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1 Proof of Proposition 3

Proposition 3 follows from a series of lemmas. Lemma 1 proves vertical efficiency. Lemma 2

proves that any equilibrium is horizontally inefficient whenever xMAX has a unique monopoly

price. Lemma 3 proves that this condition is true for generic x0. The existence of an equilibrium

is separately proved later in this Appendix.

Lemma 1. Under the no-commitment regime, any equilibrium is vertically efficient.

Proof. Take any disclosure rule (M∗, φ∗) that leads to a vertically inefficient allocation given the

seller’s best response and the consumer’s optimal purchase decision with the tie-breaking. (Here-

after, I omit the caveat “given the tie-breaking rule.”) Then, φ∗ draws a posterior x ∈ ∆(V K) at

which trade fails to occur with positive probability.1 Without loss of generality, suppose that given

x, the seller recommends product 1 at price vn. Consider the following disclosure rule φ∗∗: On top

of the information that φ∗ discloses, φ∗∗ also discloses u1 ≥ vn or u1 < vn whenever posterior x is

realized.
∗Bank of Canada (email: shotaichihashi@gmail.com).

1Because |V K | < +∞, without loss of generality, I can assume |M∗| < +∞. Then, each message is realized
with a positive probability from the ex-ante perspective. This implies that there is an ex-ante positive probability event
such that some posterior x ∈ ∆(V K) is realized and trade fails to occur.
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I show that φ∗∗ yields a weakly greater consumer surplus and a strictly greater total surplus than

φ∗ does. Let x+ and x− ∈ ∆(V K) denote the posterior beliefs of the seller when the consumer

discloses u1 ≥ vn and u1 < vn (following x), respectively. Note that for some α ∈ (0, 1),

x = αx+ + (1− α)x−. First, consider the consumer’s payoff and total surplus conditional on x−.

The consumer obtains a greater payoff under φ∗∗ than under φ∗ because consumer surplus is zero

under φ∗. Total surplus is strictly greater under φ∗∗ because trade occurs with a positive probability

under φ∗∗ but occurs with zero probability under φ∗. Second, I show that the seller continues to

recommend product 1 at price vn given x+. Suppose to the contrary that the seller strictly prefers

to recommend product m at price v` where (m, `) 6= (1, n). Let x+
1 ∈ ∆(V ) and x+

m ∈ ∆(V )

denote the marginal distributions of u1 and um given x+, respectively. Because the seller strictly

prefers recommending product m at price v` to recommending product 1 at price vn, we get

v`

N∑
j=`

x+
m(vj) > vn

N∑
j=n

x+
1 (vj),

which implies

v`

N∑
j=`

[
αx+

m(vj) + (1− α)x−m(vj)
]
≥ v`

N∑
j=`

αx+
m(vj)

>vn

N∑
j=n

αx+
1 (vj) = vn

N∑
j=n

[
αx+

1 (vj) + (1− α)x−1 (vj)
]
.

The last equality follows from x−1 (v) = 0 for any v ≥ vn. The resulting inequality

v`

N∑
j=`

[
αx+

m(vj) + (1− α)x−m(vj)
]
> vn

N∑
j=n

[
αx+

1 (vj) + (1− α)x−1 (vj)
]

contradicts the fact that the seller prefers to recommend product 1 at price vn at x. Thus, the seller

continues to recommend the same product at the same price between x and x+. Overall, disclosing

u1 ≥ vn or u1 < vn at x leads to a weakly greater consumer surplus and a strictly greater total

surplus.

To show that any equilibrium is vertically efficient, take any equilibrium disclosure rule φ∗.

(Later, I prove the existence of an equilibrium.) Suppose to the contrary that φ∗ is vertically ineffi-
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cient. Then, I can apply the modification described above to create φ∗∗. φ∗∗ gives the consumer a

weakly greater payoff than φ∗. Because φ∗ is optimal for the consumer, he is indifferent between

φ∗ and φ∗∗. However, φ∗∗ yields a strictly greater total surplus, which implies that the seller strictly

prefers φ∗∗. This contradicts the tie breaking rule, which requires that φ∗ maximizes the seller’s

payoffs among all consumer-optimal disclosure rules. Therefore, φ∗ is vertically efficient.

Lemma 2. Suppose that the prior distribution x0 satisfies Assumption 1 and there is a unique

monopoly price given value distribution FMAX , which is the CDF of max(u1, . . . , uK) where each

uk is an IID draw from x0. Then, any equilibrium is horizontally inefficient.

Proof. I construct a disclosure rule that maximizes the consumer’s ex ante expected payoff among

E ⊂ D, where E is the set of all disclosure rules that lead to horizontally efficient outcomes given

the optimal behavior of each player. Take any disclosure rule φ ∈ E . Since the recommended

product belongs to arg max`∈K u` with (ex ante) probability 1, the consumer’s value of the recom-

mended product (unconditional on which product is recommended) is drawn according to FMAX .

This implies that under φ, the seller can obtain a revenue of at least R := maxp∈V p[1−FMAX(p)]

by setting a price of arg maxp∈V p[1−FMAX(p)] for all realized posteriors. This implies that if φ∗

achieves a vertically as well as horizontally efficient allocation and φ∗ gives the seller a payoff of

R, then φ∗ maximizes the consumer’s payoff among E .

Consider disclosure rule φE ∈ E such that for any realized u ∈ V K , φE draws message

k ∈ arg max` u` with probability 1
| arg max` u`|

. Two remarks are in order. First, uk is distributed

according to FMAX conditional on message k. Second, the seller prefers to recommend product

k after observing message k no matter what additional information she learns, because she can

maximize the probability of trade by recommending product k.

Next, I create φ∗ ∈ E by modifying φE as follows: For each k ∈ K, conditional on that

message k is realized under φE , φ∗ discloses additional information about uk according to a con-

sumer surplus maximizing segmentation (CSMS) characterized by Bergemann, Brooks and Morris

(2015).2 In our context, the information disclosed according to (any) CSMS ensures that the trade

occurs with probability 1 whereas the seller’s resulting revenue is R. Thus, under φ∗, the seller
2In single product monopoly pricing, a consumer surplus maximizing segmentation is equivalent to a disclosure

rule that has the following property. First, at each realized posterior, the seller is willing to set the price equal to the
minimum of its support, which implies that the trade occurs with probability 1. Second, at each posterior, the seller is
indifferent between charging the minimum of each posterior and charging the monopoly price for the prior.
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recommends the highest value product and the trade occurs with probability 1, whereas the seller’s

revenue is R. Thus, φ∗ maximizes the consumer’s payoff among E .

Hereafter, I focus on a particular φ∗ where the additional information about the highest value

product is disclosed according to a CSMS constructed by the greedy algorithm in Bergemann,

Brooks and Morris (2015). This has the following implication. Let
{
xkS1

, . . . , xkSL

}
denote the

set of posteriors induced by φ∗ conditional on φE drawing message k. Without loss of generality,

regard xkS1
, . . . , xkSL

as messages drawn by φ∗. Let us also regard each xkS`
as a marginal distribution

of uk instead of a joint distribution of (u1, . . . , uK). The greedy algorithm guarantees that each xkS`

has support S` ⊂ V , S1 ⊂ S2 ⊂ · · · ⊂ SL = V , and the set of all optimal prices against xkS`
is S`.

Moreover, it holds that S1 = {v∗} with v∗ > v1. To see this, note that |S1| ≥ 2 implies that two

prices in S1 are optimal against all posteriors in
{
xkS1

, . . . , xkSL

}
, which in turn implies that these

prices are optimal under FMAX because the expected revenue is linear in the value distribution.

This contradicts the assumption that there is a unique optimal price under FMAX . Thus, |S1| = 1,

which implies that S1 = {v∗}. Following the proof of Proposition 2, we can show that Assumption

1 implies v∗ > v1.

I modify φ∗ to create a horizontally inefficient φI that yields a strictly greater consumer surplus

than φ∗. From now on, I treat each xkS`
as a joint distribution of (u1, . . . , uK). To simplify exposi-

tion, I use the following terminologies. First, I regard a distribution x ∈ ∆(V K) as consisting of

a unit mass of consumers, where mass x(u) of consumers have value vector u. Second, I call any

set of (a continuum of) consumers a “segment.”

To construct φI , I make three observations. First, a positive mass of consumers in x1
S1

have

value v∗ for product 1 and the lowest possible value v1 < v∗ for product 2. Call this mass of

consumers “segment (v∗, v1).” Second, a positive mass of consumers in x1
S1

have value v∗ for both

products 1 and 2. Call these consumers “segment (v∗, v∗).”

First, I take a small but positive (say ε1) mass of segment (v∗, v1) from x1
S1

and pool this seg-

ment with x2
SL

.3 Let x̂2
SL

denote the posterior created by this pooling. For a sufficiently small

ε1 > 0, at x̂2
SL

, the seller recommends product 2, and she strictly prefers to set price v1 for product

2. The reason is as follows. Under the original posterior x2
SL

, it is optimal for the seller to recom-

3In terms of a disclosure rule, this means that I modify φ∗ so that it draws message x2SL
with probability ε1 > 0

not only following message 2 but also when φ∗ draws segment (v∗, v1) in x1S1
.
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mend product 2 at any price in V because SL = V . After the modification, x̂2
SL

contains a strictly

greater mass of consumers who have value v1 for product 2 (i.e., segment (v∗, v1)). Thus, the seller

strictly prefers to set price v1 for product 2. Moreover, for a small ε1 > 0, the seller does not strictly

prefer to recommend other products. Indeed, if the seller recommended product k 6= 2 at x2
SL

, then

she would strictly prefer to set price v1. Thus, for a small ε1 > 0, the seller’s pricing incentive does

not change under x̂2
SL

. This implies that the optimal revenue from recommending other products

(at the new posterior x̂2
SL

) is v1, which is no greater than the revenue from recommending product

2. Importantly, this modification does not change the consumer’s payoff, because consumers in

segment (v∗, v1) obtain zero payoffs under x1
S1

. Let φH denote the resulting disclosure rule.

Finally, I modify φH by pooling a small but positive (say ε2) mass of segment (v∗, v∗) in x1
S1

with x̂2
SL

. Let x̃2
SL

denote the posterior following this pooling. If ε2 is small, the seller continues

to recommend product 2 at price v1 under x̃2
SL

, because she strictly prefers to set price v1 for

product 2 at x̂2
SL

. This modification strictly increases the consumer’s payoff relative to φ∗, because

consumers in segment (v∗, v∗) obtain a positive payoff v∗− v1 while they obtain zero payoff under

φ∗. Let φI denote the resulting disclosure rule.

φI gives the consumer a strictly greater expected payoff than φ∗ but leads to an inefficient

recommendation at x̃2
SL

. This implies that any equilibrium is horizontally inefficient, because for

any disclosure rule leading to horizontal efficiency, the consumer can find strictly more profitable

disclosure rules that lead to horizontal inefficiency.

Lemma 3. Fix a finite support V ⊂ R+ with |V | ≥ 2. There is a Lebesgue measure-zero set

X0 ⊂ ∆(V ) such that, for any x0 ∈ ∆(V ) \X0, the induced FMAX has a unique monopoly price

(i.e., FMAX satisfies the condition of Lemma 2).

Proof. First, let D2 denote the set of all distributions x ∈ ∆(V ) such that there are two or more

optimal prices. I show that D2 has measure zero. Let Dv,v′ denote the set of all distributions

in ∆(V ) such that both prices v and v′ are optimal. Then, it holds that Dv,v′ ⊂ {x ∈ ∆(V ) :

v
∑

vn≥v,vn∈V x(vn) = v′
∑

vn≥v′,vn∈V x(vn)}. The right hand side is a subset of an N − 1-

dimensional hyperplane, which has measure zero in RN , which, in turn, implies that Dv,v′ has

measure zero. Thus, D2 = ∪(v,v′)∈V 2Dv,v′ has measure zero.

Consider a function ϕ that maps any distribution x = (x1, . . . , xN) ∈ ∆(V ) to the distribution
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of max(u1, . . . , uK), where each uk is an IID draw from x. ϕ is written as follows.

ϕ(x) = K ·



1
K
xK1

x2

∑K−1
`=0 xK−1−`

1 x`1 · 1
`+1

(
K−1
`

)
x3

∑K−1
`=0 (x1 + x2)K−1−`x`3 · 1

`+1

(
K−1
`

)
...

xN
∑K−1

`=0 (x1 + · · ·+ xN−1)K−1−`x`N · 1
`+1

(
K−1
`

)


.

ϕ is infinitely differentiable and its Jacobian matrix Jϕ is a triangular matrix with the diagonal

elements being positive as long as xn > 0 for each n = 1, . . . , N . Thus, Jϕ(x) has full rank if x is

not in the measure-zero set

{(x1, . . . , xN) ∈ ∆(V ) : ∃n, xn = 0} .

By Theorem 1 of Ponomarev (1987), ϕ : RN → RN has the “0-property”: The inverse image of

any measure-zero set by ϕ has measure zero. In particular, X0 := ϕ−1(D2) has measure zero.

Clearly, X0 has the desired property.

2 Proof of Proposition 4

Proposition 4 relies on the following lemma.

Lemma 4. Under the commitment regime, as K → +∞, the seller’s equilibrium payoff converges

to maxV and the consumer’s equilibrium payoff converges to 0. Under the no-commitment regime,

if Assumption 2 holds, then there is u > 0 such that the consumer’s equilibrium payoff is at least u

for any K.

Proof. By the same argument as Proposition 2, the seller under the commitment regime recom-

mends the most valuable product with probability 1. Let F denote the CDF of the value for each

product (induced by x0). Take any ε > 0. Suppose that the seller sets p = maxV − ε/2 for each
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product up front. As K → +∞, the probability 1 − F (p)K that the consumer buys the recom-

mended product goes to 1. Thus, there is K such that the seller’s revenue is at least maxV − ε if

K ≥ K. This implies that the consumer’s payoff is at most ε for any such K. This completes the

proof of the first part.

To see that the consumer can always guarantee some positive payoff u under the no-commitment

regime, observe that the consumer can choose to disclose no information and obtain a payoff of∫ maxV

p(x0)
v − p(x0)dF (v) > 0, which is positive and independent of K.

Proof of Proposition 4. The result under the commitment regime follows from the previous result,

as total surplus is weakly greater than the seller’s revenue.

I show that total surplus under the no-commitment regime is uniformly bounded away from

maxV . Suppose to the contrary that for any n ∈ N, there exists Kn such that when the seller sells

Kn products, some equilibrium under the no-commitment regime achieves total surplus of at least

maxV − 1
n

. Then, I can take a subsequence (Kn`
)` such that Kn`

< Kn`+1
for any ` ∈ N. Next, I

show that for any p < maxV and ε < 1, there exists `∗ ∈ N such that for any ` ≥ `∗,

(1) P`(the consumer’s value for the recommended product ≥ p) ≥ ε.

where P`(·) is the probability measure on the consumer’s value for the recommended product in

equilibrium of Kn`
-product model. To show inequality (1), suppose to the contrary that there is

some (p, ε) and a subsequence (K ′m)m of (Kn`
)` such that the inequality is violated. Then, given

any K ′m in this subsequence, the total surplus is at most (1 − ε)p + εmaxV < maxV . This

contradicts the assumption that the equilibrium total surplus converges to maxV as K ′m → +∞.

Now, I use inequality (1) to show that the seller’s equilibrium revenue converges to maxV

along (Kn`
)`. Take any r < maxV . If the seller sets price r+maxV

2
, then for a sufficiently large

`, the consumer accepts the price with probability greater than 2r
r+maxV

< 1. That is, for a large `,

the seller’s expected revenue exceeds r. Since this holds for any r < maxV , the seller’s revenue

converges to maxV as ` → +∞. This contradicts the observation that the consumer’s payoff is

bounded from below by a positive number independent of K, as in Lemma 4. �
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3 Existence of Equilibrium under the No-commitment Regime

I prove the existence of an equilibrium under the no-commitment regime. Recall that for the

commitment regime, I have proved the existence by explicitly constructing an equilibrium.

Restricted Model

Claim 1. In the restricted model, there exists an equilibrium under the no-commitment regime.

The result follows from two lemmas.

Lemma 5. Given a disclosure level δ, the lowest optimal price p(δ) in equation (1) exists and is

lower semicontinuous in δ.4

Proof. Define G(p) := δFMAX(p) + (1 − δ)FMIN(p). Recall that I define a CDF as a left-

continuous function. Take any p∗ and cwithG(p∗) > c. For some δ > 0 and for all p ∈ (p∗−δ, p∗],

G(p) > c. Since G(p) is increasing in p, for all p ∈ (p∗ − δ, p∗ + δ), G(p) > c. Thus, G is lower

semicontinuous. Then, 1 − G is upper semicontinuous, and thus p[1 − G(p)], which is a product

of two nonnegative upper semicontinuous functions, is upper semicontinuous in p.5 This implies

that P (δ) := arg maxp∈V p[1 − G(p)] is nonempty and compact (Theorem 2.43 of Aliprantis and

Border (2006)). Thus, p(δ) := minP (δ) exists.

Next, suppose to the contrary that p(δ) is not lower semicontinuous at some δ∗. Then, there is

ε > 0 such that we can construct a sequence δn → δ∗ so that p(δn) < p(δ∗)−ε for all n.6 Then, we

can find a convergent subsequence of (p(δn))n because p(δn) ∈ V and V is compact. Without loss

of generality, assume that (p(δn))n itself converges, so that there exists p∗ := limn p(δn) < p(δ∗).

Define Y (p, δ) as

Y (p, δ) := p
[
1− δFMAX(p)− (1− δ)FMIN(p)

]
−p(δ∗)

[
1− δFMAX(p(δ∗))− (1− δ)FMIN(p(δ∗))

]
.

4Depending on the context, I use one of the following two equivalent conditions as a definition of lower semicon-
tinuity. Given a (first countable) topological space X and f : X → R, f is lower semicontinuous if for each c ∈ R
the set {x ∈ X : f(x) ≤ c} is closed (or equivalently, the set {x ∈ X : f(x) > c} is open). Equivalently, f is lower
semicontinuous if xn → x implies lim infn f(xn) ≥ f(x). For the equivalence of the two conditions, see Lemma
2.42 of Aliprantis and Border (2006). f is upper semicontinuous if −f is lower semicontinuous.

5To see this, if f : X → R and g : X → R are nonnegative and upper semicontinuous, for any xn → x, we obtain
lim supn f(xn)g(xn) ≤ lim supn f(xn) lim supn g(xn) ≤ f(x)g(x). Thus, fg is upper semicontinuous.

6Formally, if p(·) is not lower semicontinuous, then for some c the set S := {δ : p(δ) > c} is not open. This
implies that we can take some δ∗ ∈ S such that there is δn → δ∗ with p(δn) ≤ c < p(δ∗). Define ε := p(δ∗)−c

2 , then
p(δn) < p(δ∗)− ε.
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Because p(δn) is optimal given δn, it holds Y (p(δn), δn) ≥ 0. Also, Y (p, δ) is upper semicon-

tinuous in (p, δ).7 This implies that Y ∗ := {(p, δ) : Y (p, δ) ≥ 0} is closed. Thus, (p∗, δ∗) =

limn(p(δn), δn) ∈ Y ∗, or equivalently,

p∗
[
1− δ∗FMAX(p∗)− (1− δ∗)FMIN(p∗)

]
≥p(δ∗)

[
1− δ∗FMAX(p(δ∗))− (1− δ∗)FMIN(p(δ∗))

]
,

which implies p∗ ∈ P (δ∗). This contradicts p(δ∗) = minP (δ∗) because p∗ < p(δ∗). Therefore,

p(δ) is lower semicontinuous.

Lemma 6. δuMAX(p(δ)) + (1− δ)uMIN(p(δ)) is upper semicontinuous in δ.

Proof. uMAX(p) =
∫ +∞
p

(x − p)dFMAX(x) =
∫ +∞
p

1 − FMAX(x)dx is continuous and decreas-

ing in p. Since p(δ) is lower semicontinuous, uMAX(p(δ)) is upper semicontinuous in δ. (To

see this, if g is continuous and decreasing, and f is lower semicontinuous, then for xn → x,

we have limk→+∞ supn>k g(f(xn)) = limk→+∞ g(infn>k f(xn)) = g(limk→+∞ infn>k f(xn)) ≤

g(f(x)). The last inequality is from the lower semi-continuity of f .) Similarly, we can show that

uMIN(p(δ)) is upper semicontinuous. Therefore, δuMAX(p(δ)) + (1 − δ)uMIN(p(δ)) is upper

semicontinuous in δ.

Proof of Claim 1. δuMAX(p(δ)) + (1− δ)uMIN(p(δ)) is upper semicontinuous, and the set of dis-

closure levels, [1/2, 1], is compact. Thus,D∗ := arg maxδ∈[1/2,1] δu
MAX(p(δ))+(1−δ)uMIN(p(δ))

is nonempty and compact (Theorem 2.43 of Aliprantis and Border (2006)). Thus, δ∗ := maxD∗

combined with the optimal on and off path actions consists of an equilibrium.

Unrestricted Model

Claim 2. In the unrestricted model, there exists an equilibrium under the no-commitment regime.

Proof. I prepare some notations. Let A := K × V denote the seller’s (finite) action space, i.e., the

set of all pairs of recommended products and prices. When the seller recommends product k ∈ K
7This follows from the fact that the product of two nonnegative upper (lower) semicontinuous functions is upper

(lower) semicontinuous, and the same thing holds for the sum. Since FMAX(p) and FMIN (p) are lower semicontin-
uous in p, δFMAX(p) + (1− δ)FMIN (p) is lower semicontinuous. Thus, p

[
1− δFMAX(p)− (1− δ)FMIN (p)

]
is

upper semicontinuous. Because the second term of Y (p, δ), p(δ∗)
[
1− δFMAX(p(δ∗))− (1− δ)FMIN (p(δ∗))

]
, is

continuous in (p, δ), overall, Y (p, δ) is upper semicontinuous.

9



at price p ∈ V , I say that the seller chooses a = (k, p) ∈ A. Given (a, b) ∈ A × ∆(V K), let

U(a, b) and R(a, b) denote the expected payoffs of the consumer and the seller, respectively, when

the seller chooses a, the consumer’s values are drawn from b, and the consumer takes an optimal

purchase decision (breaking ties in favor of the seller). Given the seller’s belief b ∈ ∆(V K), let

a(b) ∈ A denote the seller’s optimal recommendation and price that break ties in favor of the

consumer. a(b) might not be unique, but the payoffs of the seller and the consumer are unique due

to the tie-breaking rule. Also, a(b) exists because A is finite.

The proof consists of two steps. First, I show that the consumer’s payoff is upper semicontinu-

ous in disclosure rules. Second, I show that the set of all disclosure rules is compact. I use weak∗

topology in ∆(∆(V K)).

Consider an information set where the seller sets a price and recommends a product. Let b ∈

∆(V K) denote the seller’s belief about the value vector. If the seller and the consumer take optimal

actions following the information set, the consumer’s expected payoff is given by U(a(b), b). I

show that U(a(b), b) is upper semicontinuous in b ∈ ∆(V K). Suppose to the contrary that there

exists ε > 0 and (bn)+∞
n=1 ⊂ ∆(V K) such that limn bn = b but U(a(bn), bn) ≥ U(a(b), b) + ε

for all n. Because A is finite, we can choose a subsequence (bn(m))
+∞
m=1 so that for some a′ ∈ A,

a(bn(m)) = a′ for all m. Without loss of generality, assume that a(bn) = a′ for all n. Note that

R(a′, bn) ≥ R(a(b), bn) because a′ = a(bn) is optimal for the seller given its belief bn. Note

also that R(a, b) is continuous in b with a fixed a. Indeed, suppose that a is such that the seller

recommends product k at price p, where the consumer’s value for product k is distributed according

to bk = (bk1, . . . , b
k
N) ∈ ∆(V ) under b ∈ ∆(V K). Then, R(a, b) = p ·

∑N
`=1 1{v`≥p}b

k
` , which is

continuous in b. (1{v`≥p} is the indicator function that takes value 1 or 0 if v` ≥ p or v` <

p, respectively.) Given the continuity of R(a, b) in b, R(a′, bn) ≥ R(a(b), bn) for all n implies

R(a′, b) ≥ R(a(b), b). Thus, a′ is optimal for the seller given b. This implies that U(a(b), b) ≥

U(a′, b) by the seller’s tie-breaking rule. Also, U(a(bn), bn) ≥ U(a(b), b) + ε for all n implies

U(a′, b) ≥ U(a(b), b)+ε, because a(bn) = a′, and U(a, b) =
∑N

`=1 1{v`≥p}(v`−p)bk` is continuous

in b. However, these two inequalities lead to U(a(b), b) ≥ U(a′, b) ≥ U(a(b), b) + ε, which is a

contradiction. Thus, U(a(b), b) is upper semicontinuous in b ∈ ∆(V K). By Theorem 15.5 of

Aliprantis and Border (2006),
∫

∆(V K)
U(a(b), b)dτ(b) is upper semicontinuous in τ ∈ ∆(∆(V K))

when ∆(∆(V K)) is endowed with weak∗ topology. This completes the first part.
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Next, I show that the set D of all disclosure rules is weak∗ compact. Let b0 := x0 × · · · ×

x0 denote the prior distribution of value vector. Also, for any disclosure rule φ ∈ D, define

φ̂ ∈ ∆(∆(V K)) as the distribution over posterior beliefs about value vector u induced by φ and

b0. Moreover, let D̂ := (φ̂)φ∈D ⊂ ∆(∆(V K)). Proposition 1 ( (iii) ⇒ (ii) ) of Kamenica and

Gentzkow (2011) implies that if the consumer’s payoff
∫

∆(V K)
U(a(b), b)dτ(b) is maximized at

some τ ∗ ∈ D̂ =
{
τ ∈ ∆(∆(V K)) :

∫
∆(V K)

bdτ(b) = b0

}
, then there is a disclosure rule (with

a finite message space) that maximizes his payoff among all available disclosure rules. Now,

∆(∆(V K)) is weak∗ compact because ∆(V K) is compact (e.g., Theorem 15.11 of Aliprantis and

Border (2006)). Also, D̂ is closed. This is because if τ` ∈ D̂ for each ` ∈ N and τ` → τ in weak∗

topology, then b0 =
∫

∆(V K)
bdτ`(b) →

∫
∆(V K)

bdτ(b), which implies τ ∈ D̂. Thus, D̂, which is a

closed subset of a compact set ∆(∆(V K)), is weak∗ compact.

Finally, in equilibrium, the consumer solves maxτ∈D̂
∫

∆(V K)
U(a(b), b)dτ(b). Since the objec-

tive function is upper semicontinuous in τ and D̂ ⊂ ∆(∆(V K)) is compact with respect to weak∗

topology, the set D∗ := arg maxτ∈D̂
∫

∆(V K)
U(a(b), b)dτ(b) is nonempty and weak∗ compact.

Moreover, as I prove below, the seller’s expected payoff
∫

∆(V K)
R(a(b), b)dτ(b) is upper semicon-

tinuous in τ . Therefore, maxτ∈D∗
∫

∆(∆(V K))
R(a(b), b)dτ(b) has a maximizer. Any maximizer τ ∗,

combined with the optimal on and off path behavior of the seller and the consumer, consists of an

equilibrium.

To see that
∫

∆(∆(V K))
R(a(b), b)dτ(b) is upper semicontinuous, I show that R(a(b), b) is upper

semicontinuous in b. Suppose to the contrary that there exists ε > 0 and (bn)+∞
n=1 ⊂ ∆(V K)

such that limn bn = b but R(a(bn), bn) ≥ R(a(b), b) + ε for all n. Because A is finite, we can

choose a subsequence (bn(m))
+∞
m=1 so that for some a′ ∈ A, a(bn(m)) = a′ for all m. As R(a, b)

is continuous in b, we obtain R(a′, b) ≥ R(a(b), b) + ε. However, this contradicts R(a(b), b) ≥

R(a′, b). Thus, R(a(b), b) is upper semicontinuous in b, and thus
∫

∆(∆(V K))
R(a(b), b)dτ(b) is

upper semicontinuous by Theorem 15.5 of Aliprantis and Border (2006).
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