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We present here the proofs of our results. Let us begin with the formal definition

of a SCF. Recall that each agent i ∈ N is endowed with a SEU strict preference

ordering <i over XΩ : there exist a valuation function vi : X → R (normalized to

guarantee that minX vi = 0 and maxX vi = 1) and a subjective probability measure pi
on the set of events such that for all f, g ∈ XΩ, f <i g ⇔ Epi

vi
(f) ≥ Epi

vi
(g). Although

the valuation function vi and the subjective probability measure pi associated with

<i are not determined uniquely,1 it is easy to see that if (vi, pi) and (wi, qi) both

represent <i, then vi, wi generate the same ranking of the outcomes (i.e., vi(a) ≥
vi(b) ⇔ wi(a) ≥ wi(b)) and pi, qi generate the same ranking of the events (i.e.,

pi(E) ≥ pi(E
′) ⇔ qi(E) ≥ qi(E

′)). The assumption that <i is a strict ordering

implies that for any (vi, pi) representing <i, (i) vi is injective and (ii) pi is injective.
2

Because pi(∅) = 0, it follows from (ii) that pi(ω) > 0 for all ω ∈ Ω.

Let V be the set of normalized, injective valuation functions vi. A belief is formally

defined as a nonnegative, injective measure on 2Ω, and P denotes the set of all beliefs.

The domain of preferencesD is the set of all pairs (vi, pi) that generate a strict ordering

of the set of acts, that is to say,

D =
{
(vi, pi) ∈ V × P : Epi

vi
(f) ̸= Epi

vi
(g) for all f, g ∈ XΩ such that f ̸= g

}
.

In our baseline model, a social choice function (or SCF ) is a mapping φ : DN → XΩ.

In our constrained model, a SCF is a mapping φ : DN → ×ω∈ΩXω. We denote the

ordered list ((v1, p1), ..., (vn, pn)) ∈ DN by (v, p). In principle, our formulation allows

a SCF φ to choose different acts for profiles (v, p) and (v′, p′) that represent the same

profile of preferences (<1, ...,<n). The requirement of strategyproofness, however,

rules this out. It is therefore convenient to refer to any (v, p) ∈ DN as a preference

profile. We call v = (v1, ..., vn) ∈ VN a valuation profile and p = (p1, ..., pn) ∈ PN a

belief profile.

Appendices 2.A to 2.D contain the proofs of the results for the baseline model and

Appendix 2.E contains the proofs of the results for the constrained model.

1See for instance Haller (1985) for a discussion of this point.
2To see this, suppose (vi, pi) represents <i but pi(E) = pi(E

′) for two distinct events E,E′.

Choose two outcomes a, b and consider two acts f, g such that f(ω) = g(ω′) = a, f(ω′) = g(ω) = b,

and f(ω′′) = g(ω′′) for all ω ∈ E \ E′, ω′ ∈ E′ \ E, and ω′′ ∈ (E ∩ E′) ∪ (Ω \ (E ∪ E′)). We have

f ∼i g, and this indifference between distinct acts contradicts the linear ordering assumption.
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Appendix 2.A: Proof of the Top Selection Lemma

Let φ : DN → XΩ be a strategyproof and unanimous SCF. For a given belief pi ∈ P ,

the set of valuation functions compatible with pi is Vpi := {v ∈ V : (vi, pi) ∈ D}.
For a given belief profile p ∈ PN , denote the set of compatible valuation profiles by

VN
p := Vp1 × . . . × Vpn . For any x, y ∈ X and f ∈ XΩ, we write fx := {ω ∈ Ω :

f(ω) = x} and fxy := fx ∪ f y. In particular, φx(v, p) = {ω ∈ Ω : φ(v, p;ω) = x} and

φxy(v, p) = φx(v, p) ∪ φy(v, p) for any preference profile (v, p).

Our first lemma states that if the chosen act changes when an agent’s valuation

of some outcome increases (all else equal), then her subjective probability that the

social act picks that outcome also increases.

Lemma 1. Monotonicity

Let i ∈ N, a ∈ X, and let (v, p), (w, p) ∈ VN be such that vi(a) > wi(a), vi(x) = wi(x)

for all x ̸= a, and v−i = w−i. If φ(v, p) ̸= φ(w, p), then pi (φ
a(v, p)) > pi (φ

a(w, p)) .

Proof. Suppose i, a, and (v, p), (w, p) satisfy the stated assumptions. Let φ(v, p) = f,

φ(w, p) = g, and suppose f ̸= g. For z ∈ [0, 1), define the valuation function vzi by

vzi (a) = z and vzi (x) = vi(x) for x ̸= a. Define the function ∆fg on [0, 1) by

∆fg(z) =
∑
ω∈Ω

pi(ω) [v
z
i (f(ω))− vzi (g(ω))] .

Factoring out z and reshuffling, we get

∆fg(z) = [pi(f
a)− pi(g

a)] · z +
∑
ω/∈fa

pi(ω)vi(f(ω))−
∑
ω/∈ga

pi(ω)vi(g(ω)),

which is an affine function of z ∈ [0, 1).

Observe that vzi = wi if z = wi(a) and vzi = vi if z = vi(a). Therefore strat-

egyproofness implies ∆fg(wi(a)) < 0 and ∆fg(vi(a)) > 0. Since wi(a) < vi(a), the

slope [pi(f
a)− pi(g

a)] of the affine function ∆fg must be positive, that is to say,

pi (φ
a(v, p)) > pi (φ

a(w, p)).

For all vi, wi ∈ V , let us write vi ≃ wi if (vi(x)− vi(y))(wi(x)− wi(y)) > 0 for all

x, y ∈ X, that is, vi and wi generate the same ordering over outcomes. For v, w ∈ VN ,

we abuse notation and write v ≃ w if vi ≃ wi for all i ∈ N.

Our next lemma asserts that, given a belief profile, the same social act must be

chosen at all preference profiles generating the same profile of orderings over outcomes.

Lemma 2. Ordinality

If (v, p), (w, p) ∈ DN and v ≃ w, then φ(v, p) = φ(w, p).

38



Proof. Fix (v, p), (w, p) ∈ DN such that v ≃ w. Without loss of generality, assume

that there exist i ∈ N and a ∈ X such that wi(a) > vi(a), wi(x) = vi(x) for all x ̸= a,

and v−i = w−i. Let f = φ(v, p), g = φ(w, p).

If (vi, pi) represents the same preference over acts as (wi, pi), strategyproofness

directly implies f = g. Suppose now that (vi, pi) and (wi, pi) represent different pref-

erences. For each z ∈ [vi(a), wi(a)] , define the valuation function vzi by vzi (a) = z and

vzi (x) = vi(x) for x ̸= a. Since the set of acts is finite, we may assume without loss of

generality that there is a unique z∗ ∈ (vi(a), wi(a)) such that (i) (vzi , pi) belongs to D
and represents the same preference as (vi, pi) if z ∈ [vi(a), z

∗) and (ii) (vzi , pi) belongs

to D and represents the same preference relation as (wi, pi) whenever z ∈ (z∗, wi(a)] .

Suppose, by way of contradiction, that f ̸= g. By strategyproofness, Epi
vzi
(g) −

Epi
vzi
(f) < 0 if z ∈ [vi(a), z

∗) and Epi
vzi
(g) − Epi

vzi
(f) > 0 if z ∈ (z∗, wi(a)] . By con-

tinuity of Epi
vzi
(g) − Epi

vzi
(f) in z, we get Epi

vz
∗

i

(g) − Epi
vz

∗
i

(f) = 0. Defining Ω+ :={
ω ∈ Ω : vz

∗
i (g(ω)) > vz

∗
i (f(ω))

}
and Ω− :=

{
ω ∈ Ω : vz

∗
i (f(ω)) > vz

∗
i (g(ω))

}
, this

reads ∑
ω∈Ω+

pi(ω)
[
vz

∗

i (g(ω))− vz
∗

i (f(ω))
]
=
∑
ω∈Ω−

pi(ω)
[
vz

∗

i (f(ω))− vz
∗

i (g(ω))
]
. (9)

Since v ≃ w, we have z∗ ̸= vi(x) for all x ∈ X. It follows that Ω+ ̸= ∅ and Ω− ̸= ∅.
Indeed, Lemma 1 implies pi(g

a) > pi(f
a), hence ∅ ̸= ga \ fa ⊆ Ω+ ∪ Ω− because

vz
∗

i (a) = z∗ ̸= vi(x) for all x ∈ X. Assuming that Ω+ ̸= ∅ (or Ω− ̸= ∅), (9) and the

strict positivity of pi imply Ω− ̸= ∅ (or Ω+ ̸= ∅).
Pick ω1 ∈ Ω+ and ω2 ∈ Ω−. For any α > 0, define pαi by

pαi (ω) =


pi(ω) + α if ω = ω1,

pi(ω)− α if ω = ω2,

pi(ω) otherwise.

Choose α > 0 small enough to guarantee that pαi ∈ P . It comes from (9) that∑
ω∈Ω+

pαi (ω)
[
vz

∗
i (g(ω))− vz

∗
i (f(ω))

]
>
∑

ω∈Ω−
pαi (ω)

[
vz

∗
i (f(ω))− vz

∗
i (g(ω))

]
, that is,

E
pαi
vz

∗
i

(g)−E
pαi
vz

∗
i

(f) > 0. By continuity of E
pαi
vzi
(g)−E

pαi
vzi
(f) in z, there exists z ∈ [vi(a), z

∗)

such that

E
pαi
vzi
(g)− E

pαi
vzi
(f) > 0. (10)

For α > 0 small enough, (vzi , p
α
i ), represents the same preference as (vi, pi). Strate-

gyproofness therefore implies φ((vzi , v−i), (p
α
i , p−i)) = φ(v, p) = f. Since g = φ(w, p) =

φ((wi, v−i), (pi, p−i)), (10) gives

E
pαi
vzi
(φ((wi, v−i), (pi, p−i)))− E

pαi
vzi
(φ((vzi , v−i), (p

α
i , p−i))) > 0.

a violation of strategyproofness.
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The rest of the proof does not require variations in the belief profile. We there-

fore fix an arbitrary p ∈ PN until the end of Appendix 2.A. The statements

of Lemmas 3 and 4 are valid for any such belief profile. For any v ∈ VN
p and i ∈ N ,

we alleviate notation by writing φ(v) and Evi instead of φ(v, p) and Epi
vi
.

Given vi ∈ V , we call a, b ∈ X adjacent in vi if no x ̸= a, b has utility vi(x)

between vi(a) and vi(b). We say that wi obtains by permuting the utilities of a, b in

vi if wi(a) = vi(b), wi(b) = vi(a), and wi(x) = vi(x) for x ̸= a, b.

Our next lemma states that permuting the utilities of adjacent outcomes does not

change the events where the remaining outcomes are selected.

Lemma 3. Permutation Invariance

Let v ∈ VN
p , i ∈ N , and let a, b ∈ X be adjacent in vi. If wi obtains by permuting the

utilities of a, b in vi, then φx(wi, v−i) = φx(v) for all x ̸= a, b.

Proof. Let v, i, a, b, and wi satisfy the stated assumptions and suppose without loss

of generality that vi(a) > vi(b). For each integer m > 1/(vi(a) − vi(b)), define the

valuation functions vmi , w
m
i by

vmi (b) = vi(a)−
1

m
and vmi (x) = vi(x) for x ̸= b,

wm
i (a) = wi(b)−

1

m
and wm

i (x) = wi(x) for x ̸= a.

Step 1. There exist two acts f, f̃ ∈ XΩ and an integer m∗ > 1/(vi(a) − vi(b)) such

that

φ(vmi , v−i) = f and φ(wm
i , v−i) = f̃ for all m ≥ m∗.

For each m > 1/(vi(a) − vi(b)), write φ(vmi , v−i) = fm and φ(wm
i , v−i) = f̃m. By

Lemma 1, pi(f
b
m) ≤ pi(f

b
m+1) for each m. Since pi is injective, fm ̸= fm+1 whenever

pi(f
b
m) < pi(f

b
m+1). Since the set of acts X

Ω is finite, it follows that pi(f
b
m) = pi(f

b
m+1)

for all m large enough. By Lemma 1 again, this means that fm = fm+1 for all m large

enough. The same argument shows that f̃m = f̃m+1 for all m large enough, and the

claim follows.

Step 2. fx = f̃x for all x ̸= a, b.

Suppose, on the contrary, that fx ̸= f̃x for some x ̸= a, b. Define the acts g and g̃

by

g(ω) =

{
a if ω ∈ fab,

f(ω) otherwise,
g̃(ω) =

{
a if ω ∈ f̃ab,

f̃(ω) otherwise.

By construction, g ̸= g̃. Since (vi, pi) defines a strict ordering over the set of acts, we

must have Evi(g) ̸= Evi(g̃). Assuming without loss that Evi(g) > Evi(g̃), we get∑
x ̸=a,b

(
pi(f

x)− pi(f̃
x)
)
vi(x) +

(
pi(f

ab)− pi(f̃
ab)
)
vi(a) =: δ > 0.
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Recalling that vi(a) = wi(b), it follows that for all m > 1/(vi(a)− vi(b)),

Ewm
i
(f)− Ewm

i
(f̃) =

∑
x∈X

(
pi(f

x)− pi(f̃
x)
)
wm

i (x)

= (pi(f
a)− pi(f̃

a))wm
i (a) + (pi(f

b)− pi(f̃
b))wm

i (b)

+
∑
x ̸=a,b

(pi(f
x)− pi(f̃

x))vi(x)

= δ − 1

m
(pi(f

a)− pi(f̃
a)).

Since δ > 0 and limm→∞
1
m
(pi(f

a)−pi(f̃
a)) = 0, it follows that Ewm

i
(f)−Ewm

i
(f̃) > 0

form sufficiently large. By Step 1, this means that Ewm
i
(φ(vmi , v−i)) > Ewm

i
(φ(wm

i , v−i))

for m large, contradicting strategyproofness.

Step 3. φx(wi, v−i) = φx(v) for all x ̸= a, b.

By construction, vm
∗

i ≃ vi and wm∗
i ≃ wi. By Lemma 2 and Step 1, φ(v) =

φ(vm
∗

i , v−i) = f and φ(wi, v−i) = φ(wm∗
i , v−i) = f̃ . Combining these equalities with

Step 2 gives φx(v) = fx = f̃x = φx(wi, v−i) for all x ̸= a, b.

The following corollary to Lemma 3 (whose obvious proof consists in a repeated

application of Lemma 3) will be used in the proof of Lemma 4 below.

Corollary to Lemma 3. Let v ∈ VN
p , I ⊆ N , and suppose a, b ∈ X are adjacent in

vi for each i ∈ I. If wi obtains by permuting the utilities of a, b in vi for each i ∈ I,

then φx(wI , v−I) = φx(v) for all x ̸= a, b.

Some more notation and terminology is needed at this point. For any v ∈ VN ,

define T (v) = {τ(vi) : i ∈ N} and t(v) = |T (v)| . Thus, t(v) is the number of

distinct top outcomes in the valuation profile v. For a = (a1, . . . , an) ∈ XN , define

X(a) = {ai : i ∈ N} and let k(a) = |X(a)| . Thus, k(a) is the number of distinct

coordinates of a. Finally, let VN
p (a) =

{
v ∈ VN

p : (τ(v1), ..., τ(vn)) = a
}
, the set of

(p-compatible) valuation profiles generating a profile of top outcomes equal to a.

Our next lemma establishes that, given p, (i) the act selected at any valuation

profile must select top outcomes in all states of nature (the tops property) and (ii) the

acts selected at two valuation profiles generating identical profiles of top outcomes

must coincide (the tops-only property).

Lemma 4. Tops and Tops Only

For all a ∈ XN ,

there exists f ∈ X(a)Ω such that φ(v) = f for all v ∈ VN
p (a). (11)
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Proof. The proof is by induction on k(a).

Step 1. Assertion (11) holds for all a ∈ XN such that k(a) = 1.

If k(a) = 1, there exists a ∈ X such that a = (a, ..., a) and Unanimity implies

φ(v;ω) = a for all ω ∈ Ω and all v ∈ VN
p (a).

Step 2. Let κ > 1 and make the induction hypothesis H1 that assertion (11) holds

for all a ∈ XN such that k(a) ≤ κ − 1. We prove that assertion (11) holds for all

a ∈ XN such that k(a) = κ.

Fix a ∈ XN such that k(a) = κ. Since κ > 1, assume without loss of generality

that a1 ̸= a2. For each v ∈ VN
p (a), define ri(vi) = |{x ∈ X : 1 > vi(x) > vi(a1)}| for

all i ∈ N and let

r(v) =
∑
i∈N

ri(vi).

This number may be interpreted as the aggregate rank of outcome a1 in v. By

definition, r(v) = 0 if a1 is ranked first or second by every agent i at profile v. Let

r = max
{
r(v) : v ∈ VN

p (a)
}
. For ρ = 0, 1, ..., r, let

VN
p (a, ρ) =

{
v ∈ VN

p (a) : r(v) ≤ ρ
}
.

Choose an arbitrary valuation profile v0 ∈ VN
p (a, 0). By definition of VN

p (a, 0), it

holds that (τ(v01), ..., τ(v
0
n)) = a and r(v0) = 0, that is, a1 is ranked first or second by

every agent at v0. Let

φ(v0) = f.

Since a = (a1, . . . , an) is fixed, define Nk = {j ∈ N : aj = ak}, for all k = 1, . . . , n.

Step 2.1. f ∈ X(a)Ω.

For each j ∈ N2, recall that j ranks a1 second (since v0 ∈ VN
p (a, 0)) and construct

w0
j by permuting the utilities of a1, a2 in v0j . Let g = φ(w0

N2
, v0−N2

). By the Corollary

to Lemma 3,

gx = fx for all x ̸= a1, a2. (12)

By construction, T (w0
N2
, v0−N2

) = X(a) \ a2. Therefore t(w0
N2
, v0−N2

) = κ − 1 and the

induction hypothesis H1 implies that g ∈ T (w0
N2
, v0−N2

)Ω = [X(a) \ a2]Ω . Together

with (12), this implies that f ∈ X(a)Ω.

Step 2.2. φ(v) = f for all v ∈ VN
p (a).

The proof is by induction on r(v).

Step 2.2.1. φ(v) = f for all v ∈ VN
p (a, 0).

Let v ∈ VN
p (a, 0). Because of Lemma 2, we may assume without loss of generality

that v(X) = v0(X). Hence there exist v1, ..., vt̄ = v and, for each t ∈ {0, ..., t̄− 1} ,
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an agent i and two outcomes a, b which are adjacent in vti , distinct from a1, ai, and

such that (i) vt+1
i obtains by permuting the utilities of a, b in vti and (ii) vt+1

−i = vt−i.

Since X is finite, there is no loss of generality in assuming that this sequence is of

length t̄ = 1, i.e., that vi directly obtains by permuting the utilities of a, b in v0i . Also

without loss, suppose v0i (a) > v0i (b).

Let φ(v) = h. By Lemma 3,

hx = fx for x ̸= a, b. (13)

Suppose, by contradiction, that h ̸= f. By Lemma 1,

pi(h
a) < pi(f

a). (14)

Since f ∈ X(a)Ω (by Step 2.1), inequality (14) implies a ∈ X(a). Since a ̸= a1, ai,

there exists k ̸= 1, i such that a = ak. Now, (14) implies pk(h
ak) ̸= pk(f

ak) and (13)

implies pk(h
a1) = pk(f

a1), hence

pk(h
a1ak) ̸= pk(f

a1ak). (15)

For each j ∈ Nk = {j ∈ N : aj = ak}, ak and a1 are respectively ranked first and

second in v0j . Construct the subprofile w0
Nk

by permuting the utilities of a1, ak in v0j
for every j ∈ Nk. By definition of Nk, we have T (w0

Nk
, v0−Nk

) = T (w0
Nk
, vi, v

0
−Nk∪i) =

T (v0) \ ak. Since |T (v0) \ ak| = κ− 1, the induction hypothesis H1 implies

φ(w0
Nk
, v0−Nk

) = φ(w0
Nk
, vi, v

0
−Nk∪i). (16)

For all x ̸= a1, ak we obtain fx = φx(v0) = φx(w0
Nk
, v0−Nk

) = φx(w0
Nk
, vi, v

0
−Nk∪i) =

φx(vi, v
0
−i) = φx(v) = hx, where the second and fourth equalities hold by the Corollary

to Lemma 3 and the third equality holds by (16). It follows that fa1ak = ha1ak ,

contradicting (15).

Step 2.2.2. Let ρ > 0 and make the induction hypothesis H2 that φ(v) = f for all

v ∈ VN
p (a, ρ− 1). We show that φ(v) = f for all v ∈ VN

p (a, ρ).

Let v ∈ VN
p (a, ρ) and, to avoid triviality, assume r(v) = ρ. Suppose, by contradic-

tion, that φ(v) = h ̸= f. By definition of r(v), there exists an agent k ∈ N such that

rk(vk) ≥ 1. Let thus b ̸= a1, ak be such that a1, b are adjacent in vk and vk(b) > vk(a1).

Define wk by permuting the utilities of a1, b in vk. Since (wk, v−k) ∈ VN
p (a, ρ− 1), the

induction hypothesis H2 implies φ(wk, v−k) = f.

By Lemma 3,

hx = fx for all x ̸= a1, b. (17)

By Lemma 1, pk(h
a1) < pk(f

a1). Hence, ha1 ̸= fa1 and since (17) implies hak = fak ,

ha1ak ̸= fa1ak . (18)
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For each j ∈ N1 = {j ∈ N : aj = a1}, pick wj ∈ Vpj such that wj(a1) = 1 >

wj(ak) > wj(x) for all x ̸= a1, ak.Observe that r(wN1 , wk, v−N1∪k) = r(vN1 , wk, v−N1∪k)

= r(wk, v−k) = ρ− 1. By the induction hypothesis H2,

φ(wN1 , wk, v−N1∪k) = f. (19)

Combining this equality with Lemma 3,

φx(wN1 , v−N1) = φx(wN1 , vk, v−N1∪k) = fx for all x ̸= a1, b. (20)

Comparing (20) and (17), we note that φ(wN1 , v−N1) and φ(v) = h can only differ

on those states where the outcome is a1 or b. Since (wN1 , v−N1) and v induce the same

relative ranking of a1 and b for all agents, strategyproofness requires

φ(wN1 , v−N1) = φ(v) = h. (21)

For each j ∈ N1, define now uj ∈ Vpj by permuting the utilities of the two

adjacent outcomes a1, ak in wj. By Lemma 3 and (19), φx(uN1 , wk, v−N1∪k) = fx for

all x ̸= a1, ak. By Lemma 3 and (21), φx(uN1 , v−N1) = hx for all x ̸= a1, ak. Hence,

φa1ak(uN1 , wk, v−N1∪k) = fa1ak and φa1ak(uN1 , v−N1) = ha1ak . (22)

But T (uN1 , wk, v−N1∪k) = T (uN1 , v−N1) = X(a) \ a1. Since |X(a) \ a1| = κ − 1, the

induction hypothesis H1 implies φ(uN1 , wk, v−N1∪k) = φ(uN1 , v−N1). Combining this

equality with (22) gives fa1ak = ha1ak , contradicting (18).

Conclusion of the proof of the Top Selection lemma

Now that we have established the tops and tops only properties of Lemma 4, we

abuse notation and write φ(x1, ..., xn) to refer to the act φ(v, p) chosen at any profile

v ∈ VN
p where τ(vi) = xi, for all i = 1, . . . , n. We are now ready to construct s(p),

the assignment of states to agents at the belief profile p. Since p is fixed, we write s

instead of s(p). For any distinct a, b ∈ X, define

sab1 := φa(a, b, . . . , b),

that is, sab1 is the set of states of nature where the social act yields outcome a when

agent 1’s top is a and every other agent’s top is b. Define sabi in a similar way for

every agent i ∈ N ; and write sab = (sab1 , . . . , sabn ).

Step 1. For all a, b, c, d ∈ X, we have (i) sab = scb if b ̸= a, c and (ii) sab = sad if

a ̸= b, d .
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To prove statement (i), fix a, b, c ∈ X such that b ̸= a, c. The case a = c being

trivial, assume a ̸= c. By Lemma 3 and the tops only property, φb(a, b, . . . , b) =

φb(c, b, . . . , b). By the tops property, φab(a, b, . . . , b) = Ω = φcb(c, b, . . . , b). Hence,

φa(a, b, . . . , b) = φc(c, b, . . . , b), that is, sab1 = scb1 . A similar argument gives sabi = scbi
for all i ∈ N, proving (i).

To prove statement (ii), apply Lemma 3 repeatedly to get sab1 = φa(a, b, b, . . . , b) =

φa(a, d, b, . . . , b) = φa(a, d, d, . . . , b) = ... = φa(a, d, d, . . . , d) = sad1 . Likewise, sabi =

sadi for every i ∈ N , proving (ii).

Step 1 means that sab is in fact independent of the choice of a and b. For any

agent i, we may therefore define i’s share of the state space si at p to be the event in

which i’s top is selected at any profile v where that top is different from the common

top of all other agents:

si = sabi for any a, b ∈ X such that a ̸= b.

To complete the proof of the Top Selection lemma, it remains to show that (i) s is a

well-defined assignment (i.e., s ∈ S) and (ii) at every valuation profile, every agent’s

top is selected in any state that is assigned to her (i.e., for all v ∈ VN
p and i ∈ N,

ω ∈ si ⇒ φ(v;ω) = τ(vi)).

Step 2. φc(x1, . . . , xj−1, c, xj+1, . . . , xn) = sj for all j ∈ N , c ∈ X, and x1, . . . , xj−1,

xj+1, . . . , xn ∈ X \ {c}.

Without loss of generality, suppose j = 1. Fix c ∈ X and x2, . . . , xn ̸= c. By

repeated application of Lemma 3, φc(c, x2, x3, . . . , xn) = φc(c, x2, x2, . . . , xn) = ... =

φc(c, x2, x2, . . . , x2) = s1.

Step 3. si ∩ sj = ∅ for all distinct i, j ∈ N .

Without loss of generality, we prove that s1 ∩ s2 = ∅. Pick distinct a, b, c ∈
X and consider the top profile (a, b, c, . . . , c). By Step 2, φa(a, b, c, . . . , c) = s1
and φb(a, b, c, . . . , c) = s2. The claim then follows because a ̸= b implies that

φa(a, b, c, . . . , c) ∩ φb(a, b, c, . . . , c) = ∅.

Step 4. φa(x1, . . . , xn) =
∪

i∈N :xi=a

si for all a ∈ X and (x1, . . . , xn) ∈ XN .

If x1, . . . , xn ̸= a, the tops property implies φa(x1, . . . , xn) = ∅ and the result holds

trivially (with the convention that ∪i∈∅si = ∅).
If xi = a for some i ∈ N, let us assume without loss of generality that {i ∈ N :

xi = a} = {1, . . . , j} with 1 ≤ j ≤ n. We must prove that

φa(a, . . . , a, xj+1, . . . , xn) =

j∪
i=1

si.
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We start by proving this claim when xj+1 = . . . = xn = b ̸= a. By Step 1,

s1 = φa(a, b, . . . , b), which is the desired result when j = 1. Suppose now that

j ∈ {2, . . . , n} and assume by induction that

φa(a, . . . , a, b︸︷︷︸
xj

, b, . . . , b) =

j−1∪
i=1

si. (23)

Choose c ̸= a, b. Changing agent j’s top from b to c, (23) and Lemma 3 give

φa(a, . . . , a, c︸︷︷︸
xj

, b, . . . , b) =

j−1∪
i=1

si. (24)

Changing now agent j’s top from c to a, Lemma 3 gives φb(a, . . . , a, a, b, . . . , b) =

φb(a, . . . , a, c, b . . . , b). Combining this result with the tops property and the identity

∪x∈Xφ
x = Ω, we get

φa(a, . . . a, a︸︷︷︸
xj

, b, . . . , b) = φac(a, . . . , a, c, b . . . , b)

= φa(a, . . . , a, c, b . . . , b) ∪ sj

=

(
j−1∪
i=1

si

)
∪ sj

=

j∪
i=1

si,

where the second equality stems from Step 2 and the third from (24).

It is now easy to generalize this result to an arbitrary collection xj+1, . . . , xn ∈
X \ {a}. By repeated application of Lemma 3, φa(a, . . . , a, xj+1, xj+2, . . . , xn) =

φa(a, . . . , a, xj+1, xj+1, . . . , xn) = φa(a, . . . , a, xj+1, xj+1, . . . , xj+1) = ∪j
i=1si, complet-

ing the proof of Step 4.

Step 4 implies that for all v ∈ VN
p , i ∈ N, and ω ∈ Ω,

ω ∈ si =⇒ ω ∈ φτ(vi)(τ(v))

=⇒ φ(v;ω) = τ(vi),

as asserted in the Top Selection lemma. To complete the proof, it only remains to be

shown that s is a bona fide assignment.

Step 5. s ∈ S.

In view of Step 3, we only need to argue that ∪n
i=1si = Ω. Indeed, note from

Step 4 that φa(a, . . . , a) = ∪n
i=1si. Hence ∪n

i=1si = φa(a, . . . , a) = Ω, where the last

equality holds by unanimity.
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The steps above prove that s is an assignment rule generating φ. It is obvious

that any other assignment rule generates a SCF different from φ. The proof of the

Top Selection lemma is therefore complete. �
We now turn to the proof of Theorem 1. It is easy to check that every locally

bilateral top selection φ is strategyproof and unanimous. Conversely, fix a strate-

gyproof and unanimous SCF φ. By the Top Selection lemma, φ is generated by an

assignment rule s. It remains to prove that s is locally bilateral, i.e., is the union of

a collection of constant, bilaterally dictatorial, or bilaterally consensual sub-rules.

Appendix 2.B: The Local Bilaterality Lemma

In the current section, we show that s satisfies a strong incentive-compatibility prop-

erty –dubbed super-strategyproofness– and we use this property to characterize the

local behavior of s. It turns out that this behavior is bilateral: an elementary change

in an agent’s belief may only affect her own share and that of one other agent.

Call s strategyproof if pi(si(p)) ≥ pi(si(p
′
i, p−i)) for all i ∈ N, p ∈ PN , and p′i ∈ P :

no agent can increase the likelihood of the event assigned to her by misrepresenting

her belief.

For any assignment A = (A1, ..., An) ∈ S and any M ⊆ N , write AM = ∪i∈MAi.

Denote strict inclusion by the symbol ⊂ . Call s super-strategyproof if pi(sM(p)) ≥
pi(sM(p′i, p−i)) for all i,M such that i ∈ M ⊂ N, all p ∈ PN , and all p′i ∈ P : by

misrepresenting her belief, an agent can never increase the likelihood of the event

assigned to any subset of agents to which she belongs.

For any ω ∈ Ω and p ∈ PN , it will be convenient to let aω(p) denote the agent to

whom s assigns ω at the belief profile p, that is,

aω(p) = i ⇔ ω ∈ si(p). (25)

We call the condition ∪i∈Nsi(p) = Ω the feasibility constraint.

Super-strategyproofness Lemma. The assignment rule s is super-strategyproof.

Proof. Suppose, by way of contradiction, that there exist i,M such that i ∈ M ⊂ N,

p ∈ PN , and p′i ∈ P such that pi(sM(p′i, p−i)) > pi(sM(p)). Choose v ∈ VN such that

(v, p), (v, (p′i, p−i)) ∈ DN and vi(τ(vj)) = 1 for all j ∈ M and vi(τ(vj)) = 0 for all
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j ∈ N \M. Then,∑
ω∈Ω

pi(ω)vi(φ(v, (p
′
i, p−i);ω)) =

∑
ω∈Ω

pi(ω)vi(τ(vaω(p′i,p−i)))

=
∑

ω∈Ω:aω(p′i,p−i)∈M

pi(ω)

= pi(sM(p′i, p−i))

> pi(sM(p))

=
∑

ω∈Ω:aω(p)∈M

pi(ω)

=
∑
ω∈Ω

pi(ω)vi(τ(vaω(p)))

=
∑
ω∈Ω

pi(ω)vi(φ(v, p;ω)),

contradicting the assumption that φ is strategyproof. �
An immediate consequence of the Super-strategyproofness lemma which will prove

crucial in the remainder of the proof is that the assignment rule s must satisfy the

well-known property of non-bossiness : for all i ∈ N, p ∈ PN , and p′i ∈ P , we have

si(p) = si(p
′
i, p−i) ⇒ s(p) = s(p′i, p−i). In other words, non-bossiness says that no

agent can affect another agent’s share without affecting her own.

Non-Bossiness Corollary. The assignment rule s is non-bossy.

Proof. Given the Super-strategyproofness lemma, it suffices to show that s is non-

bossy. S uppose, by way of contradiction, that there exist i, j ∈ N, p ∈ PN and p′i ∈ P
such that si(p) = si(p

′
i, p−i) and sj(p) ̸= sj(p

′
i, p−i). By super-strategyproofness ap-

plied to M = {i, j} and because pi is injective, pi(sij(p)) > pi(sij(p
′
i, p−i)), hence

pi(sj(p)) > pi(sj(p
′
i, p−i)). Since such a strict inequality holds for every j such that

sj(p) ̸= sj(p
′
i, p−i), we have 1 =

∑
j∈N pi(sj(p)) >

∑
j∈N pi(sj(p

′
i, p−i)) = 1, a contra-

diction. �
We are now ready to characterize the local behavior of the assignment rule s.

Define H = {{A,B} : ∅ ̸= A,B ⊂ Ω and A ∩B = ∅} , the set of pairs of disjoint

nonempty events. Two beliefs pi, qi ∈ P will be called {A,B}-adjacent if

(pi(A)− pi(B))(qi(A)− qi(B)) < 0 and

(pi(C)− pi(D))(qi(C)− qi(D)) > 0 for any {C,D} ∈ H \ {{A,B}} .

If pi, qi are {A,B}-adjacent for some {A,B} ∈ H, we say that they are adjacent and

we write piJqi. By definition, two beliefs are adjacent if the likelihood orderings they

generate differ on a single pair of disjoint nonempty events.
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pi(ω1) = 1

pi(ω2) = 1 pi(ω3) = 1

•
p2i•

p1i

pi(ω2) = pi(ω3)

Figure 1: Beliefs, likelihood orderings, and adjacency

The adjacency relation J is obviously a symmetric binary relation. If pi, qi ∈ P ′ ⊆
P , a J-path between pi and qi in P ′ is a finite sequence pi = (pt

i)
T
t=1 such that p1

i = pi,

pT
i = qi, p

t
iJp

t+1
i for t = 1, ..., T −1, and pt

i ∈ P ′ for t = 1, ..., T. We call P ′ connected

if such a J-path exists between any two beliefs in P ′. The set P is connected.

Adjacency is an ordinal property. Every belief pi ∈ P generates a likelihood

ordering R(pi) over events defined by AR(pi)B ⇔ pi(A) ≥ pi(B) : event A is more

likely than B according to pi. If R(pi) = R(qi), we call the two beliefs pi, qi ordinally

equivalent and write pi ≈ qi. We abuse this notation and, for any profiles p, q ∈ PN ,

we write p ≈ q if pi ≈ qi for all i ∈ N. If pi, qi are adjacent and p′i is ordinally

equivalent to pi, then p′i, qi are adjacent.

Example 1. Let Ω = {ω1, ω2, ω3} and consider the simplex ∆ depicted in Figure 1.

Every point in ∆ implicitly defines a measure pi ∈ P, where P denotes the closure

of P in [0, 1]2
Ω

. Every line segment corresponds to (the intersection with ∆ of) the

hyperplane pi(A) = pi(B) generated by some pair of disjoint events {A,B} ∈ H. Each

connected component of the complement of (the union of) these line segments defines

a region of ordinally equivalent beliefs: the shaded area is an example. Two beliefs

are adjacent if they lie on the same side of all but one hyperplane. For instance, the

beliefs p1i , p
2
i , which lie on the same side of all hyperplanes except pi({ω2}) = pi({ω3}),

are {{ω2} , {ω3}}-adjacent. These beliefs generate the likelihood relations
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R(p1i ) = {ω1, ω2, ω3} , {ω1, ω2} , {ω1, ω3} , {ω2, ω3} , {ω1} , {ω2} , {ω3} ,
R(p2i ) = {ω1, ω2, ω3} , {ω1, ω3} , {ω1, ω2} , {ω2, ω3} , {ω1} , {ω3} , {ω2} ,

where events are listed in decreasing order of likelihood. Note that R(p1i ) and R(p2i )

disagree not only on {ω2} , {ω3} but, as a consequence, also on {ω1, ω2} , {ω1, ω3}: this
does not contradict the definition of adjacency because {ω1, ω2} , {ω1, ω3} intersect.

Because it is strategyproof, the assignment rule s must be ordinal in the sense

that s(p) = s(q) whenever p ≈ q: the assignment of states to agents cannot change

as long as the likelihood relations associated with their beliefs remain the same. Our

next result describes how the assignment of states changes when an agent’s report

switches between two adjacent beliefs.

Local Bilaterality Lemma. Let {A,B} ∈ H and let i ∈ N, p ∈ PN , p′i ∈ P
be such that pi, p

′
i are {A,B}-adjacent and pi(A) > pi(B). Then, either (i) s(p) =

s(p′i, p−i) or (ii) there exists j ∈ N \ i such that

si(p) \ si(p′i, p−i) = A = sj(p
′
i, p−i) \ sj(p),

si(p
′
i, p−i) \ si(p) = B = sj(p) \ sj(p′i, p−i),

sk(p) = sk(p
′
i, p−i) for all k ∈ N \ {i, j} .

This is a complete description of the local behavior of s. By reporting a belief

adjacent to her own, an agent i can only change the event that is assigned to her

and one other agent j. Moreover, if the assignment is indeed modified, i and j

must precisely exchange the disjoint events that have been switched in i’s likelihood

ordering.

Proof. Let {A,B} ∈ H and let i ∈ N, p ∈ PN , p′i ∈ P be such that pi, p
′
i are

{A,B}-adjacent and pi(A) > pi(B).

Step 1. We show that for all M ⊆ N such that i ∈ M, either (i) sM(p) = sM(p′i, p−i)

or (ii) sM(p) \ sM(p′i, p−i) = A and sM(p′i, p−i) \ sM(p) = B.

To see this, suppose (i) fails. Define AM = sM(p) \ sM(p′i, p−i) and BM =

sM(p′i, p−i) \ sM(p). These sets are disjoint and super-strategyproofness of s implies

that both are nonempty; hence, they belong to H. Suppose, by way of contradiction,

that AM ̸= A or BM ̸= B. Since pi, p
′
i are {A,B}-adjacent, their associated likelihood

orderings must agree on the ranking of AM , BM : either (a) pi(AM) > pi(BM) and

p′i(AM) > p′i(BM), or (b) pi(AM) < pi(BM) and p′i(AM) < p′i(BM). If (a) holds, then

p′i(sM(p)) > p′i(sM(p′i, p−i)) whereas if (b) holds, then pi(sM(p′i, p−i)) > pi(sM(p)).

Each of these two inequalities contradicts super-strategyproofness.

Step 2. Applying Step 1 with M = {i}, either (i) si(p) = si(p
′
i, p−i) or (ii) si(p) \

si(p
′
i, p−i) = A and si(p

′
i, p−i) \ si(p) = B.
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If (i) holds, non-bossiness of s implies s(p) = s(p′i, p−i), and we are done.

If (ii) holds, let j ∈ N \ i. Applying Step 1 with M = {i, j} = ij, we have either

(a) sij(p) = sij(p
′
i, p−i) or (b) sij(p) \ sij(p′i, p−i) = A and sij(p

′
i, p−i) \ sij(p) = B. If

(a) holds, then (ii) implies

sj(p
′
i, p−i) \ sj(p) = A and sj(p) \ sj(p′i, p−i) = B (26)

whereas if (b) holds, (ii) implies

sj(p) = sj(p
′
i, p−i). (27)

By feasibility, (26) can hold for at most one agent j ∈ N \ i. Because of (ii), it

must hold for exactly one such agent. Since (27) holds for every other agent j ∈ N \ i,
the proof is complete. �

Appendix 2.C: The Bilateral Consensus Lemma

This appendix and the next show how the local structure of the super-strategyproof

rule s determines its global structure. Let Ω0,Ω1,Ω2 denote the sets of states whose

assignment is either constant, varies with the belief of a single agent, or with the

beliefs of at least two agents. Using the definition of aω in (25), we thus have:

(i) ω ∈ Ω0 ⇔ aω is constant on PN ;

(ii) ω ∈ Ω1 ⇔
[
there exist i ∈ N, p ∈ PN , and p′i ∈ P such that aω(p) ̸= aω(p

′
i, p−i)

]
and

[
aω(., p−j) is constant on P for all j ̸= i and p−j ∈ PN\j];

(iii) ω ∈ Ω2 ⇔ there exist distinct agents i, j ∈ N, p, q ∈ PN , and p′i, q
′
j ∈ P such

that aω(p) ̸= aω(p
′
i, p−i) and aω(q) ̸= aω(q

′
j, q−j).

By definition, {Ω0,Ω1,Ω2} is a partition of Ω. This is because the definition in (iii)

allows the assignment of states in Ω2 to vary with the beliefs of more than two agents.

Note also that the set of agents to whom a state in Ω2 may potentially be assigned is

a priori unrestricted.

The current appendix focuses exclusively on the states in Ω2; the assignment of

states in Ω1 will be discussed in Appendix 2.D. We show here that each state in Ω2

may only be assigned to two distinct agents, and its assignment must be based on

the beliefs of these two agents only. More specifically, states in Ω2 must be assigned

through bilateral consensus:

Bilateral Consensus Lemma. For every ω ∈ Ω2 there exists a unique event

Eω ⊆ Ω2 containing ω, and there exists a bilaterally consensual Eω-assignment rule

sω such that

si(p) ∩ Eω = sωi (p | Eω)
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for all p ∈ PN and i ∈ N .

Note that the Bilateral Consensus lemma fully determines the behavior of s on

Ω2. For any two states ω, ω′ ∈ Ω2, since there exist a bilaterally consensual Eω-rule

sω and a bilaterally consensual Eω′
-rule sω

′
such that si(p) ∩ Eω = sωi (p | Eω) and

si(p)∩Eω′
= sω

′
i (p | Eω′

) for all i ∈ N, we must have either (i) Eω = Eω′
and sω = sω

′
,

or (ii) Eω ∩ Eω′
= ∅. This delivers at once the following corollary:

Bilateral Consensus Corollary. There exists a partition {Ωt}T2

t=1 of Ω2 and, for

each t = 1, ..., T2, a bilaterally consensual Ωt-assignment rule st such that

si(p) ∩ Ω2 = ∪T2
t=1s

t
i(p | Ωt)

for all p ∈ PN and i ∈ N.

Before diving into the long proof of the Bilateral Consensus lemma, let us sketch

the main lines of the argument. Since we want to prove that the super-strategyproof

rule s coincides on Ω2 with a locally bilateral assignment rule of the form s(p) =

∪T
t=1s

t(p | Ωt), it is worth examining the behavior of such a rule in more detail. Fix a

cell Ωt on which the sub-rule st is bilaterally consensual –say, {1, 2}-consensual with
default B ⊂ Ωt. Defining A = Ωt \B, we have3

s(p) ∩ Ωt =

{
(A,B, ∅, ..., ∅) if p1(A) > p1(B) and p2(A) < p2(B),

(B,A, ∅, ..., ∅) otherwise.

The point we want to make is that s(.) ∩ Ωt varies differently with p1, p2 across

different regions of PN . Let us say that {A,B} cuts Qi ⊆ P if Qi contains beliefs pi, qi
that disagree on A,B in the sense that pi(A) > pi(B) but qi(A) < qi(B). Consider

now a region ×i∈NQi ⊆ PN of belief profiles.

(a) If {A,B} cuts both Q1 and Q2, the assignment of A,B between 1 and 2 varies

with both of their beliefs on ×i∈NQi and we call the rule actively {1, 2}-consensual
with respect to {A,B} on ×i∈NQi.

(b) If {A,B} cuts Q1 but not Q2, then either (i) p2(A) < p2(B) for all p2 ∈ Q2 or (ii)

p2(A) > p2(B) for all p2 ∈ Q2. If (i) holds, then for all p ∈ ×i∈NQi we have

s(p) ∩ Ωt =

{
(A,B, ∅, ..., ∅) if p1(A) > p1(B),

(B,A, ∅, ..., ∅) otherwise,

and we say that s is passively (1, 2)-consensual with respect to {A,B} on ×i∈NQi :

although the assignment of A,B between 1 and 2 is in fact consensual, it varies only

3We slightly abuse notation and write s(p) ∩ Ωt for (s1(p) ∩ Ωt, ..., sn(p) ∩Ωt).
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with p1 on the considered region. If (ii) holds, then s(p) ∩ Ωt = (B,A, ∅, ..., ∅) for all
p ∈ ×i∈NQi and we say that the rule s is constant on ×i∈NQi with respect to {A,B} .
(c) If {A,B} cuts Q2 but not Q1, then s may be either passively (2, 1)-consensual

with respect to {A,B} or constant on ×i∈NQi.

(d) Finally, if {A,B} cuts neither Q1 nor Q2, then s is again constant with respect

to {A,B} on ×i∈NQi.

With the above comments in mind, let us now describe the structure of the proof

of the Bilateral Consensus lemma. We are given the super-strategyproof assignment

rule s. We fix ω̃ ∈ Ω2, a state whose assignment varies with the beliefs of at least two

agents. For simplicity, we write Ω̃ instead of Ω \ ω̃ and P̃ instead of P(Ω̃). We must

show that there exists an event Eω̃ ⊆ Ω2 and a bilaterally consensual Eω̃-assignment

rule sω̃ such that si(p) ∩ Eω̃ = sω̃i (p | Eω̃) for all p ∈ PN and i ∈ N.

The strategy of the proof is to first partition PN into a number of regions over

which we will be able to pin down how the assignment of ω̃ varies with the belief

profile p, and then patch the pieces together. For any profile π ∈ P̃N , define P(πi) ={
pi ∈ P : pi | Ω̃ ≈ πi

}
and let

PN(π) = ×i∈NP(πi).

This is the region of belief profiles generating the same profile of likelihood orderings

as π on the subsets of Ω̃.

Throughout Appendix 2.C.1, the profile π is fixed. The main result in that ap-

pendix is Lemma 7. It asserts that there exist two disjoint events A,B, whose union

contains ω̃, such that s(·) ∩ (A ∪ B) coincides with an {i, j}-consensual (A ∪ B)-

assignment rule on the region PN(π). We stress that this lemma determines how not

only ω̃ but all the states in the entire event A∪B are assigned when the belief profile

belongs to the region PN(π). Of course, as explained earlier, the detailed behavior of

s on A ∪ B depends on whether {A,B} cuts one, both, or neither of P(πi), P(πj).

In particular, the rule s need not be actively (i, j)-consensual with respect to {A,B}
on PN(π).

Lemma 7 is a “regional” result: it holds for a given profile π of beliefs over Ω̃.

More importantly, it does not guarantee that the sets A,B or the agents i, j are

independent of the profile π. The rest of Appendix 2.C shows that they are. The

proof is “by contagion”. The argument itself is presented in Appendix 2.C.4 but rests

on a number of lemmas that we prove in Appendices 2.C.2 and 2.C.3.

Appendix 2.C.2 contains two types of local contagion results. We first prove

an independence result asserting that if s is actively (i, j)-consensual with respect

to {A,B} on PN(π), this must also be true on any region PN(σk, π−k) such that
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σk is adjacent to πk and k differs from i, j. This result is complemented by two

contagion lemmas describing how the assignment of A,B on the regions PN(π′
i, π−i)

and PN(π′
j, π−j) is linked to the assignment of A,B on PN(π) when π′

i is adjacent to πi

and π′
j is adjacent to πj. We show, for instance, that if s is actively (i, j)-consensual

with respect to {A,B} on PN(π), it is actively or passively (i, j)-consensual with

respect to {A,B} on the adjacent region PN(π′
i, π−i). But we cannot guarantee (and

it is indeed not the case) that s is actively (i, j)-consensual on PN(π′
i, π−i). For that

reason, we cannot directly use these local contagion results to prove the Bilateral

Consensus lemma inductively: their contagion power fades away, so to speak, as the

gap between the regions PN(π) and PN(π′) increases.

In Appendix 2.C.3, we establish more powerful contagion lemmas describing how

the assignment of A,B on the region PN(π) is linked with their assignment on non-

adjacent regions. We show that, if s is actively (i, j)-consensual with respect to

{A,B} on PN(π), its behavior on PN(π′
i, π−i) is determined by whether {A,B} cuts

P(π′
i) or not. Likewise, its behavior on PN(π′

j, π−j) is determined by whether {A,B}
cuts P(π′

j) or not.

Appendix 2.C.4 patches the pieces together. In an initialization step, we prove

that there exists a profile π ∈ P̃ such that s is actively (i, j)-consensual with respect

to {A,B} on PN(π). Using the contagion results of Appendices 2.C.2 and 2.C.3 and

the connectedness of the set of all beliefs on Ω̃, we show that s is an {i, j}-consensual
(A ∪ B)-assignment rule on the whole domain PN . The claim follows by setting

Eω̃ = A ∪B.

Appendix 2.C.1: “Regional” Results

Throughout Appendices 2.C.1, 2.C.2 and 2.C.3, we fix a profile π ∈ P̃N .

For any i ∈ N, we define

P(πi) =
{
pi ∈ P : pi | Ω̃ ≈ πi

}
.

This is the set of beliefs on Ω generating on Ω̃ a likelihood ordering that coincides with

that generated by πi. We write PN(π) = ×k∈NP(πk) and PN\i(π−i)= ×k ̸=iP(πk).

The main result of Appendix 2.C.1, Lemma 7, describes the behavior of the as-

signment rule s on PN(π). To prove Lemma 7, we begin by fixing an agent i and a

profile p−i ∈PN\i(π−i) : lemmas 5 and 6 describe the behavior of the function si(., p−i)

on P(πi).

Define the relation J̃ on P(πi) by

piJ̃qi ⇔ pi, qi are {A,B} -adjacent for some {A,B} ∈ H, ω̃ ∈ A, and pi(A) > pi(B).
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This is a sub-relation of the adjacency relation J. Contrary to J , the relation J̃ is not

symmetric. For an illustration, see Figure 2, where ω̃ = ω1 and an arrow stands for J̃ .

Observe that if two beliefs pi, qi ∈ P(πi) are {A,B}-adjacent, then ω̃ ∈ A ∪ B : this

is because the likelihood relations generated by pi, qi coincide on Ω̃. Just like J, the

relation J̃ is ordinal: if piJ̃qi, p
′
i ≈ pi and q′i ≈ qi, then p′iJ̃q

′
i. All its maximal elements

in P(πi) are ordinally equivalent; any such maximal element p+i is characterized by

the property that

p+i (ω̃) > p+i (Ω̃). (28)

Likewise, all the minimal elements of J̃ are ordinally equivalent and any such minimal

element p−i is characterized by the property that

p−i (C ∪ ω̃) < p−i (D) whenever πi(C) < πi(D).

Example 2. If Ω = {1, 2, 3} , ω̃ = 1, and πi is a belief on {2, 3} generating the

ordering {2, 3} , {2} , {3} , then P(πi) is the left half of the simplex on Figure 2. Any

belief on {1, 2, 3} generating the ordering

{1, 2, 3} , {1, 2} , {1, 3} , {1} , {2, 3} , {2} , {3}

is a maximal element p+i of J̃ on P(πi), and any belief on {1, 2, 3} generating the

ordering

{1, 2, 3} , {2, 3} , {1, 2} , {2} , {1, 3} , {3} , {1} .

is a minimal element p−i of J̃ on P(πi).

A complete J̃-path in P(πi), or simply a complete path, is a finite sequence pi =

(pt
i)

T
t=1 such that p1

i is a maximal element of J̃ (in P(πi)), p
T
i is a minimal element,

pt
iJ̃p

t+1
i for t = 1, ..., T − 1, and pt

i ∈ P(πi) for t = 1, ..., T.

The following three elementary observations will be useful.

Observation 1. For each complete J̃-path pi = (pt
i)

T
t=1 in P(πi), T =| {{A,B} ∈ H

: ω̃ ∈ A ∪B} | .

Observation 2. For each complete J̃-path pi in P(πi) and each t ∈ {1, ..., T − 1} ,
there is a unique {At, Bt} ∈ H such that pt

i,p
t+1
i are {At, Bt}-adjacent. Moreover,

{At, Bt} ̸=
{
At′ , Bt′

}
if t ̸= t′.

Observation 3. Each belief pi ∈ P(πi) lies on some complete J̃-path in P(πi) :

there exist pi and t ∈ {1, ..., T} such that pi = pt
i.

Observation 1 follows from the fact that any maximal and minimal elements p+i , p
−
i

lie (i) on opposite sides of every hyperplane pi(A) = pi(B) such that ω̃ ∈ A ∪B, and
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(ii) on the same side of every hyperplane pi(A) = pi(B) such that ω̃ /∈ A ∪ B. The

proofs of observations 2 and 3 are straightforward and left to the reader.

In the following lemma, we show that, for a given agent i ∈ N and a given profile

p−i ∈ PN\i(π−i), the assignment map si(·, p−i) takes at most two values on P(πi).

Lemma 5. For all i ∈ N and p−i ∈ PN\i(π−i), either (a) si(·, p−i) is constant on

P(πi), or (b) there exist disjoint sets Ai(p−i), Bi(p−i), Ci(p−i) ⊆ Ω such that ω̃ ∈
Ai(p−i), πi(Ai(p−i) \ ω̃) < πi(Bi(p−i)), and for all pi ∈ P(πi),

si(pi, p−i) =

{
Ai(p−i) ∪ Ci(p−i) if pi(Ai(p−i)) > pi(Bi(p−i)),

Bi(p−i) ∪ Ci(p−i) otherwise.

The inequality πi(Ai(p−i) \ ω̃) < πi(Bi(p−i)) implies that the function si(., p−i) in

statement (b) is not constant: the assignment actually varies with agent i’s beliefs.

Proof. Let i ∈ N and p−i ∈ PN\i(π−i). Since p−i is fixed throughout the proof,

we omit it from our notation. It is important to keep in mind, however, that the

sets whose existence is asserted in Lemma 5 may depend on our choice of p−i. Let

T = |{{A,B} ∈ H : ω̃ ∈ A ∪B}| .

Step 1. We claim that for any complete J̃-path pi = (pt
i)

T
t=1 in P(πi), one of the

following statements hold:

(α) si(p
1
i ) = si(p

2
i ) = ... = si(p

T
i ),

(β) there exist disjoint setsAi(pi), Bi(pi), Ci(pi) ⊆ Ω such that ω̃ ∈ Ai(pi), πi(Ai(pi)\
ω̃) < πi(Bi(pi)), and there exists t∗(pi) ∈ {1, ..., T − 1} such that

si(p
t
i) =

{
Ai(pi) ∪ Ci(pi) if t ≤ t∗(pi),

Bi(pi) ∪ Ci(pi) if t > t∗(pi).
(29)

To prove this claim, fix a complete J̃-path pi in P(πi). For each t = 1, ..., T − 1,

let {At, Bt} be the unique pair in H such that pt
i,p

t+1
i are {At, Bt}-adjacent. By

definition of J̃ , ω̃ ∈ At and pt
i(A

t) > pt
i(B

t). By the Local Bilaterality lemma, one of

the following statements holds:

(i) si(p
t
i) = si(p

t+1
i ),

(ii) si(p
t
i) \ si(pt+1

i ) = At and si(p
t+1
i ) \ si(pt

i) = Bt.

If (i) holds for t = 1, ..., T − 1, then statement (α) is true. Otherwise, let t∗ be the

smallest t ∈ {1, ..., T − 1} such that si(p
t
i) ̸= si(p

t+1
i ). By (ii), si(p

t∗
i )\si(pt∗+1

i ) = At∗ .

Since ω̃ ∈ At∗ , we have ω̃ /∈ si(p
t∗+1
i ). This means that statement (ii) cannot hold

for any t = t∗ + 1, ..., T . Hence, si(p
t
i) = si(p

t∗+1
i ) for t = t∗ + 1, ..., T. Defining

Ai(pi) = At∗ , Bi(pi) = Bt∗ , Ci(pi) = si(p
1
i ) \ At∗ , we obtain (29).

Step 2. Let p+i and p−i be maximal and minimal elements of J̃ in P(πi).
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If si(p
+
i ) = si(p

−
i ), define Ci = si(p

+
i ) = si(p

−
i ). For any pi ∈ P(πi) there exists

some path pi and some t ∈ {1, ..., T} such that pi = pt
i (Observation 3). By Step 1,

si(pi) = si(p
t
i) = Ci, that is, statement (a) in Lemma 5 holds.

If si(p
+
i ) ̸= si(p

−
i ), we know from Step 2 that statement (β) holds for every com-

plete J̃-path pi = (pt
i)

T
t=1 in P(πi). We claim that the sets Ai(pi), Bi(pi), Ci(pi) do

not change with pi. To see why, let pi,qi be two paths. If Ai(pi) ̸= Ai(qi) or Ci(pi) ̸=
Ci(qi), then si(p

+
i ) = si(p

1
i ) = Ai(pi) ∪Ci(pi) ̸= Ai(qi) ∪Ci(qi) = si(q

1
i ) = si(p

+
i ), a

contradiction. Thus Ai(pi) = Ai(qi) and Ci(pi) = Ci(qi). Next, if Bi(pi) ̸= Bi(qi),

then si(p
−
i ) = si(p

T
i ) = Bi(pi)∪Ci(pi) = Bi(pi)∪Ci(qi) ̸= Bi(qi)∪Ci(qi) = si(q

T
i ) =

si(p
−
i ), again a contradiction.

Let Ai, Bi, Ci be the sets such that Ai(pi) = Ai, Bi(pi) = Bi, and Ci(pi) = Ci for

all complete J̃-paths pi in P(πi). For any pi ∈ P(πi) there exist some path pi and

some t ∈ {1, ..., T} such that pi = pt
i, and, by Step 1, an integer t∗(pi) ∈ {1, ..., T − 1}

such that

si(p
t
i) =

{
Ai ∪ Ci if t ≤ t∗(pi),

Bi ∪ Ci if t > t∗(pi).
(30)

This integer may –and typically does– change with the path pi, as Figure 2 illustrates.

If pi(Ai) = pt
i(Ai) > pt

i(Bi) = pi(Bi), then t ≤ t∗(pi): otherwise (30) would imply

si(pi) = Bi∪Ci, hence pi(si(p
1
i )) = pi(Ai∪Ci) > pi(Bi∪Ci) = pi(si(pi)), contradicting

strategyproofness. Since t ≤ t∗(pi), (30) implies si(pi) = Ai ∪ Ci.

Likewise, if pi(Ai) < pi(Bi), then t > t∗(pi) and (15) implies si(pi) = Bi ∪Ci. We

conclude that statement (b) in Lemma 5 holds. �
We record below two immediate consequences of Lemma 5 that will be used later.

Corollary 1. For all i ∈ N, all pi, p
′
i ∈ P(πi), and all p−i ∈ PN\i(π−i),

(a) ω̃ ∈ si(pi, p−i) ∩ si(p
′
i, p−i) ⇒ si(pi, p−i) = si(p

′
i, p−i),

(b) ω̃ /∈ si(pi, p−i) ∪ si(p
′
i, p−i) ⇒ si(pi, p−i) = si(p

′
i, p−i).

Given the other agents’ beliefs, i’s assignment is fully determined by whether it con-

tains ω̃ or not.

Corollary 2. For all i ∈ N, all p−i ∈ PN\i(π−i), and all maximal and mini-

mal elements p+i , p
−
i of J̃ in P(πi), if s(·, p−i) is not constant on P(πi), then ω̃ ∈

si(p
+
i , p−i) \ si(p−i , p−i).

The next step consists in showing that the sets Ai(p−i), Bi(p−i), Ci(p−i) in Lemma

5 do not vary with p−i.

Lemma 6. For all i ∈ N, there exist disjoint sets Ai, Bi, Ci ⊆ Ω such that ω̃ ∈ Ai,

πi(Ai \ ω̃) < πi(Bi), and, for all p−i ∈ PN\i(π−i), either (a) si(·, p−i) is constant on

57



P(πi), or (b) for all pi ∈ P(πi),

si(pi, p−i) =

{
Ai ∪ Ci if pi(Ai) > pi(Bi),

Bi ∪ Ci otherwise.

We emphasize that Lemma 6 does not assert that si(pi, ·) is constant over PN\i(π−i).

Proof. Let i ∈ N and define the set

PN\i
∗ (π−i) =

{
p−i ∈ PN\i(π−i) : si(·, p−i) is not constant on P(πi)

}
. (31)

Let p−i, q−i ∈ PN\i
∗ (π−i). By Lemma 5, there exist disjoint sets Ai(p−i), Bi(p−i),

Ci(p−i) ⊆ Ω such that ω̃ ∈ Ai(p−i), πi(Ai(p−i) \ ω̃) < πi(Bi(p−i)), and

for all pi ∈ P(πi), si(pi, p−i) =

{
Ai(p−i) ∪ Ci(p−i) if pi(Ai(p−i)) > pi(Bi(p−i)),

Bi(p−i) ∪ Ci(p−i) otherwise,

(32)

and there exist disjoint sets Ai(q−i), Bi(q−i), Ci(q−i) ⊆ Ω such that ω̃ ∈ Ai(q−i),

πi(Ai(q−i) \ ω̃) < πi(Bi(q−i)), and

for all pi ∈ P(πi), si(pi, q−i) =

{
Ai(q−i) ∪ Ci(q−i) if pi(Ai(q−i)) > pi(Bi(q−i)),

Bi(q−i) ∪ Ci(q−i) otherwise.

(33)

We must prove that Ai(p−i) = Ai(q−i), Bi(p−i) = Bi(q−i), and Ci(p−i) = Ci(q−i).

There is obviously no loss of generality in assuming that there exists some j ̸= i

such that pk = qk for all k ∈ N \ {i, j} . We therefore drop the beliefs of the agents

other than i, j from our notation. Moreover, since P(πj) is connected, there is no loss

in assuming that pj, qj are adjacent.

Let p+i , p
−
i be maximal and minimal elements of J̃ in P(πi). By Corollary 2,

ω̃ ∈ si(p
+
i , pj) \ si(p−i , pj),

ω̃ ∈ si(p
+
i , qj) \ si(p−i , qj).

Since ω̃ /∈ sj(p
+
i , pj) ∪ sj(p

+
i , qj), Corollary 1 implies sj(p

+
i , pj) = sj(p

+
i , qj). By

non-bossiness, si(p
+
i , pj) = si(p

+
i , qj). Since ω̃ ∈ si(p

+
i , pj) ∩ si(p

+
i , qj), it follows from

(32) and (33) that

Ai(pj) ∪ Ci(pj) = Ai(qj) ∪ Ci(qj).

58



Because pj and qj agree on Ω̃, the Local Bilaterality lemma implies that (i) ω̃ ∈
sj(p

−
i , pj) \ sj(p

−
i , qj) or (ii) ω̃ ∈ sj(p

−
i , qj) \ sj(p

−
i , pj) or (iii) si(p

−
i , pj) = si(p

−
i , qj).

Since ω̃ /∈ si(p
−
i , pj) ∪ si(p

−
i , qj), (iii) must hold. It follows from (32) and (33) that

Bi(pj) ∪ Ci(pj) = Bi(qj) ∪ Ci(qj).

Since Ai(pj), Bi(pj), Ci(pj) are disjoint and Ai(qj), Bi(qj), Ci(qj) are disjoint, these

equalities imply Ai(pj) = Ai(qj), Bi(pj) = Bi(qj), and Ci(pj) = Ci(qj). �
We are finally ready to describe the behavior of s on PN(π).

Terminology. We say that s varies only with agent i’s beliefs (on PN(π)) if there

exists p−i ∈ PN\i(π−i) such that s(·, p−i) is not constant on P(πi) but s(·, p−j) is

constant on P(πj) for every j ̸= i and every p−j ∈ PN\j(π−j). We say that s varies

with the beliefs of agents i and j (on PN(π)) if there exist p−i ∈ PN\i(π−i) such

that s(·, p−i) is not constant on P(πi) and there exists p−j ∈ PN\j(π−j) such that

s(·, p−j) is not constant on P(πj). We emphasize that this second definition allows s

to potentially vary with the beliefs of agents other than i, j as well.

We say that {A,B} ∈ H cuts P(πi) if there exist pi, qi ∈ P(πi) such that (pi(A)−
pi(B))(qi(A)− qi(B)) < 0. Observe that if ω̃ ∈ A, then {A,B} cuts P(πi) if and only

if πi(A \ ω̃) < πi(B).

Lemma 7. There exists a partition {A,B,C1, ..., Cn} of Ω such that ω̃ ∈ A ∪ B

and

(a) if s varies only with agent 1’s beliefs on PN(π), then {A,B} cuts P(π1) and

there exists an agent i ∈ N \ 1, say agent 2, such that for all p ∈ PN(π),

s(p) =

{
(A ∪ C1, B ∪ C2, C3, ..., Cn) if p1(A) > p1(B),

(B ∪ C1, A ∪ C2, C3, ..., Cn) otherwise,

(b) if s varies with the beliefs of agents 1 and 2 on PN(π), then {A,B} cuts

P(π1),P(π2) and for all p ∈ PN(π),

s(p) =

{
(A ∪ C1, B ∪ C2, C3, ..., Cn) if p1(A) > p1(B) and p2(A) < p2(B),

(B ∪ C1, A ∪ C2, C3, ..., Cn) otherwise.

Remark 1. (a) We stated Lemma 7 with reference to agents 1 and 2 for notational

convenience but of course the result holds, up to a relabeling, for any pair of agents.

(b) Statement (b) does not assume that the assignment is independent of the be-

liefs of agents 3, ..., n. Rather, it is a corollary to Lemma 7 that, on PN(π), (i) the

assignment may vary with the beliefs of at most two agents and (ii) only the events

assigned to two agents may change.
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Proof.

Step 1. Suppose first that s varies only with agent 1’s beliefs on PN(π).

Recall the definition of PN\1
∗ (π−1) in (31). By Lemma 6, there exist disjoint sets

A1, B1, C1 such that for all p1 ∈ P(π1) and all p−1 ∈ PN\1
∗ (π−1),

s1(p1, p−1) =

{
A1 ∪ C1 if p1(A1) > p1(B1),

B1 ∪ C1 otherwise.

Moreover, ω̃ ∈ A1 and π1(A1 \ ω̃) < π1(B1(π)), implying that {A1, B1} cuts P(π1).

Since s does not vary with the beliefs of agents 2, ..., n, the above expression

must, in fact, hold for all (p1, p−1) ∈ PN(π). Statement (a) now follows from the

Local Bilaterality lemma and non-bossiness.

Step 2. Suppose next that s varies with the beliefs of agents 1 and 2 on PN(π).

Since P(π1), P(π2) are connected, there are adjacent beliefs p1, p
′
1 ∈ P(π1), adja-

cent beliefs p2, p
′
2 ∈ P(π2), and sub-profiles p−1 ∈ PN\1(π−1), q−2 ∈ PN\2(π−2) such

that

s(p1, p−1) = α ̸= α′ = s(p′1, p−1), (34)

s(q2, q−2) = β ̸= β′ = s(q′2, q−2). (35)

Sub-step 2.1. We show that the assignment varies locally with two agents’ beliefs:

there exist two agents i, j ∈ N, two adjacent beliefs pi, p
′
i ∈ P(πi), two adjacent

beliefs pj, p
′
j ∈ P(πj), and a sub-profile p−ij ∈ PN\ij(π−ij) such that s(p′i, pj, p−ij) ̸=

s(pi, pj, p−ij) ̸= s(pi, p
′
j, p−ij).

Suppose not. Then (34) implies

s(p1, p
′
j, p−1j) = α ̸= α′ = s(p′1, p

′
j, p−1j)

for all j ̸= 1 and all p′j adjacent to pj. Since P(πj) is connected, it follows that

s(p1, p
′
−1) = α ̸= α′ = s(p′1, p

′
−1) (36)

for all p′−1 ∈ PN\1(π−1).

By the same token, (35) implies

s(q2, q
′
−2) = α ̸= α′ = s(q′2, q

′
−2) (37)

for all q′−2 ∈ PN\2(π−2).

Statement (36) implies s(p1, q2, p−12) = s(p1, q
′
2, p−12) and statement (37) implies

s(p1, q2, p−12) ̸= s(p1, q
′
2, p−12), a contradiction.
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Sub-step 2.2. We show that there exist disjoint sets A,B,C1, ..., Cn such that

A,B ̸= ∅, ω̃ ∈ A ∪B, and, for all k ̸= i, j,

(si, sj, sk)(pi, pj, p−ij) = (A ∪ Ci, B ∪ Cj, Ck),

(si, sj, sk)(p
′
i, pj, p−ij) = (si, sj, sk)(p

′
i, pj, p−ij) = (B ∪ Ci, A ∪ Cj, Ck).

(38)

Since p−ij is fixed, let us drop it from the notation. By Sub-step 2.1 and Lemma

6, there exist disjoint sets Ai, Bi, Ci and disjoint sets Aj, Bj, Cj such that ω̃ ∈ Ai∩Aj,

Bi, Bj ̸= ∅, and

[si(pi, pj) = Ai ∪ Ci, si(p
′
i, pj) = Bi ∪ Ci] or [si(pi, pj) = Bi ∪ Ci, si(p

′
i, pj) = Ai ∪ Ci]

and[
sj(pi, pj) = Aj ∪ Cj, sj(pi, p

′
j) = Bj ∪ Cj

]
or
[
sj(pi, pj) = Bj ∪ Cj, sj(pi, p

′
j) = Aj ∪ Cj

]
.

Since ω̃ ∈ Ai∩Aj and si(pi, pj)∩ sj(pi, pj) = ∅, we need only consider three cases.

Case 1. (i) si(pi, pj) = Ai ∪Ci, (ii) si(p
′
i, pj) = Bi ∪Ci, (iii) sj(pi, pj) = Bj ∪Cj, (iv)

sj(pi, p
′
j) = Aj ∪ Cj.

Define A = Ai, B = Bj, Ck = sk(pi, pj) for k ̸= i, j. By the Local Bilaterality

lemma, (i), (iii), and (iv) imply Aj = A, Bi = B, si(pi, p
′
j) = B ∪Ci, and sk(pi, p

′
j) =

Ck for k ̸= i, j.

Next, since si(pi, pj) = A ∪ Ci, si(p
′
i, pj) = B ∪ Ci, and sj(pi, pj) = B ∪ Cj, the

Local Bilaterality lemma implies sj(p
′
i, pj) = A ∪ Cj and sk(p

′
i, pj) = Ck for k ̸= i, j,

establishing (38).

Case 2. (i) si(pi, pj) = Bi ∪Ci, (ii) si(p
′
i, pj) = Ai ∪Ci, (iii) sj(pi, pj) = Aj ∪Cj, (iv)

sj(pi, p
′
j) = Bj ∪ Cj.

Define A = Bi, B = Aj, Ck = sk(pi, pj) for k ̸= i, j. Statement (38) follows by the

same argument as in Case 1, mutatis mutandis.

Case 3. (i) si(pi, pj) = Bi ∪Ci, (ii) si(p
′
i, pj) = Ai ∪Ci, (iii) sj(pi, pj) = Bj ∪Cj, (iv)

sj(pi, p
′
j) = Aj ∪ Cj.

This case is impossible. To see why, note first that (i), (ii), (iii), and the Local

Bilaterality lemma imply sj(p
′
i, pj) = Bj ∪ Cj whereas (i), (iii), (iv) and the Local

Bilaterality lemma imply si(pi, p
′
j) = Bi ∪ Ci.

Since (si, sj)(p
′
i, pj) = (Ai ∪ Ci, Bj ∪ Cj) and (si, sj)(pi, p

′
j) = (Bi ∪ Ci, Aj ∪ Cj),

Lemma 3 implies that one of the following statements holds:

(si, sj)(p
′
i, p

′
j) = (Ai ∪ Ci, Bj ∪ Cj),

(si, sj)(p
′
i, p

′
j) = (Bi ∪ Ci, Aj ∪ Cj).
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In either case, the Local Bilaterality lemma requires Ai = Aj and Bi = Bj. The latter

equality implies that si(pi, pj) ∩ sj(pi, pj) ̸= ∅, violating feasibility.

Sub-step 2.3. Assume from now on that ω̃ belongs to the set A in (38). The case

where ω̃ belongs to B is identical up to a permutation of agents i and j. We show

that for all (qi, qj) ∈ P(πi)× P(πj) and all k ̸= i, j,

(si, sj, sk)(qi, qj, p−ij) =

{
(A ∪ Ci, B ∪ Cj, Ck) if qi(A) > qi(B) and qj(A) < qj(B),

(B ∪ Ci, A ∪ Cj, Ck) otherwise.

(39)

Since p−ij is fixed, let us drop it again from the notation. By Sub-step 2.2 and

Lemma 6, pi(A) > pi(B) and pj(A) < pj(B), and it follows that (39) holds for the

case where qi = pi or qj = pj.

Next, for any qi such that qi(A) < qi(B), the fact that sj(qi, pj) = A ∪ Cj implies

that sj(qi, .) is constant, hence, by non-bossiness, (si, sj, sk)(qi, qj) = (B ∪Ci, A∪Cj,

Ck).

Similarly, for any qj such that qj(A) > qj(B), the fact that si(pi, qj) = B ∪ Ci

implies that si(., qj) is constant, hence, by non-bossiness, (si, sj, sk)(qi, qj) = (B ∪Ci,

A ∪ Cj, Ck).

Finally, for any (qi, qj) such that qi(A) > qi(B) and qj(A) < qj(B), the fact that

si(., qj) and sj(., qi) are not constant, together with non-bossiness, implies (si, sj, sk)

(qi, qj) = (A ∪ Ci, B ∪ Cj, Ck), completing the proof of (39).

Sub-step 2.4. We show that for all q ∈ PN(π) and all k ̸= i, j,

(si, sj, sk)(q) =

{
(A ∪ Ci, B ∪ Cj, Ck) if qi(A) > qi(B) and qj(A) < qj(B),

(B ∪ Ci, A ∪ Cj, Ck) otherwise.

(40)

Let q ∈ PN(π). Given Sub-step 2.3 and because each P(πk) is connected, we

may assume without loss of generality that there exists some k ̸= i, j such that qk is

adjacent to pk and qk′ = pk′ for all k
′ ̸= i, j, k. In what follows, we drop q−ijk = p−ijk

from our notation. Suppose, by way of contradiction, that s(qi, qj, qk) ̸= s(qi, qj, pk).

If (si, sj, sk)(qi, qj, pk) = (A∪Ci, B∪Cj, Ck), non-bossiness implies sk(qi, qj, qk) ̸=
sk(qi, qj, pk). Since pk, qk ∈ P(πk), the pair of events {E,E ′} for which pk, qk are

{E,E ′}-adjacent is such that ω̃ ∈ E ∪ E ′. Since ω̃ ∈ A ∪ Ci = si(qi, qj, pk), we must

therefore have si(qi, qj, qk) ̸= si(qi, qj, pk) and Lemma 6 implies si(qi, qj, qk) = B ∪Ci.

By the Local Bilaterality lemma, sj(qi, qj, qk) = si(qi, qj, pk) = B ∪ Cj. This means

that si(qi, qj, qk) ∩ sj(qi, qj, qk) ̸= ∅, contradicting feasibility.

If (si, sj, sk)(qi, qj, pk) = (B ∪ Ci, A ∪ Cj, Ck), exchanging the roles of i and j in

the above argument yields the same contradiction.
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Sub-step 2.5. Since s varies with the beliefs of agents 1 and 2 on PN(π), (40) must

hold with {i, j} = {1, 2}, completing the proof of statement (b). �
Terminology. If the rule s is of the type identified in part (a) of Lemma 7, we

call it passively (1, 2)-consensual (with respect to {A,B}) on PN(π). In that case,

there is no loss of generality in assuming that ω̃ ∈ A: we maintain that convention

throughout.

If s is of the type identified in part (b), we call it actively {1, 2}-consensual (with
respect to {A,B}) on PN(π). We call it actively (1, 2)-consensual if ω̃ ∈ B and ac-

tively (2, 1)-consensual if ω̃ ∈ A: under an actively (i, j)-consensual rule, the “default

option” assigns state ω̃ to agent i.

We call the sets C1, ..., Cn residuals.

Appendix 2.C.2: Local Contagion Results

Lemma 7 described the behavior of s(·)∩(A∪B) on the region PN(π). In the current

Appendix 2.C.2, we study how that behavior varies locally with π. The three main

results are the Independence lemma, the First Contagion lemma, and the Second

Contagion lemma. These local contagion results will be used in the main contagion

argument in Appendix 2.C.4.

In order to proceed, we first need to extend the notion of adjacency to beliefs

defined over an arbitrary subset of Ω. For any Ω′ ⊆ Ω (e.g., Ω′ = Ω̃), let H(Ω′) =

{{A,B} : ∅ ̸= A,B ⊂ Ω′ and A ∩ B = ∅} and say that πi, σi ∈ P(Ω′) are {A,B}-
adjacent if (πi(A)−πi(B))(σi(A)−σi(B)) < 0 and (πi(C)−πi(D)) (σi(C)−σi(D)) > 0

for all {C,D} ∈ H(Ω′)\{{A,B}} .With a slight abuse of notation, we use J to denote

the adjacency relation between beliefs on any Ω′. Connectedness of a subset of P(Ω′)

is defined in the obvious way.

The first main result of this Appendix 2.C.2 states an independence property

saying that a local change in the beliefs of agents 3, ..., n, who have no say in allocating

A,B, does not matter.

Independence Lemma. Let k ∈ N \ {1, 2} , and let σk ∈ P̃ be adjacent to πk.

If s is actively (2, 1)-consensual with respect to {A,B} on PN(π), then s is actively

(2, 1)-consensual with respect to {A,B} on PN(σk, π−k).

Proof. Suppose s is actively (2, 1)-consensual with respect to {A,B} on PN(π) :

there exists a partition {A,B,C1, ..., Cn} of Ω such that ω̃ ∈ A, {A,B} cuts P(π1),P(π2),

and, for all p ∈ PN(π),

s(p) =

{
(A ∪ C1, B ∪ C2, C3, ..., Cn) if p1(A) > p1(B) and p2(A) < p2(B),

(B ∪ C1, A ∪ C2, C3, ..., Cn) otherwise.

(41)
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Fix k ∈ N \ {1, 2} , say, k = 3, and let σ3 ∈ P̃ be adjacent to π3.

By calibrating the probability assigned to ω̃, we can find {A,B}-adjacent beliefs
p1, p

′
1 ∈ P(π1) and {A,B}-adjacent beliefs p2, p

′
2 ∈ P(π2) with, say, p1(A) > p1(B)

and p2(A) < p2(B). Let p−123 ∈ PN\123(π−123). This sub-profile is fixed through-

out the argument and therefore omitted from the notation. Let p+3 , q
+
3 be maximal

elements of J̃ in P(π3),P(σ3).

By (41),

s(p1, p2, p
+
3 ) = (A ∪ C1, B ∪ C2, C3, ..., Cn),

s(p′1, p2, p
+
3 ) = (B ∪ C1, A ∪ C2, C3, ..., Cn),

s(p1, p
′
2, p

+
3 ) = (B ∪ C1, A ∪ C2, C3, ..., Cn).

(42)

Step 1. We show that there exists a partition {C ′
1, ..., C

′
n} of Ω \ (A ∪B) such that

s(p1, p2, q
+
3 ) = (A ∪ C ′

1, B ∪ C ′
2, C

′
3, ..., C

′
n). (43)

By definition, p+3 , q
+
3 are adjacent. By the Local Bilaterality lemma and the first

equality in (42), there are only three cases.

Case 1. There exists some j ̸= 1, 2, 3 such that sj(p1, p2, q
+
3 ) ∩ s3(p1, p2, p

+
3 ) ̸= ∅,

s3(p1, p2, q
+
3 ) ∩ sj(p1, p2, p

+
3 ) ̸= ∅, and si(p1, p2, q

+
3 ) = si(p1, p2, p

+
3 ) for all i ̸= j, 3.

In this case (43) holds with C ′
i = Ci for all i ̸= j, 3.

Case 2. s1(p1, p2, q
+
3 ) ∩ s3(p1, p2, p

+
3 ) ̸= ∅, s3(p1, p2, q+3 ) ∩ s1(p1, p2, p

+
3 ) ̸= ∅, and

si(p1, p2, q
+
3 ) = si(p1, p2, p

+
3 ) for all i ̸= 1, 3.

If A " s1(p1, p2, q
+
3 ), then since p1, p

′
1 are {A,B}-adjacent with p1(A) > p1(B), the

Local Bilaterality lemma implies s(p′1, p2, q
+
3 ) = s(p1, p2, q

+
3 ). Comparing with (42),

s1(p
′
1, p2, q

+
3 ) ∩B = ∅ and s1(p

′
1, p2, p

+
3 ) ∩B ̸= ∅,

s2(p
′
1, p2, q

+
3 ) ∩B ̸= ∅ and s2(p

′
1, p2, p

+
3 ) ∩B = ∅,

s3(p
′
1, p2, q

+
3 ) ∩ A ̸= ∅ and s3(p

′
1, p2, p

+
3 ) ∩ A = ∅,

implying si(p
′
1, p2, q

+
3 ) ̸= si(p

′
1, p2, p

+
3 ) for i = 1, 2, 3, contradicting the Local Bilater-

ality lemma.

This shows that A ⊆ s1(p1, p2, q
+
3 ). Then (43) holds with C ′

i = Ci for all i ̸= 1, 3.

Case 3. s2(p1, p2, q
+
3 ) ∩ s3(p1, p2, p

+
3 ) ̸= ∅, s3(p1, p2, q+3 ) ∩ s2(p1, p2, p

+
3 ) ̸= ∅, and

si(p1, p2, q
+
3 ) = si(p1, p2, p

+
3 ) for all i ̸= 2, 3.

If B " s2(p1, p2, q
+
3 ), then since p2, p

′
2 are {A,B}-adjacent with p2(A) < p2(B), the

Local Bilaterality lemma implies s(p1, p
′
2, q

+
3 ) = s(p1, p2, q

+
3 ). Comparing with (42),

s1(p1, p
′
2, q

+
3 ) ∩ A ̸= ∅ and s1(p1, p

′
2, p

+
3 ) ∩ A = ∅,

s2(p1, p
′
2, q

+
3 ) ∩ A = ∅ and s2(p1, p

′
2, p

+
3 ) ∩ A ̸= ∅,

s3(p1, p
′
2, q

+
3 ) ∩B ̸= ∅ and s3(p1, p

′
2, p

+
3 ) ∩B = ∅,
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implying si(p1, p
′
2, q

+
3 ) ̸= si(p1, p

′
2, p

+
3 ) for i = 1, 2, 3, contradicting the Local Bilater-

ality lemma again.

This shows that B ⊆ s2(p1, p2, q
+
3 ), Then (43) holds with C ′

i = Ci for all i ̸= 2, 3.

Step 2. We show that

s(p′1, p2, q
+
3 ) = s(p1, p

′
2, q

+
3 ) = (B ∪ C ′

1, A ∪ C ′
2, C

′
3, ..., C

′
n). (44)

Since p1, p
′
1 are {A,B}-adjacent, Step 1 and the Local Bilaterality lemma im-

ply that either (i) s(p′1, p2, q
+
3 ) = (A ∪ C ′

1, B ∪ C ′
2, C

′
3, ..., C

′
n) or (ii) s(p′1, p2, q

+
3 ) =

(B ∪ C ′
1, A ∪ C ′

2, C
′
3, ..., C

′
n). Statement (i) and the second statement in (42) to-

gether contradict the Local Bilaterality lemma, hence (ii) must hold. Likewise, the

third statement in (42) and the Local Bilaterality lemma imply that s(p1, p
′
2, q

+
3 ) =

(B ∪ C ′
1, A ∪ C ′

2, C
′
3, ..., C

′
n).

Step 3. Combining statements (43), (44), and statement (b) in Lemma 7, we obtain

that for all (q1, q2, q3) ∈ P(π1)× P(π2)× P(σ3),

s(q1, q2, q3) =

{
(A ∪ C ′

1, B ∪ C ′
2, C

′
3, ..., C ′

n) if q1(A) > q1(B) and q2(A) < q2(B),

(B ∪ C ′
1, A ∪ C ′

2, C
′
3, ..., C ′

n) otherwise.

Since p−123 was chosen arbitrarily in PN\123(π−123), this proves that s is actively

(2, 1)-consensual with respect to {A,B} on PN(σ3, π−3). �
We now examine how a local change in the beliefs of agents 1 and 2 affects the

assignment of A,B. First, an intermediate result.

Lemma 8. Let σ1, σ2 ∈ P̃ be adjacent to π1, π2, respectively, and suppose s is

actively (2, 1)-consensual with respect to {A,B} on PN(π) with residuals C1, ..., Cn.

(a) If s is actively (2, 1)-consensual with respect to some {A′, B′} on PN(σ2, π−2),

then {A′, B′} cuts P(π2) and {A,B} cuts P(σ2).

(b) If s is actively (2, 1)-consensual with respect to some {A′, B′} on PN(σ1, π−1),

then {A′, B′} cuts P(π1) and {A,B} cuts P(σ1).

Remark 2. We stated Lemma 8 for the ordered pair (2, 1) for notational simplicity

only: up to a relabeling, the result applies to any ordered pair (i, j) of agents. This

comment applies also to the results below.

Proof. We only prove statement (a). Although statement (b) is not a mere per-

mutation of statement (a) (because s is actively (2, 1)-consensual in both cases), its

proof is almost identical and therefore omitted. Fix σ2 ∈ P̃ adjacent to π2. Sup-

pose s is actively (2, 1)-consensual with respect to {A,B} on PN(π) with residuals

C1, ..., Cn, and actively (2, 1)-consensual with respect to {A′, B′} on PN(σ2, π−2) with
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residuals C ′
1, ..., C

′
n. Fix an arbitrary sub-profile p−12 ∈ PN\12(π−12) and drop it from

the notation. Then, for all p = (p1, p2) ∈ P(π1)× P(π2),

(s1, s2)(p1, p2) =

{
(A ∪ C1, B ∪ C2) if p1(A) > p1(B) and p2(A) < p2(B),

(B ∪ C1, A ∪ C2) otherwise,

(45)

and for all (p1, q2) ∈ P(π1)× P(σ2),

(s1, s2)(p1, q2) =

{
(A′ ∪ C ′

1, B
′ ∪ C ′

2) if p1(A
′) > p1(B

′) and q2(A
′) < q2(B

′),

(B′ ∪ C ′
1, A

′ ∪ C ′
2) otherwise,

(46)

where ω̃ ∈ A ∩ A′, {A,B} cuts P(π1),P(π2), and {A′, B′} cuts P(π1),P(σ2). In

particular, writing Ã := A \ ω̃, Ã′ := A′ \ ω̃, we have

π2(Ã) < π2(B). (47)

σ2(Ã
′) < σ2(B

′). (48)

Let p+1 , p
+
2 , q

+
2 and p−1 , p

−
2 , q

−
2 be, respectively, maximal and minimal elements of

J̃ in, respectively, P(π1),P(π2), and P(σ2). Let {E,E ′} ∈ H(Ω̃) be the unique pair

of disjoint subsets of Ω̃ such that π2 and σ2 are {E,E ′}-adjacent with, say, π2(E) >

π2(E
′). Recall that π2, σ2 are beliefs on Ω̃ = Ω \ ω̃; this implies that ω̃ /∈ E ∪ E ′.

Observe now that p+2 , q
+
2 are {E,E ′}-adjacent beliefs on Ω: this follows directly from

the characteristic inequality (28). In contrast, p−2 , q
−
2 need not be adjacent, as Figure

2 illustrates.

We will only prove that {A′, B′} cuts P(π2); the proof that {A,B} cuts P(σ2) is

the same, mutatis mutandis. Suppose, by way of contradiction, that

π2(Ã
′) > π2(B

′). (49)

We first claim that for every ω̂ ∈ E ∪ E ′,

p−2 | Ω̂ ≈ q−2 | Ω̂, (50)

where Ω̂ := Ω \ ω̂. To see why, fix disjoint events C,D ⊆ Ω̂ and observe that

p−2 (C) < p−2 (D) ⇔ π2(C \ ω̃) < π2(D \ ω̃)
⇔ σ2(C \ ω̃) < σ2(D \ ω̃)
⇔ q−2 (C) < q−2 (D).
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The first equivalence holds by definition of p−2 . The second holds because ω̂ ∈ E ∪E ′

and ω̂ /∈ C ∪ D imply that {C \ ω̃, D \ ω̃} differs from {E,E ′} , the unique pair of

disjoints subsets of Ω̃ on which the likelihood orderings generated by π2, σ2 disagree.

The third equivalence holds by definition of q−2 .

Next, let π̂2 be a belief on Ω̂ such that p−2 | Ω̂ ≈ q−2 | Ω̂ ≈ π̂2. We emphasize that

the belief π̂2 is not defined on the same event as π2, σ2, which are beliefs on Ω̃. Define

P(π̂2) =
{
p2 ∈ P : p2 | Ω̂ ≈ π̂2

}
. For every α ∈ [0, 1] , define

αq2 = αp−2 + (1− α)q−2 .

Observe that αq2 ∈ P(π̂2)∩ (P(σ2)∪P(π2))) for every α ∈ [0, 1] , where the upperbar

denotes the closure operator. Furthermore, because we assumed that {A′, B′} does

not cut P(π2) (i.e., (49) holds), there exists some α ∈ [0, 1] such that

αq2 ∈ P(σ2) and
αq2(A

′) > αq2(B
′). (51)

We omit the easy proof for brevity.

Pick p1 ∈ P(π1) such p1(A) > p1(B) and p1(A
′) > p1(B

′). By definition of q−2 and

thanks to (48), q−2 (A
′) < q−2 (B

′), hence from (46),

s2(p1,
0 q2) = s2(p1, q

−
2 ) = B′ ∪ C ′

2. (52)

Choosing α such that (51) holds, (46) again implies

s2(p1,
α q2) = A′ ∪ C ′

2. (53)

But since βq2 ∈ P(π̂2) for all β ∈ [0, 1] , (52), (53), and Lemma 6, applied with Ω̂

instead of Ω̃, imply

s2(p1,
1 q2) = s2(p1, p

−
2 ) = A′ ∪ C ′

2.

However, by definition of p−2 and thanks to (47), p−2 (A) < p−2 (B), hence from (45),

s2(p1, p
−
2 ) = B ∪ C2,

contradicting the previous equality since ω̃ ∈ (A′ ∪ C ′
2) \ (B ∪ C2). �

We are now ready to prove the second main result of this Appendix 2.C.2. This

result describes how a local change in agent 2’s beliefs affects the assignment of events

A,B.

First Contagion Lemma. Let σ2 ∈ P̃ be adjacent to π2, and suppose s is actively

(2, 1)-consensual with respect to {A,B} on PN(π) with residuals C1, ..., Cn.

(a) If {A,B} cuts P(σ2), then s is actively (2, 1)-consensual with respect to {A,B}
on PN(σ2, π−2).

(b) If {A,B} does not cut P(σ2), then s(p) = (B ∪ C1, A ∪ C2, C3, ..., Cn) for all

p ∈ PN(σ2, π−2).
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Remark 3. Statement (a) does not assert that the residuals C ′
1, ..., C

′
n associated

with the actively (2, 1)-consensual rule s on PN(σ2, π−2) coincide with the residuals

C1, ...., Cn on PN(π) : in fact, they generally do not.

Statement (b), on the other hand, asserts that s is constant on PN(σ2, π−2) and

the residuals are the same as on PN(π): the assignment outside A ∪ B remains

constant when 2’s beliefs switch from P(π2) to P(σ2). It may be worth explaining why

a locally bilateral assignment rule indeed possesses this property. The reason is the

following. Since we have assumed that s is actively (2, 1)-consensual with respect to

{A,B} on PN(π), we know that {A,B} cuts P(π2), that is, π2(Ã) < π2(B). On the

other hand, since {A,B} does not cut P(σ2), we have σ2(Ã) > σ2(B). It follows that

the adjacent beliefs π2, σ2 must, in fact, be {Ã, B}-adjacent. This means that any two

beliefs p2 ∈ P(π2), q2 ∈ P(σ2) agree on the ranking of all events C,D ⊆ Ω \ (A ∪ B).

As a result, the assignment outside A∪B remains unchanged under a locally bilateral

assignment rule.

Proof. Fix σ2 ∈ P̃ such that π2, σ2 are adjacent. Suppose s is actively (2, 1)-

consensual with respect to {A,B} on PN(π) with residuals C1, ..., Cn : (45) holds for

all p ∈ PN(π), ω̃ ∈ A, and {A,B} cuts P(π2), i.e., (47) holds. For any k ∈ N, let

p+k , p
−
k denote maximal and minimal elements of J̃ in P(πk), q

+
2 , q

−
2 be maximal and

minimal elements of J̃ in P(σ2), and let E,E ′ be the disjoint subsets of Ω̃ such that

π2 and σ2 are {E,E ′}-adjacent with π2(E) > π2(E
′). Recall that ω̃ /∈ E ∪ E ′.

Step 1. We show that for every agent k ̸= 2 and every k′ ̸= k, s is neither passively

(k, k′)-consensual nor actively (k, k′)-consensual on PN(σ2, π−2).

Fix k ̸= 2, k′ ̸= k. Fix a sub-profile p−2k ∈ PN\2k(π−2k) and drop it from the

notation. Since s is actively (2, 1)-consensual on PN(π), we have ω̃ ∈ s2(p
+
2 , p

+
k ).

If s is passively (k, k′)-consensual or actively (k, k′)-consensual on PN(σ2, π−2), then

ω̃ ∈ sk(q
+
2 , p

+
k ). These two statements contradict the Local Bilaterality lemma because

p+2 , q
+
2 are {E,E ′}-adjacent and ω̃ /∈ E ∪ E ′.

Step 2. We prove statement (a).

Suppose {A,B} cuts P(σ2), that is,

σ2(Ã) < σ2(B). (54)

Sub-step 2.1. We show that s varies with the beliefs of agents 1 and 2 on PN(σ2, π−2).

Fix a sub-profile p−12 ∈ PN\12(π−12) and drop it from the notation. Because

{A,B} cuts P(σ2), there exist adjacent beliefs p2 ∈ P(π2) and q2 ∈ P(σ2) such that

p2(A) < p2(B). These beliefs are, in fact, {E,E ′}-adjacent.
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Choose p1 ∈ P(π1) such that p1(A) > p1(B). From (45), s2(p1, p
+
2 ) = A ∪ C2 and

s2(p1, p2) = B ∪ C2. By the Local Bilaterality lemma,

s2(p1, q
+
2 ) = A ∪ C2 or (A ∪ C2 ∪ E ′) \ E,

s2(p1, q2) = B ∪ C2 or (B ∪ C2 ∪ E ′) \ E.

It follows that ω̃ ∈ s2(p1, q
+
2 ) \ s2(p1, q2): s varies with agent 2’s beliefs.

Next, choose q1 ∈ P(π1) such that q1(A) < q1(B). From (45), s2(q1, p2) = A∪C2.

By the Local Bilaterality lemma,

s2(q1, q2) = A ∪ C2 or (A ∪ C2 ∪ E ′) \ E.

Thus ω̃ ∈ s2(q1, q2) \ s2(p1, q2): s varies with agent 1’s beliefs.

Sub-step 2.2. Since s varies with the beliefs of agents 1 and 2 on PN(σ2, π−2),

Lemma 7 and Step 1 imply that s is actively (2, 1)-consensual with respect to some

{A′, B′} on PN(σ2, π−2) with, say, residuals C
′
1, ..., C

′
2. Thus, (46) holds for all (p1, q2) ∈

P(π1)× P(σ2), ω̃ ∈ A′, and {A′, B′} cuts P(π1),P(σ2). In particular, (48) holds. To

complete the proof of statement (a), it remains to prove that {A,B} = {A′, B′} .

Suppose, contrary to our claim, that {A,B} ̸= {A′, B′}. Define the positive

numbers

δ = π1(B)− π1(Ã),

δ′ = π1(B
′)− π1(Ã

′).

Assume δ ̸= δ′. This is without loss of generality: if δ = δ′, simply replace π1 with

an ordinally equivalent belief for which the two corresponding numbers differ. Either

δ < δ′ or δ′ < δ. We will only treat the former case; the latter is identical, mutatis

mutandis.

For each α ∈ [0, 1] , define pα1 ∈ P(π1) by

pα1 (ω̃) = α and pα1 (ω) = (1− α)π1(ω) for all ω ∈ Ω̃.

Elementary algebra shows that pα1 (A) < pα1 (B) ⇔ α < δ
1+δ

and pα1 (A
′) < pα1 (B

′) ⇔
α < δ′

1+δ′
. Since δ < δ′, we have δ

1+δ
< δ′

1+δ′
. Choosing δ

1+δ
< α < δ′

1+δ′
, we have

pα1 (A) > pα1 (B) and pα1 (A
′) < pα1 (B

′). (55)

Because of (47) and (54), there exist adjacent beliefs p2 ∈ P(π2) and q2 ∈ P(σ2)

such that p2(A) < p2(B). This is illustrated in Figure 3 with A = {1} , B = {2}; we
omit the easy proof for brevity. From this inequality, (45), and the first inequality in

(55), we obtain

s2 (p
α
1 , p2) = B ∪ C2.
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From (46) and the second inequality in (55),

s2 (p
α
1 , q2) = A′ ∪ C ′

2.

It follows that ω̃ ∈ s2 (p
α
1 , q2) \ s2 (pα1 , p2) , contradicting the Local Bilaterality lemma

because p2, q2 are {E,E ′}-adjacent and ω̃ /∈ E ∪ E ′.

Step 3. We prove statement (b).

Suppose {A,B} does not cut P(σ2), that is,

σ2(Ã) > σ2(B). (56)

Sub-step 3.1. We prove that s is neither passively (2, k)-consensual nor actively

(2, k)-consensual on PN(σ2, π−2) for any k ̸= 2 .

Suppose it is.

Case 1. {A′, B′} cuts P(π2), that is, π2(Ã
′) < π2(B

′).

Fix a sub-profile p−2k ∈ PN\2k(π−2k) and drop it from the notation. Because of

(56), there exist adjacent p2 ∈ P(π2) and q2 ∈ P(σ2) such that p2(A) > p2(B) and

q2(A
′) < q2(B

′).

Choose pk ∈ P(πk) such that pk(A
′) > pk(B

′). From (45), ω̃ ∈ s2(p2, pk). But

since s is passively (2, k)-consensual or actively (2, k)-consensual on PN(σ2, π−2),

ω̃ ∈ sk(q2, pk), contradicting the Local Bilaterality lemma.

Case 2. {A′, B′} does not cut P(π2), that is, π2(Ã
′) > π2(B

′).

Fix a sub-profile p−2 ∈ PN\2(π−2) such that p1(A) > p1(B) and pk(A
′) > pk(B

′)

(where 1 and k may coincide). Drop this sub-profile from the notation.

We derive a contradiction using a variant of the argument in Lemma 8. Fix

ω̂ ∈ E∪E ′. As we proved in Lemma 8, there exists a belief π̂2 on Ω\ω̂ such that p−2 | Ω̂
≈ q−2 | Ω̂ ≈ π̂2 and there exists α ∈ [0, 1] such that αq2 := αp−2 + (1 − α)q−2 ∈ P(σ2)

and αq2(A
′) > αq2(B

′).

Since q−2 (A
′) < q−2 (B

′) and s is passively (2, k)-consensual or actively (2, k)-

consensual on PN(σ2, π−2),

s2(
0q2) = s2(q

−
2 ) = B′ ∪ C ′

2,

s2(
αq2) = A′ ∪ C ′

2.

Since βq2 ∈ P(π̂2) for all β ∈ [0, 1] , these equalities and Lemma 6 imply

s2(
1q2) = s2(p

−
2 ) = A′ ∪ C ′

2.

But (45) implies s2(p
−
2 ) = B ∪ C2, a contradiction.
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Sub-step 3.2. Step 1, Sub-step 3.1, and Lemma 7 together imply that s is constant

on PN(σ2, π−2). To complete the proof of statement (b), we need to show that the

constant assignment prescribed by s is (B ∪ C1, A ∪ C2, C3, ..., Cn).

Fix again ω̂ ∈ E ∪ E ′ and π̂2 ≈ p−2 | Ω̂ ≈ q−2 | Ω̂. Because {A,B} does not cut

P(σ2), there exists α ∈ [0, 1] such that αq2 := αp−2 +(1−α)q−2 ∈ P(π2) and
αq2(A) >

αq2(B). Pick p1 ∈ P(π1) such p1(A) > p1(B). Fix p−12 and drop it from the notation.

From (45),

s2(p1,
1 q2) = s2(p1, p

−
2 ) = B ∪ C2,

s2(p1,
α q2) = A ∪ C2.

Since βq2 ∈ P(π̂2) for all β ∈ [0, 1], Lemma 6 implies

s2(p1,
0 q2) = s2(p1, q

−
2 ) = A ∪ C2,

hence, since s is constant on PN(σ2, π−2), s2(p1, q2) = A∪C2 for all (p1, q2) ∈ P(π1)×
P(σ2). The claim now follows from non-bossiness. �

The third main result of Appendix 2.C.2 describes how a local change in agent

1’s beliefs affects the assignment of events A,B.

Second Contagion Lemma. Let σ1 ∈ P̃ be adjacent to π1.

(a) If s is actively (2, 1)-consensual with respect to {A,B} on PN(π) and {A,B} cuts
P(σ1), then s is actively (2, 1)-consensual with respect to {A,B} on PN(σ1, π−1).

(b) If s is actively (2, 1)-consensual or passively (2, 1)-consensual with respect to

{A,B} on PN(π) and {A,B} does not cut P(σ1), then s is passively (2, 1)-consensual

with respect to {A,B} on PN(σ1, π−1).

Remark 4. Statement (a) is not the permutation of statement (a) in the First Conta-

gion lemma because the rule is assumed to be actively (2, 1)-consensual in both cases.

Proof. Fix σ1 ∈ P̃ adjacent to π1. For any k ∈ N, let p+k , p
−
k denote maximal and

minimal elements of J̃ in P(πk), let q+1 , q
−
1 be maximal and minimal elements of J̃

in P(σ1), and let now E,E ′ denote the disjoint subsets of Ω̃ such that π1 and σ1 are

{E,E ′}-adjacent with π1(E) > π1(E
′). Again, ω̃ /∈ E ∪ E ′.

Step 1. We show that if s is actively (2, 1)-consensual or passively (2, 1)-consensual

on PN(π), then for every k ̸= 2 and k′ ̸= k, s is neither passively (k, k′)-consensual

nor actively (k, k′)-consensual on PN(σ1, π−1).

Fix k ̸= 2, k′ ̸= k. Fix a profile p ∈ PN(π) such that p1 = p+1 , p2 = p+2 , and

pk = p+k (where k may coincide with 1). Since s is actively (2, 1)-consensual or

passively (2, 1)-consensual on PN(π), we have ω̃ ∈ s2(p). If s is passively (k, k′)-

consensual or actively (k, k′)-consensual on PN(σ1, π−1), then ω̃ ∈ sk(q
+
1 , p−1). These
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two statements contradict the Local Bilaterality lemma because p+1 , q
+
1 are {E,E ′}-

adjacent and ω̃ /∈ E ∪ E ′.

Step 2. We show that if s is actively (2, 1)-consensual or passively (2, 1)-consensual

on PN(π), then s it is not constant on PN(σ1, π−1).

Fix a sub-profile p−12 ∈ PN\12(π−12) and drop it from the notation. If s is actively

(2, 1)-consensual or passively (2, 1)-consensual on PN(π), there exist disjoint sets

A,B,C2 such that ω̃ ∈ A and

s2(p
+
1 , p

+
2 ) = A ∪ C2,

s2(p
+
1 , p

−
2 ) = B ∪ C2

and the Local Bilaterality lemma implies

s2(q
+
1 , p

+
2 ) = A ∪ C2 or (A ∪ C2 ∪ E) \ E ′,

s2(q
+
1 , p

−
2 ) = B ∪ C2 or (B ∪ C2 ∪ E) \ E ′.

Hence, ω̃ ∈ s2(q
+
1 , p

+
2 ) \ s2(q+1 , p−2 ), proving that s is not constant on PN(σ1, π−1).

Step 3. We prove statement (a).

Suppose s is actively (2, 1)-consensual with respect to {A,B} on PN(π) with,

say, residuals C1, ..., Cn, and {A,B} cuts P(σ1). Fix p−12 ∈ PN\12(π−12) and drop it

from the notation. By assumption, (45) holds for all (p1, p2) ∈ P(π1) × P(π2) and

σ1(Ã) < σ1(B).

Sub-step 3.1. We show that s varies with agent 1’s beliefs on PN(σ1, π−1).

Because {A,B} cuts P(σ1), there exist adjacent beliefs p1 ∈ P(π1) and q1 ∈ P(σ1)

such that p1(A) < p1(B). These beliefs are, in fact, {E,E ′}-adjacent.
Choose p2 ∈ P(π2) such that p2(A) < p2(B). From (45), s2(p

+
1 , p2) = B ∪ C2 and

s2(p1, p2) = A ∪ C2. By the Local Bilaterality lemma,

s2(q
+
1 , p2) = B ∪ C2 or (B ∪ C2 ∪ E ′) \ E,

s2(q1, p2) = A ∪ C2 or (A ∪ C2 ∪ E ′) \ E.

It follows that ω̃ ∈ s2(q1, p2) \ s2(q+1 , p2): s varies with agent 1’s beliefs.

Sub-step 3.2. By Step 1, Sub-step 3.1, and Lemma 7, s is actively (2, 1)-consensual

on PN(σ1, π−1) with respect to some {A′, B′} and residuals C ′
1, ..., C

′
n. For all (q1, p−1) ∈

PN(σ1, π−1),

s(q1, p−1) =

{
(A′ ∪ C ′

1, B
′ ∪ C ′

2, C
′
3, ..., C

′
n) if q1(A

′) > q1(B
′) and p2(A

′) < p2(B
′),

(B′ ∪ C ′
1, A

′ ∪ C ′
2, C

′
3, ..., C

′
n) otherwise,

(57)
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where ω̃ ∈ A′ and {A′, B′} cuts P(σ1),P(π2). It remains to prove that {A′, B′} =

{A,B} .
Fix p−12 ∈ PN\12(π−12) and drop it from the notation. If {A′, B′} ̸= {A,B} ,

define the positive numbers

δ = π2(B)− π2(Ã),

δ′ = π2(B
′)− π2(Ã

′)

and assume without loss of generality δ ̸= δ′.

If δ < δ′, there exists p2 ∈ P(π2) such that p2(A) > p2(B) and p2(A
′) < p2(B

′).

From (45), s2(p
+
1 , p2) = A∪C2 and from (57), s2(q

+
1 , p2) = B′ ∪C ′

2, contradicting the

Local Bilaterality lemma.

If δ′ < δ, there exists p2 ∈ P(π2) such that p2(A) < p2(B) and p2(A
′) > p2(B

′).

From (45), s2(p
+
1 , p2) = B ∪C2 and from (57), s2(q

+
1 , p2) = A′ ∪C ′

2, contradicting the

Local Bilaterality lemma again.

Step 4. We prove statement (b).

Sub-step 4.1. Suppose first that s is actively (2, 1)-consensual with respect to

{A,B} on PN(π) and {A,B} does not cut P(σ1).

By Steps 1, 2, and Lemmas 7 and 8, s is passively (2, 1)-consensual on PN(σ1, π−1)

with respect to some {A′, B′} and residuals C ′
1, ..., C

′
n. For all (q1, p−1) ∈ PN(σ1, π−1),

s(q1, p−1) =

{
(A′ ∪ C ′

1, B
′ ∪ C ′

2, C
′
3, ..., C

′
n) if p2(B

′) > p2(A
′),

(B′ ∪ C ′
1, A

′ ∪ C ′
2, C

′
3, ..., C

′
n) otherwise,

(58)

where ω̃ ∈ A′ and {A′, B′} cuts P(σ1). It remains to prove that {A′, B′} = {A,B} .
If {A′, B′} ̸= {A,B} , consider again the numbers δ, δ′ defined in Sub-step 3.2

and assume without loss of generality δ ̸= δ′. Note that δ′ may now be negative as

{A′, B′} need no longer cut P(π2). This, however, does not affect the rest of the

argument: combining (45) with (58) rather than (57) delivers the same contradiction

to the Local Bilaterality lemma.

Sub-step 4.2. Suppose next that s is passively (2, 1)-consensual with respect to

{A,B} on PN(π) and {A,B} does not cut P(σ1).

By Steps 1, 2, and Lemma 7, s is either actively (2, 1)-consensual or passively

(2, 1)-consensual on PN(σ1, π−1).

If s is actively (2, 1)-consensual on PN(σ1, π−1), it must be with respect to some

{A′, B′} ̸= {A,B} since {A,B} does not cut P(σ1).

Suppose first that {A′, B′} does not cut P(π1) : exchanging the roles of {A,B} ,
{A′, B′} and π1, σ1 in the argument in Sub-step 4.1 leads to the conclusion that s

is passively (2, 1)-consensual with respect to {A′, B′} on PN(π), contradicting the

assumption of the current sub-step.
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Suppose next that {A′, B′} cuts P(π1): exchanging the roles of {A,B} , {A′, B′}
and π1, σ1 in statement (a) leads to the conclusion that s is actively (2, 1)-consensual

with respect to {A′, B′} on PN(π), again a contradiction.

We conclude that s is passively (2, 1)-consensual on PN(σ1, π−1). The proof that

it must in fact be passively (2, 1)-consensual with respect to {A,B} proceeds in the

same way as in Sub-step 4.1. �

Appendix 2.C.3: Global Contagion Results

As corollaries to the local contagion results of Appendix 2.C.2, we will now prove two

results linking the behavior of s across regions that need not be adjacent. Our first

result describes the effect of a change in agent 2’ beliefs.

First Contagion Corollary. Let σ2 ∈ P̃ , and suppose s is actively (2, 1)-consensual

with respect to {A,B} on PN(π) with residuals C1, ..., Cn.

(a) If {A,B} cuts P(σ2), then s is actively (2, 1)-consensual with respect to {A,B}
on PN(σ2, π−2).

(b) If {A,B} does not cut P(σ2), then there exists a partition {C ′
1, ..., C

′
n} of Ω \

(A ∪B) such that s(p) = (B ∪ C ′
1, A ∪ C ′

2, C
′
3, ..., C

′
n) for all p ∈ PN(σ2, π−2).

Proof. Let σ2 ∈ P̃ , and suppose s is actively (2, 1)-consensual with respect to {A,B}
on PN(π) with residuals C1, ..., Cn. Define

P̃+ = {σ2 ∈ P̃ : σ2(Ã) < σ2(B)},
P̃− = {σ2 ∈ P̃ : σ2(Ã) > σ2(B)}.

These sets partition P̃ : σ2 ∈ P̃+ if and only if {A,B} cuts P(σ2). Clearly, P̃+ and

P̃− are connected: any two beliefs in one set are linked by a J-path of adjacent beliefs

in that set. Since s is actively (2, 1)-consensual with respect to {A,B} on PN(π), we

have π2 ∈ P̃+.

Step 1. We prove statement (a).

Let σ2 ∈ P̃+. Let (σt
2)

T
t=1 be a J-path in P̃+ with σ1

2 = π2 and σT
2 = σ2. Since

s is actively (2, 1)-consensual with respect to {A,B} on PN(σ1
2, π−2), repeated ap-

plication of statement (a) in the First Contagion lemma implies that s is actively

(2, 1)-consensual with respect to {A,B} on PN(σT
2 , π−2) = PN(σ2, π−2).

Step 2. We prove statement (b).

Call two distinct events C,D ⊆ Ω̃ adjacent in σ2 ∈ P̃ if (σ2(C)− σ2(E))(σ2(D)−
σ2(E)) > 0 for all E ⊆ Ω̃ different from C,D. Define

P̃∗ = {σ2 ∈ P̃ : Ã, B are adjacent in σ2},
P̃∗

+ = P̃+ ∩ P̃∗,

P̃∗
− = P̃− ∩ P̃∗.

74



We will first prove that statement (b) holds if σ2 ∈ P̃∗
−, then show that it holds for

all σ2 ∈ P̃−. The argument is illustrated in Figure 4.

Sub-step 2.1. If σ2 ∈ P̃∗
−, then σ2 is {Ã, B}-adjacent to some belief σ′

2 ∈ P̃∗
+. By

statement (a), s is actively (2, 1)-consensual with respect to {A,B} on PN(σ′
2, π−2).

Statement (b) now follows from statement (b) in the First Contagion lemma.

Sub-step 2.2. If σ2 ∈ P̃− \ P̃∗
−, recall first that, since {A,B} does not cut P(σ2), we

have σ2(Ã) > σ2(B). Fix p = (p2, p−2) ∈ PN(σ2, π−2). Consider, for each α ∈ (0, 1) ,

the probability measure σα
2 defined over the subsets of Ω̃ by

σα
2 (E) = α

σ2

(
E ∩ Ã

)
σ2

(
Ã
) + (1− α)

σ2

(
E ∩ Ã

)
σ2

(
Ã
) for all E ⊆ Ω̃, (59)

where Ã := Ω̃ \ Ã. Each σα
2 is a variant of the belief σ2 where the probability of the

states in Ã relative to those outside Ã is modified, but the conditional beliefs on the

subsets of Ã, as well as on the subsets of Ã, are kept unchanged. If α = σ2(Ã), then

σα
2 coincides with σ2. If α = σ2(B)

1+σ2(B)−σ2(Ã)
, then σα

2 (Ã) = σα
2 (B). This means that if α

is sufficiently close to σ2(B)

1+σ2(B)−σ2(Ã)
, the belief σα

2 belongs to P̃∗
−. Elementary algebra

shows that σ2(Ã) >
σ2(B)

1+σ2(B)−σ2(Ã)
.

Write p2(ω̃) = γ and define, for each α ∈ (0, 1) , the measure pα2 over the subsets

of Ω by

pα2 (E) = γ 1(E ∩ {ω̃}) + (1− γ) σα
2

(
E ∩ Ω̃

)
for all E ⊆ Ω, (60)

where 1(E ∩ {ω̃}) = 1 if ω̃ ∈ E and 0 otherwise.

Choose an increasing sequence of numbers α(1), ..., α(T ) in (0, 1) such that (i)

σ
α(t)
2 is adjacent to σα(t+1)

2 for all t = 1, ..., T − 1, (ii) σα(1)

2 ∈ P̃∗
−, and (iii) σα(T )

2 = σ2.

Define the J-path (σt
2)

T
t=1 in P̃− by σt

2 = σα(t)

2 for t = 1, ..., T. Define the associated

finite sequence (pt
2)

T
t=1 in P by pt

2 = pα(t)

2 for t = 1, ..., T. Observe that pT
2 = p2 and

pt
2 ∈ P(σt

2) for each t, but pt
2,p

t+1
2 need not be adjacent. Finally, for each t = 1, ..., T,

let yt
2 be a maximal element of J̃ in P(σt

2). Observe that yt
2,y

t+1
2 are adjacent and

write yT
2 = y2.

Since y12 ∈ P(σ1
2) and σ1

2 ∈ P̃∗
−, Sub-step 2.1 implies that there exists a partition

{C ′
1, ..., C

′
n} of Ω \ (A ∪ B) such that s(y1

2, p−2) = (B ∪ C ′
1, A ∪ C ′

2, C
′
3, ..., C

′
n). We

will show that s(p) = s(p2, p−2) = (B ∪ C ′
1, A ∪ C ′

2, C
′
3, ..., C

′
n). By non-bossiness, it

suffices to prove s2(p) = A ∪ C ′
2.

We have

s2(y
1
2, p−2) = A ∪ C ′

2.

Proceeding now by induction, fix t ∈ {1, ..., T − 1} and suppose that
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s2(y
t
2, p−2) = A ∪ C ′

2.

Let {Et, Et+1} ∈ H(Ω̃) be the pair of disjoint events such that σt
2, σ

t+1
2 are {Et, Et+1}-

adjacent with σt
2(E

t) > σt
2(E

t+1). Because σt
2, σ

t+1
2 coincide on Ã as well as on Ã,

Et ∩ Ã ̸= ∅ and Et+1 ∩ Ã ̸= ∅.

If s2(y
t+1
2 , p−2) ̸= s2(y

t
2, p−2), the Local Bilaterality lemma implies s2(y

t+1
2 , p−2) \

s2(y
t
2, p−2) = Et+1. Since A ⊆ s2(y

t
2, p−2), we conclude E

t+1∩ Ã = ∅, a contradiction.

Therefore s2(y
t+1
2 , p−2) = A ∪ C ′

2, and finally

s2(y2, p−2) = A ∪ C ′
2. (61)

Next, we claim that

s2(p) = s2(p2, p−2) = A ∪ C ′
2.

First, observe that since p1
2 ∈ P(σ1

2) and σ1
2 ∈ P̃∗

−, we have

s2(p
1
2, p−2) = A ∪ C ′

2

Next, suppose, by way of contradiction, that s2(p2, p−2) = D ̸= A ∪ C ′
2. By Lemma

7, ω̃ /∈ D.

Case 1.
σ2(C′

2\D)

σ2

(
Ã
) <

σ2(Ã\D)
σ2(Ã)

.

By strategyproofness, p2(s2(p2, p−2)) > p2(s2(y2, p−2)), hence by (61), pT
2 (D) >

pT
2 (A ∪ C ′

2). Given (60), this means

σT
2

(
Ã ∪ C ′

2

)
− σT

2 (D)

1 + σT
2 (D)− σT

2

(
Ã ∪ C ′

2

) < −γ. (62)

From (59),

σT
2 (Ã∪C ′

2)−σT
2 (D)) = α(T )

σ2

(
Ã \D

)
σ2

(
Ã
)

+(1−α(T ))

σ2(C
′
2)− σ2

(
D ∩ Ã

)
σ2

(
Ã
)

 .

By assumption of Case 1, the second term of this convex combination is smaller than

the first. Since α(1) < α(T ), it follows that σ1
2(Ã∪C ′

2)−σ1
2(D) < σT

2 (Ã∪C ′
2)−σT

2 (D),

hence from (62),

σ1
2

(
Ã ∪ C ′

2

)
− σ1

2(D)

1 + σ1
2(D)− σ1

2

(
Ã ∪ C ′

2

) < −γ,
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which, given (60), implies p1
2(D) > p1

2(A∪C ′
2), that is, p

1
2(s2(q2, p−2)) > p1

2(s2(p
1
2, p−2)),

contradicting strategyproofness.

Case 2.
σ2(C′

2\D)

σ2

(
Ã
) ≥ σ2(Ã\D)

σ2(Ã)
.

Define C ′
2 := Ω̃ \ C ′

2. Because σ2 (C
′
2) < σ2

(
Ã
)
and σ2

(
Ã
)
< σ2

(
C ′

2

)
,

σ2

(
Ã \D

)
σ2

(
C ′

2

) <
σ2(C

′
2 \D)

σ2 (C ′
2)

.

Notice that this is the very same inequality as the one defining Case 1 –except that

the roles of C ′
2 and Ã have been exchanged.

For each α ∈ (0, 1) , define the probability measure τα2 over the subsets of Ω̃ by

τα2 (E) = α
σ2 (E ∩ C ′

2)

σ2 (C ′
2)

+ (1− α)
σ2

(
E ∩ C ′

2

)
σ2

(
C ′

2

) for all E ⊆ Ω̃

and the measure rα2 over the subsets of Ω by

rα2 (E) = γ 1(E ∩ {ω̃}) + (1− γ) τα2

(
E ∩ Ω̃

)
for all E ⊆ Ω.

These constructions are the same as in (59) and (60), except that C ′
2 plays the role

of Ã.

Choose an increasing sequence α(1), ..., α(T ) in (0, 1) such that (i) τ
α(t)
2 is adjacent

to τα(t+1)

2 for all t, (ii) τα(1)

2 ∈ P̃∗
−, and (iii) τα(T )

2 = σ2. Define the path (τ t2)
T
t=1 in P̃− by

τ t2 = τα(t)

2 for all t, and define the sequence (rt2)
T
t=1 in P by rt2 = rα(t)

2 for all t. Finally,

for each t, let zt2 be a maximal element of J̃ in P(τ t2) and let zT2 = z2.

Since τ 12 ∈ P̃∗
−, Sub-step 2.1 implies that there exists a partition {C ′′

1 , ..., C
′′
n} of

Ω \ (A ∪B) such that s(z12, p−2) = (B ∪ C ′′
1 , A ∪ C ′′

2 , C
′′
3 , ..., C

′′
n). In particular,

s2(z
1
2, p−2) = A ∪ C ′′

2 .

By the same inductive argument as in Case 1, we obtain

s2(z2, p−2) = A ∪ C ′′
2 .

But since both z2 and y2 are maximal elements of J̃ in P(σ2), we have s2(z2, p−2) =

s2(y2, p−2), hence (61) implies

s2(z2, p−2) = A ∪ C ′
2.
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The proof that s2(p2, p−2) = A∪C ′
2 now follows by the same argument as in Case

1, provided that we exchange the roles of Ã and C ′
2. �

The second result of this Appendix 2.C.3 describes the effect of a change in agent

1’ beliefs.

Second Contagion Corollary. Let σ1 ∈ P̃ , and suppose s is actively (2, 1)-

consensual with respect to {A,B} on PN(π) with residuals C1, ..., Cn.

(a) If {A,B} cuts P(σ1), then s is actively (2, 1)-consensual with respect to {A,B}
on PN(σ1, π−1).

(b) If {A,B} does not cut P(σ1), then s is passively (2, 1)-consensual with respect to

{A,B} on PN(σ1, π−1).

Proof. Let σ1 ∈ P̃ , and let s be actively (2, 1)-consensual with respect to {A,B} on

PN(π) with residuals C1, ..., Cn. Define P̃+, P̃−, P̃∗
+, P̃∗

− as in the proof of the previous

corollary. By assumption, π1 ∈ P̃+. The argument below is illustrated in Figure 5.

Step 1. To prove statement (a), let σ1 ∈ P̃+ and let (σt
1)

T
t=1 be a J-path in P̃+ with

σ1
1 = π1 and σT

1 = σ1. Since s is actively (2, 1)-consensual with respect to {A,B} on

PN(σ1
1, π−1), repeated application of statement (a) in the Second Contagion lemma

implies that s is actively (2, 1)-consensual with respect to {A,B} on PN(σT
1 , π−1) =

PN(σ1, π−1).

Step 2. To prove statement (b), we proceed again in two stages.

If σ1 ∈ P̃∗
−, there exists a belief σ′

1 ∈ P̃∗
+ to which σ1 is {Ã, B}-adjacent. By Step

1, s is actively (2, 1)-consensual with respect to {A,B} on PN(σ′
1, π−1). By statement

(b) in the Second Contagion lemma, it follows that s is passively (2, 1)-consensual

with respect to {A,B} on PN(σ1, π−1).

If σ1 ∈ P̃− \ P̃∗
−, let (σt

1)
T
t=1 be a J-path in P̃− with σ1

1 ∈ P̃∗
− and σT

1 = σ1.

Since s is passively (2, 1)-consensual with respect to {A,B} on PN(σ1
1, π−1), repeated

application of statement (b) in the Second Contagion lemma implies that s is passively

(2, 1)-consensual with respect to {A,B} on PN(σT
1 , π−1) = PN(σ1, π−1). �

Appendix 2.C.4: Conclusion of the Proof of the Bilateral Con-

sensus Lemma

We are finally ready to conclude the proof of the Bilateral Consensus lemma. We

must show that there exist an event Eω̃ ⊆ Ω2 such that ω̃ ∈ Eω̃, and a bilaterally

consensual Eω̃-assignment rule sω̃ such that

si(p) ∩ Eω̃ = sω̃i (p | Eω̃) for all i ∈ N (63)

and all p ∈ PN .
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Recall the definition of aω̃ in (25). Throughout Appendix 2.C.4, we will use the

shorthand notation ã = aω̃. Thus, ã(p) is the agent to whom state ω̃ is assigned when

the belief profile is p.

Step 1. There exist π0 ∈ P̃N , two distinct agents i, j ∈ N, p, q ∈ PN(π0), and

p′i ∈ P(π0
i ), q

′
j ∈ P(π0

j ) such that ã(p) ̸= ã(p′i, p−i) and ã(q) ̸= ã(q′j, q−j).

By definition of Ω2, there exist two agents, say 1, 2, profiles p, q ∈ PN , and beliefs

p′1, q
′
2 ∈ P such that

ã(p) ̸= ã(p′1, p−1) and ã(q) ̸= ã(q′2, q−2). (64)

Because P is connected, we assume without loss of generality that p1, p
′
1 are adjacent

and q2, q
′
2 are adjacent. Let {E,E ′} be the pair of events such that p1, p

′
1 are {E,E ′}-

adjacent. By the Local Bilaterality lemma and the first inequality in (64), ω̃ ∈ E∪E ′,

hence, (p1(C) − p1(D))(p′1(C) − p′1(D)) > 0 for all distinct C,D ⊆ Ω̃. This means

that there exists π0
1 ∈ P̃ such that p1 | Ω̃ ≈ p′1 | Ω̃ ≈ π0

1, that is, p1, p
′
1 ∈ P(π0

1). By

the same token, there exists π0
2 ∈ P̃ such that p2, p

′
2 ∈ P(π0

2).

To keep notation simple, suppose n = 3; the argument is easily extended to any

number of agents. Suppose first that p3 = q3. Dropping that belief from the notation,

(64) reads

ã(p1, p2) ̸= ã(p′1, p2) and ã(q1, q2) ̸= ã(q1, q
′
2).

Case 1. ã(p′1, q2) ̸= ã(p1, q2) ̸= ã(p1, q
′
2). In this case the claim is trivially true.

Case 2. (i) ã(p1, q2) = ã(p′1, q2) or (ii) ã(p1, q2) = ã(p1, q
′
2).

Assume (i); the argument is the same, up to a relabeling, if (ii) holds. Let (pt
2)

T
t=1

be a J-path between p1
2 = p2 and pT

2 = q2. From (64) and (i), there exists an integer

t such that

ã(p1,p
t
2) ̸= ã(p′1,p

t
2) and ã(p1,p

t+1
2 ) = ã(p′1,p

t+1
2 ) (65)

Using the Local Bilaterality lemma, the same argument as before shows that there

exists πt
2 such that pt

2 | Ω̃ ≈ pt+1
2 | Ω̃ ≈ πt

2, that is, pt
2,p

t+1
2 ∈ P(πt

2). Moreover,

statement (65) implies

ã(p′1,p
t
2) ̸= ã(p1,p

t
2) ̸= ã(p1,p

t+1
2 )

or

ã(p1,p
t+1
2 ) ̸= ã(p′1,p

t+1
2 ) ̸= ã(p′1,p

t
2).

In either case the claim is true.

Finally, let us drop the assumption that p3 = q3. Suppose that there exist p3 ̸= q3
such that
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ã(p1, p2, p3) ̸= ã(p′1, p2, p3) and ã(q1, q2, q3) ̸= ã(q1, q
′
2, q3).

and

ã(p1, p2, q3) = ã(p′1, p2, q3) and ã(q1, q2, p3) = ã(q1, q
′
2, p3).

Let (pt
3)

T
t=1 be a J-path between p1

3 = p3 and pT
3 = q3. There exists an integer t such

that

ã(p1, p2,p
t
3) ̸= ã(p′1, p2,p

t
3) and ã(p1, p2,p

t+1
3 ) = ã(p′1, p2,p

t+1
3 ). (66)

By the Local Bilaterality lemma again, there exists π0
3 such that pt

3 | Ω̃ ≈ pt+1
3 | Ω̃

≈ π0
3, that is, p

t
3,p

t+1
3 ∈ P(π0

3). Moreover, statement (66) implies

ã(p1, p2,p
t
3) ̸= ã(p′1, p2,p

t
3) ̸= ã(p′1, p2,p

t+1
3 )

or

ã(p1, p2,p
t+1
3 ) ̸= ã(p1, p2,p

t
3) ̸= ã(p′1, p2,p

t
3).

In either case the claim is again true.

Step 2. Step 1 has established that there is some π0 ∈ P̃N such that s varies

with the beliefs of two distinct agents, say 1 and 2, on PN(π0). By statement (b) in

Lemma 7 (and Remark 2), we may assume without loss of generality that s is actively

(2, 1)-consensual on PN(π0): there exists a partition {A,B,C1, ..., Cn} of Ω such that

ω̃ ∈ A, {A,B} cuts P(π0
1), P(π0

2), and for all p ∈ PN(π0),

s(p) =

{
(A ∪ C1, B ∪ C2, C3, ...., Cn) if p1(A) > p1(B) and p2(A) < p2(B),

(B ∪ C1, A ∪ C2, C3, ...., Cn) otherwise.

(67)

Define Eω̃ := A ∪ B and define the bilaterally consensual Eω̃-assignment rule sω̃

as follows: for all p̃ ∈ P(Eω̃)N ,

sω̃(p̃) =

{
(A,B, ∅, ..., ∅) if p̃1(A) > p̃1(B) and p̃2(A) < p̃2(B),

(B,A, ∅, ..., ∅) otherwise.

We claim that (63) holds for all p ∈ PN .

By definition, statement (63) is true for all p ∈ PN(π0). Next, fix an arbitrary

sub-profile π−12 ∈ P̃N\12.

Sub-step 2.1. By repeated application of the Independence lemma, s is actively

(2, 1)-consensual with respect to {A,B} on PN(π0
1, π

0
2, π−12), hence, (63) is true for

all p ∈ PN(π0
1, π

0
2, π−12).
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Sub-step 2.2. For any profile (π1, π2) ∈ P̃+×P̃+, combining Sub-step 2.1 with part

(a) of the First Contagion Corollary and part (a) of the Second Contagion Corollary

shows that s is actively (2, 1)-consensual with respect to {A,B} on PN(π1, π2, π−12),

hence, (63) is true for all p ∈ PN(π1, π2, π−12).

Sub-step 2.3. For any profile (π1, σ2) ∈ P̃+ × P̃−, Sub-step 2.2 and part (b) of the

First Contagion Corollary imply that there is a partition {C ′
1, ..., C

′
n} of Ω \ (A ∪B)

such that s(p) = (B∪C ′
1, A∪C ′

2, C
′
3, ..., C

′
n) for all p ∈ PN(π1, σ2, π−12). Since {A,B}

does not cut P(σ2), we have p2(A) > p2(B) for all p2 ∈ P(σ2), hence (63) is true for

all p ∈ PN(π1, σ2, π−12).

Sub-step 2.4. For any profile (σ1, π2) ∈ P̃− × P̃+, Sub-step 2.2 and part (b)

of the Second Contagion Corollary imply that s is passively (2, 1)-consensual on

PN(σ1, π2, π−12). Since {A,B} does not cut P(σ1), we have p1(A) > p1(B) for all

p1 ∈ P(σ1), hence (63) is true for all p ∈ PN(σ1, π2, π−12).

Sub-step 2.5. Consider finally a profile (σ1, σ2) ∈ P̃− × P̃−. By definition, σ2(Ã) >

σ2(B). For each α ∈ (0, 1) , consider again the measure ασ2 defined on Ω̃ by (59).

Recall that ασ2 coincides with σ2 for α = σ2(Ã) and observe that ασ2 ∈ P̃+ for any

generic α < σ2(B)

1+σ2(B)−σ2(Ã)
.

Choose an increasing sequence of numbers α(1), ..., α(T ) such that (i) α(t)σ2 is

adjacent to α(t+1)σ2 for all t = 1, ..., T − 1, (ii) α(1)σ2 ∈ P̃+, and (iii) α(T )σ2 = σ2.

Consider the J-path (σt
2)

T
t=1 in P̃− defined by σt

2 =α(t) σ2 for t = 1, ..., T.

Since σ1
2 ∈ P̃+, Sub-step 2.3 implies that there exists a partition {C ′

1, ..., C
′
n} of

Ω \ (A∪B) such that s(p) = (B ∪C ′
1, A ∪C ′

2, C
′
3, ..., C

′
n) for all p ∈ PN(σ1, σ

1
2, π−12).

The same argument as in Sub-step 2.2 of the proof of the First Contagion Corollary

then establishes that s(p) = (B∪C ′
1, A∪C ′

2, C
′
3, ..., C

′
n) for all p ∈ PN(σ1, σ

T
2 , π−12) =

PN(σ1, σ2, π−12).

Since {A,B} does not cut P(σ2), we have p2(A) > p2(B) for all p2 ∈ P(σ2), hence

(63) is true for all p ∈ PN(σ1, σ2, π−12).

Given that P = ∪πi∈P̃P(πi), the proof of the Bilateral Consensus lemma is com-

plete. �

Appendix 2.D: Proof of the Bilateral Dictatorship

Lemma and Conclusion

In this appendix we turn to the assignment of the states in Ω1 and we complete the

proof of Theorem 1. Let Ω11 be the subset of those states in Ω1 whose assignment

varies with the beliefs of agent 1. We show that these states are assigned by bilateral

dictatorship of agent 1.
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Bilateral Dictatorship Lemma. There exist a set N1 ⊆ N \ 1, a partition{
Ωj

11

}
j∈N1

of Ω11, and for each j ∈ N1 a (1, j)-dictatorial Ωj
11-assignment rule sj

such that

si(p) ∩ Ω11 = ∪j∈N1s
j
i (p | Ωj

11) (68)

for all p ∈ PN and i ∈ N.

Before diving into the proof of this lemma, an outline may be helpful. Consider

the family of all subsets of Ω11 that are assigned to agent 1 at some belief profile. We

begin by showing that s1(p) ∩ Ω11 maximizes p1 over that family whenever p1 is a

so-called Ω11-dominant belief –one in which only the probability differences between

events in Ω11 are large. We then use the Local Bilaterality lemma to extend this

observation to all belief profiles p. The next and crucial step consists in proving that

every state in Ω11 can only be allocated to a single agent other than 1. The set Ω11

can therefore be partitioned into a collection of subsets
{
Ωj

11

}
such that every state in

Ωj
11 is allocated to either 1 or j, and super-strategyproofness can be used to show that

s1(p)∩Ωj
11 maximizes p1 over the family of all subsets of Ωj

11 that are assigned to agent

1 at some belief profile. The argument is completed by appealing to non-bossiness.

Turning now to the formal argument, let Ω11 be the set of states whose assignment

varies only with the beliefs of agent 1, namely,

ω ∈ Ω11 ⇔
[
there exist p ∈ PN and p′1 ∈ P such that aω(p) ̸= aω(p

′
1, p−1)

]
and[

aω(., p−j) is constant on P for all j ̸= 1 and p−j ∈ PN\j] .
To avoid triviality, assume Ω11 ̸= ∅. Let ω̃ ∈ Ω11. We must show that there exist a

set N1 ⊆ N \ 1, a partition
{
Ωj

11

}
j∈N1

of Ω11, and for each j ∈ N1 a (1, j)-dictatorial

Ωj
11-assignment rule sj such that

si(p) ∩ Ω11 = ∪j∈N1s
j
i (p | Ωj

11) (69)

for all p ∈ PN and i ∈ N.

Define the family

A11 =
{
A ⊆ Ω11 : ∃p ∈ PN such that s1(p) ∩ Ω11 = A

}
=

{
A ⊆ Ω11 : ∃p1 ∈ P such that s1(p1, p−1) ∩ Ω11 = A for all p−1 ∈ PN\1} ,

where the first equality constitutes the definition and the second follows from the

definition of Ω11.

Let Ω11 = Ω \ Ω11. Call a belief p1 ∈ P Ω11-dominant if |p1(A)− p1(B)| >

|p1(A′)− p1(B
′)| for all distinct A,B ⊂ Ω11 and all distinct A′, B′ ⊂ Ω11 (or, equiv-

alently, |p1(ω)− p1(ω
′)| > p1(Ω11) for all distinct ω, ω′ ∈ Ω11). In such a belief,

the probability differences within Ω11 overwhelm the differences outside Ω11. To see
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that such beliefs exist, write Ω11 = {1, ...,m} and observe that any belief p1 such

that p1(1) > p1(Ω \ 1), p1(2) > p1(Ω \ 12), ..., and p1(m) > p1(Ω \ 1...m − 1), is

Ω11-dominant. Let P11 denote the set of Ω11-dominant beliefs.

Step 1. We show that

s1(p) ∩ Ω11 = argmax
A11

p1 (70)

for all p = (p1, p−1) ∈ P11 × PN\1.

The claim is obviously true if Ω11 = Ω; in what follows we assume Ω11 ̸= Ω. For

any two beliefs p1, q1 ∈ P and for any p−1 ∈ PN\1, we claim that[
p1 | Ω11 = q1 | Ω11

]
⇒
[
s1(p1, p−1) ∩ Ω11 = s1(q1, p−1) ∩ Ω11

]
. (71)

To see why this is true, fix p1, q1 ∈ P , p−1 ∈ PN\1, and note that the definitions of

Ω0 and Ω1j for j ̸= 1 trivially imply

s1(p1, p−1) ∩ [Ω0 ∪ ∪j ̸=1Ω1j] = s1(q1, p−1) ∩ [Ω0 ∪ ∪j ̸=1Ω1j] .

Moreover, by the Bilateral Consensus corollary, agent 1’s share of Ω2 is determined

by bilateral consensus, hence does not depend on her belief outside Ω2. Therefore,[
p1 | Ω11 = q1 | Ω11

]
⇒ [s1(p1, p−1) ∩ Ω2 = s1(q1, p−1) ∩ Ω2] ,

and (71) follows.

Let now p = (p1, p−1) ∈ P11 × PN\1. Since p−1 is fixed in the argument below,

we drop it from the list of arguments of s1. Suppose, contrary to the claim, that

s1(p1) ∩ Ω11 ̸= argmax
A11

p1. Choosing q1 ∈ P such that s1(q1) ∩ Ω1 = argmax
A11

p1, we

have

p1(s1(q1) ∩ Ω11) > p1(s1(p1) ∩ Ω11).

Because p1 is Ω11-dominant,

p1(s1(q1) ∩ Ω11)− p1(s1(p1) ∩ Ω11)

> p1(s1(p1) ∩ Ω11)− p1(s1(q1) ∩ Ω11).

Combining these inequalities yields p1(s1(q1)) > p1(s1(p1)), contradicting strategyproofness.

Step 2. We prove that (70) holds for all p ∈ PN .

Let p = (p1, p−1) ∈ PN and drop again p−1 from the list of arguments of s1. For

each α ∈ (0, 1) , define the probability measure αp1 over the subsets of Ω by

αp1(A) = α
p1(A ∩ Ω11)

p1(Ω11)
+ (1− α)

p1(A ∩ Ω11)

p1(Ω11)
for all A ⊆ Ω. (72)
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If α = p1(Ω11), then αp1 coincides with p1. If α is sufficiently close to 1, then αp1 is

Ω11-dominant. For every α, αp1 | Ω11 = p1 | Ω11 and αp1 | Ω11 = p1 | Ω11.

Choose an increasing sequence of numbers α(1), ..., α(T ) such that (i) α(t)p1 is

adjacent to α(t+1)p1 for all t = 1, ..., T − 1, (ii) α(1)p1 = p1, and (iii) α(T )p1 is Ω11-

dominant. Consider the J-path (pt
1)

T
t=1 in P defined by pt

1 =α(t) p1 for t = 1, ..., T.

Let At = s1(p
t
1) ∩ Ω11 for t = 1, ..., T. Suppose, contrary to the claim, that A1 ̸=

argmax
A11

p1. Since pT
1 is Ω11-dominant and pT

1 | Ω11 = p1 | Ω11, Step 1 implies AT =

argmax
A11

p1. Let t be the largest integer in {1, ..., T − 1} such that At ̸= argmax
A11

p1. Let

{Et, Et+1} be the pair of disjoint events such that pt
1,p

t+1
1 are {Et, Et+1}-adjacent

and pt
1(E

t) > pt
1(E

t+1). Because pt
1 | Ω11 = pt+1

1 | Ω11 and pt
1 | Ω11 = pt+1

1 | Ω11,

Et ∩ Ω11 ̸= ∅ and Et+1 ∩ Ω11 ̸= ∅.

By the Local Bilaterality lemma,

s1(p
t
1) \ s1(pt+1

1 ) = Et and s1(p
t+1
1 ) \ s1(pt

1) = Et+1.

It follows that (s1(p
t
1) \ s1(pt+1

1 ))∩Ω11 ̸= ∅, that is, s1(pt
1)∩Ω11 ̸= s1(p

t+1
1 )∩Ω11,

contradicting (71).

Step 3. We show that for all p, q ∈ P11 × PN\1,

[p1 | Ω11 = q1 | Ω11] ⇒ [si(p) ∩ Ω11 = si(q) ∩ Ω11 for all i ∈ N ] .

Let p, q ∈ P11 × PN\1. Since we are only concerned with the restriction of s to

Ω11, we may assume p−1 = q−1 and omit that sub-profile from the notation. Suppose

p1 | Ω11 = q1 | Ω11. By Step 1,

s1(p1) ∩ Ω11 = s1(q1) ∩ Ω11 = argmax
A11

p1. (73)

Because p1, q1 ∈ P11, (73) and super-strategyproofness imply

si(p1) ∩ Ω11 = si(q1) ∩ Ω11 for all i ∈ N.

Indeed, if, say, s2(p1)∩Ω11 ̸= s2(q1)∩Ω11, then (73) and the assumption p1 | Ω11 = q1 |
Ω11 imply that either (i) p1(s12(p1)∩Ω11) > p1(s12(q1)∩Ω11) and q1(s12(p1)∩Ω11) >

q1(s12(p1) ∩ Ω11), or (ii) both of these two strict inequalities are reversed. Because

p1,q1 are Ω11-dominant, each of (i) and (ii) violates super-strategyproofness.

Step 4. We claim that for every ω ∈ Ω11 there is a unique j ̸= 1 such that aω(P11 ×
PN\1) = {1, j} .
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From Step 3, the assignment of all states in Ω11 depends only on the conditional

beliefs of agent 1 over Ω11. We may thus drop p−1 from the notation and regard s

as a function from P(Ω11) to S(Ω11). By assumption, s is super-strategyproof (hence

also non-bossy) and it is not constant on P(Ω11).

We want to show that

sj(p1) ∩ sk(q1) = ∅ for any distinct j, k ∈ N \ 1 (74)

and any p1, q1 ∈ P(Ω11). For any Ω̃11 ⊂ Ω11, an Ω̃11-assignment rule s̃ : P(Ω̃11) →
S(Ω̃11) will be called 1-C-BD union if it is a union of constant or bilaterally 1-

dictatorial rules on Ω̃11, namely, if there is a partition
{
Ωl

11

}L
t=1

of Ω11 such that, for

all p1 ∈ P(Ω̃11),

s̃i(p1) = ∪L
l=1s

l
i(p1 | Ωl

11) for all i ∈ N, (75)

where each sl is a constant or (1, jl)-dictatorial Ωl
11-assignment rule. With a slight

abuse of terminology, we will call (the restriction to P̄ of) s̃ a 1-C-BD union over P̄
if (75) is satisfied for all p1 ⊂ P̄ ⊂ P(Ω̃11). We prove Step 4 by induction on the size

of Ω11.

Sub-step 4.1. Suppose that |Ω11| = 2 and consider a super-strategyproof assignment

rule s̃ : P(Ω11) → S(Ω11). Then there exists j ∈ N \ 1 such that s̃1j(p) = Ω11 for all

p1 ∈ P(Ω11). It follows that s̃ is a 1-C-BD union.

Indeed, suppose that Ω11 = {ω1, ω2} and let p̃1 ∈ P(Ω11). If we have either s̃1(p̃1) = ∅
or s̃1(p̃1) = Ω11, then s̃ is constant over P(Ω11) and the result of Sub-step 4.1 trivially

holds. Without loss of generality, suppose now that s̃1(p̃1) = {ω1}. Then there

exists some agent j ̸= 1 such that ω2 ∈ sj(p̃1) and obviously s̃1j(p̃1) = Ω11. By

super-strategyproofness of s̃, we have p1(s̃1j(p1)) ≥ p1(s̃1j(p̃1)) = p1(Ω11) = 1, hence,

p1(s̃1j(p̃1)) = 1, for all p ∈ P(Ω11), meaning that s̃ is (1, j)-dictatorial. Thus, in all

possible cases, s̃ is a 1-C-BD union.

Suppose now that |Ω11| = K ≥ 3 and assume by induction that every assignment

rule s̃ : P(Ω̃11) → S(Ω̃11) such that |Ω̃11| ≤ K − 1 is a 1-C-BD union.

Recalling that the range of s1(·) is E ≡ {E ⊂ Ω11 : s1(p1) = E for some p1 ∈
P(Ω11)}, strategyproofness of s obviously implies s1(p1) = argmax

E
p1 for all p1 ∈

P(Ω11).

Given any ω ∈ Ω11, define the set of ω-lexicographic beliefs L(ω) := {p1 ∈
P(Ω11) : p1(ω) > p1(Ω11 \ ω)}. For any q1 ∈ P(Ω11) ∪ P(Ω11 \ ω), let Lq1(ω) :=

{p1 ∈ L(ω) : p1 | (Ω11 \ ω) = q1 | (Ω11 \ ω)} and, for any α ∈ (1
2
, 1), define qω,α1 ∈

Lq1(ω) as follows: for all ω′ ∈ Ω11,

qω,α1 (ω′) :=

{
α if ω′ = ω,

q1(ω′)
1−α

if ω′ ̸= ω.
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Sub-step 4.2. Consider q1 ∈ P(Ω11) s.t. ω ∈ s1(q1); and suppose that p1 ∈ Lq1(ω).

Then we have s(p1) = s(q1).

The proof of Sub-step 4.2 is rather straightforward, and left to the reader. It follows

from non-bossiness of s and the fact that p1(ω) > 1/2 for all p1 ∈ Lq1(ω).

Sub-step 4.3. Fix ω̄ ∈ Ω11 and α ∈ (1
2
, 1). Define the mapping αs̃

−ω̄ : P(Ω11\ ω̄) →
S(Ω11 \ ω̄) as follows: (i) αs̃

−ω̄
1 (q1) = s1(q

ω̄,α
1 ) \ ω̄; (ii) αs̃

−ω̄
i (q1) = si(q

ω̄,α
1 ), ∀i ̸= 1.

Then αs̃
−ω̄ is an (Ω11 \ ω̄)-assignment rule and a 1-C-BD union.

To prove Sub-step 4.3, note first that ω̄ ∈ s1(p1) for all p1 ∈ L(ω̄). Indeed, since

the range E of s1(·) is a proper covering of Ω11, there exists p̄1 ∈ P(Ω̃11) such that

ω̄ ∈ s1(p̄1). Therefore, if ω̄ /∈ s1(p1) for some p1 ∈ L(ω̄), we would have p1(s1(p̄1)) ≥
p1(ω̄) >

1
2
> p1(s1(p1)), contradicting strategyproofness.

Building on this result, observe from (i)-(ii) above that the mapping αs̃
−ω̄ satisfies

the feasibility constraint. Indeed, for any q1 ∈ P(Ω11 \ ω̄)1, since qω̄,α1 ∈ L(ω̄), we get

from the feasibility of s that

∪i∈N αs̃
−ω̄
i (q1) =

= αs̃
−ω̄
1 (q1)︷ ︸︸ ︷

(s1(q
ω̄,α
1 )︸ ︷︷ ︸

ω̄∈

\ω̄)∪[∪i∈N\i si(q
ω̄,α
1 )︸ ︷︷ ︸

ω̄ /∈

] = Ω11 \ ω̄.

Thus, the mapping αs̃
−ω̄ is a well-defined (Ω11 \ ω̄)-assignment rule. Moreover, it is

super-strategyproof (because s is), and since |Ω11 \ ω̄| = K − 1 < K, our induction

hypothesis implies that αs̃
−ω̄ is a 1-C-BD union.

Sub-step 4.4. Fix ω̄ ∈ Ω11. The mapping s̄ω̄ : L(ω̄) → S(Ω11 \ ω̄), defined as the

restriction of s to L(ω̄), is a 1-C-BD union over L(ω̄). As a consequence, (74) must

hold for all p1, q1 ∈ L(ω̄).

This follows from the combination of Sub-step 4.2 and Sub-step 4.3. Indeed, fix any

α > 1/2; and note from Sub-step 4.2 that, for all q1 ∈ L(ω̄), we have s̄ω̄(q1) = s(q1) =

s(qω̄,α1 ) because qω̄,α1 ∈ Lq1(ω̄). That is to say,

s̄ω̄1 (q1) = ω̄ ∪ αs̃
−ω̄
1 (q1 | (Ω11 \ ω̄)) and s̄ω̄i (q1) = αs̃

−ω̄
i (q1 | (Ω11 \ ω̄)),∀i ̸= 1. (76)

Recalling from Sub-step 4.3 that αs̃ is a 1-C-BD union, there exists a partition

{Ω1
11, . . . ,Ω

L
11} of Ω11 \ ω̄ and L Ωl-assignment rules s1, . . . , sL such that αs̃

−ω̄
i (q1 |

(Ω11 \ ω̄)) = ∪L
l=1s

l
i(q1 | Ωl

11) and each sl is constant or (1, jl)-dictatorial for some

jl ̸= 1. Substituting this in (76) thus gives: for all q1 ∈ L(ω̄) and i ∈ N ,

s̄ω̄i (q1) =

{
∪L

l=1s
l
i(q1 | Ωl

11) if i ̸= 1,

ω̄ ∪
(
∪L

l=1s
l
i(q1 | Ωl

11)
)

if i = 1.
(77)
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Observe from (77) that s̄ω̄, the restriction of s to L(ω̄) is expressed as the union of

the L + 1 sub-rules s0, s1, . . . , sL, where s0 is the constant Ω0-assignment rule which

always assigns Ω0
11 := {ω̄} to agent 1. This concludes the proof of Sub-step 4.4.

We are now ready to proceed with the proof of Step 4. Since P(Ω11) is connected,

there is a J-path (pt
1)

T
t=1 in P(Ω11) between any two beliefs p1, q1 ∈ P(Ω11). If the

length T−1 of this path is equal to 1, then p1, q1 are adjacent and the Local Bilaterality

lemma implies sj(p1) ∩ sk(q1) = ∅ for any distinct j, k ∈ N \ 1. Next, proceeding by

induction, we assume that (74) is true whenever p1, q1 are connected by some J-path

of length T ′− 1 < T − 1 (with T ≥ 3) and we prove that (74) also holds for any p1, q1
that are connected by some J-path of length T − 1.

By contradiction, suppose that there exist ω∗ ∈ Ω11 and p′′1, p
′′′
1 ∈ P(Ω11) such

that, say, ω∗ ∈ s2(p
′′
1)∩s3(p

′′′
1 ) and p′′1, p

′′′
1 are connected by some J-path q1 = (qt

1)
T
t=1.

Combining the Local Bilaterality lemma with our induction hypothesis that (74) holds

for all p1, q1 that are connected by some J-path of length T ′ ≤ T − 1, we obtain

w∗ ∈ s1(q
T−1
1 ) \ s1(qT

1 ) =s3(q
T
1 ) \ s3(qT−1

1 ) ̸= ∅ (78)

si(q
T−1
1 ) =si(q

T
1 ), ∀i ̸= 1, 3 (79)

s3(q
T−1
1 )∩si(p′′1) = ∅, ∀i ̸= 1, 3. (80)

To see why (78) holds, note that having w∗ ∈ sk(q
t
1) for some k ̸= 1, 2 and t ≤ T − 1

would imply a violation of our induction hypothesis on the J-path {q1
1, . . . ,q

t
1}, which

is of length t − 1 < T − 1. Statement (80) holds for the same reason. Finally,

(79) follows from (78) and the Local Bilaterality lemma. In addition, observe that

combining (79) and (80) gives

si(p
′′′
1 ) ∩ s3(p

′′
1) = si(q

T
1 ) ∩ s3(p

′′
1) = si(q

T−1
1 ) ∩ s3(p

′′
1) = ∅, ∀i ̸= 1, 3. (81)

Sub-step 4.5. There exist ω3 ∈ s1(p
′′′
1 ) ∩ s3(p

′′
1) and ω2 ∈ s1(p

′′
1) ∩ s3(p

′′′
1 ).

To prove Sub-step 4.5, first note that, together, ω∗ ∈ s2(p
′′
1) ∩ s3(p

′′′
1 ) and the super-

strategyproofness of s imply that p′′′1 (sN\3(p
′′′
1 )) > p′′′1 (sN\3(p

′′
1)). Thus, there exists

ω̂ ∈ Ω11 such that

ω̂ ∈ sN\3(p
′′′
1 ) \ sN\3(p

′′
1) = sN\3(p

′′′
1 ) ∩ s3(p

′′
1). (82)

It thus suffices now to remark that sN\3(p
′′′
1 )∩ s3(p

′′
1) = s1(p

′′′
1 )∩ s3(p

′′
1). Indeed, given

that we have sN\3(p
′′′
1 ) := ∪i ̸=3si(p

′′′
1 ), we can write

sN\3(p
′′′
1 ) ∩ s3(p

′′
1) = [s1(p

′′′
1 ) ∩ s3(p

′′
1)] ∪ [∪i ̸=1,3 (si(p

′′′
1 ) ∩ s3(p

′′
1))︸ ︷︷ ︸

=∅ by (81)

] = s1(p
′′′
1 ) ∩ s3(p

′′′
1 ).
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Thus, ω̂ ∈ sN\3(p
′′′
1 )∩ sN\3(p

′′
1) = s1(p

′′′
1 )∩ s3(p

′′′
1 ). A symmetric argument shows that

there exists ω2 ∈ s1(p
′′
1) ∩ s3(p

′′′
1 ); and this ends the proof of Sub-step 4.4.

Recall from what precedes that ω∗ ∈ s2(p
′′
1) ∩ s3(p

′′′
1 ), ω3 ∈ s1(p

′′′
1 ) ∩ s3(p

′′
1) and

ω2 ∈ s1(p
′′
1) ∩ s3(p

′′′
1 ). The states ω∗, ω2, ω3 are thus necessarily (pairwise) distinct.

We show a few additional sub-steps below.

Fix any q′′1 ∈ Lp′′1 (ω2) (see Figure 6) and q′′′1 ∈ Lp′′′1 (ω3), and define tq′′′1 ∈ L(ω3) by
tq′′′1 (ω3) = q′′′1 (ω2),

tq′′′1 (ω2) = q′′′1 (ω3) and
tq′′′1 (ω) = q′′′1 (ω),∀ω ̸= ω2, ω3. In addition,

call πω2
ω3

the probability measure over Ω11 defined by:4

πω2
ω3
(ω2) = πω2

ω3
(ω2) = 1/2; and πω2

ω3
(ω) = 0 for all ω ̸= ω2, ω3.

Define the two sequences {qm1 }m≥m̄q and {q̄m1 }m≥m̄q̄ as follows: for any ω ∈ Ω11,

qm1 (ω) =
1

m
q′′′1 + (1− 1

m
)πω2

ω3
; (83)

q̄m1 (ω) =
1

m
tq′′′1 + (1− 1

m
)πω2

ω3
.

Figure 6 gives an illustration of the construction of the beliefs qm1 , q̄
m starting from

p′′1 ∈ L(ω2). It is important to remark that, by definition, we have qm1 ∈ L(ω2) and

q̄m1 ∈ L(ω3).
5

Sub-step 4.6. There exist m̃ ∈ IN (with m̃ ≥ m̄q, m̄q̄) and A, Ā ∈ S(Ω11) such

that

[m ≥ m̃] ⇒ [s(qm1 ) = A and s(q̄m1 ) = Ā].

The proof of Sub-step 4.6 is similar to that of Lemma 3-(i), and therefore left to the

reader.

Sub-step 4.7. For any m ≥ m̃, we have ω∗ ∈ s2(q
m
1 ); and it follows that A ̸= Ā.

We showed in Sub-step 4.4 that s̄ω2 , the restriction of s to L(ω2), can be written as

s̄ω̄2
i (q1) =

{
∪L

l=1s
l
i(q1 | Ωl

11) if i ̸= 1,

ω2 ∪
(
∪L

l=1s
l
i(q1 | Ωl

11)
)

if i = 1,
(84)

where each sl is constant or (1, jl)-dictatorial for some jl ̸= 1. Call Ωw∗
11 the unique

event in the partition { Ω0
11︸︷︷︸

={ω2}

,Ω1
11, . . . ,Ω

L
11} of Ω11 such that ω∗ ∈ Ωw∗

11 . Since q′′1 ∈

4Obviously, πω2
ω3

is not an injective probability measure (i.e., πω2
ω3

/∈ P(Ω11)); but this does not

affect the validity of our upcoming argument —which is based on the study of sequences of injective

probability measures that converge to πω2
ω3
.

5There may exist only a finite number of integers m such that qm1 , q̄m1 are not injective; and this

issue is taken care of by conveniently starting the sequence at a rank m̄q (or m̄q̄) that is higher than

any such integer.
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Lp′′1 (ω2) ⊂ L(ω2), it follows from Sub-step 4.2 that ω∗ ∈ s2(p
′′
1) = s2(q

′′
1) = s̄ω2

2 (q′′1);

and we may then conclude from (84) that jω
∗
= 2 and sω

∗
is (1,2)-dictatorial over

Ωω∗
11 . We get in the same way that jω3 = 3 and sω3 is (1,3)-dictatorial over Ωω3

11 . It thus

follows that ω3, ω2 /∈ Ωω∗
11 –obviously, ω2 /∈ Ωω∗

11 since Ω0
11 = {ω2}. Using (84) and the

fact that sω
∗
is (1,2)-dictatorial, we may assert that ω∗ ∈ s2(q1) for any q1 ∈ L(ω2)

such that q1 | Ωω∗
11 = q′′1 | Ωω∗

11 . One can then see that ω∗ ∈ s2(q
m
1 ) by combining

(83) and ω2, ω3 /∈ Ωω∗
11 to deduce that we indeed have: qm1 | Ωω∗

11 = q′′1 | Ωω∗
11 , for all

m ≥ m̄q.

We conclude the proof of Sub-step 4.7 by noting that we necessarily have A ̸= Ā.

Indeed, since m̃ ≥ m̄q, we have ω∗ ∈ A2 = s2(q
m̃
1 ). Assuming that A = Ā would

thus give ω∗ ∈ A2 = Ā2 = s2(q̄
m̃). But this would contradict the fact that s̄ω3 is a

1-C-BD union over L(ω3) (established in Sub-step 4.4), which requires (74) to hold

for q̄m̃, q′′′1 ∈ L(ω3) —recall that ω∗ ∈ s3(q
′′′
1 ).

Sub-step 4.8. There exist disjoint subsets E, Ē ⊂ Ω \ {ω2, ω3, ω
∗} such that

A1 \ Ā1 = ω2 ∪ E = Ā3 \A3,

Ā1 \A1 = ω3 ∪ Ē = A3 \ Ā3,

Ai = Āi for all i ̸= 1, 3.

We start the proof of Sub-step 4.8 by noting that: ∃m̂ ≥ m̃ such that, for any {F, F̄} ∈
H and any m ≥ m̂,

[
w2 /∈ F or ω3 /∈ F̄

]
⇒
[
(qm1 (F )− qm1 (F̄ ))(q̄m1 (F )− q̄m1 (F̄ )) > 0

]
.

This implication holds by construction since lim
m→∞

qm1 = lim
m→∞

q̄m1 = πω2
ω3

and πω2
ω3
(ω2) =

πω2
ω3
(ω3) = 1/2. In words: when m is large enough, the segment [qm1 , q̄

m
1 ] cuts only

hyperplanes {F, F̄} ∈ H such that ω2 ∈ F and ω3 ∈ F̄ (see Figure 7), and qm1 , q̄
m
1 are

on the same side of all other hyperplanes.

Second, recall from (83) that qm1 | (Ω11 \ {ω2, ω3}) = q̄m1 | (Ω11 \ {ω2, ω3}) = q′′1 |
(Ω11 \ {ω2, ω3}), for any m ≥ m̂. It hence follows that the set of hyperplanes of the

form {ω2 ∪ E, ω3 ∪ Ē} is totally ordered along the segment [qm̂1 , q̄
m̂
1 ]. Calling T the

number of such hyperplanes, we may thus write

{{F, F̄} ∈ H | F = ω2∪E, F̄ = ω3∪Ē} = {{ω2∪E1, ω3∪Ē1}, . . . , {ω2∪ET , ω3∪ĒT , }},

where Et [t = 1, . . . , T ] is the tth hyperplane cut on the way from qm̂1 to q̄m̂1 . Using

this notation, we may then consider a J-path {pt
1}T+1

t=1 satisfying the properties: (i)

p1
1 = qm̂1 , p

T+1
1 = q̄m̂1 ; (ii) pt

1 and pt+1
1 are {ω2 ∪ Et, ω3 ∪ Ēt}-adjacent for any t =

1, . . . , T .

We conclude the proof of Sub-step 4.8 by showing that there exists a unique

t∗ ∈ {1, T} such that: (a) s(pt
1) = s(qm̂1 ),∀t ∈ {1, . . . , t∗} and (b) s(pt

1) = s(q̄m̂1 ),∀t ∈
{t∗ + 1, . . . , T + 1}. First, note that the assignment may change only once along

the J-path p. Indeed, if s(pt∗
1 ) ̸= s(pt∗+1

1 ) then we get from the Local Bilaterality
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lemma that s1(p
t∗
1 ) \ s1(pt∗+1

1 ) = ω2 ∪Et∗ ; and (given that ω2 /∈ s1(p
t∗+1
1 )), the Local

Bilaterality lemma requires that s(pt
1) = s(q̄m̂1 ),∀t ∈ {t∗ + 1, . . . , T + 1}.

Second, recall from Sub-step 4.7 (and m̂ ≥ m̃) that s(qm̂1 ) = A ̸= Ā = s(q̄m̂1 ).

Hence, there must indeed exist a unique t∗ ∈ {1, . . . , T} such that s(pt∗
1 ) ̸= s(pt∗+1

1 ).

The Local Bilaterality lemma, applied to the adjacent beliefs pt∗
1 ,p

t∗+1
1 , then gives

the desired result: A1 \ Ā1 = ω2 ∪ Et∗ = Ā3 \ A3; Ā1 \ A1 = ω3 ∪ Ēt∗ = A3 \ Ā3;

Ai = Āi,∀i ̸= 1, 3. Recalling from Sub-step 4.7 that ω∗ ∈ s2(q
m̂
1 ) = A2, we obtain

that Et∗ , Ēt∗ ⊂ Ω \ {ω2, ω3, ω
∗}.

We are finally ready to clinch the proof of Step 4. We have shown in Sub-step

4.8 that ω∗ ∈ s2(q
m̂
1 ) = A2 = Ā2 = s2(

∈L(ω3)︷︸︸︷
q̄m̂1 ). But this is a contradiction given that

ω∗ ∈ s3(

∈L(ω3)︷︸︸︷
q′′′1 ). Indeed, this violation of (74) contradicts the fact that (the restriction

to L(ω3) of) s is a 1-C-BD union over L(ω3) —which was established in Sub-step

4.4. Thus, it never holds that ω∗ ∈ sj(p
′′
1) ∩ sk(p

′′′
1 ) for any ω∗, p′′1, p

′′′
1 and distinct

j, k ̸= 1. Given that s is not constant on P(Ω11), for any ω ∈ Ω11, we thus have,

aω(P(Ω11)) = {1, j} for some j ̸= 1.

Step 5. We show that for every ω ∈ Ω11 there is a unique j ̸= 1 such that aω(PN) =

{1, j} .

Let ω ∈ Ω11. By Step 4, there is a unique j ̸= 1 such that aω(P11×PN\1) = {1, j} .
We claim that aω(PN) = {1, j} . Suppose, by contradiction, that there exists some

k ̸= 1, j and some p ∈ PN such that ω ∈ sk(p). Drop p−1 from the notation. Consider

an Ω11-dominant belief p∗1 ∈ P11 such that p∗1 | Ω11 = p1 | Ω11 and p∗1 | Ω11 = p1 | Ω11.

Such a belief can be constructed by taking α close to 1 in (72). Since aω(P11 ×
PN\1) = {1, j}, we have ω /∈ sk(p

∗
1). By Step 2, s1(p1) ∩ Ω11 = s1(p

∗
1) ∩ Ω11. By (71),

s1(p1) = s1(p
∗
1). By non-bossiness, s(p1) = s(p∗1), contradicting ω ∈ sk(p1) \ sk(p

∗
1)

and completing Step 5.

For every j ̸= 1, define Ωj
11 =

{
ω ∈ Ω11 : aω(PN) = {1, j}

}
. Let N1 = {j ∈ N \1 :

Ωj
11 ̸= ∅}. By definition,

{
Ωj

11 : j ∈ N1

}
is a partition of Ω11. For each j ∈ N1, let

Aj
11 =

{
Aj ⊆ Ωj

11 : ∃p ∈ PN such that s1(p) ∩ Ωj
11 = Aj

}
.

Step 6. We show that A11 is a product family. Namely, for any collection of events

{Aj : j ∈ N1} , [
Aj ∈ Aj

11 for all j ∈ N1

]
⇒
[
∪j∈N1A

j ∈ A11

]
.
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Suppose Aj ∈ Aj
11 for all j ∈ N1 and write N1 = {2, ..., n1} . Call a belief p1

lexicographically (Ω2
11, ...,Ω

n1
11)-dominant if |p1(A)− p1(B)| > |p1(A′)− p1(B

′)| for all
distinct A,B ⊂ Ωj

11, all A
′, B′ ⊂ Ω \ (∪j

k=1Ω
k
11), and all j = 2, ..., n − 1. Consider a

lexicographically (Ω2
11, ...,Ω

n1
11)-dominant belief p1 such that

argmax
Aj

11

p1 = Aj

for all j = 2, ..., n− 1. Fix p−1 ∈ PN\1 and drop it from the notation.

Strategyproofness implies

s1(p1) ∩ Ω2
11 = A2.

This is because there is some q1 such that s1(q1)∩Ω2
11 = A2, argmax

A2
11

p1 = A2, and p1

is Ω2
11-dominant.

Next, proceed inductively. Suppose we have shown that s1(p1) ∩ Ωj
11 = Aj for

j = 2, ..., k − 1. We claim that

s1(p1) ∩ Ωk
11 = Ak. (85)

Since Ak ∈ Ak
11, there is some q1 such that s1(q1)∩Ωk

11 = Ak. If s1(p1)∩Ωk
11 = Bk ̸= Ak,

then

p1(s{1,...,k−1}(p1) ∩ (∪k
j=2Ω

j
11)) = p1(∪k−1

j=2Ω
j
11 ∪Bk)

< p1(∪k−1
j=2Ω

j
11 ∪ Ak)

= p1(s{1,...,k−1}(q1) ∩ (∪k
j=2Ω

j
11)),

contradicting super-strategyproofness and proving (85).

We conclude that s1(p1)∩Ωj
11 = Aj for all j ∈ N1, which implies that s1(p1)∩Ω11 =

∪j∈N1A
j, hence ∪j∈N1A

j ∈ A11.

Step 7. Step 6 ensures that argmax
A11

p1 = ∪j∈N1 argmax
Aj

11

p1 for all p1 ∈ P . Combining

this with Step 2,

s1(p) ∩ Ω11 = ∪j∈N1 argmax
Aj

11

p1

for all p ∈ PN . Defining for each j ∈ N1 the (1, j)-dictatorial Ωj
11-assignment rule sj

by

sji (p̃) =


argmax

Aj
11

p̃1 if i = 1,

Ωj
11 \ argmax

Aj
11

p̃1 if i = j,

∅ if i ̸= 1, j
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for all p̃ ∈ P(Ωj
11)

N , statement (69) holds for p ∈ PN and i ∈ N.

To complete the proof, it only remains to check that Aj
11 is a proper covering of

Ωj
11 for every j ∈ N1.

Fix j ∈ N1. To check that ∪Aj∈Aj
11
Aj = Ωj

11, fix ω ∈ Ωj
11. Since, by definition

of Ωj
11, aω(PN) = {1, j} , there is some p ∈ PN such that ω ∈ s1(p), hence some

Aj ∈ Aj
11 such that ω ∈ Aj.

To check that Aj \ Bj ̸= ∅ for all distinct Aj, Bj ∈ Aj
11, suppose on the contrary

that Aj ⊂ Bj. By Step 6, this implies that there exist A,B ∈ A11 such that A ⊂ B.

But by definition of A11 and Step 1, there is some p such that A = argmax
A11

p1,

contradicting the fact that p1(A) < p1(B).

To check that ∩Aj∈Aj
11
Aj = ∅, suppose on the contrary that ω ∈ ∩Aj∈Aj

11
Aj. Then

ω ∈ s1(p) for all p ∈ PN , contradicting the fact that aω(PN) = {1, j} . �
We have stated the Bilateral Dictatorship lemma for agent 1, but a corresponding

lemma obviously holds for every agent. It now follows from these Bilateral Dictator-

ship lemmas, the Bilateral Consensus corollary, and the definition of Ω0, that s is a

locally bilateral top selection. Together with the Top Selection lemma, this completes

the proof of Theorem 1.

Appendix 2.E: Proofs for the Constrained Model

Appendix 2.E.1: Proof of the Constrained-Top Selection lemma

The respective statements and proofs of Lemmas 1 to 3 carry over to the constrained

model without the slightest change. As for Lemma 4, its statement and proof must

be adjusted as explained below.

Lemma 4*. Tops and Tops Only

For all p ∈ PN and v, v′ ∈ VN
p , we have:

[τω(vi) = τω(v
′
i),∀i ∈ N,∀ω ∈ Ω] ⇒ [φ(v, p) = φ(v′, p) ∈ ×ω∈Ω{τω(v1), . . . , τω(vn)}] .

Proof. Given any v ∈ VN
p , write Ωv := {ω ∈ Ω : τω(vi) = τω(vj) for all i, j ∈ N}, that

is, Ωv is the collection of states where the agents unanimously agree on the constrained

tops. For all ω, ω′ ∈ Ω, write ω >v ω′ if and only if vi(τω(vi)) ≥ vi(τω′(vi)) for all

i ∈ N with a strict inequality for at least one agent i. In such a case, we say that ω

dominates ω′ (at v). Finally, let

Ω∗
v := {ω ∈ Ωv : ω >v ω

′ for all ω′ ∈ Ω \ Ωv}, (86)

µ(v) := |Ω∗
v|, (87)

β(v) := |{τω(v1) : ω ∈ Ω∗
v}|. (88)
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In words, µ(v) is the number of states of nature (i) where all agents have the same

constrained top and (ii) that dominate every state where the agents’ constrained tops

are not all identical. Note that 0 ≤ µ(v) ≤ K = |Ω| for any v ∈ VN
p ; and µ(v) = K

at any valuation profile where all agents have the same ranking of the outcomes in

X. The number β(v) stands for the number of distinct constrained tops associated

with the respective states in Ω∗
v.

For any i ∈ N , vi ∈ V , and x ∈ X, denote by Ovi(x) ∈ {1, . . . , |X|} the rank

of outcome x when all outcomes in X are ranked in decreasing order of valuations

(with i’s top having rank 1). Observe that Ovi is injective (because vi is). For all

z ∈ {1, . . . , |X|}, we will therefore write O−1
vi
(z) to refer to the unique outcome x ∈ X

such that Ovi(x) = z. We formally state a few direct consequences of the definitions

given in (86)-(88).

Observation 1. For all v ∈ VN
p and all ω ∈ Ω:

[ω ∈ Ω∗
v] ⇔ [1 ≤ Ovi(τω(vi)) ≤ β(v) for all i ∈ N ]; (89)

[Ovi(τω(vi)) > β(v) for some i ∈ N ] ⇒ [Xω ∩ {τω(v1) : ω ∈ Ω∗
v} = ∅]. (90)

Observation 2. The set of (p-compatible) valuation profiles obtains as the disjoint

union VN
p =

K∪
k=0

VN
p,k, where VN

p,k := {v ∈ VN
p : µ(v) = k} for all k = 0, 1, . . . , K.

The proof of Lemma 4* proceeds by backward induction over µ(v). First remark

that, for all v ∈ VN
p,K , the statement of Lemma 4* holds by unanimity: all agents

agree on the best feasible act f ∗
v = (τω(v1))ω∈Ω, which must then be chosen regardless

of the valuations of the outcomes that are not constrained tops.

Next, consider v ∈ VN
p,k for some fixed k ∈ {0, . . . , K−1} and assume by induction

that, for any v, w ∈ VN
p,k+1 such that τω(vi) = τω(wi) for all ω ∈ Ω and i ∈ N , we have

φ(v) = φ(w) ∈ ×ω∈Ω{τω(v1), . . . , τω(vn)}.
For all v ∈ VN

p,k, let a
v
1 := O−1

v1
(β(v)+1). That is, av1 is agent 1’s next best outcome

after all those that are unanimous constrained tops in the states belonging to Ω∗
v.

Remark from (89)-(90) and k < K that for all v ∈ VN
p,k,

τω(v1) = av1 for some ω ∈ Ω,

Ovi(a
v
1) ≥ β(v) + 1 for all i ∈ N.

For all v ∈ VN
p,k, define ri(v) = |{x ∈ X : β(v)+1 > Ovi(x) > Ovi(a

v
1)}| and r(v) =∑

i∈N
ri(v). By definition, we have r(v) = 0 if the outcome av1 is ranked (β(v) + 1)th or

(β(v) + 2)th by every agent i at profile v. Letting r̄ = max{r(v) : v ∈ VN
p,k}, define

VN
p,k(ρ) = {v ∈ VN

p,k| r(v) ≤ ρ}
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and note that we have the disjoint union VN
p,k =

r̄∪
ρ=0

VN
p,k(ρ).

The argument can now be completed by induction over r(v). From this point

on, one simply needs to repeat the procedures described in Step 2.1 and Step 2.2

of the proof of Lemma 4 (see Appendix 2.A) in order to conclude that, for any

v, w ∈ VN
p,k such that τω(vi) = τω(wi) for all ω ∈ Ω and i ∈ N , we have φ(v) = φ(w) ∈

×ω∈Ω{τω(v1), . . . , τω(vn)}. �

Conclusion of the proof of the Constrained-Top Selection lemma

Given a collection of feasible acts Y1, ..., Yn ∈ ×ω∈ΩXω, Lemma 4* allows us to abuse

notation and write φ(Y1, ..., Yn) to refer to the act φ(v, p) chosen at any profile v ∈
VN
p such that τω(vi) = Yi(ω) for all ω ∈ Ω and i ∈ N . Call a feasible act A ∈

×ω∈ΩXω minimal if there exists no B ∈ ×ω∈ΩXω such that B(Ω) ⊂ A(Ω). Denote by

M(×ω∈ΩXω) the set of minimal acts.6

We are now ready to construct s(p), the assignment of states to agents at the belief

profile p. Given that p is fixed, we write s instead of s(p). For all A,B ∈ M(×ω∈ΩXω)

such that {ω ∈ Ω : A(ω) = B(ω)} = ∅, let us define

sAB
1 := {ω ∈ Ω : φ(A,B, ..., B;ω) = A(ω)} .

In words, sAB
1 is the set of states of nature ω where the social act yields outcome

A(ω) when agent 1’s favorite (feasible) act is A and every other agent’s is B, which

disagrees with A in every state. Define sAB
i in a similar way for every agent i ∈ N

and write sAB = (sAB
1 , . . . , sAB

n ). One can then generalize the five steps described

in the conclusion of the proof of the Top Selection lemma as follows. We omit the

proofs, which are easy adaptations of their counterparts.

Step 1. For all A,B,C,D ∈ M(×ω∈ΩXω) such that A(ω), C(ω) ̸= B(ω), D(ω) for

all ω ∈ Ω, we have (i) sAB = sCB and (ii) sAB = sAD.

This means that sAB is in fact independent of the choice of A and B. Define then

s = sAB for all A,B ∈ M(×ω∈ΩXω) s.t. {ω ∈ Ω : A(ω) = B(ω)} = ∅.

Step 2.
∪
ω∈Ω

φC(ω)(Y1, . . . , Yj−1, C, Yj+1, . . . , Yn) = sj for all j ∈ N and all Y1, . . . , Yj−1, C,

Yj+1, . . . , Yn ∈ ×ω∈ΩXω such that Y1(ω), . . . , Yj−1(ω), Yj+1(ω), . . . , Yn(ω) ̸= C(ω) for

all ω ∈ Ω.

Step 3. si ∩ sj = ∅ for all distinct i, j ∈ N .

Step 4. φx(Y1, . . . , Yn) =
∪
i∈N

{ω ∈ si : Yi(ω) = x} for all x ∈ X and all Y1, . . . , Yn ∈

×ω∈ΩXω.

6Note in particular that a minimal act must be constant if Xω = X for all ω ∈ Ω.
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Step 5. s ∈ S.

The steps above prove that s is an assignment rule generating φ. It is obvious

that any other assignment rule generates a SCF different from φ, and the proof of

the Constrained-Top Selection lemma is complete. �

Appendix 2.E.2: Proof of Theorem 2

The proof of the “if” statement in Theorem 2 is again just a matter of checking. To

prove the “only if” statement, we first extend the Super-strategyproofness lemma.

The definition of a super-strategyproof assignment rule is unchanged.

Constrained Super-strategyproofness Lemma. The assignment rule s asso-

ciated with a strategyproof and unanimous SCF φ : DN → ×ω∈ΩXω is super-

strategyproof.

Proof. Let φ: DN → ×ω∈ΩXω be a strategyproof and unanimous SCF and let s be

the assignment rule associated with it. Suppose by way of contradiction that there

exist i ∈ M ⊂ N , p ∈ PN and p̂i ∈ P such that

pi(sM(p̂i, p−i)) > pi(sM(p)). (91)

In the remainder of this argument, since p−i is fixed, we write pi(sM(pi)) and pi(sM(p̂i))

instead of pi(sM(p)) and pi(sM(p̂i, p−i)).

Case 1. There exists an act f ∈ ×ω∈ΩXω such that Xω \ f(Ω) ̸= ∅ for all ω ∈ Ω.

Pick such an act f. Fix 0 < ε < 1/2. Consider a valuation profile vε ∈ VN where

all agents in M share a common valuation function vεM , all agents in share a common

valuation function vεN\M , and these two valuation functions are such that

vεM(x) > 1− ε for all x ∈ f(Ω), (92)

vεM(x) < ε for all x ∈ X \ f(Ω), (93)

vεN\M(x) = 1− vM(x) for all x ∈ X. (94)

Let g = φ(vε, pi) and ĝ = φ(vε, p̂i).

Since f(ω) ∈ Xω for all ω ∈ Ω, (92) guarantees that vεi (τω(v
ε
M)) ≥ vεM(f(ω)) > 1−ε

for all ω ∈ Ω. Hence,

Epi
vεi
(ĝ) > pi(sM(p̂i))(1− ε).

On the other hand, since Xω \ f(Ω) ̸= ∅ for all ω ∈ Ω, (92), (93), and (94) imply

that vεi (τω(v
ε
N\M)) < ε for all ω ∈ sN\M(pi). Hence,

Epi
vεi
(g) ≤ pi(sM(pi))1 + pi(sN\M(pi))ε.
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Therefore

Epi
vεi
(ĝ)− Epi

vεi
(g) > [pi(sM(p̂i))− pi(sM(pi))]− ε

[
pi(sM(p̂i)) + pi(sN\M(pi))

]
and (91) implies that Epi

vεi
(ĝ)− Epi

vεi
(g) > 0 when ε is small enough, contradicting the

assumption that φ is strategyproof.

Case 2. For every act f ∈ ×ω∈Ω, there exists some ω ∈ Ω such that Xω \ f(Ω) = ∅.

Let f0 ∈ ×ω∈Ω be a minimal feasible act (in the sense that there is no f ∈ ×ω∈ΩXω

such that f(Ω) ⊂ f0(Ω)). By the assumption defining Case 2, there is a nonempty

set of states Ω∗ ⊆ Ω such that Xω ⊆ f0(Ω) for all ω ∈ Ω∗ and Xω * f0(Ω) for all

ω ∈ Ω \ Ω∗.

Write Ω∗ = {ω1, ..., ωT ∗}. For each t = 1, ..., T ∗, choose two distinct outcomes

at, bt ∈ Xωt and define

Ωt := {ω ∈ Ω : Xω ∩
t−1∪
t′=1

{at′ , bt′} = ∅ and Xω ∩ {at, bt} ̸= ∅}.

Note in particular that (i) Ω1 = {ω ∈ Ω : {a1, b1} ∩ Xω ̸= ∅} ̸= ∅; (ii) some

Ωt may be empty (for t = 2, . . . , T ∗). Let then T ∈ {1, . . . , T ∗} be the number

of nonempty subsets Ωt (for t = 1, . . . , T ∗) and, without loss of generality, label

as Ω1, . . . ,ΩT these T nonempty subsets of Ω. Furthermore, define the (possibly

empty) set Ω̃ := Ω \ ∪T
t=1Ωt. By construction,

{
Ω1, ...,ΩT , Ω̃

}
is a partition of Ω and

{at, bt} ∩ {at′ , bt′} = ∅ for all distinct t, t′ ∈ {1, ..., T}. Moreover, by definition of Ω∗,

we have
T∪

t′=1

{at′ , bt′} ⊆ f0(Ω). (95)

For any event E ⊆ Ω and any subset of agents K ⊆ N, we will use the shorthand

notation pEiK := pi(sK(pi) ∩ E) and p̂EiK := pi(sK(p̂i) ∩ E). Let us rewrite (91) as

follows:

(p̂Ω1
iM − pΩ1

iM)︸ ︷︷ ︸
=:δ1

+ . . .+ (p̂ΩT
iM − pΩT

iM )︸ ︷︷ ︸
=:δT

+(p̂Ω̃iM − pΩ̃iM)︸ ︷︷ ︸
=:δ̃

> 0. (96)

Therefore, we have δt > 0 (for some t = 1, . . . , T ) or δ̃ > 0.
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Case 2.1. δt > 0 for some t = 1, . . . , T .

We claim first that

X \
t∪

t′=1

{at′ , bt′} ̸= ∅. (97)

To see why (97) holds, suppose on the contrary that X ⊆ ∪t
t′=1{at′ , bt′}. Then, for

all ω ∈ Ω, we have Xω ⊆ X ⊆ ∪t
t′=1{at′ , bt′} ⊆ f0(Ω), where the last inclusion follows

from (95). For each ω ∈ Ω, pick some xω ∈ Xω \ a1 ⊆ f0(Ω). Define the feasible

act f ∈ ×ω∈ΩXω by f(ω) = xω if f0(ω) = a1 and f(ω) = f0(ω) otherwise. Then

f(Ω) = f0(Ω) \ a1, which contradicts the minimality of f0.

Let now Ω0
t := {ω ∈ Ωt : {at, bt} * Xω} and Ω1

t := {ω ∈ Ωt : {at, bt} ⊆ Xω}.
Define δ0t = (p̂

Ω0
t

iM − p
Ω0

t
iM) and δ1t = (p̂

Ω1
t

iM − p
Ω1

t
iM). Since δt = δ0t + δ1t > 0, we have δ0t > 0

or δ1t > 0.

Subcase 2.1.1. δ0t > 0.

Fix 0 < ε < 1/3. Consider a valuation profile vε ∈ VN where all j ∈ M share a

common valuation function vεM , all j ∈ N \ M share a common valuation function

vεN\M , and

vεM(x) = vεN\M(x) > 1− ε for all x ∈
t−1∪
t′=1

{at′ , bt′}, (98)

vεM(x) ∈ (1− 2ε, 1− ε) if x ∈ {at, bt}, (99)

vεN\M(x) = 1− vεM(x) if x ∈ {at, bt}, (100)

vεM(x) = vεN\M(x) < ε for all x ∈ X \
t∪

t′=1

{at′ , bt′}. (101)

Such a profile exists because (97) guarantees the existence of an outcome to which

vεM and vεN\M may assign valuation zero.

Let g = φ(vε, pi) and ĝ = φ(vε, p̂i). From (98) we have vεi (ĝ(ω)) > 1 − ε for

all ω ∈ ∪t−1
t′=1Ωt′ . This is because φ is the constrained-top selection generated by

s and, at the profile vε and in any state ω ∈ ∪t−1
t′=1Ωt′ , agent i attaches a value of

at least 1 − ε to the constrained top of every agent j —since this top belongs to

∪t−1
t′=1{at′ , bt′}. Next, for all ω ∈ Ω \∪t

t′=1Ωt′ , (101) guarantees that v
ε
i (g(ω)) < ε since

Xω ∩ ∪t
t′=1{at′ , bt′} = ∅. Finally, (99) and (100) imply that (i) vεi (ĝ(ω)) > 1 − 2ε

for all ω ∈ (Ω0
t ∩ sM(p̂i)) ∪ Ω1

t and vεi (ĝ(ω)) > ε for all ω ∈ Ω0
t ∩ sN\M(p̂i), and

(ii) vεi (g(ω)) < 1 − ε for all ω ∈ (Ω0
t ∩ sM(pi)) ∪ Ω1

t and vεi (g(ω)) < 2ε for all

97



ω ∈ Ω0
t ∩ sN\M(pi). Combining the above observations thus gives

Epi
vεi
(ĝ) >

t−1∑
t′=1

pi(Ωt′)(1− ε) + p̂
Ω0

t
iM(1− 2ε) + p̂

Ω0
t

iN\Mε+ pi(Ω
1
t )(1− 2ε) + (1−

t∑
t′=1

pi(Ωt′))0,

Epi
vεi
(g) <

t−1∑
t′=1

pi(Ωt′)1 + p
Ω0

t
iM(1− ε) + p

Ω0
t

iN\M2ε+ pi(Ω
1
t )(1− ε) + (1−

t∑
t′=1

pi(Ωt′))ε.

Taking the difference, one thus gets

Epi
vεi
(ĝ)− Epi

vεi
(g) >

δ0t>0︷ ︸︸ ︷
(p̂

Ω0
t

iM − p
Ω0

t
iM)−εθ(pi, p̂i) > 0

for ε small enough, which is a contradiction to the strategyproofness of φ.

Subcase 2.1.2. δ1t > 0.

In this case, consider a valuation profile vε ∈ VN where all j ∈ M share a common

valuation function vεM , all j ∈ N \M share a common valuation function vεN\M , and

vεM = vεN\M(x) > 1− ε for all x ∈
t−1∪
t′=1

{at′ , bt′},

vεM(at) = 1− ε and vεM(bt) ∈ (ε, 2ε),

vεN\M(x) = 1− vεM(x) if x ∈ {at, bt} ,

vεM = vεN\M(x) < ε for all x ∈ X \
t∪

t′=1

{at′ , bt′}.

Using observations similar to those of Subcase 2.1.1, it is not difficult to verify that

Epi
vεi
(φ(vε, p̂i))− Epi

vεi
(φ(vε, pi)) >

δ1t>0︷ ︸︸ ︷
(p̂

Ω1
t

iM − p
Ω1

t
iM)−εθ(pi, p̂i) > 0

for ε small enough, which contradicts the strategyproofness of φ.

Case 2.2. δ̃ > 0.

Recall from the definition of the partition
{
Ω1, . . . ,ΩT , Ω̃

}
that Xω∩

T∪
t′=1

{at′ , bt′} = ∅

and Xω * f0(Ω) for all ω ∈ Ω̃. For every ω ∈ Ω̃, select some f(ω) ∈ Xω \ f0(Ω) and
consider a valuation profile vε ∈ VN where all j ∈ M share a common valuation
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function vεM , all j ∈ N \M share a common valuation function vεN\M , and

vεM(x) = vεN\M(x) > 1− ε for all x ∈
T∪

t′=1

{at′ , bt′},

vεM(x) ∈ (1− 2ε, 1− ε) for all x ∈ f0(Ω̃),

vεM(x) ∈ (ε, 2ε) for all x ∈ f(Ω̃),

vεN\M(x) = 1− vεM(x) for all x ∈ f0(Ω̃) ∪ f(Ω̃);

vεM(x) = vεN\M(x) < ε for all x /∈
T∪

t′=1

{at′ , bt′} ∪ f0(Ω̃) ∪ f(Ω̃).

Once again, one checks that

Epi
vεi
(φ(vε, p̂i))− Epi

vεi
(φ(vε, pi)) >

δ̃>0︷ ︸︸ ︷
(p̂Ω̃iM − pΩ̃iM)−εθ(pi, p̂i) > 0

for ε small enough, which violates the strategyproofness of φ. �

The last part of the proof of Theorem 1 consisted in establishing the fact that

every super-strategyproof assignment rule is locally bilateral. Note that this fact is

“model-free” as the definition of an assignment rule is unaffected by the presence

of a Cartesian constraint over the set of acts the social planner can choose from.

The combination of the Constrained-Top Selection lemma, the Constrained Super-

strategyproofness lemma, and the above fact yields that every strategyproof and

unanimous SCF φ : DN → ×ω∈ΩXω is a constrained-top selection whose associated

assignment rule is locally bilateral.

To complete the proof of Theorem 2, it remains to be shown that this locally

bilateral assignment rule must be iso-constrained. This is the purpose of our last

lemma.

Constraint Lemma. Let s be a locally bilateral assignment rule with canonical par-

tition
{
Ω1, ...,ΩT

}
and let φ : DN → ×ω∈ΩXω be the constrained-top selection gener-

ated by s. If φ is strategyproof, t ∈ {1, ..., T} , and st is not a constant Ωt-assignment

rule, then Xω = Xω′ for all ω, ω′ ∈ Ωt.

Proof. Let s be a locally bilateral assignment rule with canonical partition
{
Ω1, ...,ΩT

}
and let φ: DN → ×ω∈ΩXω be the constrained-top selection generated by s. Suppose

φ is strategyproof, fix t, say, t = 1, and suppose s1 is not a constant Ω1-assignment

rule.

Case 1. s1 is a bilaterally dictatorial Ω1-assignment rule, say, a (1, 2)-dictatorial one.

LetA1 = {A1
1, ..., A

1
M} be the proper covering of Ω1 associated with s1.We suppose

that Xω ̸= Xω′ for some ω, ω′ ∈ Ω1 and show that φ is manipulable.
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For all x ∈ X, let Ω1
+(x) = {ω ∈ Ω1 : x ∈ Xω} and Ω1

−(x) = {ω ∈ Ω1 : x /∈ Xω}.
Let x̄ ∈ X be such that Ω1

+(x̄) ̸= ∅ and Ω1
−(x̄) ̸= ∅.

Step 1. We show that there exist m,m′ ∈ {1, ...,M} such that

(A1
m △ A1

m′) ∩ Ω1
+(x̄) ̸= ∅ and (A1

m △ A1
m′) ∩ Ω1

−(x̄) ̸= ∅,

where △ is the symmetric difference operator.

This is obvious if M ≤ 2, so assume M ≥ 3. Contrary to the claim, suppose that

for all m,m′ ∈ {1, ...,M} , we have

A1
m △ A1

m′ ⊆ Ω1
+(x̄) or A

1
m △ A1

m′ ⊆ Ω1
−(x̄). (102)

Without loss of generality, assume

A1
1 △ A1

2 ⊆ Ω1
+(x̄). (103)

We begin by showing that

A1
1 ∩ A1

2 ⊆ Ω1
+(x̄). (104)

Suppose, on the contrary, that there exists ω ∈ A1
1 ∩ A1

2 ∩ Ω1
−(x̄). Since by definition

of a proper covering ∩M
m=1A

1
m = ∅, there exists m∗ ∈ {3, ...,M} such that ω /∈ A1

m∗ .

Since ω ∈ A1
m △ A1

m∗ ∩ Ω1
−(x̄) for m = 1, 2, (102) implies

A1
m △ A1

m∗ ⊆ Ω1
−(x̄) for m = 1, 2. (105)

Inclusions (103) and (105) imply A1
1 △ A1

2 = ∅, contradicting the fact that A1 is a

proper covering of Ω1.

Next, we show that

Ω1 \ (A1
1 ∪ A1

2) ⊆ Ω1
+(x̄). (106)

Suppose, contrary to the claim, that there exists ω ∈ Ω1
−(x̄) \ (A1

1 ∪ A1
2). Then there

exists m∗ ∈ {3, ...,M} such that ω ∈ Am∗ . From (102), A1
1△A1

m∗ ⊆ Ω1
−(x̄). But (103)

and (104) imply A1
1 ⊆ Ω1

+(x̄). Therefore A1
1 \ A1

m∗ = ∅, contradicting the fact that

A1 is a proper covering.

From (103), (104), and (106) we conclude Ω1 = Ω1
+(x̄), contradicting the fact that

Ω1
−(x̄) ̸= ∅.

Step 2. Given Step 1, we may assume without loss of generality that

(A1
1 △ A1

2) ∩ Ω1
+(x̄) ̸= ∅ and (A1

1 △ A1
2) ∩ Ω1

−(x̄) ̸= ∅.

Because A1
1 \ A1

2 and A1
2 \ A1

1 are nonempty, there is also no loss in further assuming

that

(A1
1 \ A1

2) ∩ Ω1
+(x̄) ̸= ∅ and (A1

2 \ A1
1) ∩ Ω1

−(x̄) ̸= ∅.
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Let thus ω1 ∈ (A1
1 \ A1

2) ∩ Ω1
+(x̄) and ω2 ∈ (A1

2 \ A1
1) ∩ Ω1

−(x̄).

Choose two distinct outcomes x1, x2 ∈ Xω2 . Since ω2 ∈ Ω1
−(x̄), we have x̄ /∈ Xω2 ,

so that x̄, x1, x2 are all distinct. Since ω1 ∈ Ω1
+(x̄), we have x̄ ∈ Xω1 .

Fix ε > 0 and consider a profile (v, p) ∈ DN such that

p1(Ω \ {ω1, ω2}) = ε,

argmax
A1

p1 = A1
1,

v1(x̄) = 1 > v1(x1) > 0 = v1(x2),

v2(x̄) = 1 > v2(x2) > v2(x) for all x ∈ X \ {x̄, x2} .

By reporting truthfully (v1, p1), agent 1 gets an expected utility of at most

p1(ω1)v1(τω1(v1)) + p1(ω2)v1(τω2(v2)) + p1(Ω \ {ω1, ω2})
= p1(ω1)v1(x̄) + p1(ω2)v1(x2) + ε

= p1(ω1) + ε.

Consider a belief q1 such that (v1, q1) ∈ D and argmaxA1 q1 = A1
2. By reporting

(v1, q1), agent 1 gets an expected utility of at least

p1(ω1)v1(τω1(v2)) + p1(ω2)v1(τω2(v1))

= p1(ω1)v1(x̄) + p1(ω2)v1(x1)

= p1(ω1) + p1(ω2)v1(x1).

Thus φ is manipulable at (v, p) when ε < p1(ω2)v1(x1).

Case 2. s1 is a bilaterally consensual Ω1-assignment rule, say, a (1, 2)-consensual

Ω1-assignment rule with default A1 ⊂ Ω1. Again, we suppose that Xω ̸= Xω′ for some

ω, ω′ ∈ Ω1 and show that φ is manipulable. Let x̄ ∈ X be such that Ω1
+(x̄) ̸= ∅ and

Ω1
−(x̄) ̸= ∅.

Case 2.1. A1 ∩ Ω1
+(x̄) ̸= ∅ and (Ω1 \ A1) ∩ Ω1

−(x̄) ≠ ∅.

Let ω1 ∈ A1 ∩ Ω1
+(x̄) and ω2 ∈ (Ω1 \A1) ∩ Ω1

−(x̄). Choose x1, x2 ∈ Xω1 , fix ε > 0,

and let (v, p) ∈ DN be a profile such that

p1(Ω \ {ω1, ω2}) = ε,

p1(A
1) > p1(Ω

1 \ A1),

p2(A
1) > p2(Ω

1 \ A1),

v1(x̄) = 1 > v1(x1) > 0 = v1(x2),

v2(x̄) = 1 > v2(x2) > v2(x) for all x ∈ X \ {x̄, x2} .
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Let q1 be a belief such that (v1, q1) ∈ D and q1(A
1) < q1(Ω

1 \ A1) and check that

agent 1 gains from reporting (v1, q1) instead of (v1, p1) when ε < p1(ω2)v1(x1).

Case 2.2. A1 ∩ Ω1
−(x̄) ̸= ∅ and (Ω1 \ A1) ∩ Ω1

+(x̄) ≠ ∅.

Let ω1 ∈ A1 ∩ Ω1
−(x̄) and ω2 ∈ (Ω1 \A1) ∩ Ω1

+(x̄). Choose x1, x2 ∈ Xω2 , fix ε > 0,

and let (v, p) ∈ DN be a profile where

p1(Ω \ {ω1, ω2}) = ε,

p1(A
1) < p1(Ω

1 \ A1),

and p2, v1, v2 satisfy the same conditions as in Case 2.1. Check that if q1 is a belief

such that (v1, q1) ∈ D and q1(A
1) > q1(Ω

1 \ A1), then agent 1 gains from reporting

(v1, q1) instead of (v1, p1) when ε < p1(ω2)v1(x1). �

Appendix 2.F: Figures

Figure 2: The binary relation J̃
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Figure 3: Illustration of the proof of the first contagion lemma

Figure 4: Illustration of the proof of the first contagion corollary
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Figure 5: Illustration of the proof of the second contagion corollary

Figure 6: Construction of qm1 and q̄m1 .
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For m large, [qm1 , q̄
m
1 ] cuts only hyperplanes of the form {ω2 ∪ E, ω3 ∪ Ē}.

Note in this example that [q′′1 , q
′′′
1 ] — but not [qm1 , q̄

m
1 ]– cuts {ω3, ω

∗} ∈ H.

Figure 7: Hyperplanes cut by [qm1 , q̄
m
1 ].

105


