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Online Appendix

The appendix is organized as follows. Appendix A introduces the required formalization

to solve for the credit market equilibrium, with endogenous and exogenous prudence.

Appendix B solves for the general form of credit market equilibrium, at t = 1, in a global

equilibrium with exogenous prudence. Appendix C uses the credit market equilibrium in

Appendix B to construct the equilibrium in real market, at t = 0, specialized to a simple

global equilibrium. To be more precise, Appendices B and C separately address the two

sub-problems that a firm solves. First, the firm chooses initial and maintained investment

levels, I(ω, τ), {i(ω, τ ; θ)}θ at t = 0, solved in Appendix C in a simple global equilibrium.

Second, the firm chooses how to raise the required liquidity on the international markets at

t = 1, solved in Appendix B in a global equilibrium.

Finally, Appendix D provides the proofs for the results in the text, and Appendix E

discusses extensions.

Appendices A and B build heavily on Kurlat (2016).

A International Credit Market Formalization

There are many markets at t = 1, indexed by m, open simultaneously, where firms can

demand credit. M denotes the set of all markets. Each market in aggregate state θ is

defined by two features. The first feature is the market interest rate, r̃(m; θ), paid by firms

to international investor in exchange for bonds. If in market m only firms from a single

opacity ω are serviced, we use rθ(ω) = r̃(m; θ) to denote the interest rate associated with

that market m.

The second is a clearing algorithm. A clearing algorithm is a rule that determines which

bonds are traded first, as a function of demand and supply in a market. Since investors

have different information sets, different clearing algorithms result in different allocations

and we need to specify what algorithm will be used. We will expand on clearing algorithms

in Section A.3.
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A.1 Firm Problem

We start with two definitions.

Definition A.2 [Maximum Market Demand] There is a maximum amount of credit
each firm j can demand in each market m, denoted by σ̄θ. We require σ̄θ ≥ maxω `(ω, g; θ).

We need to impose an exogenous upper bound on how much demand for bond issuance

firm can submit, in order to prevent firms from submitting excess demand ŷ at t = 1 to

undo the rationing. To keep the analysis as simple as possible, we set the maximum in

each state such that the best good firms are not restricted and the maximum repayment

promised by any bad firm is consistent with the highest repayment promised by good firms,

σ̄θ = maxω `(ω, g; θ), θ = H,L. In particular, in the proof of Propositions 1, 2, and Lemma

1, we have σ̄H ≡ 1
rH

and σ̄L ≡ 1
r
. For the rest of the paper, σ̄θ ≡ ξ I(0,g)

1+r(0,g;θ)
.

Definition A.3 [Rationing Function] A rationing function η assigns a measure η(., ω, τ ; θ)
on M to each bond issued by firm j = (ω, τ).

Let M0 ⊂ M denote a set of markets. Then η(M0, ω, τ ; θ) is the number of bonds firm

(ω, τ) issues if he submits one unit of credit demand to each market m ∈ M0 in aggregate

state θ. The firm receives one unit per bond issued, and r(ω, τ ; θ) denotes the average interest

rate firm j = (ω, τ) has to pay back if aggregate state is θ.

Firm Optimization in International Markets. The firm participates in the interna-

tional markets in each state θ if he is hit by the liquidity shock, to raise liquidity required to

maintain investment. We closely map the problem of the firm in the international market to

the seller problem of Kurlat (2016). In order to do so, we introduce the following auxiliary

variable, ŷ.

Definition A.4 [Credit Capacity] ŷ (ω, τ ; θ, rH , rL) is the maximum number of bonds
that the firm j = (ω, τ) can issue when aggregate state is θ, and the firm faces interest rate
rθ′ in state θ′ ∈ {H,L}. By definition, ŷ(ω, τ ; θ, rH , rL) ≤ σ̄θ.

We define the firm’s problem on the international credit market as an independent prob-

lem, which takes one state variable, credit capacity ŷ(ω, τ ; θ, rH , rL). When β = 0, the credit

capacity of firm j is ŷ(ω, τ ; θ, rH , rL) ≡ 1
r(ω,τ ;θ)

, as explained in the text. When β > 0, we will

relate ŷ (ω, τ ; θ, rH , rL) to the firm’s pledgeability constraint and the technological constraint

σ̄θ, in Section C. Here, we assume ŷ(ω, τ ; θ, rH , rL) is continuous and weakly decreasing

in rθ′ , ∀θ′. Later, in Section C, we verify that in equilibrium, ŷ(ω, τ ; θ, rH , rL) is weakly

decreasing in rH and rL.
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Finally, we show that y(ω, τ ; θ, rH , rL) in problem (A.1) below maps to `(ω, τ ; θ) defined

in Equation (5).

Vω,τ (ŷ (.; θ, rH , rL)) ≡ max
{σ(m,ω,τ ;θ)}m

(1 + r(ω, τ ; θ))

(
ρτ
ξ
− 1τ=g

)
y(ω, τ ; θ, rH , rL) (A.1)

s.t.

y(ω, τ ; θ, rH , rL) =

∫
M

σ(m,ω, τ ; θ)dη(m,ω, τ ; θ)

y(ω, τ ; θ, rH , rL) ≤ ŷ(ω, τ ; θ, rH , rL) (A.2)

0 ≤ σ(m,ω, τ ; θ) ≤ σ̄θ

r(ω, τ ; θ) =

∫
M
r̃(m; θ)σ(m,ω, τ ; θ)dη(m,ω, τ ; θ)∫
M
σ(m,ω, τ ; θ)dη(m,ω, τ ; θ)

To any unit of bonds that the firm issues to international investors, he adds r(ω, τ ; θ)

units of what he has saved using the bankers. He then injects this as the required liquidity

to maintain investment. Thus by issuing y(ω, τ ; θ, rH , rL) bonds, the firm continues at scale
1+r(ω,τ ;θ)

ξ
y(ω, τ ; θ, rH , rL), which pays off ρτ at date t = 2. Good firms then have to pay back

1 + r(ω, τ ; θ) per unit bond issued, which leads to the objective (A.1).

Similar to Kurlat (2016), the choice of σ(m,ω, τ ; θ) for any single market m such that

η(m,ω, τ ; θ) = 0 has no effect on the funding obtained by the firm. Formally, this implies

that program (A.1) has multiple solutions. We follow Kurlat (2016) and assume that when

this is the case, the solution has to be robust to small positive perturbations of η(m,ω, τ ; θ),

meaning that the firm must attempt to issue bonds in all the markets where if he could he

would want to, and must not attempt to issue bonds in any market where if he could he

would not want to.

Definition A.5 [Robust Program] A solution to program (12) is robust if for each θ and
every (m0, ω0, τ0) such that η(m0, ω0, τ0; θ) = 0 there exists a sequence of strictly positive real
numbers {zn}∞n=1 and sequences of credit demand σn and total credit allocation yn, such that
defining

ηn(M0, ω0, τ0; θ) = η(M0, ω0, τ0; θ) + znI(m0 ∈M0)I (j = j0) ,

(i) ∀ θ, given ŷ(ω, τ ; θ, rH , rL), {σn, yn} solve program
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max
σ,y

(1 + r(ω, τ ; θ))

(
ρτ
ξ
− 1τ=g

)
y(ω, τ ; θ, rH , rL) (A.3)

s.t.

y(ω, τ ; θ, rH , rL) =

∫
M

σ(m,ω, τ ; θ)dηn(m,ω, τ ; θ)

y(ω, τ ; θ, rH , rL) ≤ ŷ(ω, τ ; θ, rH , rL)

0 ≤ σ(m,ω, τ ; θ) ≤ σ̄θ

(ii) zn → 0

(iii) σn → σ, yn → y; ∀(ω, τ),m

Cross-sectional differences across σ(m,ω, τ ; θ), at the same market m0, do not reveal the

identity of the firm j = (ω, τ). This is so because wee assume that σ(m,ω, τ ; θ) is divisible,

and firms submit unit by unit. The investment that can potentially serve as collateral, if

τ = g, is verified and “marked”, to avoid double promising.

A.2 International Investor Problem∫ s
0
w(s′)ds′ denotes the mass of investors with skill not higher than s. Each investors is

endowed with one unit of wealth. We refer to w(s) as investor skill distribution and require

it to be a non-negative function on s ∈ [0, 1] and continuous almost everywhere. International

investors consume at dates t = 1, 2 and participate in international markets at t = 1. Since

they are active after realization of aggregate shock θ, we will suppress the dependence of

their decisions on θ.

Definition A.6 [Acceptance Rule] An acceptance rule is a function χ : [0, 1]× {g, b} ×
[0, 1]× {0, 1} → {0, 1}.

Definition A.7 [Feasibility] An acceptance rule χ is feasible for investor s if it is mea-
surable with respect to his information set, i.e. if

χ(ω, τ ; s, ι) = χ(ω′, τ ′; s, ι) whenever x(ω, τ, s, ι) = x(ω′, τ ′, s, ι).

Let X denote the set of all possible acceptance rules, and Xs the set of acceptance rules

that are feasible for investor s.

Definition A.8 [Allocation Function] An allocation function A assigns a measure A(.;χ,m, θ)
on [0, 1] to each acceptance rule-market pair (χ,m) ∈ X×M . a(.;χ,m, θ) denotes the density
of the allocation function.
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Consider an investor demanding to buy one unit in market m and imposing acceptance

rule χ. If I0 ⊆ [0, 1] × {g, b}, then A(I0;χ,m, θ) represents the amount of bonds of firms

j = (ω, τ) ∈ I0 she will obtain, i.e. the fraction of her one unit that goes to financing firms

j.

In each aggregate state θ, investor s chooses the test ι (or endowed with one), the market

she participates in, m, how many bonds he intends to finance δ, and a feasible acceptance

rule χ to maximize

max
ι,m,χ,δ

c1 + c2

s.t.

χ ∈ Xs (A.4)

δ

∫
(ω,τ)

dA(ω, τ ;χ,m, θ) ≤ 1 (A.5)

c1 = 1− δ
∫

(ω,τ)

dA(ω, τ ;χ,m; θ)− δκ (A.6)

c2 =
(
1 + r̃(m; θ)

)
δ

∫
ω

dA(ω, g;χ,m, θ) (A.7)

Constraint (A.4) restrict the investor to using feasible rules. Constraint (A.5) says that

each investor can only provide credit from her own wealth. Constraint (A.6) says the investor

consumes her leftover endowment at t = 1 net of cost of sampling, while (A.7) says that

at t = 2 she is paid back by good firms and consumes. Substitute the consumption into

investor utility function and simplify to get the objective function (8) in the text.

A.3 Clearing Algorithm

A clearing algorithm is a total order on X, which determines which acceptance rule is

executed first. We will use the clearing algorithms proposed by Kurlat (2016), adjusted to

our framework. In order to adopt these algorithms to our settings, let T = {g, b}.

Definition A.9 [LRF Clearing Algorithm] ζ is a less-restrictive-first (LRF) algorithm
if it orders nested acceptance rules according to χ(.; s, .) <ζ χ(.; s′, .) if χ(.; s′, .) is nested in
χ(.; s, .); i.e. the less restrictive acceptance rule first.

Thus, acceptance rules of the form χ(ω, τ ; s, ι) = 1 (τ ∈ T ′ ⊂ T || (τ ∈ T − T ′ & ω ≥ s))

are ordered according to χ(.; s, .) <ζ χ(.; s′, .) if s < s′, when ζ is an LRF clearing algorithm.

Given the signal structure of investors when θ = H, the less restrictive acceptance rule is

also the less accurate.
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Definition A.10 [NMR Clearing Algorithm] ζ is a nonselective-then-more-restrictive-
first (NMR) algorithm if it orders nested acceptance rules according to χ(.; s, .) first if it
imposes no restriction, and among acceptance rules with restrictions, the more restrictive
acceptance rule first; i.e. χ(.; s, .) <ζ χ(.; s′, .) if χ(.; s, .) is nested in χ(.; s′, .).

Thus acceptance rules of the form χ(ω, τ ; s, ι) = 1 (τ ∈ T ′ ⊆ T & ω ≤ s), if ζ is an NMR

clearing algorithm, are ordered according to

(i) χ(ω, T ; s, ι) <ζ χ(ω, T ′ ⊂ T ; s, ι);

(ii) χ(ω, T ′; s, ι) <ζ χ(ω, T ′; s′, ι) if s < s′, for all s, s′ < 1;

Given the signal structure of investors when θ = L, the more restrictive acceptance rule is

the less accurate.

Let S(m,ω, τ ; θ) denote the total measure of bonds (ω, τ) offered in market m, which is

the total bonds that firms of type (ω, τ) who are hit by a liquidity shock supply in market

m when the aggregate state is θ.

S(m,ω, τ ; θ) = φσ(m,ω, τ ; θ). ∀ θ

Furthermore, let Ss(m,ω, τ ; θ) denote the residual supply that is faced by an investor

with skill s. The allocation function A and rationing function η are determined in the

identical manner as Appendix B in Kurlat (2016). Note that in the proofs, we will suppress

the dependence of S(.) and Ss(.) on θ as it is clear from the context.

Kurlat (2016) proves that in the presence of markets with different clearing algorithms,

there exist an equilibrium where investors self-select into markets using LRF algorithm when

the information structure is akin to ours in θ = H, and markets using NMR algorithm when

the information structure is that of θ = L. For simplicity, we will directly assume that the

clearing algorithm is LRF when θ = H and NMR when θ = L. These algorithms guarantee

that each investor receives a representative sample of the overall supply of bonds he is willing

to accept, in the market where he participates.

B Global Equilibrium.

Construction of Equilibrium in Credit Market (t = 1)

At t = 1, we take firm credit capacity ŷ(ω, τ ; θ, rH , rL), i.e. the maximum level of

liquidity that it can raise in the credit market, satisfying the properties of Defi-

nition A.4, as given. Given ŷ (ω, τ, θ, rH , rL), the equilibrium in international mar-
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kets is such that firms maximize problem (A.1), international investors maximize

problem (8), and active markets clear, under certain parametric restrictions.

We construct a more general version of the equilibrium compared to the one used in the

main text.

We solve for the credit market equilibrium state-by state. We start with a lemma which

simplifies the set of relevant strategies of firms in the credit market.

Lemma B.1 Every solution to robust program (A.3) satisfies{
σ(m,ω, τ ; θ) ≥ ŷ (ω, τ ; θ, rH(ω), rL(ω)) if r̃(m; θ) < rR(ω, τ ; θ)
σ(m,ω, τ ; θ) = 0 if r̃(m; θ) > rR(ω, τ ; θ)

for some reservation interest rate, rR(ω, τ ; θ).

Furthermore, if r̃(m; θ) < rR(ω, τ ; θ), dσ(m,ω,τ ;θ)
dr̃(m;θ)

≤ 0.

Proof. We start with the first part of the proposition. For simplicity, let j denote the firm

(ω, τ), ŷ(ω, τ) ≡ ŷ (ω, τ ; θ, rH , rL(ω)), σ(m, j) ≡ σ(m,ω, τ ; θ), and η(m, j) ≡ η(m,ω, τ ; θ).

Also, we suppress the dependence of interest rate on prudence shock θ = H,L and write

r̃(m). Each individual firm is small and takes the prices as given, and does not affect the

schedule of prices either.

Assume the contrary. This implies that there are two markets, m and m′ with r̃(m′) <

r̃(m) such that, for some j, the firm chooses σ(m, j) > 0 and σ(m′, j) < ŷ(ω, τ). There are

four possible cases:

(i) η(m; i) > 0 and η(m′, j) > 0. Then the firm can increase his utility by choosing demand

σ̃ with σ̃(m′, j) = σ(i,m′) + ε and σ̃(m, j) = σ(m′, j)− εη(m′,j)
η(m,j)

) for some positive ε.

(ii) η(m, j) > 0 and η(m′, j) = 0. Consider a sequence such that ηn(m′, j) > 0. By the

argument in part 1, for any n the solution to robust firm problem must have either

σn(m, j) = 0 or σn(m′, j) ≥ ŷ(ω, τ) (or both). Therefore either the condition that

σn(m, j) → σ(m, j) or the condition that σn(m′, j) → σ(j,m′) in a robust solution is

violated.

(iii) η(m, j) = 0 and η(m′, j) > 0. Consider a sequence such that ηn(m′, j) > 0. By the

argument in part 1, for any n the solution to robust firm problem must have either

σn(m, j) = 0 or σn(m′, j) ≥ ŷ(ω, τ) (or both). Therefore either the condition that

σn(m, j) → σ(m, j) or the condition that σn(m′, j) → σ(m′, j) in a robust solution is

violated.
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(iv) η(m, j) = η(m′, j) = 0. Consider a sequence such that ηn(m′, j) > 0 and suppose

that there is a sequence of solutions to robust firm problem which satisfies σn(m′, j)→
σ(m′, j) < ŷ(ω, τ). This implies that for any sequence such that ηn(m, j) > 0 and for

any n, the solution to robust firm problem must have σn(m, j) = 0. Therefore the

condition that σn(m, j)→ σ(m, j) in a robust solution is violated.

Lemma B.1 implies that firms use a threshold strategy across markets with different

interest rates: They submit demand to all the markets with prevailing interest rate lower

than a threshold rR(ω, τ ; θ). The threshold interest rate depends on both the firm and the

aggregate state.

To save on notation we often suppress the dependence on rH , and rL, and sometimes the

dependence on θ, unless useful to clarify the context. Finally, we suppress the argument ι of

χ(ω, τ ; s, ι), as it is implied by θ in each subsection.

B.1 θ = H: Bold International Investors

Equilibrium description. The equilibrium consists of a a single active market, mH , pair

(rH , sH), firm and investor optimization, an allocation function, and a rationing function.

Market mH is the market defined by interest rate rH and an LRF algorithm. The equilibrium

is described as follows.

(i) (rH, sH) is the solution to the pair of equations

r =
(1− λ)

∫ 1

s
ŷ(ω, b;H)dω

λ
∫ 1

0
ŷ(ω, g;H)dω

(B.8)

φ =

∫ 1

s

1

(1− λ)
∫ 1

s′
ŷ(ω, b;H)dω + λ

∫ 1

0
ŷ(ω, g;H)dω

w(s′)ds′ (B.9)

(ii) Firm optimization

• Good firm

σ(m,ω, g;H) =


min {σ̄H , ŷ(ω, g;H)} = ŷ(ω, g;H) if r̃(m) = rH

σ̄H if r̃(m) < rH

0 otherwise

where the first line in σ(.) follows from Definition A.2 along with construction of

ŷ(ω, g;H).
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• Bad firm

σ(m,ω, b;H) = min {σ̄H , ŷ(ω, b;H)} = ŷ(ω, b;H) ∀ m

(iii) International investor optimization

• s < sH

δs = 0

ms = mH

χ(ω, τ ; s) = I (τ = g || (τ = b & ω ≥ s))

• s ≥ sH

δs = 1

ms = mH

χ(ω, τ ; s) = I (τ = g || (τ = b & ω ≥ s))

(iv) Allocation function

• For market mH and χ(ω, τ ; s) = 1 (τ = g || (τ = b & ω ≥ s)) for some s ∈ [0, 1]

a(ω, τ ;χ,mH) =
(I(τ = g) + I(τ = b & ω ≥ s))σ(mH , ω, τ ;H)

λ
∫ 1

0
σ(mH , ω′, g;H)dω′ + (1− λ)

∫ 1

s
σ(mH , ω′, b;H)dω′

(B.10)

• For market mH and any other acceptance rule

a(ω, τ ;χ,mH) = (B.11)

χ(ω,τ ;s)σ(mH ,ω,τ ;H)[1−η(mH ,ω,τ ;H)]∑
τ ′
∫
ω′ χ(ω′,b;s′)σ(mH ,ω′,b;H)[1−η(mH ,ω′,b;H)]dω′

if χ(ω, τ ; s) /∈ X0 &
∑
τ ′
∫
ω′ χ(ω′, b; s′)σ(mH , ω

′, b)[1− η(mH , ω
′, b)]dω′ > 0

χ(ω,τ ;s)σ(mH ,ω,τ ;H)[1−η(mH ,ω,τ ;H)]∑
τ ′
∑
ω′ χ(ω′,τ ′;s)σ(mH ,ω′,τ ′;H)[1−η(mH ,ω′,τ ′;H)]

if χ(ω, τ ; s) /∈ X0 &
∑
τ ′
∫
ω′ χ(ω′, b; s′)σ(mH , b, τ

′)[1− η(mH , ω
′, b)]dω′ = 0,

but
∑
τ ′
∑
ω′ χ(ω′, b′; s′)σ(mH , ω

′, b)[1− η(mH , ω
′, b)] > 0

0
otherwise

where η(mH , ω, τ ;H) is defined below.
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• For any other market

a(ω, τ ;χ,m) = (B.12)
χ(ω,τ ;s)S(m,ω,τ)∑

τ ′
∫
ω′ χ(ω′,τ ′;s)S(m,ω′,τ ′)dω′

if
∑
τ ′
∫
ω′ χ(ω′, τ ′; s)S(m,ω′, τ ′)dω′ > 0

χ(ω,τ ;s)S(m,ω,τ)∑
τ ′
∑
ω′ χ(ω′,τ ′;s)S(m,ω′,τ ′)

if
∑
τ ′
∫
ω′ χ(ω′, τ ′; s)S(m,ω′, τ ′)dω′ = 0,

but
∑
τ ′
∑
ω′ χ(ω′, τ ′; s)S(m,ω′, τ ′) > 0

0 otherwise

where

S(m,ω, τ) =


φσ(m,ω, τ ;H) if



τ = b

or

τ = g & r̃(m) ∈ (0, rH ]

or

r̃(m) ≤ 0

0 if τ = g, r̃(m) > rH

(v) Rationing function

η(M0, ω, τ ;H) = (B.13)
1 if mH ∈M0 and τ = g∫ ω
sH

1

φ(1−λ)
∫ 1
s ŷ(ω′,b;H)dω′+φλ

∫ 1
0 ŷ(ω′,g;H)dω′

w(s)ds if mH ∈M0 and τ = b and ω ≥ sH
0 otherwise

Proof.

(i) (rH, sH). There is a single market mH , with r̃(mH) = rH , where all trades take place.

In this market, firms try to issue as many bonds as they can. Total supply is therefore

λ
∫ 1

0
ŷ(ω′, g;H)dω′ good bonds and (1− λ)

∫ 1

0
ŷ(ω′, b;H)dω′ bad bonds. Supply deci-

sions in markets m 6= mH have no effect on firm utility since η(m,ω, τ ;H) = 0, so they

are determined in equilibrium by the robustness requirement.

Buying from markets with interest rate other than rH is not optimal for investors. At

interest rates above rH , the supply includes only bad firms, so investors prefer to stay

away, whereas at interest rate below rH , the supply of bonds is exactly the same as

at interest rate rH but the interest rate is lower. This does not settle the question of

whether an investor chooses to buy at all. Investor optimization below then shows that

investor with s = sH faces terms of trade of υ(sH) = 1 in market mH , and is indifferent

between buying and not buying. This results in Equation (B.8).
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All investors with s > sH thus spend all of their wealth buying in market mH and those

with s < sH choose not to buy at all. The fraction of bonds by firm j = (ω, τ) that

can be issued in market mH is given by the ratio of the total allocation of that bond

across investors, to the supply of that bond. Noticing that only firms hit by liquidity

shock issue bonds, and adding across investors and imposing that all good bonds are

issued results in (B.9).

Proposition 7 uses an appropriate monotonic transformation of Equation (B.8) along

with Lemma D.1 to show that a solution to the pair of Equations (B.8) and (B.9) such

that rH ≥ 0 and 0 ≤ sH ≤ 1, constitutes an equilibrium.

(ii) Firm optimization. Taking the equilibrium market structure, rationing function

and allocation function as given, y(ω, τ) = σ(mH , ω, τ)η(mH , ω, τ). Since ρτ
ξ
− 1τ=g >

0, firm j’s optimal choice of σ(mH , ω, τ) is determined by the corresponding con-

straints. For a good firm, η(mH , ω, g) = 1 from rationing function (B.13), which im-

plies y(ω, g) = σ(mH , ω, g). As such, condition (A.2) is the binding constraint which

in turn implies y(ω, g) = σ(mH , ω, g) = ŷ(ω, g), when θ = H.

For a bad firm η(mH , ω, b) =
∫ ω
sH

1

(1−λ)
∫ 1
s ŷ(ω′,b;H)dω′+λ

∫ 1
0 ŷ(ω′,g;H)dω′

w(s)
φ
ds from rationing

function (B.13). From equation (B.9), η(mH , 1, b) = 1, so η(mH , ω, b) < 1, ∀ sH ≤ ω <

1, thus y(ω, b) ≤ σ(mH , ω, b). Since σ(mH , ω, b) = ŷ(ω, b) = σ̄H , constraint (A.2) is

satisfied, which in turn implies y(ω, b) = η(mH , ω, b)ŷ(ω, b).

Put together, the rationing function (B.13) implies that in market mH , all good firms

will be able to issue as many bonds as they demand to issue. A bad firm with opacity

ω will be able to sell a fraction η(mH , ω, b) < 1 of bonds they demand to issue. No

other bond can be issued. Thus

y(ω, τ) =

{
ŷ(ω, τ) if τ = g

η(mH , ω, τ)ŷ(ω, τ) = ηH(ω)ŷ(ω, τ) if τ = b
(B.14)

Off equilibrium, in all cheaper markets (lower interest rate), all good firms submit σ̄H .

In all more expensive markets, they submit zero demand. All bad firms submit the

maximum that they can submit, σ̄H , on every other market. These decisions satisfy

the robust program (A.3). Note that the equilibrium σ(m,ω, τ) satisfy the form of

Lemma B.1.

(iii) International investor optimization. Choosing any feasible acceptance rule other
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than χ(ω, τ ; s) = 1 (τ = g || (τ = b & ω ≥ s)) = 1 − 1[x(ω, τ, s, 1) = b] by investor s

using test ι = 1 in market mH would, according to (B.10) and (B.11), result in a lower

fraction of good assets, so choosing χ(ω, τ ; s) = 1 (τ = g || (τ = b & ω ≥ s)) is optimal.

Let υ(m,χ) denote the terms of trade that an investor obtains in market m with

acceptance rule χ,

υ(m,χ) =

{
(1+r̃(m))

∫
ω 1[τ=g]σ(m,ω,g;θ)dA(ω,g;χ,m,θ)∫

ω,τ σ(m,ω,τ ;θ)dA(ω,τ ;χ,m,θ)
if A({g, b}, [0, 1];χ,m) > 0

0 otherwise

which is her expected repayment per unit of bond she finances, i.e. the principal and

interest rate she receives at t = 2. Let

υmax(s) ≡ max
m∈M,χ∈Xs

υ(m,χ)

be the best term of trade that investor s can achieve, and let Mmax(s) be the set of

markets where investor s can obtain terms of trade υmax with a feasible acceptance

rule.

Necessary and sufficient condition for investor optimization are that investors for whom

υmax < 1 choose not to finance any bonds, investors for whom υmax > 1 spend their

entire endowment in a market m ∈Mmax(s), and investors for whom υmax = 1 choose

a market m ∈ Mmax(s). Using Equation (B.10), an investor s who uses acceptance

rule χ(ω, τ ; s) = 1 (τ = g || (τ = b & ω ≥ s)) in market m obtains terms of trade

υ(m,χ) =


(1+r̃(m))λ

∫ 1
0 ŷ(ω,g;H)dω

(1−λ)
∫ 1
s ŷ(ω,b;H)dω+λ

∫ 1
0 ŷ(ω,g;H)dω

r̃(m) ≤ rH

0 otherwise

Thus for all investors

υmax(s) =
(1 + rH)λ

∫ 1

0
ŷ(ω, g;H)dω

(1− λ)
∫ 1

s
ŷ(ω, b;H)dω + λ

∫ 1

0
ŷ(ω, g;H)dω

and the maximum is attained in any market where the interest rate is rH , including

mH . Rewrite

υmax(s) = (1 + rH)J(s)

J(s) =
λ
∫ 1

0
ŷ(ω, g;H)dω

(1− λ)
∫ 1

s
ŷ(ω, b;H)dω + λ

∫ 1

0
ŷ(ω, g;H)dω

,

12



Note that from Equation (B.8), J(sH) = 1
1+rH

, so υmax(sH) = 1. Moreover, J ′(s) > 0.

This implies that investors s < sH have υmax(s) < 1, so not financing any bonds is

optimal for them. Investors of types s ≥ sH have υmax(s) ≥ 1, so financing bonds such

that they spend their entire wealth in market mH at t = 2 is optimal for them.

(iv) Allocation function. In all markets except mH (off equilibrium path), there are no

investors, so for any clearing algorithm the residual set of bonds any investor faces is

just the original set of bonds demanded by firm on that market. In this case, (B.12)

follows from Appendix A, Equation (39) and Appendix B, Equation (65) in Kurlat

(2016).

For market mH , the LRF algorithm implies that an investor who imposes

χ(ω, τ ; s) = 1 (τ = g || (τ = b & ω ≥ s)) faces a residual firm credit demand of accept-

able bonds that is proportional to the original firm credit demand (credit demand ≡
bond supply). Therefore, the measure of assets she will obtain is the same as if she

traded first. Therefore (B.10) follows from Appendix A, Equation (37) and Appendix

B, Equation (65) in Kurlat (2016).

For marketmH and rules that are not of the form χ(ω, τ ; s) = 1 (τ = g || (τ = b & ω ≥ s)),

(off equilibrium path), their trades clear after all other investors, so the bond financ-

ing demand they face only includes bonds of bad firms. Therefor (B.11) follows from

Appendix A, Equation (38) and Appendix B, Equation (65) in Kurlat (2016)..

(v) Rationing function. Equation (B.13) follows from (B.9) using Appendix B of Kurlat

(2016), Equation (67). It is the fraction of bonds that the firm is able to issue, out of

the total bonds he offers (i.e. a number between zero and one).

B.2 θ = L: Cautious International Investors

Equilibrium description. A global equilibrium consists of an interest rate schedule 0 ≤
rL(ω) ≤ r̄(rH), cut-offs {ωk}k=1..K ∈ [0, 1], K ≥ 3, firm and investor optimization, an

allocation function, and a rationing function. Any global equilibrium has at least 3 thresh-

olds, ω1 < ω2 < ω3. However, in general K can exceed 3 in a global equilibrium, with

ω1 < ωk′ < ω2 for k′ > 3. A simple global equilibrium is a global equilibrium where there is

no nonselective region, and thus K = 3.

For any ω ∈ [0, 1], let m(ω) denote the market where the price is rL(ω) , where rL(ω) is

found by the procedure described in the proof below, and the clearing algorithm is NMR.
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Because of bunching, m(ω) could mean the same market for different ω. For any Ω0 ⊆ [0, 1],

let the set of markets M(Ω0) be M(Ω0) = {m(ω) : ω ∈ Ω0}. The set of active markets is

M([0, 1]). A global equilibrium is described as follows.

(i) Premium schedule 0 ≤ rL(ω) ≤ r̄(rH) such that the interest rate falls into one of

the cash-in-the-market, bunching, bunching-with-scarcity, or nonselective regions as

described below.

(ii) Firm optimization

• Good firm

σ(m,ω, g;L) =


min {σ̄L, ŷ(ω, g;L)} = ŷ(ω, g;L) if r̃(m) = rL(ω), ω < ω2

ŷ(ω2, g;L) if r̃(m) = rL(ω), ω ≥ ω2

σ̄L if r̃(m) < rL(ω)

0 otherwise

y(ω, g;L) =

∫
M([0,ω])

σ(m,ω, g;L)dη(m,ω, g;L)

where the first line in σ follows from Definition A.2 along with construction of

ŷ(ω, g;L).

• Bad firm

σ(m,ω, b;L) =

{
min {σ̄L, ŷ(ω, b;L)} = ŷ(ω, b;L) m ∈ nonselective region

σ̄L otherwise

y(ω, b;L) =

∫
M([0,1])

σ(m,ω, b;L)dη(m, 0, b;L)

The rationing functions η(m,ω, τ ;L) are defined in Equations (B.20) and (B.21).

(iii) International investor optimization

Recall that ŝ(ω) = ω is the lowest-skill investor who recognizes the type of a firm with

opacity ω. Furthermore, let ω1 denote the highest-ω opacity whose firm face a zero

interest rate when investors are cautious, rL(ω) = 0. Define sN by∫ ŝ(ω1)

sN

w(s)ds = φλ

∫ ω1

0

ŷ(ω, g;L)dω.

We have assumed that there is sufficient wealth by all investors to cover the aggregate

credit demand by all firms, which implies that sN ≥ 0. The above equation implies
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that the aggregate wealth of investors in the interval [sN , ŝ(ω1)] is just sufficient to

finance all the bonds offered by good firms with opacity ω < ω1 at interest rate 0, and

each of these investors can identify some good bond in this interval. Furthermore, any

investor s ≤ s(ω1) breaks even, and is indifferent between market participation or not.

We focus on an equilibrium where investors with s ∈ [sN , ŝ(ω1)] finance all the bonds

offered by good firm ω < ω1 at interest rate 0, while investors with s < sN either buy

nonselectively or do not buy at all.

Let ε(ω) denote the unfinanced fraction of bonds that are offered in market m(ω), i.e.,

those whose supply is not fully absorbed in markets M([0, ω)).

Define the function s̃(ω) as the solution to the following differential equation

s̃′(ω) = − 1

w (s̃(ω))
φ

[
λ

∫ 1

ω

ŷ(ω′, g;L)dω′ + (1− λ)

∫ 1

0

ŷ(ω′, b;L)dω′
]
ε′(ω)

(B.15)

with boundary condition s̃(1) = sN . Finally, let s0 = s̃(0) and define ω̃(s) for s ∈
[s0, sN ] by

ω̃(s) = min {ω : s̃(ω) = s}

(a) for s ≥ sN

δs = 1

ms = m(s)

χ(ω, τ ; s) = I(τ = g & ω ≤ s)

(b) s ∈ [s0, sN)

δs = 1

ms = m(ω̃(s))

χ(ω, τ ; s) = 1

(c) s < s0

δs = 0

ms = m(1)

χ(ω, τ ; s) = 1
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Investors s ≥ sN spend their entire endowment financing bonds in market m(s), i.e. the

market for the most opaque firms for which they can observe a good signal, and they

use the selective acceptance rule I(τ = g & ω ≤ s), which only accepts good assets.

Some of these investor are in cash-in-the-market region, some in bunching, and some

in bunching-with-scarcity. Investors s ∈ [s0, sN) are nonselective. The function ω̃(s)

assigns each one to a market: in market m(ω), nonselective investors bring down the

fraction of unfinanced bonds by ε′(ω), which requires financing ε′(ω)φλ
∫ 1

ω
ŷ(ω′, g;L)dω′

good firms and ε′(ω)φ (1− λ)
∫ 1

0
ŷ(ω′, b;L)dω′ bad firms. If investor s̃(ω) is the nonse-

lective investor that buys in market m(ω) then the total nonselective wealth available

in that market is −w (s̃(ω)) s̃′(ω), so market clearing implies (B.15). Inverting this

function results in investor s choosing market m (ω̃(s)). Investors s < s0 don’t finance

(buy) anything. Since they are indifferent between buying and not buying, many other

patterns of demand among nonselective investors are possible.

(iv) Allocation function

• For markets m(ω) ∈ M([0, 1]) where ω falls in either a cash-in-the-market or a
nonselective region

a(ω, τ ;χ,m) = (B.16)

χ(ω,τ ;s)S(m,ω,τ)∑
τ ′
∫
ω′ χ(ω′,τ ′;s)S(m,ω′,τ ′)dω′

if
∑

τ ′
∫
ω′ χ(ω′, τ ′; s)S(m,ω′, τ ′)dω′ > 0

χ(ω,τ ;s)S(m,ω,τ)∑
τ ′
∑
ω′ χ(ω′,τ ′;s)S(m,ω′,τ ′)

if
∑

τ ′
∫
ω′ χ(ω′, τ ′; s)S(m,ω′, τ ′)dω′ = 0,

but
∑

τ ′
∑

ω′ χ(ω′, τ ′; s)S(m,ω′, τ ′)dω′ > 0
0

otherwise

where

S(m,ω, τ) =


φσ(m,ω, τ ;L) if



τ = b

or

τ = g & r̃(m) ∈ (0, rL(ω)]

or

r̃(m) ≤ 0

0 if τ = g, r̃(m) > rL(ω)

• For market m(ω) where ω falls in [ωz, ωz+1] for some z which is either a bunching
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or bunching-with-scarcity region; and χ = I (τ = g & ω ≤ s).

a(ω, τ ;χ,m) = (B.17)

χ(ω,τ ;s)Ss(m,ω,τ)∑
τ ′
∫
ω′ χ(ω′,τ ′;s)Ss(m,ω′,τ ′)dω′

if
∑

τ ′
∫
ω′ χ(ω′, τ ′; s)Ss(m,ω′, τ ′)dω′ > 0

χ(ω,τ ;s)Ss(m,ω,τ)∑
τ ′
∑
ω′ χ(ω′,τ ′;s)Ss(m,ω′,τ ′)

if
∑

τ ′
∫
ω′ χ(ω′, τ ′; s)Ss(m,ω′, τ ′)dω′ = 0,

but
∑

τ ′
∑

ω′ χ(ω′, τ ′; s)Ss(m,ω′, τ ′)dω′ > 0
0

otherwise

where Ss(m,ω, τ) is the solution to differential equation

dSs(m,ω, τ)

ds
=

{
−w(s) Ss(m,ω,τ)I[ωz≤ω≤s]∑

τ ′
∫ s
ωz S

s(m,ω′,τ ′)dω′
if τ = g and s ∈ [ωz, ωz+1]

0 otherwise

(B.18)

with boundary condition

S0(m,ω, τ) =

{
φσ(m,ω, τ ;L) if τ = b or (τ = g and ω ∈ [0, ωz+1])

0 otherwise

(B.19)

Note that ifm(ω) is in a bunching-with-scarcity region, σ(m,ω, g;L) = σ(m,ωz, g;L),

∀ ω. Furthermore, note that s = 0 is the least skilled investor, who imposes the

most restrictive acceptance rule, which is cleared first via NMR algorithm.

Except for bunching and bunching-with-scarcity markets, the clearing algorithm im-

plies that all investors draw bonds from a sample that is proportional to the original

supply. This results in (B.16). In bunching markets, investor s imposes acceptance rule

of the form χs(ω, τ ; s) = I (τ = g & ω ≤ s); therefore when he buys his bond portfolio,

the supply of bonds from good firms in opacity ω falls in proportion to his wealth,

w(s), times the ratio between the supply of bonds by good firms with opacity ω and all

the other bonds acceptable by investor s. This results in differential Equation (B.18)

which characterizes how the supply for bonds fall as the clearing algorithm progresses.

(v) Rationing function

• Firm (ω, τ), ω ≤ ω3
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η(M([0, l]), ω, τ ;L) =

{
1 ω ≤ l and τ = g

1− ε(l) otherwise
(B.20)

• Firm (ω, τ), ω > ω3

η(M([0, l]), ω, τ ;L) =

{ ∫ 1

ω
1

RD(ω3,ω2,r̄(rH),1)+(s−ω3)φλŷ(ω2,g;L)
w(s)ds ω ≤ l and τ = g

1− ε(l) otherwise

(B.21)

where RD(.) and ω̃ are defined in Equations (B.26) and (B.27), respectively. For good

firms with opacity ω ≤ ω3 and ω > ω3, the rationing function is separately defined. It

says that if ω ≤ ω3, good firms with opacity ω ≤ l are fully financed on the markets

with interest rate r(m) ∈ [0, rL(l)]. Alternatively, good firms with ω > ω3 are rationed.

They can only raise up to the maximum specified in Equation (B.21), which is the

same as ηL(ω) = η(m(ω), ω, g;L) defined in Equation (C.9), and can be achieved at

the market with (maximum) interest rate r̄(rH).

Every other firm, including good firms with opacity ω > l, who offers a bond at

markets with interest rate r(m) ∈ [0, rL(l)], (rL(l) < r̄(rH)) will be able to issue a

fraction 1− ε(l), so that the unfinanced fraction of these bonds at market l is ε(l). If

the issuer is a good firm with ω < ω3, the ε(ω) fraction can be issued in market m(ω).

Before moving to the proof, we present the following lemma which we will use in what

follows.

Lemma B.2 In any equilibrium rL(ω) is non-decreasing in ω everywhere.

Proof.

Assume the contrary. Then when θ = L, there exists bonds offered by good firms with

opacity ω, ω′ with ω′ < ω such that rL(ω′) > rL(ω).For this to be consistent with firm

optimization, it must be that

η(M0, ω
′, g;L) < η(M0, ω, g;L) = 1,

where the inequality follows from firm optimization, and the equality from definition

of rL(ω) and M0, where M0 = {m : r̃(m) ≤ rL(ω)}. But investor optimization and the

signal structure when θ = L requires that investors only use rules of the form χ(ω, τ ; s) =
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1 (τ = g & ω ≤ s). This implies that for any M0 ⊂M ,

η(M0, ω
′, g;L) ≥ η(M0, ω, g;L),

a contradiction.

Proof. Lemma B.1 expresses the decision of each firm in terms of a reservation interest rate

rR(ω, τ ;L) when θ = L. Here we show the following statements: all bad firms are identified

under equilibrium acceptance rule, so rR(ω, b;L) = 0. rR(ω, g;L) is different for good firms

of different ω, unlike θ = H. Finding rR(ω, g;L) is equivalent to finding the highest interest

rate at which bonds of a good firm with opacity ω trades.

Moreover, unlike θ = H, a firm (ω, g) might be able to sell some bonds at interest rate

below rR(ω, g;L), so the equilibrium must characterize rR(ω, g;L) and any other prices at

which bonds of firm (ω, g) are sold.

(i) Premium schedule 0 ≤ rL(ω) ≤ r̄(rH). Let rL(ω) = rR(ω, g;L) denote the highest

interest rate at which bonds of a good firm with opacity ω trades. rL(ω) falls into

four possible classes: a “cash-in-the-market” interest rate, a“bunching” interest rate,

a“bunching-with-scarcity” interest rate, or a “nonselective” interest rate.

Cash-in-the-market. The cash-in-the-market interest rate rC(ω) for the bonds is-

sued by the good firm of opacity ω is determined by equating demand and supply in

the corresponding market. The total amount of liquidity demanded by firm j = (ω, g)

at interest rate rC(ω) should be equal to total wealth of investor ŝ(ω) = ω which is the

financier in that market.

ε(ω)φλŷ(ω, g;L, rH , r
C(ω)) = w (ω) (B.22)

As long as rC(ω) is a strictly increasing function and in the correct range, the equi-

librium would be a cash-in-the-market pricing equilibrium. Each good firm of opacity

ω demands bonds in all markets where r(m) ≤ rC(ω), and no market with a higher

interest rate, while bad firms demand maximum bonds on every (active) market. Given

the prudence shocks, each investor imposes χ(ω, τ ; s) = I(τ = g & ω ≤ s), i.e. she fi-

nances bond in the most profitable (highest interest rate) market for which he observes

x(g;ω, s, 0) = g. Now consider a market with r = rC(ω). Firms with opacity ω′ ≥ ω

demand credit in that market, but no firm with opacity ω′ < ω demand in this market

because they have been able to issue all the bonds that they want at lower interest

rate. Investor s = ω is able to recognize good assets in this markets, but investors
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s < ω are not. Moreover, if rC(ω) is strictly increasing, this is the highest interest rate

where s = ω can detect good firms, so he will spend his entire wealth financing bonds

demanded on this market. Then Equation (B.22) implies all the bonds demanded by

firm j = (ω, g) are financed at this market, and there will be non of them for sale at

interest rate higher than rC(ω).

Bunching. If rC(ω) turns out to be downward sloping in any range, the logic of

cash-in-the-market pricing breaks down because it implies the good firm with a lower

opacity is paying a higher interest rate to issue bonds, ω < ω′ and rC(ω) > rC(ω′).

The investor who is financing the firm from higher opacity, ω′, can also identify the

firm from a lower opacity, ω, so he is better off financing the more transparent firm

and collect a higher interest rate rC(ω) > rC(ω′), so there will be no financier for the

more opaque firm ω′; a contradiction. In this region, there will be “bunching” of all the

firms [ω, ω′] at a single price, i.e. an ironing procedure that restores a weakly monotone

function. The clearing algorithm is such that the lower s investor picks the bonds that

she finances first in a bunching market.

Since w(.) function is decreasing in s, and ŷ(.) function is decreasing in rC , for low

enough ω, and appropriate set of parameters, Equation (B.22) requires rC(ω) < 0. Let

ω̂ = max ω such that rC(ω) ≤ 0, then as long as rC(ω) is increasing, or ironed as

explained above, ∀ ω′ s.t. ω̂ > ω′ ≥ 0, rC(ω′) < 0. Thus the requirement that there

is a zero lower bound on the interest rate (no negative interest rate), implies there is

a range of transparencies at the bottom, ω ≤ ω̂, whose good firms face zero interest

rate in issuing bonds. Investors with s ≤ ω̂ have idle wealth that is not financing any

bonds, as there is not enough credit demand from good firms that they can recognize.

In order for ω̂ > 0 it must be that the least skilled investor has sufficient wealth to

cover all the demand of the most transparent good firm, i.e.,

w(0) > φλŷ(0, g;L), (B.23)

where we have used that rL(0) = 0. Later in proof of Proposition 7 we make the

appropriate parametric assumption to ensure this condition holds.

Nonselective pricing. Consider a market m with interest rate r = r̃(m), where

good firms with opacity ω submit credit demand in that market. That implies all the
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good firms with opacity ω′ > ω also submit demand in market m, as well as all the

bad firms with any level of opacity. An investor can choose to impose χs(ω, τ ; s) = 1

in market m and buy a representative sample of the pool.

The terms of trade that he will get is

υN(r) =
(1 + r)λ[g supply at interest rate r in FN]

((1− λ) [b supply at interest rate r in FN] + λ[g supply at interest rate r in FN])

=
(1 + r)λ

∫ 1

ω
ŷ(ω, g;L)dω′

(1− λ)
∫ 1

0
ŷ(ω, b;L)dω′ + λ

∫ 1

ω
ŷ(ω, g;L)dω′

As long as ω1 > 0, there are (low expertise) international investors who finance bonds

issued by good firms with opacity ω < ω1. The interest rate for these bonds is zero,

so these investors make zero profits and are indifferent between financing and not

financing bonds. Alternatively, if they trade nonselectively at a market at interest rate

r, they can get the above terms of trade. As a result, if υN(r) > 1 these investors are

better off trading at interest rate r nonselectively, which in turn implies no good bond

from opacity ω can be offered at a interest rate above rNS(ω). With some algebra, one

can show that υN(r) ≤ 1 is equivalent to r ≤ rNS(ω) where

rNS(ω) ≡
(1− λ)

∫ 1

0
ŷ(ω, b;L)dω′

λ
∫ 1

ω
ŷ(ω′, g;L)dω′

. (B.24)

When this upper bound interest rate is operative, bonds are finances in markets where

both selective and nonselective buyers are active. In the markets where the interest

rate is rNS(ω), nonselective buyers will buy just enough assets (distributed pro-rate

among the assets offered) such that the interest rate rC(ω) is pushed down such that

marginal investor s = ω can charge exactly interest rate rNS(ω):

ε(ω) =
w (ω)

φλŷ(ω, g;L, rNS(ω))
(B.25)

In other words, if international investors with skill s = ω are poor, that requires a

high interest rate to push the demand of firms (ω, g) down so that Equation (B.25) is

satisfied. At this high interest rate, investors financing low ω good firms will enter this

market and be nonselective financiers. This takes some bonds off of the market, which

in turn implies a lower interest rate.

21



Bunching-with-scarcity. If there is a maximum interest rate r̄(rH) that firms are

willing to pay to get bonds from investors, and if the wealth of smart investors, in the

sense precisely defined below, is in short supply, then there will be a bunching region

where some good firms will be rationed.

At any interest rate r > r̄(rH), good firms have zero demand for bonds, and (with

linear objective function) at r = r̄(rH) they are indifferent between all levels of bond

issued. So if the interest rate hits r̄(rH) in any market, it cannot increase any further

than that.

Let m̄ denote the market with interest rate r̄(rH), r̃(m̄) = r̄(rH), and let ω̄ denote the

lowest opacity level whose good firms demand credit on market m̄. Firms (ω̄, g) submit

σ(m̄, ω̄, g;L) = ŷ(ω̄, g;L) on market m̄ and by definition their demand is exactly fully

satisfied at interest rate r̄(rH). Good firms with opacity ω > ω̄ also demand credit

on this market. Since these firms are indifferent about how many bonds they raise on

market m̄ (given the linearity of t = 0 objective function), we assume that all of them

submit the maximum that they can, ŷ(ω̄, g;L): ∀ ω > ω̄, σ(m̄, ω̄, g;L) = ŷ(ω̄, g;L);

and how many bond they raise is determined by rationing explained next.20

Bad firms with any opacity level also demand credit on market m̄, but none is able to

issue any bonds in this market. Thus the demand submitted on market m̄ is given by

σ(m̄, ω, τ ;L) =


ŷ(ω, b;L) if τ = b

ŷ(ω̄, g;L) if τ = g and ω > ω̄

0 otherwise

As such, if

(1− ω̄)× φλŷ(ω̄, g;L) >

∫ 1

ω̄

w(s)ds,

then the wealth of investors who are able to recognize good firms with opacity ω ∈ (ω̄, 1)

is collectively in short supply. As such, some of the good firm demand is rationed at

maximum interest rate r̄(rH). We next determine the subset of good firms whose credit

demand is fully satisfied at interest rate r̄(rH), i.e. those who are not rationed. In order

to do so, introduce the following function.

20This is slightly stronger than what we actually need to simplify the equilibrium derivation. What we
need is that when θ = L, on the market where interest rate is r̄(rH), no good firm submits more than the
credit capacity of the lowest-opacity good firm in that market. The latter firm is j = (ω2, g), and even absent
this assumption, ŷ(ω, g;L) = ŷ(ω2, g;L) for ω3 ≥ ω > ω2. So what we need is ŷ(ω, g;L) = ŷ(ω3, g;L) for
ω > ω3, weaker than what specified here.
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RD(ω′, ω, r, ε). For ω′ > ω, and interest rate r, let

RD(ω′, ω, r, ε) ≡ εφλ

∫ ω′

ω

ŷ(z, g;L, r)dz −
∫ ω′

ω

w(s)ds. (B.26)

where x is a parameter.

RD(ω′, ω, r, ε) measures the excess residual bonds offered, ε, by good firms with opacity

in the interval (ω, ω′), at interest rate r, which is not met by the cumulative wealth

of the investors who are able to identify some good firm in this interval but no good

firms with opacity ω′′ > ω′, i.e. ω ≤ s ≤ ω′.

For ω = ω̄ and ε(ω̄) = 1, we have

RD(ω′, ω̄, r̄(rH), 1) = φλ(ω′ − ω̄)ŷ(ω̄, g;L, r̄(rH))−
∫ ω′

ω̄

w(s)ds.

Recall that in markets where there is bunching, the clearing algorithm used lets lower-s

investors, who impose more restrictive acceptance rules, trade before higher-s investors.

Moreover, note that RD(ω′, ω̄, r̄(rH), 1) > 0, ∀ ω′ > ω̄ . The reason is the following. By

the logic of cash-in-the-market pricing, r̄(rH) is the interest rate at which demand of

good firms of opacity ω̄ is exactly absorbed by wealth of the marginal investor s = ω̄.

Consider a good firm with opacity ω′ right above ω̄. Let r̃′ denote the hypothetical

interest rate which clears the market for such good firm ω′ > ω̄, if this firm was still

in a cash-in-the-market pricing. Again, using the logic of cash-in-the-market pricing,

and the downward sloping skill distribution of investors, it must be that r̃′ > r̄(rH)

as ω′ > ω̄. However, since r̄(rH) is the maximum interest rate any good firm accept,

good firm ω′ > ω̄ faces a lower interest rate compared to what would clear his demand

using only the wealth of his marginal investors, s = ω′. Let ω̃ ∈ (ω̄, 1) be the highest

opacity where the demand of good firms is fully absorbed by all the investors active in

market m̄.

RD(ω̃, ω̄, r̄(rH), 1) =

∫ 1

ω̃

RD(ω̃, ω̄, r̄(rH), 1)

RD(ω̃, ω̄, r̄(rH), 1) + (s− ω̃)φλŷ(ω̄, g;L, r̄(rH))
w(s)ds

which implies ω̃ is the solution to

1 =

∫ 1

ω̃

1

RD(ω̃, ω̄, r̄(rH), 1) + (s− ω̃)φλŷ(ω̄, g;L, r̄(rH))
w(s)ds (B.27)
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In Proposition 7 we argue that under our assumptions, ω̃ < 1.

For a good firm from any opacity ω > ω̃, none of his offered bonds can be bought by

investors of expertise s < ω̃, since those investors cannot identify him as good. Thus

he can only sell what can be absorbed by the residual wealth of the subset of investors

s > ω̃ who can identify him, s > ω > ω̃.

For s > ω̃, let

ζ(s) =
(s− ω̃)φλŷ(ω̄, g;L, r̄(rH))

RD(ω̃, ω̄, r̄(rH), 1) + (s− ω̃)φλŷ(ω̄, g;L, r̄(rH))

ζ(s) captures how much of the portfolio held by investor s > ω̃ are bonds issued

“collectively” by good firms with opacity ω > ω̃ that s can identify. The measure

of those good firms is (s− ω̃)φλ. Thus for an individual firm of opacity ω > ω̃,

aggregating over holdings of his bonds, by all the investors s > ω, we find how much

j = (ω, g) can issue.

Let ηL(ω) = η(m̄, ω, g;L) denote the rationing function in this market. The above

argument implies

η(m̄, ω, g;L) = ηL(ω) =
1

ŷ(ω̄, g;L; r̄(rH))

∫ 1

ω

1

(s− ω̃)φλ
ζ(s)w(s)ds

=

∫ 1

ω

1

RD(ω̃, ω̄, r̄(rH), 1) + (s− ω̃)φλŷ(ω̄, g;L; r̄(rH))
w(s)ds

This is the rationing function stated in equation (B.21) in part (v) of the equilibrium,

for ω̄ = ω2 and ω̃ = ω3. For good firms with opacity ω̃ ≥ ω > ω̄, ηL(ω) = 1.

Interest Rate Regimes. Next, we determine when rL(ω) falls into each of the

four possible classes of “cash-in-the-market”, “bunching”, “bunching-with-scarcity”,

or “nonselective” interest rate.” In order to do so, introduce the following function.

E(ω, r, ε). Define

E(ω, r, ε) ≡ max
ω′∈[ω,1]

∫ ω′

ω

w(s)ds− εφ

(
(1− λ)

∫ ω′

ω

ŷ(z, b;L; r)dz + λ

∫ ω′

ω

ŷ(z, g;L; r)dz

)

For a bond issued by good firm of opacity ω, interest rate r and remaining firm de-

mand for bonds issuance ε, E(ω, r, ε) measures the maximum over ω′ > ω of the
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difference between the endowment of all investors with skill s ∈ [ω, ω′], and how much

is needed to finance ε units of all the bonds in [ω, ω′] which firms offer, if they all face

interest rate r. A bond interest rate can only be determined by cash-in-the-market if

E(ω, rC(ω), ε(ω)) = 0. A strictly positive value would mean that there exists a range

of investors s ∈ [ω, ω′] for some ω′ > ω, all of whom can identify some bond in the

range [ω, ω′] as a good bond (but not any bonds offered by firms with opacity higher

than ω′) and whose collective endowment exceeds what is necessary to finance all the

bonds demanded by firms in [ω, ω′] facing a interest rate rC(ω). Since these investors

will want to spend their entire endowment financing bonds, it must be that some bond

in the range [ω, ω′] must face a interest rate lower than rC(ω). This is because firms’

credit demand is downward sloping, hence a lower interest rate would push the firm

credit demand up and bring firm credit demand closer to investor credit supply. But

then monotonicity implies that the interest rate faced by a good firm with opacity ω

must be lower than rC(ω), a contradiction.

Next, suppose one knows that ω̆ is the lower limit of one type of region. In a similar

manner to (Kurlat, 2016), the following procedure finds the higher end of that region,

the type of region immediately above and the prices within the region.

1. For a cash-in-the-market region, the higher end is

inf{ω > ω̆ : rNS(ω) < rC(ω) or E(ω, rC(ω), ε(ω); rH) > 0 or rC(ω) > r̄(rH)}
(B.28)

and the region to the right is a nonselective region (first condition) or a bunching

region (second condition), and bunching-with-scarcity (third condition), respec-

tively. Within the region, rL(ω) = rC(ω) and ε(ω) = ε(ω̆).

2. For a bunching region, the higher end is

min{ω > ω̆ : E(ω, rC(ω̄), ε(ω̄); rH) = 0} (B.29)

and the region to the right is a cash-in-the-market region. Within the region,

rL(ω) = rL(ω̆) and r(ω) = r(ω̆).

3. For a nonselective region, the higher end is

25



inf

{
ω > ω̆ :

w (ω)

φλŷ(ω, g;L, rNS(ω))
> r(ω′) for some ω′ ∈ (ω̆, ω)

or E(ω, rC(ω̆), ε(ω̆); rH) > 0 or rNS(ω) ≥ r̄(rH)

}
(B.30)

and the region to the right is a cash-in-the-market region (former condition),

bunching region (second condition), and bunching-with-scarcity (third condition),

respectively. Within the region, rL(ω) = rNS(ω) and ε(ω) = w(ŝ(ω))
φλŷ(ω,g;L,rNS(ω))

.

4. For a bunching-with-scarcity-region, the higher end is 1. Within the region,

rL(ω) = r̄(rH) and ε(ω) = ε(ω̆).

We have assume that the aggregate wealth of investors is sufficient to finance all good

bonds. Thus the first region to the left is a bunching region with ω̆ = 0, rL(0) = 0,

and ε(0) = φλσ̄L. This region ends at ω = ω1, and the region to the right is always

a cash-in-the-market region. There after, if either one of the sets defined by (B.28),

(B.29), (B.30) is empty, that region extends up. Since there is a maximum interest

rate r̄(rL) that investors are willing to accept, rL(ω) ≤ r̄(rL), firms from very opaque

countries all bunch at the same interest rate. Furthermore, as we assume that wealth

of skilled investors is in short supply, this is a bunching-with-scarcity region. Thus at

ω = ω2 bunching-with-scarcity region starts, with rL(ω2) = r̄(rH), and extends all the

way to 1. Note that ω2 = ω̄ in the proof above. ω3 ∈ (ω2, 1) is the degree of opacity at

which scarcity starts, i.e. good firms that are more opaque than this level are rationed

even at the maximum interest rate. Note that ω3 = ω̃ in the proof above.

(ii) Firm optimization. Bond issuance decisions follow the reservation interest rate

strategy. A good firm (ω, g) raises total liquidity equal to all the bonds they are able

to sell on all M([0, ω]) markets. A bad firm (ω, b) tries to sell in all markets M([0, 1]).

Since in equilibrium all bad assets sell at the same ratio, η(m,ω, b;L) = η(m, 0, b;L),

∀ m,∀ ω ∈ [0, 1].

Let ω2 denote the lowest opacity firm in the bunching-with-scarcity region, i.e. the

lowest ω firm who face the interest rate r̄(rH)

w(ω2) = φλŷ(ω2, g;L),

and let ω3 denote the index of the lowest ω opacity whose good firms do face rationing

26



in the bunching-with-scarcity region, defined as the solution to Equation (B.27).

For any good firm with opacity ω < ω2, since r(ω) > 0, the rationing function (B.20)

implies that in order to issue all of the firm bonds, the reservation interest rate should

be rL(ω). Good firm with opacity ω > ω2 are indifferent between raising any number

of bonds, so the issuance decision is optimal. For any bad firm, the rationing function

implies that reservation interest rate is r̄(rH). Therefor credit issuance decisions are

optimal for all firms and the total number of bonds they issue follows directly.

(iii) International investor optimization. For s ∈ [sN , 1], each investor chooses the

highest interest rate market on which there is an opacity level ω such that x(g;ω, s, 0) =

g and S(m,ω, g) > 0. Since r̃(m) ≥ 0, this is optimal. For s ∈ [s0, sN), investors only

place weight on markets where nonselective pricing prevails. Equation (B.24) implies

they are indifferent between financing bonds and staying out, since the highest interest

rate market where there is a ω such that x(g;ω, s, 0) = g and S(m,ω, g) > 0 has

r̃(m) = 0, there is no other market in which they would strictly prefer to finance. For

s < s0, the same logic implies that no financing is optimal.

(iv) Allocation function. For any market m(ω) where ω falls in either a cash-in-the-

market or a nonselective range, the NMR algorithm implies that all the investors face

a residual supply proportional to the original supply, so Equation (B.16) follows from

Appendix B of Kurlat (2016), Equation (65).

For markets m(ω) where ω falls in a bunching or bunching-with-scarcity region as

described above and χ is of the form χ(ω, τ ; s) = I (τ = g & ω < s), then the differential

Equations (B.18) follows from Appendix B of Kurlat (2016), Equation (66), along with

Equation (D.19). Then (B.17) follows from applying the NMR algorithm.

(v) Rationing function. Follows from applying Equation (67) in Appendix B of Kurlat

(2016).

C Simple Global Equilibrium.

Construction of Equilibrium in Real Investment (t = 0)

In this appendix we restrict attention to a simple global equilibria in the financial

market at t = 1. A simple global equilibrium is a global equilibrium where there

is no nonselective pricing region.
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We first connect ŷ(ω, τ ; θ, rH , rL) to date zero variables, and then show that it satisfies

the required conditions in equilibrium. At t = 0, investors are not active. Firms anticipate

the date t = 1 continuation value and choose the initial and maintained investment levels,

I(ω, τ), {i(ω, τ ; θ)}θ, to maximize their expected utility as defined in program (12).

We start by constructing ŷ(ω, τ ; θ), i.e. the maximum liquidity that a firm can raise

on the international markets. Maintaining i(ω, τ ; θ) units allows a good firm to issue up

to `(ω, τ ; θ) = 1
1+r(ω,τ ;θ)

ξi(ω, τ ; θ) bonds, with unit face value each, without violating the

pledgeability constraint.

Bad firms value each unit of continued investment more than good firms since investors

cannot seize anything from their output. Moreover, (1) they do not need any liquidity if

θ = L, since they cannot continue if hit by a liquidity shock, and (2) they face the same

financing condition as good firms if θ = H but can only partially continue. It follows that

bad firms save less liquidity, and they have enough collateral (initial scale) to issue up to σ̄θ.

See section “Firm problem given the optimal choice of issuance” in C.2 for more detail.

Putting this together we have21

ŷ (ω, τ ; θ) =


` (ω, τ ; θ) τ = g; θ = H or (θ = L and ω ≤ ω2)

` (ω2, τ ; θ) τ = g; θ = L and ω > ω2

σ̄θ τ = b; ∀ θ, ∀ ω
(C.1)

Remark. Recall that in Section B we assumed ŷ(ω, τ ; θ, rH , rL) is decreasing in the (com-

mon) interest rate when θ = H, and in the firm specific rL. With the above mapping, we

need to verify that the equilibrium `(ω, τ ; θ) is in fact downward sloping in rH , rL, which we

will do in this section.

We impose the following parameter restrictions going forward, to focus on a simple global

equilibrium. They are also a sufficient condition for existence of a simple global equilibrium,

as shown in the proof of Proposition 7.

Assumption C.1

(i) ξ ≥ 1
1−φ

(ii) 1−λ
λ
≤ (ρg−ξ)

ρgξ(1−φ)+(ρg−ξ)(φπLξ−1)

(iii) w(0) ≥ φλξ and lims→1w(s) = 0.

(iv) min
{

(ρg−ξ)(1+(1−λ)φξπH)

(ρg(1−φ)+φ(ρg−ξ)πH)ξ
, ξφλ−w(ω)
ξφ(λ+w(ω)πL)

}
≤ 1−λ

1−λω ∀ω
21We will show that when θ = L, good firms with opacity ω > ω2 are indifferent in the scale at which

they continue. Thus the above ŷ is an equilibrium. We pick this tie-breaking rule because it simplifies the
exposition. For more detail see Section B.2, Bunching-with-scarcity.

28



Condition (i) ensures that when there is liquidity risk, φ > 0, without access to credit

markets firms prefer to invest all of their initial endowment and do not use any part of

it to manage liquidity risk. It also implies that without access to credit markets firms do

want to invest (rather than consume right away), which requires ρτ >
1

1−φ and follows since

∀ τ , ρτ > ξ. Condition (ii) ensures that the common interest rate is not prohibitively high

when θ = H, so that firms use international markets and part of their own endowment

to manage liquidity risk, as opposed to investing all of their initial endowment. Condition

(iii) ensures two properties of the investor skill distribution function. First, low-expertise

investors have sufficient wealth so that some bonds are issued at zero interest rate. Second,

expert capital is in short supply. Condition (iv) ensures that when investors are cautious,

there is no equilibrium interest rate for which some investors are willing to buy up all the

offered securities independent of their signal, given the investor skill distribution function

w(s) in the next section.

Proof of Proposition 7 provides a formal description of what each condition guarantees.

C.1 No Nonselective Region. Investor Skill Distribution

Consider rC(ω) and rNS(ω) defined in Equation (B.22) and (B.24), respectively. First, note

that we have assumed the investor skill distribution function is monotonically decreasing,

w′(s) < 0, so rC(ω) does not become non-monotone. As such, bunching region can only

emerge below some threshold, 0 ≤ ω < ω, and bunching-with-scarcity only above some

threshold, ω̄ < ω ≤ 1.

In what follows, we derive a parametric assumption to ensure that nonselective region

does not emerge. Nonselective interest rate schedule is an upper bound on the prevailing

interest rate in each market. Thus a sufficient condition for this upper bound to never be

active, i.e. for the nonselective pricing region not to emerge, is to have rC(ω) ≤ rNS(ω) for

markets where 0 < r̃(m) < r̄(rH).

rC(ω) = `−1

(
w (ω)

φλ

)
≤ (1− λ) σ̄L

λ
∫ 1

ω
`(ω, g;L, rH , rC(ω))dω′

,

where `−1(.) denotes the inverse of function `(ω, g;L; {rH , rC(ω)}) with respect to rC(ω), and

{rH , rC(ω)} indicates the dependence of demand function on (H,L) interest rate explicitly.22

Note that ŷ(ω′, g;L) = σ̄L (∀ ω′) minimizes the right hand side on the above equation, which

22We have also used that ŷ(ω, g;L; {rH , rC(ω)}) = `(ω, g;L; {rH , rC(ω)}) for rC(ω) < r̄(rH), and that no
nonselective region in equilibrium implies ε(ω) = 1 ∀ω.

29



yields the following sufficient condition

rC(ω) = `−1

(
w (ω)

φλ

)
≤ (1− λ)

λ(1− ω)
. (C.2)

This implies that under Assumption C.1, there is no nonselective region when θ = L,

ω1 > 0 and ω3 < 1. The equilibrium pricing regions are thus characterized by three thresholds

ω1 < ω2 < ω3 such that starting from the most transparent firms, ω = 0:

(i) Good firms with opacity 0 ≤ ω ≤ ω1 are in bunching region and face zero interest rate.

(ii) Good firms with opacity ω1 < ω ≤ ω2 are in cash-in-the-market pricing region.

(iii) Good firms with opacity ω2 < ω ≤ ω3 are in bunching-with-scarcity market m̄ at

interest rate r̄(rH), defined in (C.4), and η(m̄, ω, g;L) = 1.

(iv) Good firms with opacity ω3 < ω ≤ 1 are in bunching-with-scarcity market m̄ at interest

rate r̄(rH), defined in (C.4), and η(m̄, ω, g;L) < 1.

(v) No bad firm issues any bonds in any market.

In this equilibrium

y(ω, τ ;L) =


ŷ(ω, τ ;L) if τ = g and ω ≤ ω3

η(m(r̄), ω, τ ;L)ŷ(ω, τ ;L) = ηL(ω)ŷ(ω, τ ;L) if τ = g and ω > ω3

0 if τ = b

(C.3)

C.2 Firm Optimal Decision

Consider the firm problem (12). Each firm j takes his optimal behavior at t = 1 as given,

which along with t = 1 prices in different prudence shocks, the allocation function and the

rationing function fully describes firm j continuation payoff. Firm j then chooses his business

plan to maximize his expected utility given this continuation payoff.

Derivation of firm optimal choice of bond issuance, Equations (2) and (13). A

firm hit by liquidity shock has three possible options, at t = 0, in how to manage a liquidity

shock in each aggregate state at t = 1. First, the firm can choose not to insure against the

liquidity risk and abandon investment if a liquidity shock happen. This would lead to the

highest scale of operation, I(ω, τ). Second, the firm can choose to save enough out of his

own endowment, through the banker, such that he has sufficient liquidity at t = 1 and does
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not need to raise any extra financing on the international markets. This option leads to the

lowest scale of operation. Third, the firm can choose to save a lower amount from his initial

endowment and borrow the rest from international investors. This leads to an intermediate

level of scale of operation.

From the linearity of the firm problem, the firm chooses the same option for all units

of investment. Moreover, Assumption C.1.(i) implies the first option dominates the second.

Assumption C.1.(iii) implies that borrowing on the international markets is sufficiently cheap

that the third option dominates the first one, which in turn leads to firm’s optimal liquidity

choice, Equation (2).

Alternatively, a good firm who is not hit by a liquidity shock is indifferent between issuing

bonds or not if r(ω, τ ; θ) = 0, and otherwise prefers not to issue. Thus these firms do not

participate in the international markets. It follows that, if a bad firm not hit by a liquidity

shock tries to issue bonds, his type is revealed and he does not succeed in raising funding,

and he will not participate either. As such, only firms hit by liquidity shock attempt to

raise funding from international investors at t = 1, which in turn implies the exante budget

constraint (13).

Firm problem given the optimal choice of issuance. Since problem (12) is linear,

Equations (4)-(11) determine the optimal firm choices, i(ω, τ ; θ) ∀ θ whenever they are non-

zero. Plugging these solutions into (13) determines I(ω, τ).

The rest of the argument follows from a parallel logic to (Holmström and Tirole, 1998,

2011).

Good firms. Consider a good firm j = (ω, g). First, conjecture that good firms continue

at full scale in high state, i(ω, g;H) = I(ω, g). Next, let 0 ≤ x ≤ 1 denote the fraction of

the initial scale that firm j = (ω, g) chooses to continue when θ = L. Formally x ≡ i(ω,g;L)
I(ω,g)

.

Use the t = 2 interest rate along with Equation (13) to get I(ω, τ). Substitute I(ω, τ)

and x in the objective function (12). The objective function of the good firm then boils

down to

Π(x) =
φ(ρg − ξ)(πH + πLx) + (1− φ)ρg

1 + φξ(πH
rH

1+rH
+ πL

rL(ω)
1+rL(ω)

x)
− 1.
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The optimal investment is the continuation scale x such that Π′(x) = 0, where

Π′(x) =
πLφ

(
ρg − ξ − πHφξ2( rH

1+rH
− rL(ω)

1+rL(ω)
)− ρgξ

( rL(ω)
1+rL(ω)

(1− πLφ)− πH rH
1+rH

φ
))

(
1 + φξ(πH

rH
1+rH

+ πL
rL(ω)

1+rL(ω)
x)
)2 .

The numerator of Π′(x) is independent of x. As such, if the numerator is strictly positive

(negative), the firm chooses x∗ = 1(x∗ = 0). If the numerator is zero, good firm j is

indifferent between any level of continuation when he receives a liquidity shock in θ = L.

This implies that iff

rL(ω) < r̄(rH) ≡
(ρg − ξ)

(
1 + φξπ rH

1+rH

)
ρg (1− φ) ξ + (ρg − ξ)

(
φπξ

1+rH
− 1
) , (C.4)

a good firm j = (ω, g) hit by a liquidity shock continues at full scale when θ = L. If

rL(ω) > r̄(rH) he does not maintain any investment if he receives a liquidity shock. If

rL(ω) = r̄(rH) the good firm might be rationed when issuing bonds on the international

markets and continue at lower scale.

Next, we need to make sure that our conjecture for continuation at full scale in high

state, i(ω, g;H) = I(ω, g), is correct. For this conjecture to hold, it must be that rH < r̄H

such that every good firm j prefers to submit liquidity demand to international markets

when θ = H. Using Assumption C.1.(i), the alternative is to set i(ω, τ ;H) = 0, do not do

any liquidity risk management and abandon production if hit by a liquidity shock in state

θ = H, and instead increase I(ω, τ). Since firms with opacity ω = 0 are those who face zero

interest rate in θ = L such deviation is most profitable for them. Thus it is sufficient to

ensure that they do not want to deviate. Thus r̄H solves

ρg(1− φ) + (ρτ − ξ)φπL =
ρg(1− φ) + (ρg − ξ)φ

1 + φπHξ
r̄H

1+r̄H

.

It follows that if

rH < r̄H ≡
(ρg − ξ)

ρgξ(1− φ) + (ρg − ξ)(φπLξ − 1)
, (C.5)

all good firms prefer to do liquidity management using a combination of own saving and

international markets.

Finally, consider the most transparent good firm, j0,g = (0, g). When θ = L, this firm

faces zero interest rate and thus does not need to hold any precautionary liquidity against

this state. When θ = H, every good firm, including j0,g, prefers to do liquidity management
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against the liquidity shock and save πHφ
rH

1+rH
per unit of scale, as long as rH < r̄H . Putting

the two states together, j0,g faces the lowest possible interest rate in both states of the world,

and has the highest investment level among all good firms, I(0, g). As explained at the end

of this section, we have chosen σ̄θ ≡ ξ I(0,g)
1+r(0,g;θ)

.

Bad firms. Consider any bad firm. Assumption C.1.(i) implies that firms either do liquid-

ity management using international markets, or do not do any liquidity management. When

θ = L a bad firms hit by a liquidity shock is not able to raise any international financing,

so he has to fully liquidate his initial investment. Thus bad firms do not save any liquidity

against θ = L aggregate state. Next, consider the most opaque bad firm, j1,b = (1, b). When

θ = H, ηH(1) = 1, thus j1,b is not rationed, and is treated as a good firm. Thus he needs

to save πHφ
rH

1+rH
, per unit of scale, to be able to continue at full scale. It follows that j1,b

saves the same amount of liquidity as j0,g, and thus chooses the same level of investment to

maintain.

Every other bad firm, ω < 1 is rationed when θ = H, thus they hold lower liquidity,

compared to j1,b, against this state of the world. This in turn implies they choose a larger

scale of operation: I(ω, b) > I(1, b), ∀ ω < 1 by (13). Furthermore, bad firms face the same

interest rate rH as good firms when θ = H, and moreover they do not pay back, so if good

firms participate in the international markets when θ = H, it is optimal for bad firms to

do so as well. Because these firms are rationed when θ = H they choose maximal credit

demand σ̄θ. It follows that ŷ(ω, b; θ, rH , rL) as defined in Equation (C.1) is optimal.

Firm investment at t = 0. Next we characterize the scale of operation of the firm at

t = 0. For τ = g firms, substitute the optimal continuation decisions (16)-(17), as well as

the interest rates into Equation (13) to get the optimal investment decision

I(ω, g) =



1

1+φξ
(
πH

rH
1+rH

+πL
rL(ω)

1+rL(ω)

) if ω < ω2

1

1+φξ
(
πH

rH
1+rH

+πL
r̄(rH )

1+r̄(rH )

) if ω2 ≤ ω < ω3

1+(1−ηL(ω))
φξπL

r̄(rH )
1+r̄(rH )

1+φξπH
rH

1+rH

1+φξ
(
πH

rH
1+rH

+πL
rL(ω)

1+rL(ω)

) if ω ≥ ω3

(C.6)

where ηL(ω) = η (m(r̄(rH)), ω, g;L), ω1 is defined by (D.28).

Alternatively, for τ = b firms,

I(ω, b) = 1− rHξφπHηH(ω)σ̄H (C.7)
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where ηH(ω) = η(mH , ω, b;H).

Next we verify that for good firms who do payback the international investors, the liq-

uidity a firm raises at t = 1 on the international market, y(ω, τ ; θ) in problem (A.1), is equal

to its liquidity need, `(ω, τ ; θ) associated with optimal investment decision (C.6). This is

immediate from comparing Equations (B.14), (C.3) and (C.1).

Consider D(·) and D̄(·), the individual and aggregate expenditure on maintenance, as

defined by (D.18) and (D.19) in Section D, respectively. It follows that firm j’s realized

issuance of bonds on the international market, `(ω, τ ; θ), is given by:

(i) Good firm j = (τ, g)

` (ω, g; θ) =
ξI(ω, τ)

1 + r(ω, g; θ)
η (mj,θ, ω, g; θ) (C.8)

where η (m,ω, g; θ) is given by

η (m,ω, g; θ) =



∫ 1
ω

1+r̄(rH)

φλD(
r̄(rH )

1+r̄(rH )
;
rH

1+rH
)(s−ω2)−

∫ ω3
ω2

w(s)ds
w(s)ds, r̃(m) = r̄(rH) & ω > ω3 & θ = L

1
(
r̃(m) < r̄(rH) or

(
r̃(m) = r̄(rH) & ω ≤ ω3

))
& θ = L
or
r̃(m) = rH & θ = H

0 otherwise

(C.9)

In each aggregate state, each good firm j = (ω, g) issues bonds in a single market, mj,θ.

mj,θ is given by r(m) = rH if θ = H, and is defined in Section C.1 if θ = L.

(ii) Bad firm j = (τ, b)

` (ω, τ ; θ) = η(mj,θ, ω, τ ; θ)σ̄θ (C.10)

where η (m,ω, b; θ) is given by

η(m,ω, b; θ) =


∫ ω
sH

1+rH
(1−λ)(1−s)D(0;

rH
1+rH

)+λD̄(
rH

1+rH
)

w(s)
φ
ds r̃(m) = rH & ω ≥ sH & θ = H

0 otherwise

(C.11)

Bad firms j = (ω, b) issue bonds on a single market when θ = H and do not issue any
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bonds if θ = L. Thus mj,θ is given by r(m) = rH if θ = H, and mj,θ = ∅ if θ = L.

To complete the proof we need to verify that there is a fixed point to the joint t = 0, 1

problem, i.e. date t = 0 optimal outcomes do constitute an equilibrium in the international

markets at t = 1. We do this in Proposition 7.

D Proofs

Proof of Propositions 1, 2, and Lemma 1 . We prove the results in Section 3 backward.

However, in the main text the results are stated forward. As such, we will present the 3 proofs

jointly and point to the corresponding result accordingly. Furthermore, the credit market

is as described in Appendix A. Furthermore, with the same argument as in Appendix B,

a bold investor extends loans to all firms who do not produce conclusive evidence of being

bad, while a cautious investor only extends loans to firms who produce conclusive evidence

for being good.

We proceed in two steps. First we conjecture investors’ choice of test (information choice)

and acceptance rule in each state, describe the equilibrium for the conjectured test and

acceptance rule, and prove that it is an equilibrium. We then step back and prove that

investors’ optimal choice of test is consistent with the conjectured choice and the proposed

equilibrium in each state.

High Aggregate Shock (θ = λH.) We conjecture that all investors are bold in this state

and accept applications with x(ω, τ) = g only. In equilibrium, a fraction of unskilled and all

investors with s > s0 advertise rH . All good firms demand σ̄H ≡ 1
rH

credit at all interest

rates not higher than rH and all bad firms demand σ̄H credit at all interest rates. Good

firms’ demand is fulfilled at rH while bad firms are allocated

`(ω, b;λH) =


0 if ω ∈ [0, s0]
1
rH
− w(s1)

λH+(1−λH)(1−s1)
− 1

λH
w (1) if ω ∈ [s0, s1]

1
rH
− 1

λH
w (1) if ω ∈ [s1, 1]

(D.1)

at rH . rH is defined using the condition that unskilled investors break even. It is the solution

to

λH
λH + (1− λH) (1− s0)

(1 + rH)− κ
(

1

λH + (1− λH) (1− s0)

)
− 1 = 0, (D.2)

i.e. the zero profit condition of an unskilled bold investor when all firms submit the same

credit demand at rH , and Assumption A.9 implies that she is the first investor who samples
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the pool. λH+(1− λH) (1− s0) is the fraction of applications which do not provide conclusive

evidence that they are bad in the bold test, when used by an investor with skill s0, and the

investor lends to them. Therefore, the investor has to test 1
λH+(1−λH)(1−s0)

applications to be

able to lend out her 1 unit. Out of these projects, λH fraction are actually good and pay

back, generating the total revenue from lending. The second term is the cost of these tests.

Therefore, the unskilled group is indifferent whether to lend at rH or stay out.

λHw (s0)

λH + (1− λH) (1− s0)
>
λH
rH
− w1 −

λHw (s1)

λH + (1− λH) (1− s1)
> 0 (D.3)

is sufficient to ensure that there exists an sH < s0 such that(
1− sH

s0

)
λHw (s0)

λH + (1− λH) (1− s0)
+

λHw (s1)

λH + (1− λH) (1− s1)
+ w (1) =

λH
rH

(D.4)

In turn, (D.4) ensures that at interest rate rH , the total credit supplied by a fraction
(

1− sH
s0

)
of unskilled investors along with every other investors is exactly sufficient to satisfy the credit

demand of all good firms.

The allocation of credit to bad firms is given by market clearing conditions. In particular,

we have(
1− sH

s0

)
(1− λH) (1− s1)w (s0)

λH + (1− λH) (1− s0)
+

(1− λH) (1− s1)w (s1)

λH + (1− λH) (1− s1)
= (1− s1) (1− λH) `(ω, b;λH)(

1− sH
s0

)
(1− λH) (s1 − s0)w (s0)

λH + (1− λH) (1− s0)
= (s1 − s0) (1− λH) `(ω, b;λH)

for ω ∈ [s1, 1] and ω ∈ [s0, s1] respectively, which, together with Equation (D.4), implies

Equation (D.1).

Any investor with s > s0 strictly prefers to enter at rH as they make strictly fewer bad

loans. These investors do not advertise a higher rate as good firms do not demand credit

at higher rates. All entrants lend out all of their capital, thus none of them advertise a

lower rate either. All good firms can borrow up to their credit capacity, therefore they do

not demand credit at a higher rate. As all bad investors are rationed, by our robustness

requirement and the fact that they do not intend to pay back, they demand maximum credit

at higher interest rates as well, but do not raise any credit in those markets.

Low Aggregate Shock (θ = λL.) We conjecture that all investors are cautious in this

state and accept applications with x(ω, τ) = g only. In equilibrium, unskilled advertise the

rate r, moderately skilled advertise r̂, and the most skilled advertise r̄. Bad firms are not
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allocated any credit, hence by our robustness requirement, all bad firms demand maximum

credit σ̄L ≡ 1
r

at every interest rate. Let rL(ω) denote the interest rate at which good firms

from country ω can raise financing.

Assume the following two conditions hold:

w(0) ≥ s0λL
1

r
, (D.5)

w(1) < (1− s1)λL
1

r̄
, (D.6)

Then, rL(ω) is given by

rL(ω) =


r if ω ∈ [0, s0]

r̂ = max{min{λL(s1−s0)
w(s1)

, r̄}, r} if ω ∈ [s0, s1]

r̄ if ω ∈ [s1, 1] ,

If in addition, we have

1

r̄
≤ w (s1)

(s1 − s0)λL
≤ 1

r
(D.7)

then the interest rate schedule corresponds to the following credit allocation for good

firms on the international market:

`(ω, g;λL) =


1
r

if ω ∈ [0, s0]
1
r̂

if ω ∈ [s0, s1]
w(1)

(1−s1)λL
if ω ∈ [s1, 1] .

Demand of the good firms from least opaque countries, ω ∈ [0, s1] , is fully satisfied at the

market with minimum interest rate, rL(ω) = r, i.e. `(ω, g;λL) = σ(m(rL(ω)), ω, g; θ) = σ̄L.

r is the solution to the zero profit condition of unskilled cautious investors when all type of

firms submit the same credit demand at the given interest rate,

(1 + r)− κ
(

1

λLs0

)
− 1 = 0. (D.8)

For these investors, only fraction λLs0 of the sampled firms provide conclusive evidence that

they are good, which implies the second term is the cost. However, all the passed applications

are from good firms, hence the revenue is the first term. Therefore, unskilled investors are

indifferent whether to advertise interest rate r or stay inactive. The fraction of unskilled

entrants is consistent with market clearing if condition (D.5) is satisfied. The acceptance

rule is rationalized by the same argument as in state θ = λH .
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Moderately skilled investors offer a higher rate r̂, hence they make a positive rent. r̂ is

determined by the market clearing condition of these investors, through cash-in-the-market

pricing,

w (s1) = (s1 − s0)λL
1

r̂
.

Thus, if condition (D.7) is satisfied, then r̂ = (s1−s0)λL
w(s1)

, and otherwise r̂ takes the boundary

values of r and r̄, correspondingly. The completes proof of Lemma 1.

Note that if an unskilled or moderately skilled investor were to advertise a higher rate,

she would not receive any applications she could pass her their skill level.

As long as skilled capital is in short supply, i.e. condition (D.6) is satisfied, skilled

investors advertise the maximal interest rate any good firm is willing to accept r̄.

Firms from the most opaque countries ω ∈ [s1, 1] who cannot raise capital at any other

advertised interest rate demand the maximum σ̄L both at and under rL(ω) = r̄. They can

only raise financing in the market with highest interest rate r̄ tho since only in that market

they are recognized as good firms. Furthermore since skilled capital is in short supply, good

firms are rationed at this rate. Thus, `(ω, g;λL) for this group is given by the market clearing

condition

w(1) = (1− s1)λL`(ω, g;λL).

Assumption 2.(ii) ensures that Equations (D.3), and (D.5)-(D.6) hold. This completes the

proof of Proposition 2.

Optimal Choice of Test. Now we show that in each aggregate state, each investor prefers

to choose the conjectured test and acceptance rule. Note that the skilled group’s choice is

immaterial as they observe τ of all firms regardless of their choice of test.

Acceptance rule. For the unskilled investors, recall that the acceptance rule has to be

measurable with respect to the signal. That is, for any test, investors have three choices.(1)

they can accept applications generating x(ω, τ) = g only as conjectured, (2) they can reject

all applications regardless of the signal, (3) they can accept all applications regardless of the

signal. (2) is dominated by choosing to be inactive, while (3) is dominated by choosing the

bold test and following (1). The latter is so, because a bold test rejects only bad firms, which

is surely better than accepting all for any given pool. Therefore, our conjectured acceptance

rule has to be optimal for any choice of test.

Test. First we show that the optimal test is either ι = 0 or ι = 1. Consider an investor

with skill s, running an ι-test and advertising an interest rate r understanding that the the
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corresponding market m, γτ (m, s) fraction of τ the applications are submitted by ω > s

firms. Thus, lending out her one unit of capital at market m leads to the profit

λ (γg + ι (1− γg)) (1 + r)− κ
λγg + ι ((1− γg)λ+ (1− λ) (1− γb))

− 1

where we have omitted arguments of γτ (m, s) for brevity. This expression is consistent with

the zero profit conditions (D.2) and (D.8).

The first order condition with respect to the optimal test is

∂
(

λ(γg+ι(1−γg))(1+r)−κ
λγg+ι((1−γg)λ+(1−λ)(1−γb))

− 1
)

∂ι
=
κ ((1− γb) (1− λ) + λ (1− γg))− λγg (1− λ) (1− γb) (1 + r)

(λγg + ι ((1− γg)λ+ (1− λ) (1− γb)))2 .

(D.9)

Observe that the sign is independent of ι, implying a corner solution. Therefore, when (D.9)

is positive the investor chooses the bold test, and when it is negative she chooses the cautious

test.

Now we show the optimal choice when θ = λH is the bold test for both the moderately

skilled and unskilled investor groups. For that (D.9) must be positive for rH . As all firms

submit demand at that rate, γg = γb = s. Therefore, we need

κ ((1− s) (1− λ) + λ (1− s))− λs (1− λ) (1− s)
(

1 +
(κ+ (1− λ) (1− s))

λ

)
> 0

or:

(1− s) (1− s (1− λ)) (−s+ κ+ sλ) > 0.

Thus

κ

s0

>
κ

s1

> 1− λH (D.10)

ensures that both unskilled and moderately skilled strictly prefers to enter as bold.

Finally, we show that θ = λL implies that the optimal choice is a cautious test for the

moderately skilled and unskilled investors. An unskilled investor, in the market with r where

all firms submit and so γg = γb = s0, we need

κ ((1− s0) (1− λL) + λL (1− s0))− λLs0 (1− λL) (1− s0)

(
1 +

κ

λLs0

)
= λL (1− s0) (κ− s0 + λLs0) < 0
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or

κ

s0

< 1− λL. (D.11)

For moderately skilled investors, (D.9) is decreasing in r. Therefore, it is sufficient to show

that they prefer to enter as cautious at interest rate min r̂ = r. Importantly, in the candi-

date equilibrium γg = (s1 − s0) , γb = s1 as only ω ∈ [s0, s1] good firms and all bad firms

participate in the market with interest rate r̂. Therefore, it is sufficient if

κ ((1− s1) (1− λL) + λL (1− (s1 − s0)))

− λL (s1 − s0) (1− λL) (1− s1)

(
1 +

(κ+ (1− λL) (1− s1))

λL

)
< 0

or

κ (1− (s1 − s0))

(1− s1) (s1 − s0)
< 1− λL. (D.12)

Equations (D.10)-(D.12) follow from Assumptions 2.(i) and 2.(iv). This completes the proof

of Proposition 1.

Proof of Proposition 3.

The firm problem at date t = 1 is defined in (A.1).

(i) The general form of equilibrium for θ = H is characterized in Section B.1. (rH , sH)

are given by Equations (B.8) and (B.9), respectively, using ŷ defined in (C.1).

(ii) The general form of equilibrium for θ = L is characterized in Section B.2. The form

in (14) is then derived by specializing the investor skill distribution function in Section

C.1, which also uses ŷ defined in (C.1) as well as Assumption C.1.

Proof of Proposition 4.

The firm problem at date t = 1 is defined in (A.1).

(i) The general form of equilibrium for θ = H is characterized in Section B.1. Section

C.2 shows that the optimal continuation decision is determined by the constraint. It

follows that the equilibrium amount that the firm raises is given by y(ω, τ ;H, rH , rL) in

program (A.1), using ŷ defined in (C.1) and Equations (2) and (13) with the optimal

i(ω, τ ;H).
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(ii) The general form of equilibrium for θ = L is characterized in Section B.2, and spe-

cialized in Section C.1 by specializing the investor skill distribution function under

Assumption C.1. Section C.2 shows that the optimal continuation decision is deter-

mined by the constraint. It follows that the equilibrium amount that the firm raises is

given by y(ω, τ ;L, rH , rL) in program (A.1), using ŷ defined in (C.1) and Equations (2)

and (13) with the optimal i(ω, τ ;L) and α = ξ.

Proof of Proposition 5.

The derivation of optimal firm scale of operation, as well as the optimal continuation

decision, is provided in Section C.2. (15) follows from (C.6), where the rationing function is

defined in (C.9).

Proof of Proposition 6.

The derivation of optimal firm exante investment, as well as the optimal continuation

decision, is provided in Section C.2. (18) follows from (C.7), where the rationing function is

defined in (C.11).

Lemma D.1 Assume G(x) and H(x, z) are continuous in x. Equation (D.13) has a fixed
point x ∈ [0, 1],

F (x) =
(1− λ)

∫ 1

sH(x)
H(x, z)dz

(1− λ)
∫ 1

sH(x)
H(x, z)dz + λG(x)

; (D.13)

where sH(x) is the solution to∫ 1

sH(x)

1

(1− λ)
∫ 1

s
H(x, z)dz + λG(x)

w(s)ds = φ(1− x), (D.14)

if Equation (D.14) has a solution, and sH(x) = 0 otherwise.

Proof of Lemma D.1.

First note that if Equation (D.14) has a solution in sH(x), it will be sH(x) ∈ [0, 1]. The

reason is that w(s) = 0 for s > 1 and s < 0, so moving sH outside the [0, 1] interval does

not change the left hand side of Equation (D.14).

Case 1 [Equation (D.14) holds with equality, sH ∈ [0, 1]]. Consider the case where

sH is interior. Consider the self-map on F : [0, 1] 7→ [0, 1]. We use Brouwer’s fixed-point
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theorem to prove existence of a fixed point. [0, 1] is a compact convex set. We need to show

is that F (x) is a continuous function, and maps [0, 1] to itself, which is immediate since the

ratio in F (x) is positive and (weakly) smaller than one.

Next we move to proving continuity. G(x) is continuous in x. H(x, z) is also continuous

in x, and so is
∫
H(x, z)dz. Thus if a solution sH(x) to Equation (D.14) exists, it is also

continuous.

This implies that if a solution to Equation (D.14) exists, then everything on the right

hand side of Equation (D.13) is continuous, so F (x) is a continuous map from [0, 1] to [0, 1],

which implies by Brouwer’s theorem a fix point exists.

Case 2 [Equation (D.14) only holds with inequality, thus sH = 0]. Then Equa-

tion (D.13) becomes one equation in one unknown in x, which with the same argument as

the previous case has a fixed point.

Proof of Proposition 7. Let

λ ≡ ρgξ(1− φ) + (ρg − ξ)(φπLξ − 1)

ρgξ(1− φ) + (ρg − ξ)φπLξ
and

Λ(ω) ≡ min
{ (ρg − ξ) (1 + (1− λ)φξπH)

(ρg (1− φ) + φ (ρg − ξ) πH) ξ
,

ξφλ− w(ω)

ξφ(λ+ w(ω)πL)

}
.

Then, the sufficient conditions of Proposition 7 are equivalent with Assumption C.1 (i)-(iv).

Here, we proceed in steps. First, we show that the existence of a simple global equilibrium

can be mapped to a fixed point problem. After describing the problem we explain the

mapping between Equations (D.15)-(D.30) to the solution developed in Sections C and B.

Then, we use Lemma D.1 to prove the existence of equilibrium. Second, we explain the role

of Assumption C.1 (i)-(iv).

Equilibrium Existence as a Fixed Point Problem

Equations (D.15)-(D.30) spell out how the equilibrium objects rH , rL(ω), sH , ω1, ω2, ω3, ηL(ω)

and ηH(ω) are constructed.

F (x) =
(1− λ) (1− sH(x))D (0;x)

(1− λ) (1− sH(x))D(0;x) + λD̄(x)
(D.15)

where sH(x) solves∫ 1

sH(x)

1

(1− λ) (1− s)D(0;x) + λD̄(x)
w(s)ds = (1− x)φ, (D.16)
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if Equation (D.16) has a positive solution, and sH(x) = 0 otherwise.

Moreover

ȳ(x) =
(ρg − ξ) (1 + φξπHx)

(ρg (1− φ) + φ (ρg − ξ) πH) ξ
(D.17)

D(y;x) =
ξ

1 + φξ(πHx+ πLy)
(D.18)

D̄(x) =ω1(x)D(0;x) +

∫ ω2(x)

ω1(x)

D(yC(ω);x)dω

+

(
1− ω2(x) +

φξπLȳ(x)

1 + φξπHx

∫ 1

ω3(x)

(1− ηL(ω))dω

)
D(ȳ(x);x). (D.19)

where

yC(ω;x) ≡ ξφλ− w(ω)(1 + φξπHx)

ξφ(λ+ w(ω)πL)
ω ∈ [ω1(x), ω2(x)] . (D.20)

The rationing functions are given as follows

ηL(ω) = min

1,

∫ 1

ω

1

φλ(1− ȳ(x))D(ȳ(x);x)(s− ω2(x))−
∫ ω3(x)

ω2(x)
w(s)ds

w(s)ds


(D.21)

ηH(ω) = min

(
1,

∫ ω

sH(x)

1

(1− λ) (1− s)D(0;x) + λD̄(x)

w(s)

φ(1− x)
ds

)
(D.22)

and ω1(x), ω2(x), ω3(x) are defined as follows.

Let ω̂1(x) and ω̂2(x) be the solution to the following two equations, respectively:

w (ω2)− φλ (1− ȳ(x))D (ȳ(x);x) = 0, (D.23)

w (ω1)− φλD (0;x) = 0. (D.24)

Then

ω2(x) = min{max{ω̂2(x), 0}, 1}, (D.25)

ω1(x) = min{max{ω̂3(x), 0}, 1}. (D.26)

Moreover, let ω̂3 be the solution to

1 =

∫ 1

ω3

1

φλ(1− ȳ(x))D(ȳ(x);x) (s− ω2(x)))−
∫ ω3(x)

ω2(x)
w(s)ds

w(s)ds (D.27)
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ω3(x) = min{max{ω̂3(x), 0}, 1}. (D.28)

Finally, given the fixed point x∗, r̄(x∗) = ȳ(x∗)
1−ȳ(x∗)

, and interest rates rH and rL(ω) are given

by

rH =
x∗

1− x∗
(D.29)

r̂(ω) =
yC(ω;x∗)

1− yC(ω;x∗)
. (D.30)

and (14).

To simplify the formulas, the proposition is stated in terms of premia rather than interest

rates, using the monotone transformation

q =
r

1 + r
. (D.31)

Using this transformation, Equation (B.8), which defines the interest rate when θ = H,

can be written as

q =
(1− λ)

∫ 1

s
ŷ(ω, b;H)dω

(1− λ)
∫ 1

s
ŷ(ω, b;H)dω + λ

∫ 1

0
ŷ(ω, g;H)dω

(D.32)

LetH(rH) = ŷ(ω, b;H, rH) andG(rH) =
∫ 1

0
ŷ(ω, g;H, rH)dω, noting thatH(rH) = ŷ(ω, g;H)

depends on qH through rH , using Equation (D.31). We have shown in Section C that ŷ is

continuous in rH , and rH is by construction continuous in qH . As such, existence of a solution

to pair of Equations (D.32) and (B.9) such that qH ≥ 0 and 0 ≤ sH ≤ 1, implies that there

exists a solution to pair of Equations (B.8) and (B.9) such that rH ≥ 0 and 0 ≤ sH ≤ 1.

We proceed in two steps. We first explain the mapping between Equations (D.15)-(D.30)

to the solution developed in Sections C and B. We will then use Lemma D.1 to prove the

existence of equilibrium.

Equation (D.18) writes the general form of expected maintenance cost of a good firm who

faces premia x when θ = H, and y when θ = L, or interest rates x
1−x and y

1−y , respectively.

It uses the equilibrium firm scale of operation, defined by Equation (C.6), and optimal

continuation scale. Substitute in Equation (2) (with α = ξ) to get firm liquidity demand in

international markets: `(ω, g; θ) =
D(

rL(ω)

1+rL(ω)
;
rH

1+rH
)

1+r(ω,g;θ)
. Using this demand functions, ŷ at t = 1

is defined in (C.1). It is straight forward to verify that using (C.1) to solve for the firm

problem at t = 1 (Section B), y(ω, τ ; θ) = `(ω, τ ; θ).
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Under the appropriate sufficient conditions on the parameters (see the end of this proposi-

tion), firms choose to participate in international markets when θ = H, with the equilibrium

described in B.1, and when θ = L with the equilibrium described in sections B.2 and C.1,.

Under this equilibrium structure, Equation (D.19) aggregates the total required maintenance

across the pricing regions when θ = L.

Equation (D.17) rewrites the maximum premium q̄ in θ = L, defined in Equation (C.4),

when the common premium in high state is x. The threshold transparencies ω1, ω2 and ω3

are defined in Equations (D.26), (D.25), and (D.28), respectively, and ω3 = ω̃ and ω2 = ω̄ in

the θ = L equilibrium in Section B.2. This leads to the rationing function in Equation (C.9).

Equation (D.24) determines the threshold where bunching region ends, at zero interest rate,

given liquidity demand function (D.18). Equation (D.23) determines the threshold where

bunching-with-scarcity region starts, at premium q̄ (interest rate r̄(rH)). Equation (D.27)

determines the threshold where rationing starts in bunching-with-scarcity region, given the

liquidity demand

Finally, Equations (D.15) and (D.16) jointly determine the pooling premium and marginal

investor when θ = H, at the above liquidity demand levels.

The last equilibrium object to determine is demand function for credit {σ(m,ω, τ ; θ)}θ=H,L.

It is implied from Lemma B.1 and Equation (C.1), Proposition 4, and Equations (C.6)

and (C.7) to relate each firm demand for credit in each state to its the equilibrium scale of

operation.

Lastly, we will use Lemma D.1 to prove existence of equilibrium. Let G(x) = D̄(x) and

H(x) = D(0;x). As such we need to show both functions are continuous.

ȳ(x) is continuous. D(y;x) is continuous in x for any x, y > 0 since 1+φξ(πHx+πLy) > 0.

Thus D(0;x) and D(ȳ(x);x) are also continuous.

Now turn to ω1(x), ω2(x) and ω3(x). w(.) and D(y;x) are continuous in x. D(y, x) is

constant in ω and w(.) is increasing in ω, so Equations (D.23) and (D.24) have a unique

solution in ω, so ω̂1(x) and ω̂2(x) exist, are unique, and continuous.

Next, D(0, x) is decreasing in x. Moreover

D(ȳ(x);x)− (1− ȳ(x))D(ȳ(x);x) = ȳ(x)D(ȳ(x);x) =
ρH − ξ
ρg − φξ

,

d
(

(1− ȳ(x))D(ȳ(x);x)
)

dx
=
dD(ȳ(x);x)

dx
=
ξ2πHφ(ρg(1− φ) + φπH(ρg − ξ))

(ρg − φξ)(1 + φξπHx)2
< 0.

Thus both ω̂2(x) and ω̂1(x) are monotonically decreasing in x. Since ω̂2(x) and ω̂1(x) are

continuous, (D.25) and (D.26) imply that ω2(x) and ω1(x) are also continuous and weakly
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decreasing in x.

Next consider the right hand side of (D.27). ω2(x) is continuous. Moreover, (D.27) is

the simplified version of (B.27). We have already shown that RD(ω1, ω2(x), ȳ(x), 1) > 0, and

ŷ(ω2(x), g;L) = D(ȳ(x);x)(1 − x) > 0, thus the denominator is positive. Each term is also

continuous in x, which in turn implies the right hand side is continuous in x. Thus ω̂3(x) is

continuous as well, and using Equation (D.28), ω3(x) is also continuous.

Finally, continuity of ωi(x) i = 1, 2, 3, along with continuity of w(.), η(.) and D(y;x) (in

x) implies D̄(x) is continuous. So by Lemma D.1, the fixed point exists.

Explanation of Parameter Restrictions

Optimal Firm Decision without Access to International Market [ξ ≥ 1
1−φ .] Assume the

firm does not have access to international investors. So the firm can do one of the two things.

The first option is to invest all of his initial endowment. Then the firm continues with a

high scale, II = 1, if not hit by a liquidity shock, and terminate the project if hit. Thus the

payoff is ΠI = ρτ (1 − φ)I1 = ρτ (1 − φ). Alternatively, the firm can save enough of his own

endowment using bankers to insure against the liquidity shock in either or both aggregate

states. Since the aggregate state is only relevant in the interaction with the international

investors, if the firm choose to insure against liquidity shock from own endowment, it will be

for both aggregate states. The firm investment scale is given by IS = 1
1+φξ

, and his expected

payoff is ΠI = ρτI2. Thus for ΠI > ΠS we need

1− φ > 1

1 + φξ
⇒ φ <

φξ

1 + φξ
⇒ ξ >

1

1− φ
,

which is Assumption C.1.(i). Under this assumptions when firms can access the interna-

tional credit market, we only need to compare borrowing on the international markets with

investing all of their endowment. This is the next parametric restriction that we consider.

Sufficient Condition for Inequality (C.5) [λ < λ] Equations (D.30), (D.15), and the

monotonicity of (D.15) in sH implies

rH
1 + rH

=
(1− λ) (1− sH(rH))

(1− λ) (1− sH(rH)) + (λ)
D̄(

rH
1+rH

)

D(0;
rH

1+rH
)

≤ (1− λ)

(1− λ) + λ
D̄(

rH
1+rH

)

D(0;
rH

1+rH
)

,
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which in turn implies

rH ≤
1− λ
λ

D(0; rH
1+rH

)

D̄( rH
1+rH

)
.

So to find an upper bound on rH , it is sufficient to find an upper bound on
D(0;

rH
1+rH

)

D̄(
rH

1+rH
)

. Note

that D(0; rH
1+rH

) is what the most transparent good firms spending on maintenance. As these

firms face the most favourable credit market conditions, D̄( rH
1+rH

) ≤ D(0; rH
1+rH

) holds which

in turn implies

rH ≤
(1− λ)

λ
⇒ qH ≤ (1− λ)

In Assumption C.1.(ii) we assume (1−λ)
λ
≤ r̄H , where r̄H is defined in Equation (C.5).

This in turn insures that rH ≤ r̄H . Moreover, one can substitute (1− λ) for x in (D.17) to

get an upper bound on q̄.

Sufficient Condition for Inequality (B.23) [w(0) ≥ φλξ]. Using (C.1), we can write

condition (B.23) as

w(0) > φλ`(0, g;L) = φλD(0; rH)

Note that in ω̂ = ω3(rH). A sufficient condition for the above inequality to hold is

w(0) ≥ φλξ, (D.33)

which ensure that ω1 > 0, and constitutes the first part of Assumption C.1.(iii).

Sufficient Condition for a smaller than one solution to Equation (B.27). [lims→1w(s) = 0]

This condition directly ensures insures that ω̃ that solves Equation (B.27) is smaller than 1,

i.e. 1 > ω3. This is the second part of Assumption C.1.(iii).

Sufficient Condition for Inequality (C.2). [min
{

(ρg−ξ)(1+(1−λ)φξπH)

(ρg(1−φ)+φ(ρg−ξ)πH)ξ
, ξφλ−w(ω)
ξφ(λ+w(ω)πL)

}
≤

1−λ
1−λω ∀ω]. The only set of markets we need to consider are those with cash-in-the-market

pricing. Let qC(ω) = rC(ω)
1+rC(ω)

and q̄(rH) = r̄(rH)
1+r̄(rH)

. From (C.2)

qC(ω) ≤ (1− λ)

(1− λ) + λ(1− ω)

Start by noting that q̄(rH) is the maximum qC(ω) can achieve, so a sufficient condition for
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inequality (C.2) is

min{q̄(rH), qC(ω)} ≤ (1− λ)

(1− λ) + λ(1− ω)
.

Next from (D.17)

q̄(rH) =
(ρg − ξ)(1 + φξπHqH)

(ρg(1− φ) + φ(ρg − ξ)πH) ξ
≤ (ρg − ξ) (1 + (1− λ)φξπH)

(ρg (1− φ) + φ (ρg − ξ) πH) ξ

where the inequality used part (ii) to replace qH with it’s maximum, (1− λ). Next, from (D.20)

qC(ω) =
ξφλ− w(ω)(1 + φξπHx)

ξφ(λ+ w(ω)πL)
≤ ξφλ− w(ω)

ξφ(λ+ w(ω)πL)

where the inequality just uses qH ≥ 0. Substitute both back to get a sufficient condition

min
{ (ρg − ξ) (1 + (1− λ)φξπH)

(ρg (1− φ) + φ (ρg − ξ) πH) ξ
,

ξφλ− w(ω)

ξφ(λ+ w(ω)πL)

}
≤ 1− λ

1− λω
.

which is Assumption C.1.(iv).

E Further Results and Extensions

E.1 Determination of Exposure Groups: Analytical Results

As we note in the main text, we can decompose the total effect of our parameters to the rel-

ative size of exposure groups into two parts. First, keeping the interest rate in the high state

(rH) fixed, changes in parameters have a direct effect on maintained investment i(ω, τ, L).

Second, there is an indirect effect through the spill-over across aggregate states. A change in

credit demand in the low state affects scale I(τ, g) and, through the budget constraint (13),

affects credit demand in the high state as well. This in turn changes the equilibrium interest

rate in the high state, rH , which then feeds back into the initial and maintained investment

in both high and low states.

In the following proposition, we characterize the direct effect. In particular, we show

that an increase in the probability or the size of the liquidity shock, φ and ξ, in the fraction

of good firms, λ, and in the probability of the low aggregate state, πL, all increase the total

credit demand of good firms at zero interest rate, and, consequently, shrink the set of core

countries. Similarly, an increase in the size of the liquidity shock, in the fraction of good

firms, and in the productivity of good firms increases the total credit demand of good firms
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at r̄(rH) interest rate, and, consequently, increases the set of peripheral countries. While we

do not have analytical results on the indirect effect, the direct effect dominates in all our

numerical simulations.

Proposition E.1 In a simple global equilibrium, keeping rH fixed,

(i) the set of low exposure countries shrinks if there is an increase in ξ, φ, λ, or πL,

∂ω1

∂ξ
,
∂ω1

∂φ
,
∂ω1

∂λ
,
∂ω1

∂πL
|rH fixed < 0.

(ii) The set of high exposure countries grows if there is an increase in ξ, λ or ρg,

∂ω3

∂ξ
,
∂ω3

∂λ
,
∂ω3

∂ρg
|rH fixed < 0

Proof of Proposition E.1. Using Equation (D.24), the size of the low exposure group is

determined by

w(ω1) = φλξi (ω, g, L) |ω∈[0,ω1]. (E.34)

The direct effects come from simple differentiation using Equations (15) and (17) and noting

that ηH(ω) = ηL(ω) = 1 in the low exposure region. The size of the group of high exposure

countries is defined implicitly in Equation (D.27). Let Z1 = φ (λ) ξ
1+r̄(rH)

i (τj = ω, g, L) |ω∈[ω1,ω2],

the amount an unrationed representative good firm borrow facing the maximum interest rate

r̄. In the left panel of Figure 3, we plot the supply of capital of a k ≥ ω3 firm, ηL(ω)Z1 as

the dashed curve, which, using the definition of ω2 in (D.23), we can rewrite as

Z1

∫ 1

ω

1

Z1 (s− w−1 (Z1))−
∫ ω3

w−1(Z1)
w(s)ds

w(s)ds. (E.35)

By definition, ω1 is determined by the point where this curve is equal to the demand Z1,

the dashed line, as this is the least transparent country where firms demand for credit is

fully met. While a change in Z1 moves both curves, using the implicit function theorem,

we can verify that ∂ω3

∂(Z1)
< 0. The direct effects then come from simple differentiation using

equations (15) and (17) and noting that ηH(ω) = ηL(ω) = 1 in the region ω ∈ [ω1, ω2].

E.2 Partitioned Opacity Groups

In the baseline model, we assume that investors have an uninformative prior about ω, the

average opacity of firms in a given country. That is, if an investor does not find conclusive

evidence on a firm, the country of origin does not help her do any further inference.
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Figure 5: Interest rates for transparent and opaque countries in the high (solid) and low
(dashed) aggregate state.

In this section, we weaken this assumption. In particular, suppose that a public signal

partitions countries into a transparent and an opaque group. That is, observing the public

signal, each investor knows that the opacity, ω of the given country is ω > Ω or ω < Ω,

where Ω is an arbitrary cut-off. Intuitively, investors understand that a firm from a southern

country in Europe tends to be more opaque than a northern country firm, but they have no

information on how firms in different south European countries compare to each other.

Figure 5 illustrates the effect of this treatment on the equilibrium interest rate schedules.

Compared to the corresponding figure for the baseline case, the left panel of Figure 1, it

is clear that the qualitative difference is small. The main effect of the extra signal is the

partial separation in the high aggregate state. With the public signal, investors have an

additional choice. They can choose to accept only firms from the transparent group to lend

to. For less skilled investors, this implies a portfolio with less bad firms, as their mistakes

are concentrated in opaque countries. Therefore, in equilibrium, less skilled investors lend

to firms from the transparent group only, albeit at a lower interest rate. On the other

hand, more skilled investors lend to firms from the opaque group but for higher interest

rate. The marginal investor who is just indifferent between these two choices is determined

in equilibrium.23

While it is an intuitive assumption that investors have some prior knowledge on the

average opacity of firms in different countries, we assume this away in the baseline model

23The public signal also introduces a small bunching region around Ω in the low aggregate state interest
rate schedule. As we explain in Appendix B, this comes from the requirement that the interest rate schedule
has to be weakly monotonically decreasing in ω, and is obtained by an ironing procedure.
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because of two main reasons. First, we believe the additional analytical complexity does not

justify the additional insight. Second, one of the main focuses of our analysis is how investors

endogenously classify countries into low and high exposure groups in equilibrium. As this

extension illustrates, a public signal on ω classify countries exogenously, and obscures our

analysis.
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