e
d,sf

e
d,s

The second equality follows from substituting in several terms: demand (25); prices (28); abatement (27);
pollution (30); and the Pareto conditional density (32).

Fourth, labor in this model is used to pay the fixed cost of entering foreign markets. The amount of
labor demanded for this purpose equals the sum over all foreign countries of the mass of firms exporting to
a country times the fixed cost of exporting to that country.

Lm
d,s =

X

o

Mod,sfod,s

=
✓s � (�s � 1)(1� ↵s)

�s✓s

Ed,s

wd

The second equality follows from calculating the expected revenue of exporters then substituting in de-
mand (25); prices (28); and the productivity cuto↵ (33).

Fifth, labor is used to pay for trade deficits. The amount of labor demanded for this purpose equals the
sum over all foreign countries of the mass of firms exporting to a country, times the first cost of exporting
to that country:

Lnx
d,s = �

NXd,s

wd

(�s � 1)(✓s � ↵s + 1)

�s✓s
+ �d,s

NXd

wd

This trade imbalance term is defined so that the model can exactly match historic data on expenditure and
production decisions.

Summing these five terms then solving for Ld gives an expression for the labor market clearing condition:

Ld =
1

1�
P

s
✓s�(�s�1)(1�↵s)

�s✓s
�d,s

X

s

"
M e

d,sf
e
d,s

 
✓s + 1 +

↵s✓s
1� ↵s

!
� ✓s � (�s � 1)(1� ↵s)� �s ✓s

�s✓s
�d,s

NXd

wd
�

NXd,s

wd

(�s � 1)(✓s � ↵s + 1)

�s✓s

#
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The left-hand side of this equation describes labor supply and the right-hand side labor demand. Writing
the ratio of counterfactual to observed labor demand, L0

d/Ld, and simplifying using the Pareto technology
assumption (31), the Pareto conditional density (32), demand (25) and the free entry condition (34) gives
the main text equation (12).

II.F Deriving Equation (13), the Second Equilibrium Condition in Changes

To derive equation (13), we write the second equilibrium condition in levels (11) under a counterfactual by
adding an apostrophe to each variable. Each counterfactual variable can then be written as the product
of that variable’s baseline level and its proportional change (i.e., x0 = x̂/x). Substituting in expenditures
shares (37) and simplifying gives equation (13).

II.G Deriving Equation (14), Proportional Changes in Pollution

Recall the following from Assumption 3 of the model:

zod,s(') = (1� a('))1/↵s'lod,s(')

We then use abatement (27), prices (28), the Pareto distribution (31), and demand (25) to derive the
following firm-level expected pollution emissions:

E[zod,s(')⌧od,s|' > '⇤
od,s] =

(�s � 1)↵s✓s
✓s � (�s � 1)(1� ↵s)

wd

to,s
fod,s

Again applying the Pareto distribution (31), bilateral demand (37), and taking ratios of counterfactual to
baseline pollution gives equation (14).

II.H Deriving Equation (19), the Foreign Competitiveness Shock

We obtain equation (19) in the main text by expressing the expenditure shares equation (37) in changes and
then solving for equation (18) from the main text.

�̂⇤
od,s ⌘ (1/b̂o,s)

�✓s(⌧̂od,s)
�✓s/(1�↵s)(f̂od,s)

1�✓s/(�s�1)(1�↵s)
�
t̂o,s
��↵s✓s/(1�↵s)

We do not need to measure the terms in parentheses on the right-hand part of equation (19) from the main
text because they are specific to destination d so appear in both the numerator and denominator of the part
of this model where this shock is used (the second equilibrium equation in changes, equation (13)), and so
cancel in that equation.

II.I Deriving a Simpler Expression for the Environmental Regulation Shock

To obtain the expression for environmental regulation described in equation (23), we express the first
equilibrium condition (11) in changes then solve for R̂d,s. This derivation uses the fact that M̂ e

o,s =
(1/ŵo)(

P
dX

0
od,s/Xod,s).

We obtain this expression for M̂ e
o,s in a few steps. First, we solve the expression for foreign competitiveness

in equations (18) and (19) for the change in trade flows, �̂od,s. Second, we substitute this into the second
equilibrium condition in changes in equation (13). Finally, we simplify the result to obtain this expression
for M̂ e

o,s.
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C Data Overview and Additional Empirical Details

III.A Matching the 1990 Annual Survey of Manufacturers to the 1990 National Emis-
sions Inventory

We match the 1990 Annual Survey of Manufacturers (ASM) to the 1990 National Emissions Inventory using
name and address string matching techniques. The ASM does not provide name and address information for
plants, but the ASM can be linked to the Census Business Register via a unique, longitudinal identifier that
does. The Business Register consists of the universe of establishments in the United States on an annual
basis and forms the basis for the more commonly known and used Longitudinal Business Database (LBD).

We perform a match between the 1990 NEI and the Business Register for each Business Register year
between 1985 and 1996. Both the NEI and the Business Register contain establishment level name and
address information that we use to perform the match: county, state, SIC code (4-digit, 3-digit, and 2-digit),
facility name, street, city, and zip code. We perform exact matching on county, state, and SIC codes and
“fuzzy” matching on facility name, street, city, and zip code. We use the “COMPGED” feature of SAS’s
PROC SQL to create a “generalized edit distance” score reflecting the degree of di↵erence between two text
strings. For each variable in which we use fuzzy matching techniques, we choose a score that minimizes both
false positives and false negatives by visually checking the performance of the matches.

We then iterate over combinations of the match variables listed above, selecting the match with the
highest score in each round, and removing the residual observations from each dataset before matching
again. At the end of the matching process, we are able to match 77.4 percent of the 1990 NEI manufacturing
observations (i.e., SIC code between 2000-3999). The match percentage also reflects the fact that the ASM
is a sample and not a survey, and thus we should not expect a match rate near 100 percent.

In addition, the unmatched plant observations are not significantly di↵erent along emissions totals,
relative to the matched observations. For each pollutant, we ran a plant-level regression of emissions on
an indicator for whether the plant matched the census data, controlling for 4-digit SIC fixed e↵ects and
clustering standard errors by 4-digit SIC codes. Of 6 pollutants, the coe�cient on the match variable is
significant at the 10 percent level (though not at 5 percent) for PM10 and PM2.5; for other pollutants we fail
to reject the null hypothesis that matched and unmatched plants have the same emissions. For the plants
that are matched and emit particulate matter, the matched plants tend to emit slightly more particulates
than the unmatched plants. Not all ASM plants appear in the NEI because the NEI is only designed to
include data from plants with at least 100 tons per year of one of the major pollutants.

III.B Product Level Decomposition: Details

Section I in the text describes the statistical decomposition using the product-level production data from
the Census and Annual Survey of Manufacturers (CMF and ASM, respectively). Here we provide additional
details.

Bernard, Redding, and Schott (2011) provide a detailed overview of the Manufacturing Product trailer
for research purposes. In terms of descriptive statistics, the typical two-digit SIC code in Manufacturing
has 24 four-digit industries and 76 five-digit products, although there is heterogeneity across industries in
the amount of product detail. For example, the number of products per sector ranges from a low of 12 in
Leather (SIC 31) to a high of 178 in Industrial Machinery (SIC 35) (Bernard, Redding, and Schott, 2011).2

Within the CMF and ASM product trailers, there are several industries which report only aggregate
product codes (i.e., within a 4-digit industry, more than 95 percent of output is produced in a product code

2As noted by Bernard, Redding, and Schott (2011), there is also substantial variation in the precision of product classifications.
For example, Passenger Cars (SIC 37111) and Combat Vehicles (SIC 37114) are examples of products in the Motor Vehicle
industry (SIC 3711), while Textbook Binding and Printing (SIC 27323) and Religious Books, Binding and Printing (SIC 27323)
are examples of products in the Book Printing industry (SIC 2732).
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that ends in “-”, “0”, or “W”). In the case that 50 percent or more of the product shipments within in a
4-digit SIC industry come from one of these aggregate product codes, we aggregate to the 4-digit SIC level.

There are two primary issues that emerge when looking at changes in the composition of products and
how these a↵ect manufacturing emissions over time. The first issue is associated with the introduction of
new products; we calculate emissions factors using total product-level production and emissions in 1990.
If new products are introduced after 1990, they will not have an emissions factor, and thus will lead to
false inferences from the decomposition. In order to address product entry, we fold all new products into
the adjacent product category, as defined by 5-digit SIC product codes. This implicitly assumes that the
emissions factor from the new product is the same as the emissions factor calculated for the adjacent product
code.

The second issue emerges from the transition between SIC and NAICS product code definitions between
1997 and 1998. We construct a product code crosswalk between 5-digit SIC product codes and 7 digit NAICS
product codes. This allows us to construct a consistent 5-digit SIC by year dataset from 1990 until 2008.
We develop this product-level SIC-NAICS concordance using 3 separate but complimentary strategies:

1. For the industries that only report aggregate product shipments (i.e., at the level of 4-digit SIC codes
or 6-digit NAICS codes), we use the NBER-CES crosswalk which provides a linkage between 4-digit
SIC codes and 6-digit NAICS codes. In the event that a 6-digit NAICS code maps into more than one
4-digit SIC code, the NBER-CES crosswalk provides value shares in order to apportion NAICS output
to the relevant SIC code.

2. For products that are consistently reported at the NAICS 7-digit product level, we develop a crosswalk
using the 1997 Census of Manufacturing product trailer. In 1997, Census collected both NAICS and
SIC product codes which we use to build the crosswalk. For 7-digit NAICS product codes that map
into more than one 5-digit SIC product code, we construct apportionment shares based on the fraction
of total 1997 output that is split between the respective SIC codes.

3. Lastly, there are some 7-digit NAICS codes in years 1998+ that do not match either of the two
crosswalks above. For these residual product codes, we use a crosswalk developed by the Bureau of
Labor Statistics between SIC and NAICS product codes.3 There are still some cases for which NAICS
7-digit product codes map into more than one 5-digit SIC product code. In these cases, the BLS does
not provide relative output shares for the “many to 1” crosswalk that would allow us to apportion
NAICS output to the relevant SIC product code. This lack of apportionment for split products means
that the product series in years 1998+ will overstate the amount of output for NAICS product codes
that map into multiple SIC product codes. We adjust for this structural break by multiplying the scale
+ composition line in years 1998+ by an adjustment factor. This adjustment factor is computed by
fitting a linear trend to years 1996 and 1997 and projecting the 1998 point; the value that we multiply
the observed 1998 value to recover the predicted 1998 value is the adjustment factor we use to scale
all post-1998 output.

Once we have a consistent 5-digit SIC product-level dataset, we construct product shares in each year by
taking the total product output produced in a given year and dividing that by total manufacturing output
in that year. In non-Census years, we use the weights provided by the Census to scale up plant-level output
by the inverse sampling probability of the survey. We multiply these product shares by the product-level
emissions factors and sum over all products in a year. Lastly, we multiply this annual number by total
manufacturing output in that year in order to recover the scale+composition line in Figures 3 and 1.

3Source: https://urldefense.proofpoint.com/v2/url?u=http-3A__www.bls.gov_ppi_ppinaictosic15.
htm&d=AwIFaQ&c=-dg2m7zWuuDZ0MUcV7Sdqw&r=a0JqX4ibH77Bx2Kpq1YnZLhOhR2TzpM1ZpfzjHqqTT0&m=
ikhWR7s5FQkUNMczenUZrOI6MFlWL89tekAhlHFe5qE&s=SnuKGRQabLYEWjLd02OHuSmBxmbRI0DlBoHFRNj25y0&e= (accessed on
July, 1 2014).
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III.C Additional Data Details

Concordances

We use several publicly available industry concordance files to express all datasets in the same classification
systems. Whenever possible, we use concordance files that provide weights or shares. When shares or
weights for multiple variables are available, we use employment shares. In cases where a given observation
cannot be linked at the most detailed possible industry code (e.g., 6-digit NAICS code to 4-digit SIC code),
we construct concordances for each possible further aggregation of this industry (e.g., 5-digit NAICS to
4-digit SIC, then 4-digit NAICS to 4-digit SIC, etc.). We link each observation at the most detailed possible
industry level.

The subsection above describes linking SIC and NAICS product codes. To concord SIC and NAICS
industry codes, we use a file constructed in Fort and Klimek (2016). This file takes an internal concordance
file from the U.S. Census then cleans and documents it, and imputes missing values for some narrowly
divided industry cells by using averages from more aggregate industry categories. Unlike standard census
NAICS-SIC concordances, this file provides shares; and unlike the NBER-CES database, it represents all
industries and does not only focus on manufacturing.

To concord between di↵erent years of NAICS codes (e.g., between 1997 NAICS and 2002 NAICS; or
between 2002 NAICS and 2007 NAICS), we use concordance files available in the U.S. Census Bureau’s
Factfinder application. The Census Bureau calls these “Industry Bridge Statistics” and gives them the table
code 00CBDG2.

To concord NAICS codes to ISIC codes, we use a crosswalk file from Statistics Canada. This file does
not provide data on weights, so we define weights according to the number of industries linked. For example,
if one NAICS industry is linked to 5 di↵erent ISIC industries, we assign 20 percent of the NAICS industry
to each of the ISIC industries.

Gross Output Data

We setup gross output using these data as follows. First, we concord reporting sectors. Some country⇥years
report values for combinations of two-digit ISIC codes (e.g., one value covering both ISIC=15 and ISIC=16).
In these cases, we take reports from the same country in other years, calculate the share of output coming
from each of the two underlying ISIC 2-digit codes in those other years, and apportion the focal year to the
two codes according to those shares.

We use a few steps to to incorporate country⇥years not in the OECD data. First, we extract data
on each country⇥year’s total manufacturing GDP from the World Bank’s World Development Indicators
(WDI), which covers both OECD and non-OECD countries. Second, we calculate the ratio of manufacturing
GDP (from WDI) to manufacturing gross output (from OECD STAN) for the OECD in total, separately by
year. This ratio gradually declines from 0.33 in the year 1990 to 0.26 in 2008. Dekle, Eaton, and Kortum
(2008) report a similar value for this ratio of 0.31. Third, we divide the WDI manufacturing GDP values by
the GDP/Output ratios calculated in the second step to calculate gross output per country⇥year, for both
OECD and non-OECD countries. Fourth, we calculate the composition of total OECD manufacturing gross
output across the 17 sectors in our data, separately by year. Fifth, we assign the country⇥year gross output
calculated in step three to sectors using the proportions calculated in step four. For OECD countries, we
use reported data from OECD STAN; for other countries, we use these calculated values.

As discussed in the main text, we use these values for years 1990-1995. For years 1995-2008, we use
production and trade data from the World Input Output Dataset (WIOD), which begins in the year 1995
(Timmer, Dietzenbacher, Los, Stehrer, and de Vries, 2015). WIOD directly reports gross output for the
U.S. and other countries, including a rest-of-the-world category, so does not require the aforementioned
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imputation. We scale each production and trade flow in WIOD so they exactly match the OECD gross
output data in 1995.

Data for Estimating Pollution Elasticity

We use data on pollution emissions from NEI, the value of shipments and value of production costs from
ASM, and pollution abatement costs from PACE (z, q, and a, respectively).4 We “winsorize” the reported
emissions data at the 99th percentile of the 4-digit NAICS-year emissions distribution, and we use sample
weights from both the Annual Survey of Manufacturers and the Pollution Abatement Costs and Expenditure
Survey to inflate survey values to be nationally representative. Total abatement costs consist of the sum of
abatement operating costs plus the rental cost of capital associated with the observed abatement capital at
a plant.5 Total expenditures consist of the sum of expenditures on salary and wages, materials, energy, and
the industry-specific capital rental rates for a given level of capital stock.

Manufacturing and Energy Consumption Survey and CO2 Emissions

MECS is a nationally representative survey of U.S. manufacturing which was conducted in 1991, 1994, 1998,
2002, 2006 and 2010. We download publicly available tables, which are available at the 2-digit SIC or 3-
digit NAICS level. We extract data on total inputs of energy for heat, power, and electricity generation by
industry, measured in trillions of BTUs. These data exclude energy used as feedstock (e.g., they exclude the
petroleum which is a physical part of plastics).

For confidentiality reasons, public versions of the MECS data supress a few fuel⇥industry⇥year cells.
We impute these values as follows. First, we calculate total BTUs for the fuel⇥year, and subtract BTUs for
industry⇥years within that fuel that are not suppressed. Second, within each year, we then calculate the
share of all BTUs (total across fuels) that each industry accounts for. Finally, we allocate the non-specified
BTUs (calculated in the first step) across industries according to the relative proportions calculated in the
second step.

Given these data on million BTU of each energy source, we calculate CO2 emissions using physical
emissions rates from the U.S. Environmental Protection Agency.

EPA Air Program Markets Data

In order to operate cap-and-trade programs like the NOx Budget Trading Programs, the EPA maintains
a public database listing each facility which participates in the program and its attributes.6 We obtain a
list of facilities which were regulated under the NOx Budget Trading Program in each year of its operation,
2003-2007. Each facility includes identifying information such as longitude and latitude, address, and a
generic industry description, which we use to link these data to the National Emissions Inventory.

4We proxy for measures of physical output qi,t using plant revenue, deflated by industry-specific output price deflators, where
the industry-specific output price deflators come from the NBER-CES database.

5Capital rental rates are from unpublished data constructed by the Bureau of Labor Statistics for use in computing their
Multifactor Productivity series. These data are commonly used in the productivity literature to proxy for industry-specific
capital rental rates. See e.g., Syverson (2011). We only observe abatement capital stocks in 2005 (not 1990). We impute 1990
abatement capital stocks using our observed measure of depreciation expenditures in both 1990 and 2005. Specifically, we use
the 2005 ratio of abatement capital stocks to abatement depreciation expenditures, and we multiply this ratio by the 1990
abatement depreciation expenditure for a plant to back out the 1990 abatement capital stock of the plant.

6The data are available at https://urldefense.proofpoint.com/v2/url?u=http-3A__ampd.epa.
gov_ampd_&d=AwIFaQ&c=-dg2m7zWuuDZ0MUcV7Sdqw&r=a0JqX4ibH77Bx2Kpq1YnZLhOhR2TzpM1ZpfzjHqqTT0&m=
ikhWR7s5FQkUNMczenUZrOI6MFlWL89tekAhlHFe5qE&s=7mYZMH3I9I3bQFxPnze5IKdiE9IML9vBovn4qZuymUw&e=. These data
were formerly called the Clean Air Markets Database.
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III.D Macroeconomic Parameters

To estimate the elasticity of substitution across product varieties, we use the implication of the model that
a sector’s expenditure on labor for production is proportional to the sector’s revenue:

woL
p
o,s = (1� ↵s)

�s � 1

�s
Ro,s (38)

Here Lp
o,s represents labor used in production and Ro,s represents revenue.7 We use the 1990 Annual Survey of

Manufactures to calculate these elasticities separately for each of the 17 aggregated ISIC sectors. Intuitively,
this approach is observing markups in data, then using our assumption of the market structure (monopolistic
competition) to back out the demand elasticity which rationalizes those markups.

Column 4 of Table 2 presents our estimates of �s for each sector.8 The elasticity of substitution ranges
from 2.89 to 8.18 across industries, with a cross-sector mean of 4.76. We expect a smaller elasticity of
substitution for industries with more di↵erentiated products. The pattern across sectors generally follows this
pattern. The largest elasticity of 8.18 in absolute value is for the Coke, Refined Petroleum, and Nuclear Fuels
sector, which has fairly homogeneous products. The smallest elasticity of 2.89 is for the Medical, Precision,
and Optical Products sector, which has fairly di↵erentiated products. These correspond to markups of
between 14 and 53 percent, which fits the range from other published studies, which for U.S. manufacturing
industries typically range from 10 to 50 percent (Hall, 1986; Martins, Scarpetta, and Pilat, 1996; Ganapati,
Shapiro, and Walker, 2016).

Next, we estimate the shape parameter of the Pareto distribution of firm productivities. We rely on the
fact that if the distribution of firm productivities is Pareto with shape parameter ✓s, then the distribution
of firm sales is Pareto with shape parameter ✓s/(�s � 1). The Pareto tail cumulative distribution function
is Pr{x > Xi,s} = (bi,s/Xi,s)✓s/(�s�1) for Xi,s � bi,s. Taking logs gives

ln(Pr{x > Xi,s}) = �0,s + �1,s ln(Xi,s) + ✏i,s (39)

We estimate equation (39) separately for each sector s, and the coe�cient �1,s in each regression is generally
close to negative one. The Pareto shape parameter is then given by ✓s = �1,s(1� �s).

We use a subset of the firm-level data to estimate equation (39). Because selection into exporting can
bias these estimates (di Giovanni, Levchenko, and Ranciere, 2011), we estimate this regression using only
domestic sales. Additionally, since the Pareto distribution best fits the right tail of the firm distribution, we
estimate these regressions using firms above the 90th percentile of sales within each sector.9

7In the model, this prediction reflects only wage payments used for production. In applying this prediction empirically, we
measure all factor payments in the data (not merely wages), and we treat all factor payments in the data as productive (since
the data do not separately measure fixed entry and marketing costs). Firm revenues are “inventory-adjusted” total value of
shipments for a plant in 1990, and firm costs consist of expenditures on labor, parts and materials, energy, and capital.

8The reported elasticity is calculated as �s = (1 � ↵s)/((1 � ↵s) � wLs/Xs), where ↵s is the pollution elasticity estimated
above and wLs/Xs is factor costs divided by the value of shipments. Columns 1-3 of Table 2 present these intermediate inputs
into the construction of �s.

9In the census microdata, we measure domestic sales as inventory-adjusted total value of shipments minus the value of export
shipments. Estimating the regression using only the upper tail of firm sizes follows the literature by taking a set of firms for
which the relationship between firm rank and size is approximately linear (Gabaix, 2009; di Giovanni, Levchenko, and Ranciere,
2011). To determine the percentile cuto↵ for these regressions, we bin the data into values of firm size that are equidistant from
each other on the log scale, then collapse the rank/size data to the bin level for 10 bins. We examine the scatter plot of these
points overlaid by the linear fit to these points. In general, the upper 90th percentile of the sales distribution is strongly linear
with respect to firm rank.
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Table 1: Sensitivity Analysis: U.S. Pollution Emissions in Counterfactual Divided by 1990 Emissions, Sep-
arately for Each Shock

U.S. U.S.
Foreign U.S. Environmental Expenditure Trade

Competitiveness Competitiveness Regulation Shares Deficits
(1) (2) (3) (4) (5)

1. Actual Change 46.464
2. Main Estimate 95.429 81.188 47.528 111.28 102.33
3. No Firm Heterogeneity 93.504 83.868 47.526 111.25 102.30
4. Parameter ✓: Top 50 Percent 89.757 83.64 48.161 110.82 104.17
5. Parameter ✓: Top 25 Percent 91.064 83.333 48.015 110.95 103.66
6. Parameter ↵: 0.25⇥ Main Estimates 95.354 75.549 48.845 111.28 102.33
7. Parameter ↵: 4⇥ Main Estimates 93.487 88.595 46.042 111.26 102.32
8. Partial Equilibrium 100.000 100.000 48.98 100.000 100.000

Notes: This table presents a set of sensitivity analyses for the main set of counterfactuals in the text. For the sensitivity

analysis listed in each row, we calculate each counterfactual separately for each of the six criteria pollutants. The table shows

the unweighted mean of these results across these pollutants. We show the mean outcome averaged across years 2005 and

2008. Row 1 presents the actual observed change in pollution emissions between 1990 and 2005-2008, averaged across the six

pollutants. The value of 40.47 means that emissions in the years 2005-2008 were 40.47 percent of their value in 1990. Row 2

shows the main estimates from the model, where each column corresponds to a separate counterfactual. For example, column

(1) shows that if foreign competitiveness took its actual historic value and all other shocks were held fixed, then manufacturing

emissions in 2005-2008 would have been 107.14 percent of their observed 1990 values. Row 3 shows counterfactuals in a model

where parameters are chosen so all firms have the same productivity and there is no firm heterogeneity. Rows 4 and 5 explore

sensitivity of these counterfactuals to changes in the Pareto shape parameters that govern the distribution of firm productivity.

Rows 6 and 7 explore model sensitivity to changes in the estimated pollution elasticity.

III.E Discussion of Other Shocks, Wages, and Firm Entry Changes

Appendix Figure 3 shows the time path of the historical shocks in the paper.10 Although we recover the
value of each shock for each country⇥sector, it is cumbersome to describe values for 17 di↵erent sectors.
Instead, we plot shocks separately for “clean” and “dirty” sectors. Dirty industries are defined as those with
a value of the pollution elasticity ↵s above the economy-wide mean of 0.011, and clean industries are defined
as those with a value of this pollution elasticity below 0.011.

Appendix Figure 3a shows that foreign expenditure shares on dirty versus clean goods changed relatively
little until 2005, when spending on dirty industries grew by around 10 percent. U.S. expenditure shares
show similar patterns. This increase in expenditure shares for dirty goods is especially driven by the
increasing expenditure in the Coke, Refined Petroleum, and Nuclear Fuels sector, reflecting increases in
global commodity prices.11

Our measures of these historic shocks depend on the changes in wages in each country and changes in

10The model and counterfactuals account for competitiveness shocks to each country. As discussed earlier, although the price
index P̂d,s appears in our measure of competitiveness shocks, we don’t need these price data to analyze counterfactuals. This is
because destination price indices appear in only the numerator and denominator of the second equilibrium condition and cancel.
As a result, the historical shocks to U.S. and foreign competitiveness outside of a particular counterfactual are not informative,
and we omit competitiveness shocks from Appendix Figure 3.

11This stylized fact that the share of U.S. expenditure on energy products nearly doubled between 2004 and 2008 appears
in other data. For example, the Energy Information Agency Energy Information Administration (2011) records that consumer
expenditure on all petroleum products grew in nominal terms from $470 billion in the year 2004 to $871 billion in the year 2008.
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Table 2: Sensitivity to Starting Values and Algorithms

2008 Di↵erence in Pollution,
Minimized Objective Regulation-only

Function Counterfactual

Main Results 1.32E-30 —
Starting Values Randomly Chosen:

Mean 2.48E-30 3.98E-13
Minimum 4.31E-31 4.26E-14
Maximum 7.81E-29 1.42E-14
Standard Deviation (3.11E-30) 9.29E-15

Algorithm: Trust-Region Reflective 1.32E-30 0
Algorithm: Levenberg-Marquardt 1.32E-30 0

Notes: This table presents a set of sensitivity analyses for the counterfactuals presented in the paper, for NOx emissions.

The table varies the starting values and the algorithm associated with solving the system of nonlinear equations used in our

counterfactuals. The main results in the paper use a starting value equal to one and a trust-region, dogleg algorithm. This table

presents results from a randomly chosen set of starting values drawn from a uniform distribution [0.75,1.25]. The table reports

the mean, minimum, maximum, and standard deviation of the 1,000 di↵erent results. The last two rows of the table present

results using two di↵erent minimization routines. The second column shows the absolute value of the di↵erence in the pollution

emissions under a regulation-only counterfactual as calculated in a given row relative to the value calculated in the first row.

firm entry in each country and sector. Appendix Figure 4 plots these values. U.S. wages stagnated in the
1990s as U.S. output grew more slowly than global output. U.S. wages grew slightly in the late 1990s and
early 2000s, as U.S. output growth modestly outpaced global output growth. Wages then declined in the
2000s as growth from foreign countries, especially China, accelerated. Foreign wages display the opposite
pattern: modest growth in the early 1990s and late 2000s but a slight decrease in intervening years.

Appendix Figure 4 also shows patterns in firm entry. In both the U.S. and abroad, entry grew more
quickly in dirty sectors than in clean sectors, as indicated by the solid line rising after the year 2005 in
panels (c) and (d). This increase in entry to dirty sectors in the late 2000s reflects rising energy prices and
revenues—greater value of output in dirty sectors increases the expected profit from entry, attracting more
firms to these sectors.

One additional issue in describing the shocks concerns trade imbalances. In a dynamic model, trade im-
balances would represent intertemporal concerns like saving or consumption smoothing. In the comparative
statics we examine here, trade imbalances appear as transfers from one country to another. The natural way
for this static model to exactly recreate historic data is to allow for separate shocks to trade imbalances. In
the decomposition, we read o↵ actual trade imbalances from the data.12

III.F Algorithm to Calculate Equilibrium

To analyze counterfactuals, we use country⇥industry data from the year 1990 on production, trade, and U.S.
pollution emissions (Xod,s and Zo,s), and the parameter vectors for each industry: the pollution elasticity,
elasticity of substitution, and Pareto shape parameter (↵s, �s, and ✓s). With the full set of data and
parameters, we then use the following algorithm to solve for a specific counterfactual:

12We define net exports, NXo, as a country’s exports minus its imports. As in Hsieh and Ossa (2016), we also allow scaled
sectoral imbalances, given by NXd,s(�s � 1)(✓s � ↵s + 1)/wd�s✓s.
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1. Characterize the counterfactual scenario by choosing values for shocks to foreign and U.S. competi-
tiveness, U.S. environmental regulation, and expenditure shares in each of the years 1990-2008 {�̂od,s,

t̂o,s, and �̂o,s}. These values can be hypothetical or they can describe the actual, historical values of
these shocks.

2. Find the changes to wages and firm entry in each country⇥sector⇥year (ŵo and M̂ e
o,s) which make

the equilibrium conditions (12) and (13) hold with equality for all countries and sectors and years, by
solving a system of nonlinear equations and then inputting the values chosen in step 1.13 This system
represents N + NS � 1 variables in N + NS � 1 unknowns: one unknown wage change per country,
one unknown firm entry change per country⇥sector, and one unknown excluded as numeraire.

3. Use equation (14) to measure the change in U.S. pollution emissions, given the values from steps 1
and 2.

The historic values of shocks to foreign and domestic competitiveness, environmental regulation, and
expenditure shares are {�̂⇤

od,s, t̂
⇤
o,s, �̂

⇤
o,s}, calculated using equations (19) through (22). By construction,

these values solve the two equilibrium conditions (12) and (13) in every country, industry, and year for the
wage changes and firm entry changes (ŵ⇤

o and M̂ e⇤
o,s) which actually occurred. Hence, if we take observed levels

of trade, pollution emissions, and production from the initial year 1990, add the shocks {�̂⇤
od,s, t̂

⇤
o,s, �̂

⇤
o,s}

which actually occurred between 1990 and some future year, and calculate the new equilibrium, we recover
the historic value of pollution from that year. However, we are interested in what pollution would have been
if shocks had not equaled their historic values.

To decompose the change in pollution into the e↵ects of the separate shocks, we study a specific set of
counterfactuals. Consider the shock to foreign competitiveness. To measure how foreign competitiveness
a↵ected pollution, we define the shocks as follows:

{�̂od,s, t̂o,s, �̂o,s} =

(
{�̂⇤

od,s, 1, 1} if o 6= U.S.

{1, 1, 1} if o = U.S.
(40)

This says that the foreign competitiveness shock �̂od,s took on its historic value �̂⇤
od,s, o 6= U.S., but other

shocks remained fixed at their 1990 values (i.e., the proportional change for every other shock equals one).
Given the shocks defined in equation (40), we use steps 2 and 3 of the algorithm to recover the pollution
emitted in this counterfactual. We do a similar calculation for each shock separately. For example, to measure
the pollution change due to environmental regulation, we define the shocks as {�̂od,s, t̂o,s, �̂o,s} = {1, t̂⇤o,s, 1}.
We then follow steps 2 and 3 of the algorithm described above to measure the implied pollution under these
shocks.

Three additional points may clarify this algorithm. First, setting all shocks equal to their historic
values at once recreates the historic decline in pollution. Second, although we are choosing the shocks to
characterize a counterfactual, the firm-level decisions in the model — like entry, exit, abatement, production,
and exports — are all adjusting freely in response to the shocks. Third, we analyze the model separately
for each pollutant.

Appendix Table 2 explores the sensitivity of the results to di↵erent sets of starting values needed for the
algorithm to solve systems of nonlinear equations (12) and (13). We randomly draw 1,000 di↵erent sets of
starting values from the uniform distribution [0.75,1.25].14 Each set of starting values represents changes in
wages in each country and firm entry decisions in each country⇥sector. The objective function appears to

13To solve the system of nonlinear equations, we use a standard trust-region dogleg algorithm. However, as we discuss below
and show in Appendix Table 2, other algorithms and randomly-chosen starting values give equivalent results.

14We choose this range to cover common values of shocks observed in data and described in Appendix Figure 4. Some starting
values well outside this region fail to converge.
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be somewhat flat in a narrow range around the main set of results; di↵erent starting values obtain slightly
di↵erent values of the changes in wages and firm entry decisions which are not numerically equivalent to
the main results. However, column (1) shows that the di↵erences between these equilibria are very small
and appear only between the 29th and 31st decimal point. Because we only have 32 digits of calculation
precision, these di↵erences in equilibria may reflect numerical precision due to computational limits. We also
report results using two alternative algorithms for solving systems of nonlinear equations—a trust-region
reflexive algorithm and a Levenberg-Marquardt algorithm. Both yield very similar, though not numerically
equivalent values of the objective function, and yield the same estimate of how regulation a↵ects pollution.

Column (2) of Appendix Table 2 shows that the ratio of U.S. pollution emissions in 2008 relative to 1990
is nearly identical in every set of starting values and algorithms we use. Across the thousand alternative sets
of starting values, the standard deviation is 8.33E-31. These results suggest that our quantitative conclusions
are the same with other starting values or algorithms.

III.G Additional Model Sensitivity Analyses

We now consider the sensitivity of the paper’s main results to parameter estimates and model assumptions.
Table 1 begins by investigating model sensitivity to alternative parameter specifications. The first row shows
that by 2008, NOx emissions from U.S. manufacturing were 46.46 percent of their 1990 values. The paper’s
main estimates imply that environmental regulation alone would have caused pollution emissions to equal
47.53 percent of their 1990 value by 2008 (column (3), row (2)). Rows 3 and 4 explore how sensitive this
conclusion is to changes in the underlying Pareto shape parameter estimates. Because the Pareto distribution
best approximates the size distribution for the upper tail of firms, our main estimates of these parameters
use the largest 10 percent of firms in each industry. Estimating the Pareto shape parameters using the top
50 percent of firms in each industry, or using the top 25 percent of firms in each industry, hardly a↵ects the
main conclusions. These two alternatives imply that environmental regulation would have led NOx emissions
to be 48.16 or 48.02 percent of their 1990 value by 2008, which are extremely close to the main results.

Rows (5) and (6) of Appendix Table 1 explore sensitivity to changes in the pollution elasticity ↵s. Row
(5) assumes that the pollution elasticity is one-fourth of our estimated values, and row (6) assumes that the
true values of ↵s are four times the values of our main estimates. The former implies that environmental
regulation alone would have led pollution emissions to be 48.85 percent of their 1990 value in 2008; the latter
implies that environmental regulation alone would have led pollution emissions to be 46.04 percent of their
1990 value by 2008. These alternative parameter values modestly a↵ect the magnitude of how environmental
regulation a↵ects manufacturing NOx emissions. However, across the four alternative sets of results, the
qualitative conclusion persists that regulation explains most of the change in pollution.

III.H Pollution Intensity and Total Factor Productivity: Details

Figure 2 plots the relationship between plant level pollution intensity in total factor productivity. This
section provides additional details underlying this figure. We use the 1990 Annual Survey of Manufacturers
(ASM) which provides information on input decisions and total output at the plant level. We match the
ASM to the National Emissions Inventory (NEI) using name and address matching techniques. Details of
the match can be found in Appendix III.A. We use the sampling weights in the ASM to adjust plant-level
output by the inverse sampling probability of a plant in the survey.

For each plant and each pollutant we divide total emissions by inventory adjusted real output.15 We
use industry-specific price deflators from the CES-NBER Productivity database to deflate output using

15Inventory adjusted total output is defined as the total value of shipments, minus the di↵erence between finished goods
inventory between the beginning and end of the year, minus the di↵erence between work in progress inventory at the beginning
and end of the period.
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an SIC-4, industry-level index normalized to 1 in 2008. We then compute a plant-level index measure of
total factor productivity, using a Cobb-Douglas production technology and assuming constant returns to
scale.16 Production inputs include labor, capital, and materials. We approximate the output elasticities of
production inputs using industry-level cost shares from the NBER-CES productivity database. All inputs
were deflated using industry, input-specific price deflators from the NBER-CES productivity database.

We divide the sample into 10 deciles based on total factor productivity. We then compute the mean
values of log productivity and log pollution per unit of real output within each decile, weighting the decile
mean by plant-level inventory-adjusted, real output. Figure 2 plots the results for each of the six pollutants
in our sample. Each pollutant scatter plot is accompanied by a linear fit, relating plant-specific emissions
intensities to total factor productivity at the same plant. The line is fit to the entire sample, not simply the
decile means.

16Plant TFP is computed as its logged output minus a weighted sum of its logged labor, capital, materials, and energy inputs.
That is

TFPit = yit � ↵ltlit � ↵ktkit � ↵mtmit � ↵eteit

where the weights ↵j are the input elasticities of input j 2 {l, k,m, e}. Index productivity measures are common in the literature
partly because they are easy to construct and also because they are a nonparametric first-order approximation to a general
production function. See e.g., Syverson (2011).
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