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A Definitions and proofs of results stated in main text

A.1 Well-behaved families of tax policies

In this section, I spell out the requirements for a well-behaved families of tax policies introduced

in Section II.A more formally and completely, both for individualized tax policies that can depend

on i, and for non-individualized tax policies that do not depend on i, as in Section V.A.

A.1.1 Individualized tax policies

A family of tax policies
(
T θ
)
θ∈Θ is well-behaved if

1. for each i and θ, i’s optimal income in response to T θ, zi (θ) exists, is unique, and zi (θ) > 0,

and the second order condition for i’s optimization problem, when facing T θ, holds with strict

inequality at the optimum: d2

dz2

∣∣∣
z=zi(θ)

Ui (z − Ti (z, θ) , z) < 0, and

2. (a) for all i, the map (z, θ) 7→ Ti (z, θ) is smooth, and

(b) there exists a finite set subset of {i0, i1, . . . , in} of I, with n ≥ 1 and i0 = 0 < i1 < i2 <

. . . < in = 1 such that the map (i, z, θ) 7→ Ti (z, θ) is smooth on (ik−1, ik) × Z × Θ, for

k = 1, . . . n.

To eliminate any possible ambiguity, d2

dz2

∣∣∣
z=zi(θ)

Ui (z − Ti (z, θ) , z) is the second derivative of the

function z 7→ Ui (z − Ti (z, θ) , z). Assuming quasilinear utility, d2

dz2

∣∣∣
z=zi(θ)

Ui (z − Ti (z, θ) , z) =

2



d2

dz2

∣∣∣
z=zi(T )

u (z − Ti (z, θ)− vi (z)). As mentioned in the main text, condition 2b allows for a finite

number of discontinuities in i.

A tax policy is regular if there exists a well-behaved family
(
T θ
)
θ∈Θ and θ′ ∈ Θ such that

T θ′ = T . Given this definition, it is easy to see that a tax policy T is regular if and only if

1. for each i, zi (T ) exists and is unique, zi (T ) > 0, and d2

dz2i

∣∣∣
zi=zi(T )

Ui (zi − Ti (zi) , zi) < 0, and

2. (a) for all i, the map z 7→ Ti (z) is smooth, and,

(b) there exists a finite set subset of {i0, i1, . . . , in} of I, with n ≥ 1 and i0 = 0 < i1 < i2 <

. . . < in = 1 such that the map (i, z) 7→ Ti (z) is smooth on (ik−1, ik)×Z, for k = 1, . . . n.

It follows immediately from the definitions of well-behaved families of tax policies and regular tax

policies that any regular tax policy must satisfy the above conditions. Going in the other direction,

if T satisfies the above conditions then the family
(
T θ
)
, defined by T θ = T, ∀θ is well-behaved. So

the above conditions are sufficient for a tax policy to be regular as well.

A doubly parameterized family
(
T θ,ϵ

)
θ∈Θ,ϵ∈E is well-behaved if

1. for each i, θ, and ϵ, zi (θ, ϵ) exists and is unique, zi (θ, ϵ) > 0, and the second order condition

holds with strict inequality: d2

dz2

∣∣∣
z=zi(θ,ϵ)

Ui (z − Ti (z, θ, ϵ) , z) < 0, and

2. (a) for all i, the map (z, θ, ϵ) 7→ Ti (z, θ, ϵ) is smooth, and

(b) there exists a finite set subset of {i0, i1, . . . , in} of I, with n ≥ 1 and i0 = 0 < i1 < i2 <

. . . < in = 1 such that the map (i, z, θ, ϵ) 7→ Ti (z, θ, ϵ) is smooth on (ik−1, ik)×Z×Θ×E,

for k = 1, . . . n.

A.1.2 Non-individualized tax policies

When taxes are not individualized, and hence are the same for all agents and do not depend on i,

the requirements for well-behavedness simplify. In particular, in this case, a tax policy T is regular

if and only if

1. for each i, zi (T ) exists and is unique, zi (T ) > 0, and d2

dz2i

∣∣∣
zi=zi(T )

Ui (zi − T (zi) , zi) < 0, and

2. the map z 7→ T (z) is smooth.

Likewise, when taxes are not individualized, a family
(
T θ,ϵ

)
is well behaved if

1. for each i, θ, and ϵ, zi (θ, ϵ) exists and is unique, zi (θ, ϵ) > 0, and the second order condition

holds with strict inequality: d2

dz2

∣∣∣
z=zi(θ,ϵ)

Ui (z − T (z, θ, ϵ) , z) < 0, and

2. the map (z, θ, ϵ) 7→ T (z, θ, ϵ) is smooth.

The following observation is useful

Observation A.1 A family of non-individualized tax policies
(
T θ,ϵ

)
is well behaved if and only if

(i) for all θ and ϵ, T θ,ϵ is regular and (ii) the map (z, θ, ϵ) 7→ T (z, θ, ϵ) is smooth.
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A.2 Proof of Proposition 1

Assume that g,
(
T θ
)
and θ0 are as in the hypothesis of the proposition. Now, first assume that∫

gi (θ0)
∂
∂θ

∣∣
θ=θ0

Ti (zi (θ0) , θ) di < 0. It follows from the smoothness of welfare weights, utility

functions and parameterized families of tax policies that if θ1 is such that θ1 > θ0 and θ1 is

sufficiently close to θ0, then for all θ′ ∈ [θ0, θ1],
∫
gi

(
T θ′
)

∂
∂θ

∣∣
θ=θ′

Ti

(
zi

(
T θ′
)
, θ
)
di < 0. It follows

from the global improvement principle (in Section II.B) that for all θ′ ∈ (θ0, θ1), T
θ0 ≺g T θ′ . This

establishes the first claim in Proposition 1.

Next assume that
∫
gi (θ0)

∂
∂θ

∣∣
θ=θ0

Ti (zi (θ0) , θ) di > 0. Now define the parameterized family

of tax policies,
(
T̃ θ
)
θ∈[−θ,−θ]

by T̃ θ = T−θ,∀θ ∈
[
−θ,−θ

]
, and, using notation analogous to that

introduced in Section II.A, let T̃i (z, θ) = T̃ θ
i (z). Then we have:

∫
gi

(
T̃−θ0

) ∂

∂θ

∣∣∣∣
θ=−θ0

T̃i

(
zi

(
T̃−θ0

)
, θ
)
di =

∫
gi

(
T θ0
)
×

(
− ∂

∂θ

∣∣∣∣
θ=θ0

Ti

(
zi

(
T θ0
)
, θ
))

di

= −
∫

gi

(
T θ0
) ∂

∂θ

∣∣∣∣
θ=θ0

Ti

(
zi

(
T θ0
)
, θ
)
di < 0,

where the inequality follows from the assumption made at the beginning of the paragraph. It

follows from the smoothness of welfare weights, utility functions and parameterized families of

tax policies that if −θ1 ∈
(
−θ,−θ0

)
is sufficiently close to −θ0, then for all θ′ ∈ [−θ1,−θ0],∫

gi

(
T̃ θ′
)

∂
∂θ

∣∣
θ=θ′

T̃i

(
zi

(
T̃ θ′
)
, θ
)
di < 0. So the global improvement principle implies that, for all

−θ′ ∈ (−θ1,−θ0), T̃
−θ′ ≺g T̃−θ0 . So for all θ′ ∈ (θ0, θ1) , T

θ0 ≻g T θ′ . This establishes the second

claim of Proposition 1. □

A.3 Proof of Proposition 2

First assume that all agents are indifferent as θ varies in the interval [θ0, θ1]. Then, for all

θ′ ∈ [θ0, θ1] and agents i, d
dθ

∣∣
θ′=θ

Ui

(
T θ′
)

= 0. Hence, by (5), for all θ′ ∈ [θ0, θ1] and agents

i, ∂
∂θ

∣∣
θ=θ′

Ti

(
zi

(
T θ′
)
, θ
)
= 0. So, for all θ′ ∈ [θ0, θ1],

∫
gi (T )

∂
∂θ

∣∣
θ=θ′

Ti

(
zi

(
T θ′
)
, θ
)
di = 0. So

by the global indifference principle (in Section II.B), T θ0 ∼g T θ1 . This establishes Pareto indiffer-

ence along paths. Weak Pareto along paths is similar, appealing again to (5), and using the global

improvement principle (also in Section II.B) instead of the global indifference principle. □

A.4 Definitions for and proof of Corollary 1

Consider a real-valued social welfare function W (T ), whose domain is the set of regular tax poli-

cies. Say the social welfare function is sufficiently differentiable if for all well-behaved families(
T θ
)
θ∈Θ and θ0 ∈ Θ, the derivative d

dθ

∣∣
θ=θ0

W
(
T θ
)
exists. Say that a social welfare function W is

Paretian along paths if for all well-behaved
(
T θ
)
θ∈Θ and all θ0, θ1 ∈ Θ with θ0 < θ1, W satisfies

the following properties:
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1. Pareto indifference along a path. Suppose that all agents are indifferent among all tax

policies T θ for θ ∈ [θ0, θ1]. Then W
(
T θ0
)
= W

(
T θ1
)
.

2. Weak Pareto along paths. Suppose that, for all θ̂ ∈ [θ0, θ1] and all agents i, d
dθUi

(
θ̂
)
> 0.

Then W
(
T θ0
)
< W

(
T θ1
)
.

Say that a system of welfare weights g implements social welfare function W ifW is sufficiently

differentiable and for all well-behaved families
(
T θ
)
θ∈Θ and all θ′ ∈ Θ,

d

dθ

∣∣∣∣
θ=θ′

W
(
T θ
)
> 0 ⇔

∫
gi

(
T θ′
) ∂

∂θ

∣∣∣∣
θ=θ′

T
(
zi

(
T θ′
)
, θ
)
di < 0 and (A.1)

d

dθ

∣∣∣∣
θ=θ′

W
(
T θ
)
= 0 ⇔

∫
gi

(
T θ′
) ∂

∂θ

∣∣∣∣
θ=θ′

T
(
zi

(
T θ′
)
, θ
)
di = 0. (A.2)

The first condition says that increasing θ is good according to the social welfare function W and

this is detected by the θ-derivative of W
(
T θ
)
if and only if increasing θ is desirable according

welfare weights g. The second condition says that the θ-derivative of W
(
T θ
)
does not detect any

change in social welfare if and only if welfare weights do not detect any change in social welfare.

Having made the terms in the corollary precise, I now prove the corollary. Assume that

the system of welfare weights g implements social welfare function W . Let
(
T θ
)
θ∈Θ be well-

behaved and let θ0, θ1 ∈ Θ with θ0 < θ1, and suppose that all agents are indifferent among all

tax policies T θ′ for θ′ ∈ [θ0, θ1]. Then arguing as in the proof of Proposition 2, it follows that∫
gi

(
T θ′
)

∂
∂θ

∣∣
θ=θ′

T
(
zi

(
T θ′
)
, θ
)
di = 0. So by (A.2), d

dθ

∣∣
θ=θ′

W
(
T θ
)
= 0, for all θ′ ∈ [θ0, θ1]. So

W
(
T θ0
)
= W

(
T θ1
)
. So any social welfare function implemented by g satisfies Pareto indifference

along paths. The argument that any social welfare function W implemented by welfare weights

satisfies Weak Pareto along paths, proceeds similarly, using (A.1) in the place of (A.2) to derive
d
dθ

∣∣
θ=θ′

W
(
T θ
)
> 0, for all θ′ ∈ [θ0, θ1], and hence W

(
T θ0
)
< W

(
T θ1
)
. □

A.5 Proof of Proposition 3

It is convenient to prove a stronger version of Proposition 3, which adds a third equivalent condition

– condition 2 in Proposition A.1 below – to conditions 1 and 3. Recall that we have assumed that

gi (ci, zi) is a smooth function of (ci, zi).

Proposition A.1 Let g and ĝ be related as in (9). Then the following conditions are equivalent:

1. g is structurally utilitarian.

2. ∀i ∈ I, ∀ûi ∈ R, ∀zi, z′i ∈ Z, ĝi (ûi, zi) = ĝi (ûi, z
′
i) .

3. ∀i ∈ I, ∀ûi ∈ R,∀zi ∈ Z, ∂
∂zi

ĝi (ûi, zi) = 0.

Proof. First I argue that condition 1 of the proposition implies condition 2. Assume that g is

structurally utilitarian. Now choose i ∈ I, zi, z
′
i ∈ Z, and ûi ∈ R. Define ci = ûi + vi (zi) and
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c′i = ûi + vi (z
′
i). Then observe that

ci − vi (zi) = ûi = c′i − vi
(
z′i
)
. (A.3)

Then ĝi (ûi, zi) = gi (ci, zi) = gi (c
′
i, z

′
i) = ĝi (ûi, z

′
i), where the first and last equalities follow from

(9), and the middle equality follows from (A.3) and the assumption that g is structurally utilitarian.

It follows that condition 2 of the proposition holds.

Next I argue that condition 2 implies condition 1. So assume condition 2. Choose i ∈ I, ci, c
′
i ∈

R, zi, z′i ∈ Z and ûi ∈ R such that ûi = ci − vi (zi) = c′i − vi (z
′
i). It follows that gi (ci, zi) =

ĝi (ûi, zi) = ĝi (ûi, z
′
i) = gi (c

′
i, z

′
i), where the first and last equalities follow from (9), and the middle

equality follows from condition 2 of the proposition. This establishes condition 1.

Finally, consider the equivalence of conditions 2 and 3. First observe that our smoothness

assumptions imply that condition 2 implies: ∀i ∈ I, ∀ûi ∈ R,∀zi ∈ Z, ∂
∂zi

ĝi (ûi, zi) = 0. Going in

the other direction, the equivalence now follows from the fundamental theorem of calculus. □

A.6 Proof of Theorem 1

First assume welfare weights arise from a generalized utilitarian social welfare function, meaning

that they are of the form gi (ci, zi) = F ′
i (Ui (ci, zi))

∂
∂ci

Ui (ci, zi). These weights are structurally

utilitarian because, if, for all ci, c
′
i, zi, z

′
i, if ci−vi (zi) = c′i−vi (z

′
i), then Ui (ci, zi) = u (ci − vi (zi)) =

u (c′i − vi (z
′
i)) = Ui (c

′
i, z

′
i) and ∂

∂ci
Ui (ci, zi) = u′ (ci − vi (zi)) = u′ (c′i − vi (z

′
i)) =

∂
∂ci

Ui (c
′
i, z

′
i). So

if ci − vi (zi) = c′i − vi (z
′
i), then gi (ci, zi) = gi (c

′
i, z

′
i).

Going in the other direction, by Proposition 3, structural utilitarianism is equivalent to the

requirement that, holding fixed agent characteristics (xi, yi), welfare weights are a function of ûi =

ci − vi (zi), so that, assuming structural utilitarianism, we can write gi (ci, zi) = g (ci, zi, xi, yi) =

ĝ (ûi, xi, yi) = ĝi (ûi). Define the function wi (ûi) = w (ûi, xi, yi) by wi

(
û0i
)
=
∫ û0

i
0 ĝi (ûi) dûi. Now

define the Function F : R × X × Y → R by F (vi, xi, yi) = w
(
u−1 (vi) , xi, yi

)
, where u−1 (·)

is the inverse of u (·). If xi and yi are not discrete, the smoothness of w and u imply that F

is smooth. If xi and yi are discrete, w is smooth in its first argument and hence F is smooth

in vi. Let Fi (vi) = F (vi, xi, yi) and define Wi (ci, zi) = Fi (Ui (ci, zi)). We have Wi (ci, zi) =

Fi (Ui (ci, zi)) = wi

(
u−1 (u (ci − vi (zi)))

)
= wi (ci − vi (zi)). Note that, from the above, we have

gi (ci, zi) = ĝi (ci − vi (zi)) = w′
i (ci − vi (zi)) = ∂

∂ci
Wi (ci, zi) = F ′

i (Ui (ci, zi))
∂
∂ci

Ui (ci, zi). So the

weights arise from a generalized utilitarian social welfare function. □

A.7 Proof of Corollary 2

Suppose that welfare weights g are structurally utilitarian. It follows from Theorem 1 that wel-

fare weights are of the form gi (ci, zi) = F ′
i (Ui (ci, zi))

∂
∂ci

Ui (ci, zi) for Fi (ui) = F (ui, xi, yi)

for some F . So for the social welfare function W (T ) = −
∫
Fi (Ui (ci (T ) , zi (T ))) di, the enve-

lope theorem implies that, for all well-behaved families
(
T θ
)
θ∈Θ and θ0 ∈ Θ, d

dθ

∣∣
θ=θ0

W
(
T θ
)
=

−
∫
gi
(
T θ0
)

∂
∂θ

∣∣
θ=θ0

Ti

(
zi
(
T θ0
)
, θ
)
di. □
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A.8 Proof of Theorem 2

A.8.1 Main argument

What follows is a more formal version of the argument in the main text. Assume that welfare weights

are not structurally utilitarian. It follows from Proposition 3 that there exists j ∈ I, û∗ ∈ R, z∗ ∈ Z,

such that ∂
∂zj

ĝj (û
∗, z∗) ̸= 0. Smoothness of the primitives implies that we can choose z∗ so that

z∗ > 0. Assume that ∂
∂zj

ĝj (û
∗, z∗) < 0. (The argument would be similar if we assumed instead that

∂
∂zj

ĝj (û
∗, z∗) > 0.) Our smoothness assumptions then imply that there exists a non-degenerate1

closed interval of agents S, which is a proper subset of I = [0, 1], such that, for all agents i ∈ S,
∂
∂zi

ĝi (û
∗, z∗) < 0.2 Let O and Q be two other non-degenerate closed intervals contained in [0, 1],

such that S,O, and Q are pairwise disjoint. Now consider a doubly parameterized family of tax

policies
(
T θ,ϵ

)
θ∈Θ,ϵ∈E , where Θ =

[
θ, θ
]
for some θ < θ and E = [−ϵ̄, ϵ̄] for some ϵ̄ > 0, and which

takes the following form:

T θ,ϵ
i (zi) =



τi (θ) zi + κi (θ) + ϵtS , if i ∈ S,

−ϵtO, if i ∈ O,

τ̄ (θ, ϵ) zi + κ̄i (θ, ϵ) , if i ∈ Q,

0, otherwise.

(A.4)

Above τi (θ) is a personalized marginal tax rate for agents in i in S, and τ̄ (θ, ϵ) is a marginal tax

rate which is not personalized on Q; both τi (θ) and τ̄ (θ, ϵ) depend on parameter values. κi (θ) and

κ̄i (θ, ϵ) are personalized lumpsum taxes that depend on parameters. tS and tO are positive real

numbers, so that ϵtS and −ϵtO are lumpsum taxes as well. I assume that the map (i, θ) 7→ τi (θ) is

smooth on the domain S × Θ and that the map (θ, ϵ) 7→ τ̄ (θ, ϵ) is smooth on the domain Θ × E.

Moreover, I assume that there exists θ0 ∈
(
θ, θ
)
such that, for all i ∈ S, τi (θ0) = 1−v′i (z

∗) and, for

all θ ∈ Θ, τ ′i (θ) > 0.3 In what follows, let Ûi (θ, ϵ) = Ûi

(
T θ,ϵ

)
= zi (θ, ϵ)−T θ,ϵ

i (zi (θ, ϵ))−vi (zi (θ, ϵ))

be i’s utility in response to T θ,ϵ, using the representation that omits the outer utility function

u (·), and note that gi (θ, ϵ) = gi
(
T θ,ϵ

)
= ĝi

(
Ûi (θ, ϵ) , zi (θ, ϵ)

)
. When an agent i in S faces tax

policy T θ0,0, they will solve the problem maxzi (1− τi (θ0)) zi − κi (θ0)− vi (zi). It follows from the

construction of τi (θ0) and the fact that vi (zi) is strictly convex that zi = z∗ uniquely satisfies the

agent’s first order condition when (θ, ϵ) = (θ0, 0), namely, (1− τ (θ0))−v′i (zi) = 0. Because agents’

objective is strictly concave, it follows that zi = z∗ is the unique optimum for all agents i ∈ S when

facing tax policy T θ0,0, so that zi (θ0, 0) = z∗ for all i ∈ S. For all i ∈ S, define the function κi (θ)

in (A.4) to solve:

(1− τi (θ)) zi (θ, 0)− vi (zi (θ, 0))− κi (θ) = û∗, ∀θ ∈ Θ. (A.5)

1By a non-degenerate closed interval, I mean a closed interval which is not equal to a single point.
2Of course, it is possible that ∂

∂zi
ĝi (û

∗, z∗) < 0 for all i ∈ [0, 1], but in this case there is also a closed interval S,

which is a proper subset of [0, 1], on which this property holds.
3We allow for the possibility that τi (θ0) < 0.
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That is, the lumpsum tax κi (θ) is chosen so as the keep the agents’ (in S) utility fixed at û∗

when the agent faces tax policies of the form T θ,0 as θ changes – where we measure utility via

the representation Ûi

(
T θ,0

)
that excludes the outer utility function u (·). Note that we can freely

define κi (θ) in this way because the optimal income zi (θ, 0) depends only on the marginal tax rate

τi (θ) and not on the lumpsum tax κi (θ). Note, moreover, that, for any ϵ ∈ E, θ ∈ Θ, and i ∈ S,

i’s utility, when facing T θ,ϵ, is Ûi (θ, ϵ) = û∗− ϵtS , which does not depend on θ. So, holding ϵ fixed,

each agent i ∈ S is indifferent as θ varies. Likewise, for all i ∈ Q, define κ̄i (θ, ϵ) to satisfy the

following equation:

(1− τ̄ (θ, ϵ)) zi (θ, ϵ)− vi (zi (θ, ϵ))− κ̄i (θ, ϵ) = 0, ∀θ ∈ Θ,∀ϵ ∈ E. (A.6)

That is, the lumpsum tax κ̄i (θ, ϵ) is selected to keep the utility Ûi (θ, ϵ) of all agents i ∈ Q equal

to zero as θ and ϵ vary. Again, observe that zi (θ, ϵ) only depends on the marginal tax rate τ̄ (θ, ϵ)

and not on the lumpsum tax κ̄i (θ, ϵ). Given the above, it follows by construction that, holding ϵ

fixed, all agents are indifferent, as θ varies in T θ,ϵ. So, it follows from part 1 of Proposition 2 –

Pareto indifference along paths – that

T θ0,ϵ ∼g T θ1,ϵ, ∀ϵ ∈ E, (A.7)

where θ1, satisfying θ0 < θ1, is a value of θ that we now select. In particular, it follows from the

facts that ∂
∂zi

ĝi (z
∗, û∗) < 0 and zi (θ0, 0) = z∗ for all i ∈ S and the smoothness of the primitives of

the model that if we choose θ1 sufficiently close to θ0,

∂

∂zi
ĝi

(
Ûi (θ, 0) , zi (θ, 0)

)
=

∂

∂zi
ĝi (û

∗, zi (θ, 0)) < 0, ∀θ ∈ [θ0, θ1] , ∀i ∈ S. (A.8)

So let us choose θ1 so that (A.8) is satisfied. Moreover, since zi (θ0, 0) = z∗ > 0, ∀i ∈ S, we may

assume that θ1 is chosen sufficiently close to θ0 that, for all i ∈ S and θ ∈ [θ0, θ1] , zi (θ, 0) > 0.

For any θ ∈ Θ, define gS (θ, 0) =
∫
S gi (θ, 0) di and gO (θ, 0) =

∫
O gi (θ, 0) di. It follows from the

fact that Ûi (θ, 0) = û∗,∀θ ∈ Θ,∀i ∈ S, (A.8), and the assumption that τ ′i (θ) > 0,∀θ ∈ Θ, ∀i ∈ S,

which, given that zi (θ, 0) > 0,∀θ ∈ [θ0, θ1] ,∀i ∈ S, implies that ∂
∂θzi (θ, 0) < 0,∀θ ∈ [θ0, θ1] ,∀i ∈ S,

that

∂

∂θ
gS (θ, 0) > 0, ∀θ ∈ [θ0, θ1] . (A.9)

Choose θ′ ∈ (θ0, θ1) and suppose that the positive numbers tS and tO in (A.4) were selected to

satisfy

gS
(
θ′, 0

)
tS = gO

(
θ′, 0

)
tO. (A.10)
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Then, writing T (zi, θ, ϵ) = T θ,ϵ (zi), we have:∫
gi (θ0, 0)

∂

∂ϵ

∣∣∣∣
ϵ=0

Ti (zi (θ0, 0) , θ0, ϵ) di

= gS (θ0, 0) tS − gO (θ0, 0) tO +

∫
Q

([
∂

∂ϵ

∣∣∣∣
ϵ=0

τ̄ (θ0, ϵ)

]
zi (θ0, 0) +

∂

∂ϵ

∣∣∣∣
ϵ=0

κ̄i (θ0, ϵ)

)
di

= gS (θ0, 0) tS − gO (θ0, 0) tO +

∫
Q
− ∂

∂ϵ

∣∣∣∣
ϵ=0

Ûi (θ0, ϵ) di

= gS (θ0, 0) tS − gO (θ0, 0) tO < 0,

(A.11)

where the second equality follows from the envelope theorem, and the third equality follows from

the fact that, by (A.6), the utility of all agents in Q is held fixed as ϵ varies in T θ0,ϵ, so that, for

all i ∈ Q, ∂
∂ϵ

∣∣
ϵ=0

Ûi (θ0, ϵ) = 0. The inequality follows from (A.10), and the facts that gO (θ, 0) is

constant in θ, that, by (A.9), gS (θ, 0) is increasing in θ, and that θ0 < θ′. Using similar arguments,∫
gi (θ1, 0)

∂

∂ϵ

∣∣∣∣
ϵ=0

Ti (zi (θ1, 0) , θ1, ϵ) di = gS (θ1, 0) tS − gO (θ1, 0) tO > 0, (A.12)

The reason that the the inequality in (A.12) points in the opposite direction of the inequality in

(A.11) is that, whereas θ0 < θ′, θ1 > θ′. It follows from (A.11), (A.12), and the local improvement

principle – Proposition 1 – that

T θ0,0 ≺g T θ0,ϵ,

T θ1,0 ≻g T θ1,ϵ,
for sufficiently small ϵ > 0. (A.13)

Putting (A.7) and (A.13), together, we have that for sufficiently small ϵ > 0,

T θ0,0 ≺g T θ0,ϵ ∼ T θ1,ϵ ≺g T θ1,0 ∼g T θ0,0. (A.14)

So, on the assumption that welfare weights are not structurally utilitarian, we have constructed a

social preference cycle.

The last step is to show that revenue can be held fixed across the tax policies in the cycle. This

is achieved via the selection of τ̄ (θ, ϵ) in (A.4). For any marginal tax rate τ , write zi (τ) to be

the income that i would earn, if i faces the tax policy T (z) = τz, or, in other words, if i faces a

constant marginal tax rate of τ . It follows that, for all i ∈ Q, we can write zi (τ̄ (θ, ϵ)) = zi (θ, ϵ)

because every agent i ∈ Q faces the constant marginal tax rate τ̄ (θ, ϵ) under tax policy T θ,ϵ. Let
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RQ (θ, ϵ) be the revenue raised from agents in Q by tax policy T θ,ϵ. Then we have

RQ (θ, ϵ) =

∫
Q
T (zi (θ, ϵ) , θ, ϵ) di =

∫
Q
[τ̄ (θ, ϵ) zi (θ, ϵ) + κ̄i (θ, ϵ)] di

=

∫
Q
[τ̄ (θ, ϵ) zi (θ, ϵ) + (1− τ̄ (θ, ϵ)) zi (θ, ϵ)− vi (zi (θ, ϵ))] di

=

∫
Q
[zi (θ, ϵ)− vi (zi (θ, ϵ))] di,

(A.15)

where the third equality follows from (A.6). Next, for any marginal tax rate τ , define R̃Q (τ) by

R̃Q (τ) =

∫
Q
[zi (τ)− vi (zi (τ))] di.

Then it follows from (A.15) and the fact that zi (τ̄ (θ, ϵ)) = zi (θ, ϵ) that R̃Q (τ̄ (θ, ϵ)) = RQ (θ, ϵ).

Since we assume that, in the absence of taxes, all agents earn positive income (see Section I), there

exists a positive marginal tax rate τ0, which is sufficiently small that, for all i ∈ Q, zi (τ0) > 0.4

From agent i’s first order condition, when facing marginal tax rate τ0, we have that, for all i ∈ Q,

0 = (1− τ0) − v′i (zi (τ0)) < 1 − v′i (zi (τ0)). Assume that τ̄ (θ0, 0) = τ0. Define R−Q (ϵ, θ) =∫
I\Q Ti (zi (θ, ϵ) , θ, ϵ) di to be the revenue raised by tax policy T θ,ϵ from all agents not in Q. Now

consider the condition:

R̃Q (τ̄ (θ, ϵ)) +R−Q (θ, ϵ) = R̃Q (τ0) +R−Q (θ0, 0) . (A.16)

Observe that R̃′
Q (τ̄ (θ0, 0)) =

∫
Q z′i (τ0) [1− v′i (zi (τ0))] di < 0.5 It follows from the implicit function

theorem that the function τ̄ (θ, ϵ) is uniquely determined in a neighborhood of (θ0, 0) by τ̄ (θ0, 0) =

τ0 and (A.16). Redefining ϵ̄ to be sufficiently small and θ and θ to be sufficiently close to θ0 if

necessary, and assuming that θ1 was chosen sufficiently close to θ0 so that θ0 < θ1 < θ̄ still holds, we

may assume that we have thus defined τ̄ (θ, ϵ) on all of Θ×E, and moreover such that zi (θ, ϵ) > 0

for all i in Q, θ ∈ Θ, and ϵ ∈ E (since zi (θ0, 0) = zi (τ0) > 0,∀i ∈ Q and Q is compact). Note now

that (A.16) implies that the revenue of T θ,ϵ is held constant as θ and ϵ vary. This completes the

proof. □

A.8.2 Well-behavedness of
(
T θ,ϵ

)
Here I verify that the family

(
T θ,ϵ

)
in (A.4) above is well-behaved (see Sections II.A and A.1), as this

is required for Propositions 1 and 2. I begin by verifying the first condition for well-behavedness.

4The assumption that, in the absence of taxes, all agents earn positive income, is not necessary for the proof. In
the absence of this assumption, we could instead select τ0 to be a sufficiently small negative marginal tax rate that,
for all i ∈ Q, zi (τ0) > 0. Then the proof would proceed in the same way as below except that R̃′

Q (τ̄ (θ, ϵ)) > 0 rather

than R̃′
Q (τ̄ (θ, ϵ)) < 0. However what matters for the argument is only that R̃′

Q (τ̄ (θ, ϵ)) ̸= 0.
5This inequality follows from the facts that, by our assumptions above imply that, for all i ∈ Q (i) zi (τ0) > 0, so

that z′i (τ0) < 0, and that (ii) 1− v′i (zi (τ0)) > 0.
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Existence and uniqueness of zi (θ, ϵ) are straightforward to establish.6 That zi (θ, ϵ) > 0 for all i in

S and Q was established in the course of the proof (noting that zi (θ, ϵ) = zi (θ, 0) , ∀i ∈ S), and

for i not in S or Q, zi (θ, ϵ) > 0 follows from the assumption that, when facing a zero marginal tax

rate, all agents select a positive income (see Section I.A). That each agent’s second order condition

holds with a strict inequality follows from the fact that v′′i > 0 and u′ > 0 hold everywhere and

that all agents face a tax policy that is linear in z (possibly with a zero marginal tax rate) under

T θ,ϵ. This establishes that
(
T θ,ϵ

)
satisfies the first condition required for well-behavedness.

To establish the second condition, I appeal to the following observation.

Observation A.2 The maps (i, θ) 7→ τi (θ) and (i, θ) 7→ κi (θ) are smooth on S×Θ; (θ, ϵ) 7→ τ̄ (θ, ϵ)

is smooth on Θ× E; and the map (i, θ, ϵ) 7→ κi (θ, ϵ) is smooth on Q×Θ× E.

The map (i, θ) 7→ τi (θ) is smooth on S ×Θ by assumption.7 The map (i, θ) 7→ κi (θ) is smooth on

S ×Θ because it is defined by (A.5) and all of the other functions in (A.5) are smooth.8 The map

(θ, ϵ) 7→ τ̄ (θ, ϵ) is smooth because it is defined by the implicit function theorem via equation (A.16)

and the other functions in (A.16) are smooth. Finally, (i, θ, ϵ) 7→ κi (θ, ϵ) is smooth on Q×Θ× E

because it is defined by (A.6) and the other functions in (A.6) are smooth.9

That, for all i, (z, θ, ϵ) 7→ Ti (z, θ, ϵ) is smooth follows from (A.4) and Observation A.2. Recall

that S,O, and Q are assumed in Section A.8.1 to be pairwise disjoint closed intervals. It then follows

from (A.4) and Observation A.2 that the map (i, z, θ, ϵ) 7→ Ti (z, θ, ϵ) only fails to be smooth when

i is one of the six endpoints of these three intervals. This establishes the second condition required

for the well-behavedness of
(
T θ,ϵ

)
.

A.9 Calculations from Section IV.B

That the revenue of T θ,ϵ is 1
4 , for all θ and ϵ, is verified by the following calculation:

R
(
T θ,ϵ

)
=

1

2
[z (θ) θ + κ (θ) + ϵ]︸ ︷︷ ︸

revenue from type A agents

+
1

2

[
z
(√

1− θ2
)√

1− θ2 + κ (θ)− ϵ
]

︸ ︷︷ ︸
revenue from type B agents.

=
1

2

[
(1− θ) θ +

1

2
(1− θ)2

]
+

1

2

[(
1−

√
1− θ2

)√
1− θ2 +

1

2

(
1−

√
1− θ2

)2]
=
1

2

[
1

2
(1− θ) (1 + θ)

]
+

1

2

[
1

2

(
1−

√
1− θ2

)(
1 +

√
1− θ2

)]
=

1

4

(
1− θ2

)
+

1

4
θ2 =

1

4
.

6Existence and uniqueness follow from the assumptions of Section I.A, the fact that when facing a linear tax policy,
agents’ objectives are strictly concave, the selection of the marginal tax rates τi (θ0) and τ0, and the construction of
τi (θ) and τ̄ (θ, ϵ) using the implicit function theorem.

7This is consistent with the other assumptions made on τi (θ). In particular, I assumed that, for all i ∈ S, τi (θ0) =
1−v′i (z

∗), and that, for all θ ∈ Θ, τ ′
i (θ) > 0. So for example, if I had specifically defined τi (θ) = 1−v′i (z

∗)+(θ − θ0)
on S ×Θ, (i, θ) 7→ τi (θ) would have satisfied these properties, and, moreover, would be smooth on S ×Θ, since the
assumptions of Section IV.A imply that i 7→ v′i (z

∗) is smooth.
8 In particular, (i, θ) 7→ zi (θ, 0) is smooth because the latter is characterized by the implicit function theorem

applied to i’s first order condition and the the functions that feature in the first order condition are smooth in (i, θ).
9Again, the map (i, θ, ϵ) 7→ zi (θ, ϵ) is smooth for reasons similar to those explained in footnote 8 of the appendix.
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The above calculation also implies that, at T θ,ϵ, the total tax paid by a type A agent is
1
2

(
1− θ2

)
+ ϵ and the total tax paid by a type B agent is 1

2θ
2 − ϵ. So as θ rises from θ0 =

√
1
3 to

θ1 =
√

2
3 , the total tax paid by a type A agent falls from 1

3 + ϵ to 1
6 + ϵ while the total tax paid by

a type B agent rises from 1
6 − ϵ to 1

3 − ϵ.

A formal derivation that T θ0,0 ≻g T θ0,ϵ for sufficiently small ϵ > 0 is as follows.

∫ 1

0
gi (θ0, 0)

∂

∂ϵ

∣∣∣∣
ϵ=0

Ti (zi (T (θ0, 0)) , θ0, ϵ) di =

∫ 1
2

0

[
g̃

(
1

3

)
× 1

]
di︸ ︷︷ ︸

type A agents

+

∫ 1

1
2

[
g̃

(
1

6

)
× (−1)

]
di︸ ︷︷ ︸

type B agents

=
1

2
g̃

(
1

3

)
− 1

2
g̃

(
1

6

)
> 0.

So by Proposition 1 – the local improvement principle – it follows that T θ0,0 ≻g T θ0,ϵ for sufficiently

small ϵ > 0.

Similarly,
∫ 1
0 gi (θ1, 0)

∂
∂ϵ

∣∣
ϵ=0

Ti (zi (θ1, 0) , θ1, ϵ) di =
1
2 g̃
(
1
6

)
− 1

2 g̃
(
1
3

)
< 0, and, again by Propo-

sition 1, T θ1,0 ≺g T θ1,ϵ, for sufficiently small ϵ > 0.

A.10 Proof of Corollary 3

Assume that g is not structurally utilitarian. It follows from Proposition 3 that there exists an

agent j ∈ (0, 1), z∗ ∈ Z with z∗ > 0 and û∗ ∈ R and such that

∂

∂zj
ĝj (û

∗, z∗) ̸= 0. (A.17)

We can assume that j is in the interior of I = [0, 1] and z∗ > 0 because of the smoothness of the

primitives. Choose a smooth strictly convex tax policy T , with moreover T ′′ (zi) > 0,∀zi, such that

(i) T ′ (z∗) = 1 − v′j (z
∗), (ii) T ′ (0) is sufficiently small (or negative if 1 − v′j (z

∗) < 0) such that

all agents would earn a positive income in response to T – recall that in the absence of taxes, all

agents earn a positive income (see Section I.A) –, and (iii) limz→∞ T ′ (z) > 0. These assumptions,

together with the strict convexity of vi (zi) and the assumption that v′i (zi) > 1 for sufficiently large

zi (see Section I.A), imply that T is regular. (See Section A.1.2 for the requirements for regularity.)

It follows from property (i) that zj (T ) = z∗. By the appropriate choice of a lumpsum transfer in

T , we can ensure that Ûj (T ) = û∗. (A.17) together with the smoothness of the primitives and of

T now ensure that if we select a sufficiently small interval (ia, ib) containing j, then either (18) or

(19) holds. □

A.11 Omitted details from the proof of Lemma 2

Here I present the details of the proof of Lemma 2 that were omitted in the main text: the expression

for the overlapping term C discussed in the text, and the proof of conditions (21)-(22). First, I
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present the expression for the term C, which I will prove is the overlapping term below:

C =

∫ (
− ∂

∂ûi
ĝi

(
Ûi (θ0, ϵ0) , zi (θ0, ϵ0)

) ∂

∂ϵ

∣∣∣∣
ϵ=ϵ0

T (zi (θ0, ϵ0) , θ0, ϵ)
∂

∂θ

∣∣∣∣
θ=θ0

T (zi (θ0, ϵ0) , θ, ϵ0)

+ gi (θ0, ϵ0)

− ∂2

∂θ∂zi

∣∣∣
θ=θ0,zi=zi(θ0,ϵ0)

T (zi, θ, ϵ0)
∂2

∂ϵ∂zi

∣∣∣
ϵ=ϵ0,zi=zi(θ0,ϵ0)

T (zi, θ0, ϵ)

v′′i (zi (θ0, ϵ0)) +
∂2

∂z2i

∣∣∣
zi=zi(θ0,ϵ0)

T (zi, θ0, ϵ0)

+
∂2

∂ϵ∂θ

∣∣∣∣
ϵ=ϵ0,θ=θ0

T (zi (θ0, ϵ0) , θ, ϵ)

])
di.

(A.18)

Next, I present some useful preliminary facts, which I use to establish (21)-(22). Observe that

at (θ0, ϵ0), agent i’s optimization problem is: maxzi [zi − vi (zi)− T (zi, θ0, ϵ0)]. The first-order

condition is: 1 − v′i (zi) − ∂
∂zi

T (zi, θ0, ϵ0) = 0. Applying the implicit function theorem to the

first-order condition,10 we have:

∂

∂θ

∣∣∣∣
θ=θ0

zi (θ, ϵ0) = −
∂2

∂θ∂zi

∣∣∣
θ=θ0,zi=zi(θ,ϵ0)

T (zi, θ, ϵ0)

v′′i (zi (θ0, ϵ0)) +
∂2

∂z2i

∣∣∣
zi=zi(θ0,ϵ0)

T (zi, θ0, ϵ0)
, (A.19)

∂

∂ϵ

∣∣∣∣
ϵ=ϵ0

zi (θ0, ϵ) = −
∂2

∂ϵ∂zi

∣∣∣
ϵ=ϵ0,zi=zi(θ0,ϵ0)

T (zi, θ0, ϵ)

v′′i (zi (θ0, ϵ0)) +
∂2

∂z2i

∣∣∣
zi=zi(θ0,ϵ0)

T (zi, θ0, ϵ0)
. (A.20)

I am now ready to establish (21)-(22). First, I establish (21):

d

dϵ

∣∣∣∣
ϵ=ϵ0

∫
gi (θ0, ϵ)

∂

∂θ

∣∣∣∣
θ=θ0

T (zi (θ0, ϵ) , θ, ϵ) di

=

∫
∂

∂ϵ

∣∣∣∣
ϵ=ϵ0

[
gi (θ0, ϵ)

∂

∂θ

∣∣∣∣
θ=θ0

T (zi (θ0, ϵ) , θ, ϵ)

]
di (A.21)

=

∫ ([
∂

∂ϵ

∣∣∣∣
ϵ=ϵ0

gi (θ0, ϵ)

]
∂

∂θ

∣∣∣∣
θ=θ0

T (zi (θ0, ϵ0) , θ, ϵ0)

+gi (θ0, ϵ0)
d

dϵ

∣∣∣∣
ϵ=ϵ0

∂

∂θ

∣∣∣∣
θ=θ0

T (zi (θ0, ϵ) , θ, ϵ)

)
di

(A.22)

10As
(
T θ,ϵ

)
θ∈Θ,ϵ∈E

is well-behaved, it follows that the first-order condition uniquely characterizes agent i’s optimal

income zi (θ, ϵ).
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=

∫ ([
− ∂

∂ûi
ĝi

(
Ûi (θ0, ϵ0) , zi (θ0, ϵ0)

) ∂

∂ϵ

∣∣∣∣
ϵ=ϵ0

T (zi (θ0, ϵ0) , θ0, ϵ)

+
∂

∂zi
ĝi

(
Ûi (θ0, ϵ0) , zi (θ0, ϵ0)

) ∂

∂ϵ

∣∣∣∣
ϵ=ϵ0

zi (θ0, ϵ)

]
∂

∂θ

∣∣∣∣
θ=θ0

T (zi (θ0, ϵ0) , θ, ϵ0)

+gi (θ0, ϵ0)
d

dϵ

∣∣∣∣
ϵ=ϵ0

∂

∂θ

∣∣∣∣
θ=θ0

T (zi (θ0, ϵ) , θ, ϵ)

)
di

(A.23)

=

∫ ([
− ∂

∂ûi
ĝi

(
Ûi (θ0, ϵ0) , zi (θ0, ϵ0)

) ∂

∂ϵ

∣∣∣∣
ϵ=ϵ0

T (zi (θ0, ϵ0) , θ0, ϵ)

+
∂

∂zi
ĝi

(
Ûi (θ0, ϵ0) , zi (θ0, ϵ0)

) ∂

∂ϵ

∣∣∣∣
ϵ=ϵ0

zi (θ0, ϵ)

]
∂

∂θ

∣∣∣∣
θ=θ0

T (zi (θ0, ϵ0) , θ, ϵ0)

+ gi (θ0, ϵ0)

[
∂2

∂zi∂θ

∣∣∣∣
zi=zi(θ0,ϵ0),θ=θ0

T (zi, θ, ϵ0)
∂

∂ϵ

∣∣∣∣
ϵ=ϵ0

zi (θ0, ϵ)

+
∂2

∂ϵ∂θ

∣∣∣∣
ϵ=ϵ0,θ=θ0

T (zi (θ0, ϵ0) , θ, ϵ)

])
di

(A.24)

=

∫ ([
− ∂

∂ûi
ĝi

(
Ûi (θ0, ϵ0) , zi (θ0, ϵ0)

) ∂

∂ϵ

∣∣∣∣
ϵ=ϵ0

T (zi (θ0, ϵ0) , θ0, ϵ)

+
∂

∂zi
ĝi (Ui (θ0, ϵ0) , zi (θ0, ϵ0))

∂

∂ϵ

∣∣∣∣
ϵ=ϵ0

zi (θ0, ϵ)

]
∂

∂θ

∣∣∣∣
θ=θ0

T (zi (θ0, ϵ0) , θ, ϵ0)

+ gi (θ0, ϵ0)

− ∂2

∂zi∂θ

∣∣∣∣
zi=zi(θ0,ϵ0),θ=θ0

T (zi, θ, ϵ0)

∂2

∂ϵ∂zi

∣∣∣
ϵ=ϵ0,zi=zi(θ0,ϵ0)

T (zi, θ0, ϵ)

v′′i (zi (θ0, ϵ0)) +
∂2

∂z2

∣∣∣
zi=zi(θ0,ϵ0)

T (zi, θ0, ϵ0)

+
∂2

∂ϵ∂θ

∣∣∣∣
ϵ=ϵ0,θ=θ0

T (zi (θ0, ϵ0) , θ, ϵ)

])
di,

(A.25)

= A+ C (A.26)

where (A.23) analyzes the term ∂
∂ϵ

∣∣
ϵ=ϵ0

gi (θ0, ϵ) and appeals to the fact that, by the envelope

theorem, ∂
∂ϵ

∣∣
ϵ=ϵ0

Ûi (θ0, ϵ) = − ∂
∂ϵ

∣∣
ϵ=ϵ0

T (zi (θ0, ϵ0) , θ0, ϵ), and (A.25) follows from (A.20), A is

defined as in the proof outline of Lemma 2 in the main text and C is defined by (A.18). This

establishes (21).

As the derivation of (22) is similar, I present it in an abbreviated form:

d

dθ

∣∣∣∣
θ=θ0

∫
gi (θ, ϵ0)

∂

∂ϵ

∣∣∣∣
ϵ=ϵ0

T (zi (θ, ϵ0) , θ, ϵ) di

=

∫ ([
− ∂

∂ûi
ĝi

(
Ûi (θ0, ϵ0) , zi (θ0, ϵ0)

) ∂

∂θ

∣∣∣∣
θ=θ0

T (zi (θ0, ϵ0) , θ, ϵ0)
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+
∂

∂zi
ĝi

(
Ûi (θ0, ϵ0) , zi (θ0, ϵ0)

) ∂

∂θ

∣∣∣∣
θ=θ0

zi (θ, ϵ0)

]
∂

∂ϵ

∣∣∣∣
ϵ=ϵ0

T (zi (θ0, ϵ0) , θ0, ϵ)

+ gi (θ0, ϵ0)

[
∂2

∂zi∂ϵ

∣∣∣∣
zi=zi(θ0,ϵ0),ϵ=ϵ0

T (zi, θ0, ϵ)
∂

∂θ

∣∣∣∣
θ=θ0

zi (θ, ϵ0)

+
∂2

∂θ∂ϵ

∣∣∣∣
θ=θ0,ϵ=ϵ0

T (zi (θ0, ϵ0) , θ, ϵ)

])
di

=

∫ ([
− ∂

∂ûi
gi

(
Ûi (θ0, ϵ0) , zi (θ0, ϵ0)

) ∂

∂θ

∣∣∣∣
θ=θ0

T (zi (θ0, ϵ0) , θ, ϵ0)

+
∂

∂z
ĝi

(
Ûi (θ0, ϵ0) , zi (θ0, ϵ0)

) ∂

∂θ

∣∣∣∣
θ=θ0

zi (θ, ϵ0)

]
∂

∂ϵ

∣∣∣∣
ϵ=ϵ0

T (zi (θ0, ϵ0) , θ0, ϵ)

+ ĝi (θ0, ϵ0)

− ∂2

∂zi∂ϵ

∣∣∣∣
zi=zi(θ0,ϵ0),ϵ=ϵ0

T (zi, θ0, ϵ)

∂2

∂θ∂zi

∣∣∣
θ=θ0,z=zi(θ0,ϵ0)

T (zi, θ0, ϵ)

v′′i (zi (θ0, ϵ0)) +
∂2

∂z2i

∣∣∣
zi=zi(θ,ϵ)

T (zi, θ0, ϵ0)

+
∂2

∂θ∂ϵ

∣∣∣∣
θ=θ0,ϵ=ϵ0

T (zi (θ0, ϵ0) , θ, ϵ)

])
di

= B + C.

The justification is similar to the justification for (A.21)-(A.26), using (A.19) instead of (A.20).

This establishes (22). □

A.12 Proof of Lemma 3

The main argument proving Lemma 3 is presented in Section A.12.1. The proofs of a supporting

lemma and some related material are presented in the subsequent subsections.

A.12.1 Main argument

Choose a regular tax policy T . (See Section A.1.2 for the requirements for a regular tax policy

when taxes are not individualized.) To establish the lemma, I construct a well-behaved doubly

parameterized family of tax policies
(
T θ,ϵ

)
θ∈Θ,ϵ∈E satisfying (15), (16) and (23), and such that, for

the θ0 ∈
(
θ, θ
)
, ϵ0 ∈ (ϵ, ϵ) that feature in the preceding conditions, T θ0,ϵ0 = T .

Recall that the support of a function h with argument x is the closure of {x : h (x) ̸= 0}.
To construct

(
T θ,ϵ

)
θ∈Θ,ϵ∈E , I consider four smooth tax reforms µ1, µ2, η1, η2. Let ik, k = 1, 2, 3, 5

be elements of (0, 1) be such that i1 < i2 < i3 = ia < i5 = ib. The reader will notice that we

have skipped i4; this term will be introduced below (see Lemma A.1). If we let ẑk = zik (T ) for

k = 1, 2, 3, 5, it follows from assumptions on v and i 7→ yi in Section V.A that ẑ1 < ẑ2 < ẑ3 < ẑ5.

I assume that µ1 (z) = 0 when z ≤ ẑ3, µ1 (z) is increasing in z on the interval (ẑ3, ẑ5), and µ1 (z)

remains constant at some positive number thereafter. I assume that µ2 (z) = 0 when z ≤ ẑ2, µ2 (z)

is increasing in z on the interval (ẑ2, ẑ3) and µ2 (z) = 1 when z ≥ ẑ3. Assume, moreover, that µ1
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and µ2 are chosen such that:∫ 1

0
gi (T )µ1 (zi (T )) di =

∫ 1

0
gi (T )µ2 (zi (T )) di. (A.27)

That is, both tax reforms µ1 and µ2 have the same marginal effect on social welfare, when benefits

are weighted by welfare weights. The above assumptions imply the following lemma, which is

proved in Section A.12.2 of the Appendix.

Lemma A.1 There exists i4 ∈ (i3, i5) such that µ1 (zi4 (T )) = 1.

If we define ẑ4 = zi4 (T ), it follows from the fact that i3 < i4 < i5 that ẑ3 < ẑ4 < ẑ5. So Lemma

A.1 says that there is some income level ẑ4, between ẑ3 and ẑ5, such that µ1 (ẑ4) = 1, and moreover

income level ẑ4 is chosen by some agent i4 when facing tax policy T .

Assume that η1 has support [ẑ3, ẑ5], and that η1 is increasing on (ẑ3, ẑ4) and decreasing on

(ẑ4, ẑ5), which implies that η1 (z) > 0,∀z ∈ (ẑ3, ẑ5). Assume that the support of η2 is [ẑ1, ẑ2], that

η2 (z) < 0,∀z ∈ (ẑ1, ẑ2), and that∫ 1

0
gi (T ) η1 (zi (T )) di = −

∫ 1

0
gi (T ) η2 (zi (T )) di. (A.28)

In other words the marginal welfare effect of reform η1 is the negative of the marginal welfare effect

of reform η2, so that the two cancel out.

For any real numbers, θ and ϵ, define T θ,ϵ
∗ by:

T θ,ϵ
∗ = T + θµ1 + ϵ (η1 + η2) . (A.29)

It follows from the Picard-Lindelöf theorem (see Section A.14.1 for a more explicit formulation)

that there exist real numbers θ, θ, ϵ, ϵ such that θ < 0 < θ, ϵ < 0 < ϵ, and such that we can define

the real-valued function ζ (θ, ϵ) on Θ× E, where Θ =
[
θ, θ
]
and E = [ϵ, ϵ], by

ζ (0, ϵ) = 0, ∀ϵ ∈ E, (A.30)∫
gi

(
T θ,ϵ
∗ − ζ (θ, ϵ)µ2

)
×
[
µ1

(
zi

(
T θ,ϵ
∗ − ζ (θ, ϵ)µ2

))
− ∂

∂θ
ζ (θ, ϵ)µ2

(
zi

(
T θ,ϵ
∗ − ζ (θ, ϵ)µ2

))]
di = 0,

∀θ ∈ Θ,∀ϵ ∈ E.

(A.31)

Next, for all θ ∈ Θ and ϵ ∈ E, define

T θ,ϵ = T + [θ × µ1]− [ζ (θ, ϵ)× µ2] + [ϵ× (η1 + η2)] (A.32)

= T θ,ϵ
∗ − ζ (θ, ϵ)µ2. (A.33)

In Section A.14, I establish that if θ, θ, ϵ, and ϵ are all chosen sufficiently close to 0, then
(
T θ,ϵ

)
θ∈Θ,ϵ∈E
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is well-behaved.

So now consider the parameterized family of tax policies
(
T θ,ϵ

)
θ∈Θ,ϵ∈E , for which we will verify

the properties required in the lemma. Let θ0 = 0 and ϵ0 = 0. Then note that T θ0,ϵ0 = T , as

required for the result. Let S = {i ∈ I : zi (T ) ∈ (ẑ3, ẑ5)} and O = {i ∈ I : zi (T ) ∈ (ẑ1, ẑ2)}, so
that, as described in Section V.C, starting at θ = θ0 = 0 and ϵ = ϵ0 = 0, as ϵ increases, taxes on

the incomes earned by agents in S rise and taxes on incomes earned by agents in O fall.

Recalling that T (z, θ, ϵ) = T θ,ϵ (z), it follows from (A.32) that, for all i ∈ I, ϵ ∈ E, and

θ′ ∈
(
θ, θ
)
,

∂

∂θ

∣∣∣∣
θ=θ′

T
(
zi
(
θ′, ϵ

)
, θ, ϵ

)
= µ1

(
zi
(
θ′, ϵ

))
− ∂

∂θ

∣∣∣∣
θ=θ′

ζ
(
θ′, ϵ

)
µ2

(
zi
(
θ′, ϵ

))
, (A.34)

and it follows from (A.32), (A.30), and the fact that θ0 = 0, that, for all i ∈ I,

∂

∂ϵ

∣∣∣∣
ϵ=ϵ0

T (zi (θ0, ϵ0) , θ0, ϵ) = η1 (zi (T )) + η2 (zi (T )) . (A.35)

It follows from (A.31), (A.33), and (A.34) that
(
T θ,ϵ

)
θ∈Θ,ϵ∈E satisfies (15), and from (A.28) and

(A.35) that
(
T θ,ϵ

)
θ∈Θ,ϵ∈E satisfies (16).

Next I seek to establish that
(
T θ,ϵ

)
θ∈Θ,ϵ∈E satisfies (23). In the special case in which θ = θ0

and ϵ = ϵ0 (recall that θ0 = ϵ0 = 0), the general statement in (A.31) reduces to

∫
gi (T )

[
µ1 (zi (T ))−

∂

∂θ

∣∣∣∣
θ=θ0

ζ (θ, ϵ0)µ2 (zi (T ))

]
di = 0.

Solving for ∂
∂θ

∣∣
θ=θ0

ζ (θ, ϵ0) from the above equation, it follows that

∂

∂θ

∣∣∣∣
θ=θ0

ζ (θ, ϵ0) =

∫
gi (T )µ1 (zi (T )) di∫
gi (T )µ2 (zi (T )) di

= 1, (A.36)

where the second equality follows from (A.27).

Consider the type i agent’s optimization problem when facing tax policy T θ,ϵ–that is, of choosing

z so as to maximize z − vi (z) − T θ,ϵ (z). It follows from the implicit function theorem applied to

the first order condition for this optimization problem at (θ, ϵ) = (θ0, ϵ0) that

∂

∂θ

∣∣∣∣
θ=θ0

zi (θ, ϵ0) =−
µ′
1 (zi (T ))− ∂

∂θ

∣∣
θ=θ0

ζ (θ, ϵ0)µ
′
2 (zi (T ))

T ′′ (zi (T )) + v′′i (zi (T ))
,

=− µ′
1 (zi (T ))− µ′

2 (zi (T ))

T ′′ (zi (T )) + v′′i (zi (T ))

∂

∂ϵ

∣∣∣∣
ϵ=ϵ0

zi (θ0, ϵ) =− η′1 (zi (T )) + η′2 (zi (T ))

T ′′ (zi (T )) + v′′i (zi (T ))
,

∀i ∈ [0, 1] , (A.37)

where the second equality for the term ∂
∂θ

∣∣
θ=θ0

zi (θ, ϵ0) uses (A.36), and the equality for the term
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∂
∂ϵ

∣∣
ϵ=ϵ0

zi (θ0, ϵ) uses the fact that ∂
∂ϵ

∣∣
ϵ=ϵ0

ζ (θ0, ϵ) = 0, which follows from (A.30) and the assump-

tion that θ0 = 0. These equations simplify when i ∈ [i3, i5]. In particular,

∂

∂θ

∣∣∣∣
θ=θ0

zi (θ, ϵ0) =− µ′
1 (zi (T ))

T ′′ (zi (T )) + v′′i (zi (T ))
,

∂

∂ϵ

∣∣∣∣
ϵ=ϵ0

zi (θ0, ϵ) =− η′1 (zi (T ))

T ′′ (zi (T )) + v′′i (zi (T ))
,

∀i ∈ [i3, i5] . (A.38)

This simplification is explained by the observations that (i) since µ2 (zi (T )) = 1 when i ∈ [i3, i5],

µ′
2 (zi (T )) = 0 when i ∈ [i3, i5], and (ii) the support of η2 is [ẑ1, ẑ2], so that η′2 (zi (T )) = 0 when

i ∈ [i3, i5].

When (θ, ϵ) = (θ0, ϵ0) and i ∈ [i3, i5], (A.34)-(A.35) also simplify:

∂

∂θ

∣∣∣∣
θ=θ0

T (zi (θ0, ϵ0) , θ, ϵ0) = µ1 (zi (T ))− 1,

∂

∂ϵ

∣∣∣∣
ϵ=ϵ0

T (zi (θ0, ϵ0) , θ0, ϵ) = η1 (zi (T )) ,

∀i ∈ [i3, i5] , (A.39)

where the first equality uses (A.36) and the fact that µ2 (z) = 1 when z ∈ [ẑ3, ẑ5], and the second

equality uses the fact that η2 (z) = 0 when z ∈ [ẑ3, ẑ5].

Recalling that ia = i3 and ib = i5, it follows from (A.38) and (A.39) that

∀i ∈ (ia, ib) ,

∂

∂θ

∣∣∣∣
θ=θ0

zi (θ, ϵ0)
∂

∂ϵ

∣∣∣∣
ϵ=ϵ0

T (zi (θ0, ϵ0) , θ0, ϵ)−
∂

∂ϵ

∣∣∣∣
ϵ=ϵ0

zi (θ0, ϵ)
∂

∂θ

∣∣∣∣
θ=θ0

T (zi (θ0, ϵ0) , θ, ϵ0)

=

−
+︷ ︸︸ ︷

µ′
1 (zi (T ))

+︷ ︸︸ ︷
η1 (zi (T ))+


+ on (i3,i4),− on (i4,i5)︷ ︸︸ ︷

η′1 (zi (T )) ×

− on (i3,i4),+ on (i4,i5)︷ ︸︸ ︷
[µ1 (zi (T ))− 1]


T ′′ (zi (T )) + v′′i (zi (T ))︸ ︷︷ ︸

+

< 0.

(A.40)

where the signs are derived from the assumptions we made above about η1 and µ1 – in particular

note that µ1 (z) > 0 is increasing on (ẑ3, ẑ5) and, by Lemma A.1, µ1 (ẑ4) = 1 – as well as the fact that

because T is regular, 0 > d2

dz2i

∣∣∣
zi=zi(T )

u (zi − T (zi)− vi (zi)) = −u′ (zi (T )− Ti (zi (T ))− vi (zi (T )))×

[v′′i (zi (T )) + T ′′ (zi (T ))] ,∀i ∈ I11 (see Section A.1.2), so that v′′i (zi (T )) + T ′′ (zi (T )) > 0,∀i ∈ I.

Next observe that:

• The support of i 7→ ∂
∂θ

∣∣
θ=θ0

zi (θ, ϵ0) is [i2, i5].

11Observe that d2

dz2i

∣∣∣
zi=zi(T )

u (zi − T (zi)− vi (zi)) = u′′ (zi − T (zi)− vi (zi)) ×[
1− v′i (zi (T ))− T ′ (zi (T ))

]2︸ ︷︷ ︸
=0

−u′ (zi (T )− Ti (zi (T ))− vi (zi (T ))) × [v′′i (zi (T )) + T ′′ (zi (T ))] =

−u′ (zi (T )− Ti (zi (T ))− vi (zi (T )))× [v′′i (zi (T )) + T ′′ (zi (T ))] .
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• The support of i 7→ ∂
∂ϵ

∣∣
ϵ=ϵ0

T (zi (θ0, ϵ0) , θ0, ϵ) is [i1, i2] ∪ [i3, i5].

Recalling that ia = i3 and ib = i5, it follows that

∂

∂θ

∣∣∣∣
θ=θ0

zi (θ, ϵ0)
∂

∂ϵ

∣∣∣∣
ϵ=ϵ0

T (zi (θ0, ϵ0) , θ0, ϵ) = 0, ∀i ̸∈ (ia, ib) . (A.41)

To understand why the above expression is equal to zero when i ∈ {i2, i3, i5}, note that the

expressions ∂
∂θ

∣∣
θ=θ0

zi (θ, ϵ0) and ∂
∂ϵ

∣∣
ϵ=ϵ0

T (zi (θ0, ϵ0) , θ0, ϵ) are equal to zero on the boundaries

of their supports.

• The support of i 7→ ∂
∂ϵ

∣∣
ϵ=ϵ0

zi (θ0, ϵ) is contained in [i1, i2] ∪ [i3, i5].

• The support of i 7→ ∂
∂θ

∣∣
θ=θ0

T (zi (θ0, ϵ0) , θ, ϵ0) is [i2, 1].

It follows that

∂

∂ϵ

∣∣∣∣
ϵ=ϵ0

zi (θ0, ϵ)
∂

∂θ

∣∣∣∣
θ=θ0

T (zi (θ0, ϵ0) , θ, ϵ0) = 0, ∀i ̸∈ (ia, ib) . (A.42)

Again, the above condition uses the fact that ∂
∂ϵ

∣∣
ϵ=ϵ0

zi (θ0, ϵ) and ∂
∂θ

∣∣
θ=θ0

T (zi (θ0, ϵ0) , θ, ϵ0) are

equal to zero on the boundaries of their supports. Together (A.41), (A.42), and the inequality

established in (A.40) are equivalent to (23). We have now established that the family
(
T θ,ϵ

)
satisfies all of the conditions required by the lemma. □

A.12.2 Proof of Lemma A.1

Assume, for contradiction, that, for all i ∈ (i3, i5) , µ1 (zi (T )) ̸= 1. Then, since the function

i 7→ µ1 (zi (T )) is smooth (this follows from the assumed smoothness of relevant functions and the

implicit function theorem), µ1 (zi3 (T )) = 0, and i 7→ µ1 (zi (T )) is a constant function on [i5, 1], it

follows from the intermediate value theorem that µ1 (zi (T )) < 1,∀i ∈ [i3, 1]. So∫ 1

0
gi (T )µ1 (zi (T )) di =

∫ 1

i3

gi (T )µ1 (zi (T )) di <

∫ 1

i3

gi (T ) di

=

∫ 1

i3

gi (T )µ2 (zi (T )) di <

∫ 1

0
gi (T )µ2 (zi (T )) di,

(A.43)

where the first equality follows from the fact that the support of µ1 is [ẑ3, z̄]; the first inequality

from the our conclusion that µ1 (zi (T )) < 1, ∀i ∈ [i3, 1] and the fact that gi (T ) > 0,∀i ∈ [0, 1]; the

second equality form the fact that µ2 (z) = 1 for all z ∈ [ẑ3, z̄], and the last inequality from the fact

that the µ2 is nonnegative everywhere and µ2 (z) > 0 for z ∈ (ẑ2, ẑ3). However, (A.43) contradicts

(A.27). So the assumption that µ1 (zi (T )) is never equal to 1 on (i3, i5) leads to a contradiction,

completing the proof. □
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A.12.3 A variant of Lemma 3

This section discusses the proof of a variant of Lemma 3; I appeal to this variant in the proof of

Lemma 4.

Lemma A.2 Let T be a regular tax policy and let ia, ib ∈ (0, 1) be such that ia < ib. Then there

exists a well-behaved family
(
T θ,ϵ

)
with T θ0,ϵ0 = T for some interior parameter values θ0, ϵ0 and

that satisfies (15), (16), and

∂

∂θ

∣∣∣∣
θ=θ0

zi (θ, ϵ0)
∂

∂ϵ

∣∣∣∣
ϵ=ϵ0

T (zi (θ0, ϵ0) , θ0, ϵ)

− ∂

∂ϵ

∣∣∣∣
ϵ=ϵ0

zi (θ0, ϵ)
∂

∂θ

∣∣∣∣
θ=θ0

T (zi (θ0, ϵ0) , θ, ϵ0)

> 0, if i ∈ (ia, ib) ,

= 0, if i ̸∈ (ia, ib) .
(A.44)

This lemma differs from Lemma 3 only in that the inequality in (A.44) points in the opposite

direction to (23). If one modifies the construction in the proof of Lemma 3 only by assuming

that η1 is decreasing (rather than increasing) on (ẑ3, ẑ4) and increasing (rather than decreasing) on

(ẑ4, ẑ5), so that η1 (z) < 0 (rather than η1 (x) > 0) on (ẑ3, ẑ5), and correspondingly if one assumes

that η2 (z) > 0 on (ẑ1, ẑ2) (rather than η2 (z) < 0), then one flips the inequality in (23), and so

attains (A.44). □

A.13 Proof of Lemma 5

Assume that welfare weights g are not structurally utilitarian. By Lemma 4, in this case, we may

choose a well behaved family
(
T θ,ϵ

)
θ∈Θ,ϵ∈E satisfying (15)-(17). The construction of this family is

presented in the proofs of Lemmas 3 and 4. Let us consider again the construction of
(
T θ,ϵ

)
. First,

by Corollary 3, since g is not structurally utilitarian we can select a regular tax policy T such that

for some such that for some ia, ib ∈ (0, 1) with ia < ib, either condition (18) or (19) is satisfied.

An examination of the construction of the proof of Corollary 3 shows that it is possible to select T

such that

T ′ (z0 (T )) ̸= 0. (A.45)

We did not previously assume property (A.45) but let us assume henceforth that (A.45) is satisfied.

Next we a use tax policy T and ia and ib with the above properties to construct a family of tax

polices,
(
T θ,ϵ

)
, as in the proof of Lemma 3, of the form T θ,ϵ = T + [θ × µ1] − [ζ (θ, ϵ)× µ2] +

[ϵ× (η1 + η2)] (see (A.32)). The proof of Lemma 4 shows that such a family satisfies (15)-(17). It

follows from their construction in the proof of Lemma 3 that the supports of the functions µ1, µ2, η1,

and η2 are all contained in the set [ẑ1,+∞), where ẑ1 = zi1 (T ) was defined in the beginning of the

proof of Lemma 3. As 0 < i1, it follows from assumptions in Section V.A, that

z0 (T ) < zi1 (T ) = ẑ1. (A.46)
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It follows that

T θ,ϵ (z) = T (z) , ∀z ∈ [0, ẑ1] , ∀θ ∈ Θ,∀ϵ ∈ E. (A.47)

So T θ,ϵ (z) = T (z, θ, ϵ) does not depend on θ or ϵ for z below ẑ1. Recall that in the construction of(
T θ,ϵ

)
, we assumed that θ0 = 0 and ϵ0 = 0, so that, by (A.32), T θ0,ϵ0 = T .

Lemma A.3 There exists a family of tax reforms
(
∆T ξ

)
ξ∈Ξ, where Ξ =

[
ξ, ξ
]
for real numbers

ξ, ξ satisfying ξ < 0 < ξ, and such that ∆T 0 ≡ 0, the support of ∆T ξ is contained in [0, ẑ1] for all

ξ ∈ Ξ, the map (z, ξ) 7→ ∆T ξ (z) is smooth, and for some sets Θ′ =
[
θ′, θ

′
]
⊆ Θ, E′ = [ϵ′, ϵ′] ⊆ E,

with θ′ < 0 < θ
′
and ϵ′ < 0 < ϵ′,∫

gi

(
T θ,ϵ +∆T ξ

) ∂

∂ξ

∣∣∣∣
ξ=ξ′

∆T
(
zi

(
T θ,ϵ +∆T ξ′

)
, ξ
)
di = 0, ∀θ ∈ Θ′, ∀ϵ ∈ E′,∀ξ′ ∈ Ξ, (A.48)

d

dξ

∣∣∣∣
ξ=ξ′

R
(
T θ,ϵ +∆T ξ

)
̸= 0, ∀θ ∈ Θ′, ∀ϵ ∈ E′,∀ξ′ ∈ Ξ. (A.49)

where in (A.48) we use the notation ∆T (zi, ξ) = ∆T ξ (zi). Moreover,
(
∆T ξ

)
ξ∈Ξ can be constructed

so that T θ,ϵ +∆T ξ is regular, for all ξ ∈ Ξ, θ ∈ Θ′, and ϵ ∈ E′.

To understand this lemma, first recall that T θ0,ϵ0 = T , and note that, by construction, all tax

policies T θ,ϵ are equal to T on the interval [0, ẑ1], which contains the support of all tax reforms

∆T ξ. Lemma A.3 says that the family of reforms
(
∆T ξ

)
is such that varying ξ in T θ,ϵ+∆T ξ has no

effect on welfare according to welfare weights (see (A.48)), but does have an effect on revenue (see

(A.49)). Obviously, if T θ,ϵ were an optimal tax policy, it would not be possible to do this. However

note that T , which coincides with all policies T θ,ϵ at the bottom of the income distribution, is

such that marginal tax rate at at the income z0 (T ) at the bottom of the income distribution is

non-zero, and, moreover, since T is regular, z0 (T ) > 0 (see Section A.1.2), and hence, none of the

tax policies T θ,ϵ are optimal. As shown by Saez and Stantcheva (2016), (see Section A.2 of their

Online Appendix), at an optimal tax policy in the generalized social welfare weights framework,

the marginal tax rate for the bottom earner is zero if the bottom earner has a positive income.

Lemma A.3 is proven in Section B.1 of the Appendix.

So let us assume that a family
(
∆T ξ

)
with the properties in Lemma A.3 is chosen. Noting that

∆T 0 ≡ 0, it follows from (A.49) and the implicit function theorem that there exists θ′′, θ
′′ ∈ Θ′ with

θ′′ < 0 < θ
′′
and ϵ′′, ϵ′′ ∈ E′ with ϵ′′ < 0 < ϵ′′ and a function ξ̂ : Θ′′ ×E′′ → Ξ, where Θ′′ =

[
θ′′, θ

′′
]

and E′′ = [ϵ′′, ϵ′′], satisfying:

ξ̂ (θ0, ϵ0) = 0, (A.50)

R
(
T θ,ϵ +∆T ξ̂(θ,ϵ)

)
= R

(
T θ0,ϵ0

)
, ∀θ ∈ Θ′,∀ϵ ∈ E′′, (A.51)

where, in (A.50), ∆T ξ̂(θ,ϵ) is ∆T ξ evaluated at ξ = ξ̂ (θ, ϵ). Because the other functions occurring
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in (A.51) are smooth, it follows that ξ̂ (θ, ϵ) is smooth.

Define the doubly parameterized family of tax policies
(
T̂ θ,ϵ

)
θ∈Θ′′,ϵ∈E′′

by

T̂ θ,ϵ = T θ,ϵ +∆T ξ̂(θ,ϵ), ∀θ ∈ Θ′′,∀ϵ ∈ E′′. (A.52)

It follows from Lemma A.3, the fact that
(
T θ,ϵ

)
is well-behaved, the fact that ξ̂ (θ, ϵ) is smooth, and

Lemma C.2 that, if above θ′′, θ
′′
, ϵ′′, and ϵ′′ are selected sufficiently close to zero, then

(
T̂ θ,ϵ

)
θ∈Θ′′,ϵ∈E′′

is well-behaved. The well-behavedness of
(
T̂ θ,ϵ

)
is elaborated in greater detail in Section A.14, and

specifically Section A.14.2.

Lemma A.4
(
T̂ θ,ϵ

)
θ∈Θ′′,ϵ∈E′′

satisfies (15)-(17).

It is straightforward to verify that
(
T̂ θ,ϵ

)
θ∈Θ′′,ϵ∈E′′

inherits properties (15)-(17) from
(
T θ,ϵ

)
θ∈Θ,ϵ∈E .

The calculations verifying Lemma A.4 are in Section B.2. Moreover it follows from (A.52) and

(A.51) that
(
T̂ θ,ϵ

)
θ∈Θ′′,ϵ∈E′′

has constant revenue. Thus, we have constructed a family of tax

policies with the desired properties, which completes the proof. □

A.14 Well-behavedness of families
(
T θ,ϵ

)
and

(
T̂ θ,ϵ

)
in the proof of Theorem 3

This section explains why the families of tax policies
(
T θ,ϵ

)
and

(
T̂ θ,ϵ

)
constructed in the proof

of Theorem 3 are well-behaved. Well-behavedness consists of conditions on agents’ optimization

problems when facing the tax policies as well as smoothness conditions. (See Section A.1.2.) At

a high level, the reason that
(
T θ,ϵ

)
and

(
T̂ θ,ϵ

)
satisfy the smoothness conditions is that these

tax policies are constructed by combining functions that are assumed to be smooth in ways that

preserve smoothness. More specifically, smoothness follows because relevant functions are derived

from the implicit function theorem applied to smooth functions, which preserves smoothness (see

Theorem 1.37 on p. 30 of Warner (2013)) or from the fact that solution to a parameterized initial

value problem (whose existence and uniqueness are guaranteed by the Picard-Lindelöff theorem) is

smooth when the parameterized initial value problem is appropriately constructed out of smooth

functions (see Corollary 4.1 on p. 101 of Hartman (1982)). I give a more detailed argument below.

A.14.1 The family
(
T θ,ϵ

)
In the proof of Lemma 3 in Section A.12.1, I wrote that if θ, θ, ϵ, and ϵ, with θ < 0 < θ, ϵ < 0 < ϵ

are all chosen sufficiently close to 0, then the family
(
T θ,ϵ

)
θ∈[θ,θ],ϵ∈[ϵ,ϵ] is well-behaved. I now

substantiate that claim. First, for easy reference, recall definitions (A.29) and (A.33):

T θ,ϵ
∗ = T + θµ1 + ϵ (η1 + η2) , (A.53)

T θ,ϵ = T θ,ϵ
∗ − ζ (θ, ϵ)µ2. (A.54)
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As stated in Section A.1.2, a (non-individualized) tax policy is regular if the tax policy is smooth

in income, and, for each agent i, when facing the tax policy, there is a unique optimal income,

and at this optimum, i’s income is non-negative and i’s second order condition holds with a strict

inequality. Recall that the tax policy T in the definition of T θ,ϵ
∗ was assumed to be regular. Now

consider a tax policy of the form T θ,ϵ
∗ − ζµ2, where ζ is a real number. If θ = ϵ = ζ = 0, then

T θ,ϵ
∗ − ζµ2 = T . Since µ1, µ2, η1, and η2 are all assumed to be smooth in z, and T θ,ϵ

∗ − ζµ2 varies

smoothly in (θ, ϵ, ζ), it follows that if θ, ϵ, and ζ, are sufficiently close to zero, then T θ,ϵ
∗ − ζµ2

continues to be regular: for each agent i, the optimum continues to be unique and positive, the

second order condition continues to hold with a strict inequality, and the tax policy continues to

be smooth in income. To state this formally, Lemma C.2 implies that it is possible to choose

θ∗ > 0, ϵ∗ > 0, ζ∗ > 0 sufficiently small that,

for all θ, ϵ, ζ, if |θ| ≤ θ∗, |ϵ| ≤ ϵ∗, |ζ| ≤ ζ∗, then T θ,ϵ
∗ − ζµ2 is regular. (A.55)

Next, I establish that the function ζ (θ, ϵ) is smooth in its arguments. Define the functions

f1, f2 : I × [−θ∗, θ∗]× [−ζ∗, ζ∗]× [−ϵ∗, ϵ∗] → R by

f1 (i, θ, ζ, ϵ) = gi

(
T θ,ϵ
∗ − ζµ2

)
µ1

(
zi

(
T θ,ϵ
∗ − ζµ2

))
,

f2 (i, θ, ζ, ϵ) = gi

(
T θ,ϵ
∗ − ζµ2

)
µ2

(
zi

(
T θ,ϵ
∗ − ζµ2

))
.

For ϵ ∈ [−ϵ∗, ϵ∗], define Fϵ (θ, ζ) : [−θ∗, θ∗]× [−ζ∗, ζ∗] → R by

Fϵ (θ, ζ) =

∫ 1
0 f1 (i, θ, ζ, ϵ) di∫ 1
0 f2 (i, θ, ζ, ϵ) di

. (A.56)

Choose a real number M satisfying M ≥ |Fϵ (θ, ζ)|, for all ϵ ∈ [−ϵ∗, ϵ∗] ,∀θ ∈ [−θ∗, θ∗] , ∀ζ ∈
[−ζ∗, ζ∗]. Let θ = min

{
θ∗, ζ

∗

M

}
. Since both the functions f1 and f2 are smooth in their arguments,12

the integrals in both the numerator and the denominator of the right hand side of (A.56) are smooth

in (θ, ϵ, ζ), and since the denominator is never equal to zero, it follows that (θ, ζ, ϵ) 7→ Fϵ (θ, ζ)

is smooth. The smoothness of Fϵ (θ, ζ) implies that, in particular, Fϵ (θ, ζ) is continuous in θ

and uniformly Lipschitz continuous in ζ. It now follows from the Picard-Lindelöf theorem (see

Theorem 1.1 on p. 8 of Hartman (1982)) that, for all ϵ ∈ [−ϵ∗, ϵ∗], there exists a unique function

ζϵ (θ) :
[
−θ, θ

]
→ [−ζ∗, ζ∗] satisfying

ζϵ (0) = 0,

d

dθ
ζϵ (θ) = Fϵ (θ, ζϵ (θ)) , ∀θ ∈

[
−θ, θ

]
.

(A.57)

12Note in particular that zi
(
T θ,ϵ
∗ − ζµ2

)
is smooth in (i, θ, ζ, ϵ) because, as it has been established above that

T θ,ϵ
∗ − ζµ2 is regular, zi

(
T θ,ϵ
∗ − ζµ2

)
is characterized via the implicit function theorem from the agent’s first order

condition, and the other functions featuring in this condition are smooth.
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We can write ζ (θ, ϵ) = ζϵ (θ). Note that (A.57) is equivalent to (A.30)-(A.31). Corollary 4.1 on p.

101 of Hartman (1982) implies that, if, in a parameterized initial value problem, such as (A.57),

the map (θ, ζ, ϵ) 7→ Fϵ (θ, ζ) is smooth, then the parameterized solution (θ, ϵ) 7→ ζ (θ, ϵ) is smooth

as well, establishing the desired smoothness of ζ (θ, ϵ).

It now follows from the fact that the range of ζ (θ, ϵ), on
[
−θ, θ

]
× [−ϵ∗, ϵ∗], is contained in

[−ζ∗, ζ∗] (see the preceding paragraph), combined with (A.54) and (A.55), that, for all (θ, ϵ) ∈[
−θ, θ

]
×[−ϵ∗, ϵ∗], T θ,ϵ is regular. Next, it follows from the smoothness of ζ (θ, ϵ), established above,

together with (A.53) and (A.54) (and the smoothness of the functions on the right hand side of

(A.53)) that (z, θ, ϵ) 7→ T (z, θ, ϵ) is smooth. It now follows from Observation A.1, which says that,

for non-individualized tax policies, regularity of each T θ,ϵ and smoothness of (z, θ, ϵ) 7→ T (z, θ, ϵ)

is equivalent to well-behavedness, that, if we set θ = −θ, ϵ = ϵ∗, ϵ = −ϵ∗, then
(
T θ,ϵ

)
θ∈[θ,θ],ϵ∈[ϵ,ϵ] is

well-behaved.

A.14.2 The family
(
T̂ θ,ϵ

)
This section shows that if θ′′, θ

′′
, ϵ′′, and ϵ′′, with θ′′ < 0 < θ

′′
, ϵ′′ < 0 < ϵ′′ are all chosen sufficiently

close to 0, then the family
(
T θ,ϵ

)
θ∈

[
θ′′,θ

′′]
,ϵ∈[ϵ′′,ϵ′′] is well-behaved. Recall from (A.52) that

T̂ θ,ϵ = T θ,ϵ +∆T ξ̂(θ,ϵ). (A.58)

First I explain why (z, θ, ϵ) 7→ ∆T ξ̂(θ,ϵ) (z) is smooth. Note that (z, θ, ϵ) 7→ ∆T ξ̂(θ,ϵ) (z) is the

composition of the maps (z, ξ) 7→ ∆T ξ (z) and (θ, ϵ) 7→ ξ̂ (θ, ϵ). The smoothness of (z, ξ) 7→ ∆T ξ (z)

is established by Lemma A.3. (See in particular the discussion following (B.17) in Section B.1.3.)

The function (θ, ϵ) 7→ ξ̂ (θ, ϵ) is defined by (A.50)-(A.51) via the implicit function theorem and the

fact that it is smooth follows from the fact that the other functions in (A.51) are smooth.13 This

establishes the smoothness of (z, θ, ϵ) 7→ ∆T ξ̂(θ,ϵ) (z). The regularity of T̂ θ,ϵ, for each θ and ϵ, given

that θ′′, θ
′′
, ϵ′′, ϵ′′ are selected sufficiently close to zero, now follows from a similar argument as that

for the regularity of T θ,ϵ
∗ − ζµ2 in the previous section, again appealing to and Lemma C.2 and the

fact that T̂ θ0,ϵ0 = T .14

The smoothness, established above, of (z, θ, ϵ) 7→ T (z, θ, ϵ) and (z, θ, ϵ) 7→ ∆T ξ̂(θ,ϵ) (z), to-

gether with (A.58) now implies the smoothness of (z, θ, ϵ) 7→ T̂ θ,ϵ (z), which, appealing again to

Observation A.1, completes the argument that
(
T̂ θ,ϵ

)
is well-behaved.

13We have already established the smoothness of T θ,ϵ and ∆T ξ above, and, noting that each agent’s optimal
income varies smoothly in response to smooth changes in tax policy, tax revenue also varies smoothly in response to
such smooth changes.

14That T̂ θ0,ϵ0 = T follows from (A.58) and the facts that T θ0,ϵ0 = T and ∆T ξ̂(θ0,ϵ0) ≡ 0; see Section A.13 for this
last point.
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A.15 Proof of Proposition 5

In the poverty alleviation model of Section V.D, condition (24) is equivalent to condition (15).

Given that κ (θ0, ϵ) = 0,∀ϵ, it follows that ∂
∂ϵ

∣∣
ϵ=ϵ0

κ (θ0, ϵ) = 0, which implies that the assumption

that ∫
g (θ0, ϵ0) [zi (θ0, ϵ0)− α] di = 0 (A.59)

is equivalent to (16).

I now establish some facts that will be useful for establishing (17). First, using (24), we have

∂

∂θ

∣∣∣∣
θ=θ0

κ (θ, ϵ0) =

∫
gi (θ0, ϵ0)∫
gj (θ0, ϵ0) dj

[zi (θ0, ϵ0) + f (zi (θ0, ϵ0))] di

=

∫
gi (θ0, ϵ0)∫
gj (θ0, ϵ0) dj

zi (θ0, ϵ0) di+

∫
gi (θ0, ϵ0)∫
gj (θ0, ϵ0) dj

f (zi (θ0, ϵ0)) di

= α+

∫
gi (θ0, ϵ0)∫
gj (θ0, ϵ0) dj

f (zi (θ0, ϵ0)) di︸ ︷︷ ︸
β

,

(A.60)

where the third equality follows from (A.59), and β is a label for the last integral. It follows from

the assumptions of Section V.D that β > 0. Let ī be the unique agent satisfying zī (θ0, ϵ0) = z̄.

That such a ī exists and is unique follows from Lemma C.1. It also follows from Lemma C.1 and

the assumptions in Section V.D that all agents in the interval [0, ī) earn an income less than z̄

when facing tax policy T θ0,ϵ0 . It follows from assumptions on f in Section V.D that, for all incomes

z earned by agents in the interval [0, ī], when facing tax policy T θ0,ϵ0 , f (z) = 0, so that for all

i ∈ [0, ī], f ′ (zi (θ0, ϵ0)) = 0 and f ′′ (zi (θ0, ϵ0)) = 0. Taking this into account, and applying the

implicit function theorem to the first order condition for agents’ optimization problem when facing

tax policy T θ0,ϵ0 , we have

∂

∂θ

∣∣∣∣
θ=θ0

zi (θ, ϵ0) = − 1

v′′i (zi (θ0, ϵ0))
,

∂

∂ϵ

∣∣∣∣
ϵ=ϵ0

zi (θ0, ϵ) =
1

v′′i (zi (θ0, ϵ0))
,

∀i ∈ [0, ī] . (A.61)

Again, using the fact that f ′ (zi (θ0, ϵ0)) = 0, ∀i ∈ [0, ī] and (A.60), and the fact that ∂
∂ϵ

∣∣
ϵ=ϵ0

κ (θ0, ϵ) =

0, we have

∂

∂θ

∣∣∣∣
θ=θ0

T (zi (θ0, ϵ0) , θ, ϵ0) = zi (θ0, ϵ0)− (α+ β) ,

∂

∂ϵ

∣∣∣∣
ϵ=ϵ0

T (zi (θ0, ϵ0) , θ0, ϵ) = − zi (θ0, ϵ0) + α,

∀i ∈ [0, ī] . (A.62)
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Using (A.61) and (A.62), we have that, for all i ∈ [0, ī],

∂

∂θ

∣∣∣∣
θ=θ0

zi (θ, ϵ0)
∂

∂ϵ

∣∣∣∣
ϵ=ϵ0

T (zi (θ0, ϵ0) , θ0, ϵ)−
∂

∂ϵ

∣∣∣∣
ϵ=ϵ0

zi (θ0, ϵ)
∂

∂θ

∣∣∣∣
θ=θ0

T (zi (θ0, ϵ0) , θ, ϵ0)

=

(
− 1

v′′i (zi (θ0, ϵ0))

)
(−zi (θ0, ϵ0) + α)−

(
1

v′′i (zi (θ0, ϵ0))

)
(zi (θ0, ϵ0)− (α+ β))

=
1

v′′i (zi (θ0, ϵ0))
β > 0.

Next recall the relationship between the variables ci, ûi and zi from Section III: ci = ûi +

vi (zi). It follows that ĝi (ûi, zi) = g̃ (ûi + vi (zi)), and hence ∂
∂zi

ĝi (ûi, zi) = g̃′ (ûi + vi (zi)) v
′
i (zi) =

g̃′ (ci) v
′
i (zi). It follows from the above that:

∫
∂

∂zi
ĝi

(
Ûi (θ0, ϵ0) , zi (θ0, ϵ0)

)[ ∂

∂θ

∣∣∣∣
θ=θ0

zi (θ, ϵ0)
∂

∂ϵ

∣∣∣∣
ϵ=ϵ0

T (zi (θ0, ϵ0) , θ0, ϵ)

− ∂

∂ϵ

∣∣∣∣
ϵ=ϵ0

zi (θ0, ϵ)
∂

∂θ

∣∣∣∣
θ=θ0

T (zi (θ0, ϵ0) , θ, ϵ0)

]
di

= β

∫ ī

0
g̃′ (ci (θ0, ϵ0))

v′i (zi (θ0, ϵ0))

v′′i (zi (θ0, ϵ0))
di < 0,

(A.63)

where the upper bound of integration in the second integral follows from that fact that all i ∈ (̄i, 1]

are above the poverty line when facing tax policy T θ0,ϵ0 and hence g̃′ (ci (θ0, ϵ0)) = 0 for all such

agents. The inequality follows from the fact that v′i (zi) > 0 and v′′i (zi) > 0, for all zi, g̃
′ (ci) ≤ 0,

for all ci, and, since a positive measure of agents in the interval [0, ī] is beneath the poverty line

at tax policy T θ0,ϵ0 , g̃′ (ci (θ0, ϵ0)) < 0 for a positive measure of agents in [0, ī]. It now follows

from Lemma 2 that the family
(
T θ,ϵ

)
in the poverty alleviation model of Section V.D satisfies

(17). (Note that the proof of Lemma 2 also establishes that the first integral in (A.63) is equal to
d
dθ

∣∣
θ=θ0

∫
gi (θ, ϵ0)

∂
∂ϵ

∣∣
ϵ=ϵ0

T (zi (θ, ϵ0) , θ, ϵ) di, which shows that (A.63) justifies the inequality that

was said to be the key calculation corresponding to (17) in Section V.D of the main text.) □

B Lemmas supporting Lemma 5

This section proves Lemmas A.3 and A.4, to which I appealed in the proof of Lemma 5.

B.1 Proof of Lemma A.3

I begin the proof by establishing a pair of lemmas and then proceed to complete the proof.

B.1.1 Lemma B.1

The following lemma establishes the linearity of the function f (∆T ) = d
dε

∣∣
ε=0

R (T + ε∆T ).
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Lemma B.1 Let T be a regular tax policy. Let ∆T1 and ∆T2 be smooth tax reforms and let

r1 and r2 be real numbers. Then d
dε

∣∣
ε=0

R (T + ε (r1∆T1 + r2∆T2)) = r1
d
dε

∣∣
ε=0

R (T + ε∆T1) +

r2
d
dε

∣∣
ε=0

R (T + ε∆T1).

Proof. Let ∆T1 and ∆T2 be smooth tax reforms and let r1 and r2 be real numbers. Then

d

dε

∣∣∣∣
ε=0

zi (T + ε (r1∆T γ + r2∆T2))

= − r1∆T ′
1 (zi (T )) + r2∆T ′

2 (zi (T ))

T ′′ (zi (T )) + v′′i (zi (T ))

= r1

(
− ∆T ′

1 (zi (T ))

T ′′ (zi (T )) + v′′i (zi (T ))

)
+ r2

(
− ∆T ′

2 (zi (T ))

T ′′ (zi (T )) + v′′i (zi (T ))

)
= r1

d

dε

∣∣∣∣
ε=0

zi (T + ε∆T1) + r2
d

dε

∣∣∣∣
ε=0

zi (T + ε∆T2) ,

(B.1)

where the first and third equalities follow from applying the implicit function theorem to the first

order conditions of agent i’s optimization problem when facing tax policies T + ε (r1∆T1 + r2∆T2),

T + ε∆T1, and T + ε∆T2, and ∆T ′
1 (z) and ∆T ′

2 (z), are, respectively, the derivatives of ∆T1 (z)

and ∆T2 (z). Next, observe that

d

dε

∣∣∣∣
ε=0

R (T + ε (r1∆T1 + r2∆T2))

=

∫
[r1∆T1 (zi (T )) + r2∆T2 (zi (T ))] di+

∫
T ′ (zi (T ))

d

dε

∣∣∣∣
ε=0

zi (T + ε (r1∆T1 + r2∆T2)) di

=

∫
[r1∆T1 (zi (T )) + r2∆T2 (zi (T ))] di

+

∫
T ′ (zi (T ))

[
r1

d

dε

∣∣∣∣
ε=0

zi (T + ε∆T1) + r2
d

dε

∣∣∣∣
ε=0

zi (T + ε∆T2)

]
di

= r1

[∫
∆T1 (zi (T )) di+

∫
T ′ (zi (T ))

d

dε

∣∣∣∣
ε=0

zi (T + ε∆T1) di

]
+ r2

[∫
∆T2 (zi (T )) di+

∫
T ′ (zi (T ))

d

dε

∣∣∣∣
ε=0

zi (T + ε∆T2) di

]
=r1

d

dε

∣∣∣∣
ε=0

R (T + ε∆T1) + r2
d

dε

∣∣∣∣
ε=0

R (T + ε∆T2) ,

where the second equality follows from (B.1). □

B.1.2 Lemma B.2

Under the assumption that the lowest earned income is positive and the marginal tax rate at the

bottom of the income distribution is nonzero, the following lemma establishes the existence of a

desirable revenue-neutral tax reform in the generalized welfare weights framework. This mirrors a

standard result in traditional (utilitarian) optimal tax theory. Saez and Stantcheva (2016) present

a very closely related result, namely an optimal tax formula that, as they observe in their Online
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Appendix, implies that when the lowest earned income is positive, the marginal tax rate at the

bottom of the income distribution is zero in the generalized welfare weights framework, as in the

traditional framework. Here, I prove a slightly stronger result than that there is a desirable reform

when the bottom rate is nonzero: I also establish that the desirable reform can be assumed to have

certain additional properties that are useful for our purposes.

Lemma B.2 Let T be a regular tax policy (so that in particular z0 (T ) > 0), and suppose that

T ′ (z0 (T )) ̸= 0. Let z∗ be such that z0 (T ) < z∗ ≤ z1 (T ). Then there exists a desirable revenue

neutral tax reform ∆T with support contained in [0, z∗]; formally, there exists a smooth tax reform

∆T with support contained in [0, z∗] such that d
dε

∣∣
ε=0

R (T + ε∆T ) = 0 and
∫
gi (T )∆T (zi (T )) di <

0. Moreover, there exist smooth tax reforms ∆T1,∆T2, with supports contained in [0, z∗] such that

∆T = ∆T1 −∆T2,∆T2 (z) ≥ 0,∀z, and d
dε

∣∣
ε=0

R (T + ε∆T2) ̸= 0.

Recall that the set of agents is I = [0, 1], z0 (T ) and z1 (T ) are the optimal responses to T for agents

0 and 1 respectively. By the assumptions of Section V.A, z0 (T ) and z1 (T ) are respectively the

bottom and top of the income distributions earned in response to T (see also Lemma C.1).

I begin by stating some useful background facts and then proceed to prove the lemma.

B.1.2.1 Background facts

Choose a regular tax policy T , let z0 = z0 (T ), and z1 = z1 (T ). Define the function ζ : I → Z

by ζ (i) = zi (T ), and let ι = ζ−1 be the inverse of ζ so that ι (z) = i if and only if zi (T ) = z. It

follows from our assumptions in Section V.A that ζ (0) = z0 (T ) > 0 and ζ (i) is strictly increasing

in i. Let H be the cumulative distribution over incomes induced by tax policy T . Then, recalling

that agents are uniformly distributed on the interval I = [0, 1], it follows that H (z) = 0 for all

z ∈ Z such that z < z0; H (z) = ι (z) for all z ∈ Z with z0 ≤ z ≤ z1; and H (z) = 1 for all

z ∈ Z with z0 < z. So if h is the density corresponding to the cumulative distribution H, we have

h (z) = H ′ (z) = ι′ (z) = 1
ζ′(ι(z)) for all z ∈ [z0, z1];

15 and h (z) = 0 for all z ∈ Z with z ̸∈ [z0, z1].

Observe, using a change of variables, that given a smooth tax reform ∆T :

d

dε

∣∣∣∣
ε=0

R (T + ε∆T ) =

∫ 1

0
∆T (zi (T )) di+

∫ 1

0
T ′ (zi (T ))

d

dε

∣∣∣∣
ε=0

zi (T + ε∆T ) di

=

∫ 1

0
∆T (zi (T )) di−

∫ 1

0
T ′ (zi (T ))

∆T ′ (zi (T ))

T ′′ (zi (T )) + v′′i (zi (T ))
di

=

∫ z1

z0

∆T (z)h (z) dz −
∫ z1

z0

T ′ (z)
∆T ′ (z)

T ′′ (z) + v′′ι(z) (z)
h (z) dz

=

∫ z1

z0

∆T (z)h (z) dz −
∫ z1

z0

∆T ′ (z) kT (z) dz

(B.2)

15Strictly speaking, h (z) is, respectively, the right- and left-derivative of H (z) at z = z0 and z = z1, and we have
h (z0) =

1
ζ′(ι(z0))

= 1
ζ′(0) and h (z1) =

1
ζ′(1) .
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where ∆T ′ is the derivative of ∆T , v′′ι(z) (z) is v
′′
i (z) evaluated at i = ι (z), and the second equality

follows from applying the implicit function theorem to the first order condition for an agent’s

optimization problem when facing tax policy T + ε∆T (z) around ε = 0 and

kT (z) =
T ′ (z)h (z)

T ′′ (z) + v′′ι(z) (z)
, ∀z ∈ [z0, z1] . (B.3)

Note that we include the subscript T in kT to express the dependence of kT on the tax policy T

through the terms T ′ (z) and T ′′ (z). It follows from the fact that, for all regular T and all i ∈ I,
d2

dz2i

∣∣∣
zi=zi(T )

u (zi − T (zi)− vi (zi)) < 0 (see Section A.1.2), that the denominator on the right hand

side of (B.3) is positive for all z ∈ [z0, z1] . Moreover the assumptions on vi and yi in Section V.A

imply that ζ ′ (i) > 0, ∀i ∈ I, and hence that h (z) > 0,∀z ∈ [z0, z1]. It then follows that:

T ′ (z0) ̸= 0 ⇒ kT (z0) ̸= 0. (B.4)

B.1.2.2 Main argument

Again, let z0 = z0 (T ) and z1 = z1 (T ). Choose z∗ such that z0 < z∗ ≤ z1. Let z0 = z0 (T ). As

T is regular, it follows that z0 > 0 (see Section A.1.2). Choose z− so that 0 < z− < z0. Consider

a smooth tax reform ∆T̂1 with ∆T̂1 (z) = 2, ∀z ∈ [0, z−] ,∆T̂ ′
1 (z) < 0,∀z ∈ (z−, z∗) ,∆T̂1 (z0) = 1,

and ∆T̂1 (z) = 0, ∀z ∈ [z∗,+∞). So the smooth tax reform ∆T̂1 equal to 2 until z = z−, at which

point it falls, passing through ∆T̂1 = 1 when z = z0, and reaching ∆T̂1 = 0 at z = z∗ and remains

at zero thereafter.

For each γ ∈ [1,+∞), define zγ−, z
γ
∗ by γ

(
zγ− − z0

)
+ z0 = z−, γ (z

γ
∗ − z0) + z0 = z∗. For γ ≥ 1,

we have zγ− < z0 < zγ∗ ; and zγ− ↑ z0 and zγ∗ ↓ z0 as γ ↑ +∞. Define iγ by the condition ziγ (T ) = zγ∗ ;

that such an iγ exists follows from Lemma C.1. Using assumptions in Section V.A, we have iγ ↓ 0

as γ ↑ +∞.

Define the tax reform ∆T γ
1 by

∆T γ
1 (z) =


2, if z ∈

[
0, zγ−

]
,

∆T̂1 (γ (z − z0) + z0) , if z ∈
(
zγ−, z

γ
∗
)
,

0, if z ∈ [zγ∗ ,+∞) .

(B.5)

Using the properties of ∆T̂1, it is straightforward to verify that, for all γ ≥ 1, ∆T γ
1 is a smooth

function of z. So ∆T γ
1 is similar to ∆T̂1, except that in the former zγ− and zγ∗ play the roles of z−

and z∗ in the latter. For γ > 1,∆T γ
1 falls more steeply than ∆T̂1 near z = z0. Observe that, for all

γ ≥ 1, [0, zγ∗ ] is the support of both ∆T γ
1 , so that the support of ∆T γ

1 is contained in [0, z∗].

Lemma B.3 Assume, as above, that T ′ (z0) ̸= 0. Then limγ→∞
d
dε

∣∣
ε=0

R (T + ε∆T γ
1 ) ̸= 0.

Lemma B.3 is proven in Section B.1.2.3.
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Since we are assuming that T ′ (z0) ̸= 0, it follows from Lemma B.3 that there exists a tax reform

∆T̂2 with support contained in [0, z∗] such that ∆T̂2 (z) ≥ 0, ∀z ∈ Z, and

d

dε

∣∣∣∣
ε=0

R
(
T + ε∆T̂2

)
̸= 0. (B.6)

In particular, we can choose ∆T̂2 = ∆T̂ γ0
1 for some sufficiently large γ0. However, for our purposes,

it is not important whether ∆T̂2 = ∆T̂ γ0
1 for some sufficiently large (fixed) γ0; it matters only that

is has the properties we have just ascribed to it.

It follows from Lemma B.1 and (B.6) that, for each γ > 1, there exists rγ such that

d

dε

∣∣∣∣
ε=0

R
(
T + ε

(
∆T γ

1 − rγ∆T̂2

))
= 0. (B.7)

It follows from Lemma B.1, (B.6), and (B.7) that

rγ =
d
dε

∣∣
ε=0

R (T + ε∆T γ
1 )

d
dε

∣∣
ε=0

R
(
T + ε∆T̂2

) . (B.8)

The negative of the marginal welfare effect of a small tax reform in direction ∆T γ
1 − rγ∆T̂2 is

Wγ =

∫
gi (T )∆T γ (zi (T )) di− rγ

∫
gi (T )∆T̂2 (zi (T )) di.

Observe that because (i) the function i 7→ ∆T γ (zi (T )), whose domain is [0, 1], has support [0, iγ ]

and iγ ↓ 0 as γ approaches infinity and (ii) ∆T γ (z) is bounded between 0 and 2, for all z, it follows

that
∫
gi (T )∆T γ (zi (T )) di → 0 as γ → ∞. Note that because ∆T̂2 (z) ≥ 0, ∀z ∈ Z, and ∆T̂2

satisfies (B.6), there must be a positive measure set of agents i such that ∆T̂2 (zi (T )) > 0. It

follows that
∫
gi (T )∆T̂2 (zi (T )) di > 0. Lemma B.3 and (B.8) imply that limγ→∞ rγ ̸= 0.16 It

now follows from the results of the previous paragraph that if γ is sufficiently large then Wγ ̸= 0.

Then choose such a sufficiently large γ. If Wγ < 0, then define ∆T1 = ∆T γ
1 and ∆T2 = rγ∆T̂2;

and if Wγ > 0, define ∆T1 = −∆T γ
1 and ∆T2 = −rγ∆T̂2. In either case define ∆T = ∆T1 −∆T2.

In both cases, we have
∫
gi (T )∆T (zi (T )) di < 0 and, appealing to Lemma B.1, (B.6), and (B.7),

d
dε

∣∣
ε=0

R (T + ε∆T ) = 0 and d
dε

∣∣
ε=0

R (T + ε∆T2) ̸= 0. Finally note the support of ∆T , ∆T1, and

∆T2 are all contained in [0, z∗]. We have now established all of the properties required by Lemma

B.2. □

16Observe that, from (B.2), d
dε

∣∣
ε=0

R
(
T + ε∆T̂2

)
=

∫ z1
z0

∆T̂2 (z)h (z) dz −
∫ z1
z0

∆T ′ (z) kT (z) dz, which is finite,

so the denominator in (B.8) is finite as well.
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B.1.2.3 Proof of Lemma B.3.

It follows from (B.2) and the fact that the support of ∆T γ
1 is [0, zγ∗ ] that

d

dε

∣∣∣∣
ε=0

R (T + ε∆T γ
1 ) =

∫ zγ∗

z0

∆T γ
1 (z)h (z) dz −

∫ zγ∗

z0

d

dz
∆T γ

1 (z) kT (z) dz, (B.9)

where d
dz∆T γ

1 (z) is the derivative of ∆T γ
1 (z). Because zγ∗ ↓ z0 as γ → ∞ and ∆T γ (z) is bounded

between 0 and 2 for all z,

lim
γ→∞

∫ zγ∗

z0

∆T γ
1 (z)h (z) dz = 0. (B.10)

Since d
dz∆T γ

1 (z) ≤ 0,∀z ∈ Z, it follows from the preceding that, if γ is sufficiently large, we have:(
max

z∈[z0,zγ∗ ]
kT (z)

)
×
∫ zγ∗

z0

d

dz
∆T γ

1 (z) dz ≤
∫ zγ∗

z0

d

dz
∆T γ

1 (z) kT (z) dz

≤

(
min

z∈[z0,zγ∗ ]
kT (z)

)
×
∫ zγ∗

z0

d

dz
∆T γ

1 (z) dz.

(B.11)

Next observe that∫ zγ∗

z0

d

dz
∆T γ

1 (z) dz =

∫ zγ∗

z0

γ∆T̂ ′
1 (γ [z − z0] + z0) dz =

∫ z∗

z0

∆T̂ ′
1 (z̃) dz̃ = ∆T̂1 (z∗)− T̂1 (z0) = −1,

(B.12)

where ∆T̂ ′
1 (z̃) is the derivative of ∆T̂1 (z̃) and the second equality uses the change of variables

z 7→ z̃ = γ [z − z0] + z0. Next observe that as k is smooth and zγ ↓ z0 and γ → ∞,

lim
γ→∞

max
z∈[z0,zγ ]

kT (z) = kT (z0) and lim
γ→∞

min
z∈[z0,zγ ]

kT (z) = kT (z0) . (B.13)

It follows from (B.9), (B.10), (B.11), (B.12), and (B.13) that

lim
γ→∞

d

dε

∣∣∣∣
ε=0

R (T + ε∆T γ
1 ) = kT (z0) .

It follows from (B.4) and the assumption that T ′ (z0) ̸= 0 that kT (z0) ̸= 0, which completes the

proof. □

B.1.3 Completion of the proof of Lemma A.3

Lemma B.2 established that, under certain conditions, there exists a desirable revenue neutral tax

reform. It is intuitive that, starting from such a reform, and adding an appropriate lumpsum tax,

one can attain a welfare-neutral reform that raises revenue. Lemma A.3 establishes the existence
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of something similar: a parameterized family of tax reforms (at a subset of tax policies in the

family
(
T θ,ϵ

)
) such that varying the parameter affects revenue but is socially indifferent according

to welfare weights. This family is not constructed by modifying a desirable revenue neutral reform

via a lumpsum tax, which would affect all taxpayers, but rather by local change in taxes that affects

only taxpayers at the bottom of the income distribution.

I now use Lemmas B.1 and B.2 to prove Lemma A.3. Recall from Section A.13 that T θ0,ϵ0 = T

for a regular tax policy T satisfying T ′ (z0 (T )) ̸= 0. Recall also from Section A.13 that ẑ1 = zi1 (T ),

and moreover, z0 (T ) < ẑ1 < z1 (T ). So letting ẑ1 play the role of z∗ in Lemma B.2, there exist tax

reforms ∆T1,∆T2, and ∆T , all with supports contained in [0, ẑ1] and satisfying the properties in

Lemma B.2 in relation to the tax policy T = T θ0,ϵ0 . Define the function17

F (ξ, r) =

∫
gi (T + ξ∆T1 − r∆T2)∆T1 (zi (T + ξ∆T1 − r∆T2)) di∫
gi (T + ξ∆T1 − r∆T2)∆T2 (zi (T + ξ∆T1 − r∆T2)) di

. (B.14)

It follows from the properties stated in Lemma B.2 (which apply to T,∆T1 and ∆T2) and the

smoothness of the relevant functions that if ξ and r are sufficiently close to zero, then the denom-

inator in the above expression is nonzero.18 Note that F is smooth in its arguments. It follows

from the Picard-Lindelöf theorem that there exist real numbers ξ, ξ with ξ < 0 < ξ and a function

s :
[
ξ, ξ
]
→ R satisfying

s (0) = 0, (B.15)

s′ (ξ) = F (ξ, s (ξ)) , ∀ξ ∈ Ξ, (B.16)

where Ξ =
[
ξ, ξ
]
. Define the family of tax reforms

(
∆T ξ

)
ξ∈Ξ by the condition

∆T ξ = ξ∆T1 − s (ξ)∆T2, ∀ξ ∈ Ξ. (B.17)

Observe that ∆T 0 ≡ 0 and, for all ξ ∈ Ξ, the support of ∆T ξ is contained in [0, ẑ1] = [0, z∗]

because the supports of ∆T1 and ∆T2 are contained in [0, ẑ1]. It follows from the smoothness of

the function F (ξ, r), and Corollary 4.1 on p. 101 of Hartman (1982) that the function s (ξ) is

smooth, and hence also, given the smoothness of ∆T1 and ∆T2, that the map (z, ξ) 7→ ∆T ξ (z) is

smooth. Lemma C.2 implies that it is possible to choose ξ and ξ, and also θ′, θ
′ ∈ Θ, ϵ′, ϵ′ ∈ E with

θ′ < 0 < θ
′
, ϵ′ < 0 < ϵ′ so that T θ,ϵ + ∆T ξ = T + [θ × µ1] − [ζ (θ, ϵ)× µ2] + [ϵ× (η1 + η2)] + ∆T ξ

is regular, for all θ ∈ Θ′ =
[
θ′, θ

′
]
, ϵ ∈ E′ = [ϵ′, ϵ′] , and ξ ∈ Ξ =

[
ξ, ξ
]
. So let us assume that

ξ, ξ, θ′, θ
′
, ϵ′, and ϵ′ are so chosen.

17It follows from Lemma C.2 that if if ξ and r are sufficiently close to 0, then T + ξ∆T1 − r∆T2 is regular, and
hence zi (T + ξ∆T1 − r∆T2) is uniquely defined, and so gi (T + ξ∆T1 − r∆T2) is also uniquely defined.

18In particular, the facts that ∆T2 (z) ≥ 0, ∀z, and d
dε

∣∣
ε=0

R (T + ε∆T2) ̸= 0 imply that there exists a positive
measure of agents i such that ∆T2 (zi (T )) > 0, hence, invoking again ∆T2 (z) ≥ 0,∀z, it follows that from the fact
that welfare weights are positive

∫
gi (T )∆T2 (zi (T )) di > 0. That the denominator of (B.14) is positive now follows

from our smoothness assumptions.
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Next observe that

∂

∂ξ
∆T (z, ξ) = ∆T1 (z)− s′ (ξ)∆T2 (z) , ∀ξ ∈ Ξ, ∀z ∈ Z, (B.18)

where ∆T (z, ξ) = ∆T ξ (z). Recalling that T θ0,ϵ0 = T , and using (B.14), (B.17), and (B.18), it

follows that (B.16) is equivalent to∫
gi

(
T +∆T ξ

) ∂

∂ξ

∣∣∣∣
ξ=ξ′

∆T
(
zi

(
T +∆T ξ′

)
, ξ
)
di = 0, ∀ξ′ ∈ Ξ. (B.19)

It follows that the family
(
∆T ξ

)
satisfies (B.19).

Taking the derivative of the relation (B.18) with respect to z yeilds:

∂2

∂ξ∂z
∆T (z, ξ) = ∆T ′

1 (z)− s′ (ξ)∆T ′
2 (z) , ∀ξ ∈ Ξ,∀z ∈ Z, (B.20)

Now consider the tax reform ∆T1−s′ (0)∆T2. This is just the tax reform ∆T1−r∆T2 in the special

case in which r = s′ (0). When facing the tax policies T +ε (∆T1 − s′ (0)∆T2) and T +∆T ξ, agent i

faces, respectively, optimization problems maxzi [zi − T (zi)− ε (∆T1 (zi)− s′ (0)∆T2 (zi))− vi (zi)]

and maxzi
[
zi − T (zi)−∆T ξ (zi)− vi (zi)

]
. Note that, because T is regular, when ε and ξ are

sufficiently small, all agents select an interior income (see also Lemma C.2). Applying the implicit

function theorem to the agent’s first order conditions for these two problems, we have:

d

dε

∣∣∣∣
ε=0

zi
(
T + ε

(
∆T1 − s′ (0)∆T2

))
= −∆T ′

1 (zi (T ))− s′ (0)∆T ′
2 (zi (T ))

T ′′ (zi (T )) + v′′i (zi (T ))

= −
∂2

∂ξ∂z

∣∣∣
ξ=0,z=zi(T )

∆T (z, ξ)

T ′′ (zi (T )) + v′′i (zi (T ))
=

d

dξ

∣∣∣∣
ξ=0

zi

(
T +∆T ξ

)
,

(B.21)

where the second equality follows from (B.20). This, in turn, implies that

d

dε

∣∣∣∣
ε=0

R
(
T + ε

(
∆T1 − s′ (0)∆T2

))
=

∫ [
∆T1 (zi (T ))− s′ (0)∆T2 (zi (T ))

]
di+

∫
T ′ (zi (T ))

d

dε

∣∣∣∣
ε=0

zi
(
T + ε

(
∆T1 − s′ (0)∆T2

))
di

=

∫
∂

∂ξ

∣∣∣∣
ξ=0

∆T (zi (T ) , ξ) di+

∫
T ′ (zi (T ))

d

dξ

∣∣∣∣
ξ=0

zi

(
T +∆T ξ

)
di

=
d

dξ

∣∣∣∣
ξ=0

R
(
T +∆T ξ

)
,

(B.22)

where the second equality uses (B.18) and (B.21).

Next observe that, by the properties implied by Lemma B.2, 0 >
∫
gi (T )∆T (zi (T )) di =∫

gi (T )∆T1 (zi (T )) di −
∫
gi (T )∆T2 (zi (T )) di. So, since, again by the properties in Lemma
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B.2,
∫
gi (T )∆T2 (zi (T )) di > 0 (see footnote 18 of the Appendix), it follows that F (0, 0) =∫

gi(T )∆T1(zi(T ))di∫
gi(T )∆T2(zi(T ))di

< 1. So, by (B.14) and (B.16), s′ (0) < 1. It follows from Lemma B.1 and

the properties of Lemma B.2 that

0 =
d

dε

∣∣∣∣
ε=0

R (T + ε∆T ) =
d

dε

∣∣∣∣
ε=0

R (T + ε (∆T1 −∆T2))

=
d

dε

∣∣∣∣
ε=0

R (T + ε∆T1)−
d

dε

∣∣∣∣
ε=0

R (T + ε∆T2)

̸= d

dε

∣∣∣∣
ε=0

R (T + ε∆T1)− s′ (0)
d

dε

∣∣∣∣
ε=0

R (T + ε∆T2)

=
d

dε

∣∣∣∣
ε=0

R
(
T + ε

(
∆T1 − s′ (0)∆T2

))
=

d

dξ

∣∣∣∣
ξ=0

R
(
T +∆T ξ

)
,

where the non-equality ̸= in the above derivation follows from the facts that s′ (0) ̸= 1 and
d
dε

∣∣
ε=0

R (T + ε∆T2) ̸= 0 (see Lemma B.2 for the latter). So, to summarize, d
dξ

∣∣∣
ξ=0

R
(
T +∆T ξ

)
̸=

0. By our smoothness assumptions, if ξ and ξ in Ξ =
[
ξ, ξ
]
are selected so as to be sufficiently close

to 0,

d

dξ

∣∣∣∣
ξ=ξ′

R
(
T +∆T ξ

)
̸= 0, ∀ξ′ ∈ Ξ. (B.23)

Let us assume that ξ and ξ are so chosen.

Using the facts that, by the construction of
(
T θ,ϵ

)
, T θ,ϵ (z) + ∆T ξ (z) = T (z) + ∆T ξ (z) , ∀z ∈

[0, ẑ1] , ∀θ ∈ Θ′, ∀ϵ ∈ E′, ∀ξ ∈ Ξ, and that, for all ξ ∈ Ξ, the support of ∆T ξ is contained in [0, ẑ1]

(see in particular Lemma B.4 and (B.26)-(B.27) of Lemma B.519 and note that T θ0,ϵ0 = T ), it

follows that, for all θ ∈ Θ′, for all ϵ ∈ E′, and for all ξ′ ∈ Ξ,∫
gi

(
T +∆T ξ

) ∂

∂ξ

∣∣∣∣
ξ=ξ′

∆T
(
zi

(
T +∆T ξ′

)
, ξ
)
di

=

∫
gi

(
T θ,ϵ +∆T ξ

) ∂

∂ξ

∣∣∣∣
ξ=ξ′

∆T
(
zi

(
T θ,ϵ +∆T ξ′

)
, ξ
)
di,

(B.24)

d

dξ

∣∣∣∣
ξ=ξ′

R
(
T +∆T ξ

)
=

d

dξ

∣∣∣∣
ξ=ξ′

R
(
T θ,ϵ +∆T ξ

)
(B.25)

Conditions (A.48) and (A.49) follow from (B.19), (B.23), (B.24), and (B.25). We have now proven

all the properties required by Lemma A.3. □

19The proof of Lemmas B.4 and B.5 depend on the fact that, for all ξ ∈ Ξ, the support of ∆T ξ is contained in
[0, ẑ1], but not the more detailed properties established in the current lemma, Lemma A.3.
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B.2 Proof of Lemma A.4

I now prove a pair of supporting lemmas, and then proceed to verify the properties required by

Lemma A.4. The following sections appeal to the notation and terminology used in Section A.13.

B.2.1 Supporting lemmas

Here I establish a pair of lemmas that collect some properties that follow fairly immediately from

above definitions.

Lemma B.4 For all θ ∈ Θ′, ϵ ∈ E′, and ξ ∈ Ξ,

zi

(
T θ,ϵ +∆T ξ

)∈ [0, ẑ1] , if i ∈ [0, i1] ,

∈ [ẑ1,+∞) , if i ∈ [i1, 1] .

Lemma B.5 For all i ∈ [0, i1] , θ ∈ Θ′, ϵ ∈ E′, and ξ ∈ Ξ,

zi

(
T θ0,ϵ0 +∆T ξ

)
= zi

(
T θ,ϵ +∆T ξ

)
, (B.26)

gi

(
T θ0,ϵ0 +∆T ξ

)
= gi

(
T θ,ϵ +∆T ξ

)
, (B.27)

For all i ∈ [i1, 1] , θ ∈ Θ′′, and ϵ ∈ E′′,

zi

(
T̂ θ,ϵ

)
= zi

(
T θ,ϵ

)
, (B.28)

gi

(
T̂ θ,ϵ

)
= gi

(
T θ,ϵ

)
. (B.29)

I now proceed to prove both lemmas. It is useful to state a pair of facts, which follow from,

respectively, the construction of T θ,ϵ (Fact B.1) and the characterization of regular tax policies in

Section A.1.2 (Fact B.2). For Fact B.2 and the remainder of this section, it is also convenient to

introduce the following notation: For any tax policy T and agent i and income zi, let UT
i (zi) =

u (zi − T (zi)− vi (zi)), be i’s utility when facing tax policy T and choosing income level zi.

Fact B.1 T θ,ϵ (z) does not depend on θ and ϵ when z ∈ [0, ẑ1]; that is T θ,ϵ (z) = T θ0,ϵ0 (z) ,∀z ∈
[0, ẑ1] ,∀θ ∈ Θ, ∀ϵ ∈ E.

Fact B.2 For all regular tax policies T , and for all agents i, there exists a unique optimal income

zi (T ) for i when facing T and zi (T ) is characterized by i’s first order condition in the sense that

if d
dzU

T
i (z) = 0, then z = zi (T ).

To simplify notation, I write T̄ θ,ϵ,ξ = T θ,ϵ + ∆T ξ. Fix some θ′ ∈ Θ′, ϵ′ ∈ E′, and ξ′ ∈ Ξ. Recall

that ẑ1 ∈
(
z0
(
T θ0,ϵ0

)
, z1
(
T θ0,ϵ0

))
, and that i1 is the unique agent in I such that zi1

(
T θ0,ϵ0

)
= ẑ1.

Let I0 := [0, i1) and I1 := (i1, 1].
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By Fact B.1 and because T θ0,ϵ0 is smooth, d
dzT

θ0,ϵ0 (ẑ1) = d
dzT

θ′,ϵ′ (ẑ1). So, because ẑ1 =

zi1
(
T θ0,ϵ0

)
,

d

dz
UT θ′,ϵ′

i1 (ẑ1) =
d

dz
UT θ0,ϵ0

i1 (ẑ1) = 0. (B.30)

Again, by Fact B.1, and the fact that the support of ∆T ξ is contained in [0, ẑ1], it follows that

∀z ≤ ẑ1, T̄ θ′,ϵ′,ξ′ (z) = T̄ θ0,ϵ0,ξ′ (z) , (B.31)

∀z ≥ ẑ1, T̄ θ′,ϵ′,ξ′ (z) = T θ′,ϵ′ (z) . (B.32)

Using (B.32) and the smoothness of the tax policies T̄ θ′,ϵ′,ξ′ and T θ′,ϵ′ , it follows that

d

dz
UT θ′,ϵ′

i1 (ẑ1) =
d

dz
U T̄ θ′,ϵ′,ξ′

i1 (ẑ1) . (B.33)

It follows from Fact B.2, (B.33), and (B.30), and the fact that T θ0,ϵ0 and T̄ θ′,ϵ′,ξ′ are regular (the

latter was established in Section B.1.3) that

ẑ1 = zi1

(
T θ0,ϵ0

)
= zi1

(
T̄ θ′,ϵ′,ξ′

)
. (B.34)

Because T̄ θ′,ϵ′,ξ′ is regular, (B.34) and the fact that, for all regular tax policies T , the map i 7→ zi (T )

is strictly increasing in i (see Lemma C.1) together establish Lemma B.4.

It follows from (B.31) and Lemma B.4 that, for all i ∈ [0, i1],
d
dzU

T̄ θ′,ϵ′,ξ′

i

(
zi

(
T̄ θ0,ϵ0,ξ′

))
=

d
dzU

T̄ θ0,ϵ0,ξ
′

i

(
zi

(
T̄ θ0,ϵ0,ξ′

))
= 0. So, using the fact that T̄ θ′,ϵ′,ξ′ and T̄ θ0,ϵ0,ξ′ are regular, it follows

from Fact B.2 that (B.26) holds. Similarly, it follows from (B.32) and Lemma B.420 that, for all

i ∈ [i1, 1],
d
dzU

T̄ θ′,ϵ′,ξ′

i

(
zi

(
T θ′,ϵ′

))
= d

dzU
T θ′,ϵ′

i

(
zi

(
T θ′,ϵ′

))
= 0. So, using the fact that T̄ θ′,ϵ′,ξ′

and T̄ θ′,ϵ′ are regular, it follows from Fact B.2 that (B.28) holds. If follows immediately from the

definition of gi (T ) (see Sections I.A-I.B), (B.26), and (B.28) that (B.27) and (B.29) hold. We have

now established Lemma B.5. □
20Observe that ∆T 0 ≡ 0, so that, setting ξ = 0, Lemma B.4 implies that, when i ∈ [i1, 1], zi

(
T θ,ϵ

)
≥ ẑ1.
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B.2.2 Verification of properties required by Lemma A.4

I now proceed with the proof of Lemma A.4. Choose ϵ ∈ (ϵ′′, ϵ′′) and θ′ ∈
(
θ′′, θ

′′
)
. We have:

∫ 1

0
gi

(
T̂ θ′,ϵ

) ∂

∂θ

∣∣∣∣
θ=θ′

T̂
(
zi

(
T̂ θ′,ϵ

)
, θ, ϵ

)
di

=

∫ i1

0
gi

(
T̂ θ′,ϵ

) ∂

∂θ

∣∣∣∣
θ=θ′

T̂
(
zi

(
T̂ θ′,ϵ

)
, θ, ϵ

)
di︸ ︷︷ ︸

A

+

∫ 1

i1

gi

(
T̂ θ′,ϵ

) ∂

∂θ

∣∣∣∣
θ=θ′

T̂
(
zi

(
T̂ θ′,ϵ

)
, θ, ϵ

)
di︸ ︷︷ ︸

B

,

(B.35)

where A and B are simply labels for the two integrals on the right-hand side, and we use the

notation T̂ (zi, θ, ϵ) = T̂ θ,ϵ (zi), as in Section II.A. Next observe that

A =

∫ i1

0
gi

(
T̂ θ′,ϵ

)[ ∂

∂θ

∣∣∣∣
θ=θ′

T
(
zi

(
T̂ θ′,ϵ

)
, θ, ϵ

)
+

∂

∂ξ

∣∣∣∣
ξ=ξ̂(θ′,ϵ)

∆T
(
zi

(
T̂ θ′,ϵ

)
, ξ
) ∂

∂θ

∣∣∣∣
θ=θ′

ξ̂ (θ, ϵ)

]
di

=

[
∂

∂θ

∣∣∣∣
θ=θ′

ξ̂ (θ, ϵ)

] ∫ i1

0
gi

(
T̂ θ′,ϵ

) ∂

∂ξ

∣∣∣∣
ξ=ξ̂(θ′,ϵ)

∆T
(
zi

(
T̂ θ′,ϵ

)
, ξ
)
di

=

[
∂

∂θ

∣∣∣∣
θ=θ′

ξ̂ (θ, ϵ)

] ∫ i1

0
gi

(
T θ′,ϵ +∆T ξ̂(θ′,ϵ)

) ∂

∂ξ

∣∣∣∣
ξ=ξ̂(θ′,ϵ)

∆T ξ
(
zi

(
T θ′,ϵ +∆T ξ̂(θ′,ϵ)

)
, ξ
)
di

=

[
∂

∂θ

∣∣∣∣
θ=θ′

ξ̂ (θ, ϵ)

] ∫ i1

0
gi

(
T θ0,ϵ0 +∆T ξ̂(θ′,ϵ)

) ∂

∂ξ

∣∣∣∣
ξ=ξ̂(θ′,ϵ)

∆T ξ
(
zi

(
T θ0,ϵ0 +∆T ξ̂(θ′,ϵ)

)
, ξ
)
di

=

[
∂

∂θ

∣∣∣∣
θ=θ′

ξ̂ (θ, ϵ)

] ∫ 1

0
gi

(
T θ0,ϵ0 +∆T ξ̂(θ′,ϵ)

) ∂

∂ξ

∣∣∣∣
ξ=ξ̂(θ′,ϵ)

∆T ξ
(
zi

(
T θ0,ϵ0 +∆T ξ̂(θ′,ϵ)

)
, ξ
)
di

= 0,

(B.36)

where the first equality follows from the definition (A.52) of T̂ θ,ϵ; the second equality follows from

Fact B.1 and Lemma B.4, which imply that, when i ∈ [0, i1],
∂
∂θ

∣∣
θ=θ′

T
(
zi

(
T̂ θ′,ϵ

)
, θ, ϵ

)
= 0; the

third equality follows again follows from (A.52); the fourth equality follows from (B.26)-(B.27); the

fifth equality follows from the fact that, for all ξ ∈ Ξ, the support of ∆T ξ is contained in [0, ẑ1] and

Lemma B.4, so that the integrand in the expression following the third equality is equal to zero

when i ∈ [i1, 1]; and the last equality follows from (A.48).
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Next, observe that

B =

∫ 1

i1

gi

(
T̂ θ′,ϵ

) ∂

∂θ

∣∣∣∣
θ=θ′

T
(
zi

(
T̂ θ′,ϵ

)
, θ, ϵ

)
di

=

∫ 1

i1

gi

(
T θ′,ϵ

) ∂

∂θ

∣∣∣∣
θ=θ′

T
(
zi

(
T θ′,ϵ

)
, θ, ϵ

)
di

=

∫ 1

0
gi

(
T θ′,ϵ

) ∂

∂θ

∣∣∣∣
θ=θ′

T
(
zi

(
T̂ θ′,ϵ

)
, θ, ϵ

)
di

= 0,

(B.37)

where the first equality follows from Lemma B.4, (A.52), and the fact that, for all ξ ∈ Ξ, the support

of ∆T ξ is contained in [0, ẑ1], so that T
(
zi

(
T̂ θ′,ϵ

)
, θ, ϵ

)
= T̂

(
zi

(
T̂ θ′,ϵ

)
, θ, ϵ

)
when i ∈ [i1, 1]; the

second equality follows from (B.28)-(B.29); the third equality follows from the fact that, by Fact

B.1, T
(
zi

(
T θ′,ϵ

)
, θ, ϵ

)
does not depend on θ when i ∈ [0, i1], so the integrand in the expression

following the second equality is zero when i ∈ [0, i1]; and the last equality follows from the fact

that
(
T θ,ϵ

)
satisfies (15).

Putting together (B.35), (B.36), and (B.37), it follows that
(
T̂ θ,ϵ

)
θ∈Θ′′,ϵ∈E′′

satisfies (15).

Next observe that: ∫ 1

0
gi

(
T̂ θ0,ϵ0

) ∂

∂ϵ

∣∣∣∣
ϵ=ϵ0

T̂
(
zi

(
T̂ θ0,ϵ0

)
, θ0, ϵ

)
di

=

∫ i1

0
gi

(
T̂ θ0,ϵ0

) ∂

∂ϵ

∣∣∣∣
ϵ=ϵ0

T̂
(
zi

(
T̂ θ0,ϵ0

)
, θ0, ϵ

)
di︸ ︷︷ ︸

C

+

∫ 1

i1

gi

(
T̂ θ0,ϵ0

) ∂

∂ϵ

∣∣∣∣
ϵ=ϵ0

T̂
(
zi

(
T̂ θ0,ϵ0

)
, θ0, ϵ

)
di︸ ︷︷ ︸

D

.

(B.38)
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Analyzing the first term:

C =

∫ i1

0
gi

(
T̂ θ0,ϵ0

)[ ∂

∂ϵ

∣∣∣∣
ϵ=ϵ0

T
(
zi

(
T̂ θ0,ϵ0

)
, θ0, ϵ

)
+

∂

∂ξ

∣∣∣∣
ξ=ξ̂(θ0,ϵ0)

∆T ξ
(
zi

(
T̂ θ0,ϵ0

)) ∂

∂ϵ

∣∣∣∣
ϵ=ϵ0

ξ̂ (θ0, ϵ)

]
di

=

[
∂

∂ϵ

∣∣∣∣
ϵ=ϵ0

ξ̂ (θ0, ϵ)

]∫ i1

0
gi

(
T̂ θ0,ϵ0

) ∂

∂ξ

∣∣∣∣
ξ=ξ̂(θ0,ϵ0)

∆T ξ
(
zi

(
T̂ θ0,ϵ0

)
, ξ
)
di

=

[
∂

∂ϵ

∣∣∣∣
ϵ=ϵ0

ξ̂ (θ0, ϵ)

]∫ i1

0
gi

(
T θ0,ϵ0 +∆T ξ̂(θ0,ϵ0)

) ∂

∂ξ

∣∣∣∣
ξ=ξ̂(θ0,ϵ0)

∆T ξ
(
zi

(
T θ0,ϵ0 +∆ξ̂(θ0,ϵ0)

)
, ξ
)
di

=

[
∂

∂ϵ

∣∣∣∣
ϵ=ϵ0

ξ̂ (θ0, ϵ)

]∫ 1

0
gi

(
T θ0,ϵ0 +∆T ξ̂(θ0,ϵ0)

) ∂

∂ξ

∣∣∣∣
ξ=ξ̂(θ0,ϵ0)

∆T ξ
(
zi

(
T θ0,ϵ0 +∆T ξ̂(θ0,ϵ0)

)
, ξ
)
di

= 0,

(B.39)

where the first equality follows from (A.52); the second equality from Fact B.1 and Lemma B.4,

which imply that, when i ∈ [0, i1],
∂
∂ϵ

∣∣
ϵ=ϵ0

T
(
zi

(
T̂ θ0,ϵ0

)
, θ0, ϵ

)
= 0; the third equality follows from

(A.52); the fourth equality follows from Lemma B.4 and the fact that, for all ξ ∈ Ξ, the support of

∆T ξ is contained in [0, ẑ1], so that the integrand in the expression following the fourth equality is

zero when i ∈ [i1, 1]; and the last equality follows from (A.48).

Analyzing the second term:

D =

∫ 1

i1

gi

(
T̂ θ0,ϵ0

) ∂

∂ϵ

∣∣∣∣
ϵ=ϵ0

T
(
zi

(
T̂ θ0,ϵ0

)
, θ0, ϵ

)
di

=

∫ 1

i1

gi

(
T θ0,ϵ0

) ∂

∂ϵ

∣∣∣∣
ϵ=ϵ0

T
(
zi

(
T θ0,ϵ0

)
, θ0, ϵ

)
di

=

∫ 1

0
gi

(
T θ0,ϵ0

) ∂

∂ϵ

∣∣∣∣
ϵ=ϵ0

T
(
zi

(
T θ0,ϵ0

)
, θ0, ϵ

)
di

= 0,

(B.40)

where the first equality follows from Lemma B.4, (A.52), and the fact that, for all ξ ∈ Ξ, the

support of ∆T ξ is contained in [0, ẑ1], so that T
(
zi

(
T̂ θ0,ϵ0

)
, θ0, ϵ

)
= T̂

(
zi

(
T̂ θ0,ϵ0

)
, θ0, ϵ

)
when

i ∈ [i1, 1]; the second follows from the fact that, by (A.50) and ∆T 0 ≡ 0, T θ0,ϵ0 = T̂ θ0,ϵ0 ; the third

equality follows from the fact that, by Fact B.1 and Lemma B.4, ∂
∂ϵ

∣∣
ϵ=ϵ0

T
(
zi
(
T θ0,ϵ0

)
, θ0, ϵ

)
= 0

when i ∈ [0, i1]; and the last equality follows from the fact that
(
T θ,ϵ

)
satisfies (16).

Putting together (B.38), (B.39), and (B.40), we see that
(
T̂ θ,ϵ

)
θ∈Θ′′,ϵ∈E′′

satisfies (16).
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Next observe that:

d

dθ

∣∣∣∣
θ=θ0

∫ 1

0
gi

(
T̂ θ,ϵ0

) ∂

∂ϵ

∣∣∣∣
ϵ=ϵ0

T̂
(
zi

(
T̂ θ,ϵ0

)
, θ, ϵ

)
di

=
d

dθ

∣∣∣∣
θ=θ0

∫ i1

0
gi

(
T̂ θ,ϵ0

) ∂

∂ϵ

∣∣∣∣
ϵ=ϵ0

T̂
(
zi

(
T̂ θ,ϵ0

)
, θ, ϵ

)
di︸ ︷︷ ︸

E

+
d

dθ

∣∣∣∣
θ=θ0

∫ 1

i1

gi

(
T̂ θ,ϵ0

) ∂

∂ϵ

∣∣∣∣
ϵ=ϵ0

T̂
(
zi

(
T̂ θ,ϵ0

)
, θ, ϵ

)
di︸ ︷︷ ︸

F

.

(B.41)

Analyzing the first term:

E =
d

dθ

∣∣∣∣
θ=θ0

∫ i1

0
gi

(
T̂ θ,ϵ0

) ∂

∂ϵ

∣∣∣∣
ϵ=ϵ0

T
(
zi

(
T̂ θ,ϵ0

)
, θ, ϵ

)
di

+
d

dθ

∣∣∣∣
θ=θ0

[(
∂

∂ϵ

∣∣∣∣
ϵ=ϵ0

ξ̂ (θ, ϵ)

)∫ i1

0
gi

(
T̂ θ,ϵ0

) ∂

∂ξ

∣∣∣∣
ξ=ξ̂(θ,ϵ0)

∆T ξ
(
zi

(
T̂ θ,ϵ0

)
, ξ
)
di

]

=
d

dθ

∣∣∣∣
θ=θ0

[(
∂

∂ϵ

∣∣∣∣
ϵ=ϵ0

ξ̂ (θ, ϵ)

)∫ i1

0
gi

(
T̂ θ,ϵ0

) ∂

∂ξ

∣∣∣∣
ξ=ξ̂(θ,ϵ0)

∆T ξ
(
zi

(
T̂ θ,ϵ0

)
, ξ
)
di

]

=
d

dθ

∣∣∣∣
θ=θ0

[(
∂

∂ϵ

∣∣∣∣
ϵ=ϵ0

ξ̂ (θ, ϵ)

)∫ i1

0
gi

(
T θ,ϵ0 +∆T ξ̂(θ,ϵ0)

)
× ∂

∂ξ

∣∣∣∣
ξ=ξ̂(θ,ϵ0)

∆T ξ
(
zi

(
T θ,ϵ0 +∆T ξ̂(θ,ϵ0)

)
, ξ
)
di

]

=
d

dθ

∣∣∣∣
θ=θ0

[(
∂

∂ϵ

∣∣∣∣
ϵ=ϵ0

ξ̂ (θ, ϵ)

)∫ 1

0
gi

(
T θ,ϵ0 +∆T ξ̂(θ,ϵ0)

)
× ∂

∂ξ

∣∣∣∣
ξ=ξ̂(θ,ϵ0)

∆T ξ
(
zi

(
T θ,ϵ0 +∆T ξ̂(θ,ϵ0)

)
, ξ
)
di

]
= 0,

(B.42)

where the first equality follows from (A.52); the second equality from Fact B.1 and Lemma B.4,

which imply that ∂
∂ϵ

∣∣
ϵ=ϵ0

T
(
zi

(
T̂ θ,ϵ0

)
, θ, ϵ

)
= 0, ∀θ ∈ Θ′′, when i ∈ [0, i1]; the third equality

follows from (A.52); the fourth equality follows from Lemma B.4 and the fact that, for all ξ ∈ Ξ,

the support of ∆T ξ is contained in [0, ẑ1], so that the integrand in the expression following the

fourth equality is zero, for all values of θ in Θ′′, when i ∈ [i1, 1]; and the last equality follows from

(A.48).
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Analyzing the second term:

F =
d

dθ

∣∣∣∣
θ=θ0

∫ 1

i1

gi

(
T̂ θ,ϵ0

) ∂

∂ϵ

∣∣∣∣
ϵ=ϵ0

T
(
zi

(
T̂ θ,ϵ0

)
, θ, ϵ

)
di

+
d

dθ

∣∣∣∣
θ=θ0

[(
∂

∂ϵ

∣∣∣∣
ϵ=ϵ0

ξ̂ (θ, ϵ)

)∫ 1

i1

gi

(
T̂ θ,ϵ0

) ∂

∂ξ

∣∣∣∣
ξ=ξ̂(θ0,ϵ0)

∆T ξ
(
zi

(
T̂ θ,ϵ0

)
, ξ
)
di

]

=
d

dθ

∣∣∣∣
θ=θ0

∫ 1

i1

gi

(
T̂ θ,ϵ0

) ∂

∂ϵ

∣∣∣∣
ϵ=ϵ0

T
(
zi

(
T̂ θ,ϵ0

)
, θ, ϵ

)
di

=
d

dθ

∣∣∣∣
θ=θ0

∫ 1

i1

gi

(
T θ,ϵ0

) ∂

∂ϵ

∣∣∣∣
ϵ=ϵ0

T
(
zi

(
T θ,ϵ0

)
, θ, ϵ

)
di

=
d

dθ

∣∣∣∣
θ=θ0

∫ 1

0
gi

(
T θ,ϵ0

) ∂

∂ϵ

∣∣∣∣
ϵ=ϵ0

T
(
zi

(
T θ,ϵ0

)
, θ, ϵ

)
di

< 0,

(B.43)

where the first equality follows from (A.52); the second equality follows from Lemma B.4, (A.52),

and the fact that, for all ξ ∈ Ξ, the support of ∆T ξ is contained in [0, ẑ1], so that
∂
∂ξ

∣∣∣
ξ=ξ̂(θ,ϵ0)

∆T ξ
(
zi

(
T̂ θ,ϵ0

)
, ξ
)

= 0, ∀θ ∈ Θ′′, when i ∈ [i1, 1]; the third equality follows from

Lemma B.4, (A.52) and (B.28)-(B.29); the fourth equality follows from the fact that, by Fact B.1,
∂
∂ϵ

∣∣
ϵ=ϵ0

T
(
zi
(
T θ,ϵ0

)
, θ, ϵ

)
= 0, ∀θ ∈ Θ′′, when i ∈ [0, i1]; and the inequality follows from the fact

that
(
T θ,ϵ

)
satisfies (17).

Putting together (B.41), (B.42), and (B.43), it follows that
(
T̂ θ,ϵ

)
θ∈Θ′′,ϵ∈E′′

satisfies (17).

We have now established that
(
T̂ θ,ϵ

)
θ∈Θ′′,ϵ∈E′′

satisfies (15)-(17), completing the proof of

Lemma A.4. □

C Additional lemmas

The lemmas in this section apply to tax policies that are not individualized.

Lemma C.1 For all regular tax policies T , {zi (T ) : i ∈ I} = [z0 (T ) , z1 (T )], and the map i 7→
zi (T ) is strictly increasing.

Proof. Let T be a regular tax policy. It follows from our assumptions (see Section A.1.2) that zi (T )

is characterized by the first order condition 1 − T ′ (zi (T )) − v′i (zi (T )) = 0. The smoothness of T

and (z, i) 7→ vi (z) imply that the function i 7→ zi (T ) is smooth. It follows from the facts that (i)

vi (z) = v (z, yi)∀i,∀z, (ii) ∂2

∂z∂yv (z, y) < 0,∀z,∀y, and (iii) d
diyi > 0, ∀i, that the map i 7→ zi (T ) is

strictly increasing (see Section V.A for the preceding assumptions). Since i 7→ zi (T ) is continuous

and strictly increasing on I = [0, 1], {zi (T ) : i ∈ I} = [z0 (T ) , z1 (T )]. □

Lemma C.2 Let T be a regular tax policy. For j = 1, . . . , n, let Θj =
[
−θ̄j , θ̄j

]
⊆ R, where θj > 0,

and let Θ̄ = ×n
j=1Θj. Write θ̄ = (θ1, . . . , θj , . . . , θn). Let

(
∆T θ̄

)
θ̄∈Θ̄

be a family of tax reforms such
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that the map
(
z, θ̄
)
7→ ∆T θ̄ (z) is smooth and ∆T (0,0,...,0) ≡ 0. Then there exist θ∗j ∈ Θj with θ∗j > 0

for j = 1, . . . , n such that, for all θ̄ = (θ1, . . . , θj , . . . , θn) ∈ Θ̄, if |θj | ≤ θ∗j for j = 1, . . . , n, then

T +∆T θ̄ is regular.

Proof. I use the following notation: for any tax policy T and income zi, define UT
i (zi) =

u (zi − T (zi)− vi (zi)). Now let T be a regular tax policy. It follows that, for all agents i,
d2

dz2i
UT
i (zi (T )) < 0 (see Section A.1.2). Also, since T is regular, zi (T ) > 0, for all agents i. By the

smoothness of the primitives and T , it follows that there is a neighborhood Ni of the income zi (T )

such that, for all zi ∈ Ni,
d2

dz2i
UT
i (zi) < 0 and zi > 0. For each i, let

δi = sup

{
δ > 0 : zi (T )− δ > 0, ∀zi ∈ (zi (T )− δ, zi (T ) + δ) ,

d2

dz2i
UT
i (zi) < 0

}
.

We have δi > 0, ∀i, and, moreover, the smoothness of the primitives and of T implies that

i 7→ δi is smooth. Since a continuous function attains its minimum on a compact set, it fol-

lows that δ∗ = min {δi : i ∈ [0, 1]} exists and δ∗ > 0. For each i, define the neighborhood N ′
i =(

zi (T )− 1
2δ

∗, zi (T ) +
1
2δ

∗) and let N̄ ′
i be the closure of N ′

i . For each θ̄ ∈ Θ̄, define T θ̄ = T +∆T θ̄.

Define γ θ̄i = UT θ̄
(zi (T )) − maxzi∈Z\N ′

i
UT θ̄

i (zi) and γ θ̄ = mini∈[0,1] γ
θ̄
i . As T (0,0,...,0) = T +

∆T (0,0,...,0) = T , and, as T is regular, UT (0,0,...,0)

i (zi) has a unique maximizer zi (T ), it follows

that, for all i, γ
(0,0,...,0)
i > 0, and hence, again because a continuous function attains its minimum

on a compact set, γ(0,0,...,0) > 0. It follows from our smoothness assumptions that there exist

θ′j ∈ Θj with θ′j > 0 for j = 1, . . . , n such for all θ̄ = (θ1, . . . , θj , . . . , θn) ∈ Θ̄, if |θj | ≤ θ′j for

j = 1, . . . , n, γ θ̄ > 0, so that, for all such θ̄, UT θ̄

i (zi) does not have any maximizers zi outside of N
′
i .

Note that we have: ∀i ∈ I, ∀zi ∈ N̄ ′
i ,

d2

dz2i
UT (0,0,...,0)

i (zi) < 0. So maxi∈[0,1],zi∈N̄ ′
i

d2

dz2i
UT (0,0,...,0)

i < 0.

As the map θ̄ 7→ maxi∈[0,1],zi∈N̄ ′
i

d2

dz2i
UT θ̄

i (zi) is continuous, it follows that there exist θ′′j ∈ Θj with

θ′′j > 0 for j = 1, . . . , n such for all θ̄ = (θ1, . . . , θj , . . . , θn) ∈ Θ̄, if |θj | ≤ θ′′j for j = 1, . . . , n, then,

for all agents i and all zi ∈ N̄ ′
i ,

d2

dz2i
UT θ̄

i (zi) < 0, so that UT θ̄

i (zi) is strictly convex on N̄ ′
i , implying

that UT θ̄

i (zi) has a unique maximizer on N̄ ′
i . It follows that if θ∗j = min

{
θ′j , θ

′′
j

}
for j = 1, . . . , n,

then, then for all θ̄ = (θ1, . . . , θj , . . . , θn) ∈ Θ̄, if |θj | ≤ θ∗j for j = 1, . . . , n, then for, all agents i,

UT θ̄

i (zi) has a unique maximizer zi

(
T θ̄
)
> 0, and, moreover, d2

dz2i
UT θ̄

i

(
zi

(
T θ̄
))

< 0, so that T θ̄ is

regular. □

D Theorems 1 and 3 without quasilinear utility

D.1 Preliminaries

This Appendix explains how Theorems 1 and 3 are still valid without the assumption of quasilin-

earity. In particular, I describe how the proofs of the theorems must be modified if the assumption

of quasilinearity is removed. I assume that utility takes the form Ui (ci, zi) = U (ci, zi;xi, yi), where

U (ci, zi;xi, yi) is smooth in (ci, zi;xi, yi) unless (xi, yi) are discrete, in which case U (ci, zi;xi, yi)

is smooth in (ci, zi). I assume that Ui (ci, zi) is strictly increasing in ci (with a strictly positive
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partial derivative everywhere), strictly decreasing in zi, and strictly concave in (ci, zi). I assume

for simplicity that ci can take on any real value and that for any income level zi, the range of

ci 7→ Ui (ci, zi) is the entire real line. I continue to assume that, in the absence of taxes, all agents

earn a positive income.

In what follows it will be useful to define the function c̃i (ui, zi) by the following condition:

Ui (c̃i (ui, zi) , zi) = ui, ∀zi ∈ Z,∀ui ∈ R. (D.1)

So, c̃i (ui, zi) is the level of consumption that is necessary to give i utility ui given income level zi;

c̃i (ui, zi) is well-defined because Ui is strictly increasing in ci. It follows from the implicit function

theorem that:

∂

∂zi
c̃i (ui, zi) = −

∂
∂zi

Ui (c̃i (ui, zi) , zi)
∂
∂ci

Ui (c̃i (ui, zi) , zi)
, ∀ui, ∀zi. (D.2)

I assume that along any (ci, zi)-indifference curve, the marginal rate of substitution of consumption

for avoiding the effort of earning income exceeds 1 as z becomes large:

∀ui, lim
zi→+∞

∂

∂zi
c̃i (ui, zi) > 1.

In other words, as one increases both income and consumption along an indifference curve, it is

eventually necessary to compensate an agent by more than a dollar in order to bear the cost of

earning another dollar of income. This has the consequence that, whenever facing a tax policy

under which marginal tax rates become nonnegative once income is sufficiently large, the agent

optimally selects some finite income and does not want to increase their income without bounds.

Note that when Ui (ci, zi) = u (ci − vi (zi)) where u′ > 0 and u′′ < 0 everywhere, and all the

other assumptions of Section I.A are satisfied, then all of the above assumptions are satisfied, so

the assumption here in essence generalize the assumptions made for the quasilinear case. I also

carry over other assumptions (or analogous assumptions) and notation from the quasilinear case.

The key preliminary definitions and results supporting the main results continue to hold in

this more general framework. Observe first that, even without quasilinear preferences, the enve-

lope theorem still implies that for any well behaved parameterized family of tax policies
(
T θ
)
,

d
dθUi

(
T θ
)
= − ∂

∂ci
Ui (ci (θ) , zi (θ))

∂
∂θTi (zi (T ) , θ). It follows that the local and global improvement

principles are still valid when welfare weights are utilitarian. So the justification for the global and

local improvement principles that was given in Section II.B, on analogy with the utilitarian case,

still applies without quasilinearity. Likewise, the supporting Proposition 2 on Pareto indifference

and weak Pareto along paths is unchanged, and so the result continues to hold.

We can no longer define ĝi (ûi, zi) as we did in (9) in Section III because that definition depended

on the assumption of quasilinear utility. Instead we define g̃i (ui, zi) which is a function of the
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variable ui = Ui (ci, zi) and zi, as follows:

g̃i (ui, zi) = gi (c̃i (ui, zi) , zi) , ∀zi ∈ Z,∀ui ∈ R. (D.3)

Next define:

ki (ui, zi) =
∂

∂ci
Ui (c̃i (ui, zi) , zi) , (D.4)

hi (ui, zi) =
g̃i (ui, zi)

∂
∂ci

Ui (c̃i (ui, zi) , zi)
. (D.5)

Then observe that

g̃i (ui, zi) = ki (ui, zi)hi (ui, zi) . (D.6)

Now choose zi, z
′
i and ui and observe that it follows from (D.1) that

Ui (c̃i (ui, zi) , zi) = Ui

(
c̃i
(
ui, z

′
i

)
, z′i
)
. (D.7)

Then if gi is structurally utilitarian, hi (ui, zi) = g̃i(ui,zi)
∂

∂ci
Ui(c̃i(ui,zi),zi)

=
g̃i(ui,z

′
i)

∂
∂ci

Ui(c̃i(ui,z′i),z′i)
= hi (ui, z

′
i),

where the second equality follows from (D.7) and the definition of structural utilitarianism without

quasilinearity (Definition 2). So for structurally utilitarian weights, hi (ui, zi) does not depend on

zi. It is also easy to see that, if hi (ui, zi) does not depend on zi, then the corresponding welfare

weights are structurally utilitarian. This can be summarized in a form a proposition which is the

non-quasilinear analog of Proposition 3.

Proposition D.1 Let g and g̃ be related as in (D.3) and let h be defined in terms of g̃ as in

(D.5). Then welfare weights g are structurally utilitarian if and only if ∀i ∈ I, ∀ui ∈ R, ∀zi ∈
Z, ∂

∂zi
hi (ui, zi) = 0.

D.2 Proof of Theorem 1 without quasilinearity

I now present the proof of Theorem 1 without assuming quasilinearity using the more general

definition of structural utilitarianism (Definition 2). First assume welfare weights are generalized

utilitarian. This means that welfare weights are of the form gi (ci, zi) = F ′
i (Ui (ci, zi))

∂
∂ci

U (ci, zi).

Assume that Ui (ci, zi) = Ui (c
′
i, z

′
i). Then F ′

i (Ui (ci, zi)) = F ′
i (Ui (c

′
i, z

′
i)). So

∂
∂ci

Ui (ci, zi)
∂
∂ci

Ui (c′i, z
′
i)

=
F ′
i (Ui (ci, zi))

∂
∂ci

Ui (ci, zi)

F ′
i (Ui (c′i, z

′
i))

∂
∂ci

Ui (c′i, z
′
i)

=
gi (ci, zi)

gi (c′i, z
′
i)
.

So, welfare weights are structurally utilitarian.

Going in the other direction, assume that welfare weights g are structurally utilitarian. Let

hi be defined from gi via (D.3) and (D.5). It follows from Proposition D.1 that hi (ui, zi) does
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not depend on zi, and hence we can write this function as hi (ui), without the argument zi. Now

define Fi (ui) =
∫ ui

0 hi (ui) dui. Appealing to (D.1), (D.3) and (D.5), note that because gi (ci, zi) =

g (ci, zi;xi, yi) and Ui (ci, zi) = U (ci, zi;xi, yi), we can write Fi (ui) = F (ui;xi, yi) and F inherits

the appropriate smoothness properties from g and U . If follows from the above construction that

F ′
i (Ui (ci, zi))

∂
∂ci

Ui (ci, zi) = hi (Ui (ci, zi))
∂
∂ci

Ui (ci, zi) = gi(ci,zi)
∂

∂ci
Ui(ci,zi)

∂
∂ci

Ui (ci, zi) = gi (ci, zi). So

welfare weights are generalized utilitarian. □

D.3 An example

In this section, I present as informal example with individualized taxes, similar to the examples

in Section IV, that illustrates that, in the non-quasilinear case, if structural utilitarianism in the

sense of Definition 2 is violated, then it is possible to construct a social preference cycle. In this

example, I will not be concerned with holding revenue constant because that can be achieved with a

modification of the example by means similar to that presented in Section IV.A. The purpose of this

section is to provide the reader with intuition and an understanding of the essence of the argument

that a failure of structural utilitarianism leads to a social preference cycle in the non-quasilinear

case.

Suppose that there is just a single observable binary characteristic xi such that xi = A if

i ∈
[
0, 12
]
and xi = B if i ∈

(
1
2 , 1
]
, and taxes are conditioned on this characteristic. There

are no unobservable characteristics. All agents of type A are identical with one another and

all agents of type B are identical with one another as well. I write UA (c, z) = U (c, z, A) and

UB (c, z) = U (c, z, B) for the utility functions of agents with characteristics A and B respectively.

Likewise, I write gA (c, z) = g (c, z, A) and gB (c, z) = g (c, z, B) for the welfare weights of types A

and B respectively.

Suppose that welfare weights for type A agents are not structurally utilitarian. It follows from

Definition 2 that there exist allocations (c0, z0), (c1, z1) such that

UA (c0, z0) = UA (c1, z1) = u∗ (D.8)

but gA(c0,z0)
∂
∂c

UA(c0,z0)
̸= gA(c1,z1)

∂
∂c

UA(c1,z1)
. Assume without loss of generality that gA(c0,z0)

∂
∂c

UA(c0,z0)
< gA(c1,z1)

∂
∂c

UA(c1,z1)
. Then

there exists a number b such that

gA (c0, z0)
∂
∂cUA (c0, z0)

< b <
gA (c1, z1)
∂
∂cUA (c1, z1)

. (D.9)

Because utility functions are strictly concave, and hence upper contour sets are strictly convex, for

any consumption-income bundle (c∗, z∗), it is possible to construct a linear tax policy (linear in z)

T̄ c∗,z∗ (z) = τ (c∗, z∗) z+ κ (c∗, z∗) such that type A’s optimal consumption and income in response

to T̄ c∗,z∗ is (c∗, z∗). As above, let c̃A (u, z) be the level of consumption that gives agents of type A

a utility of u when their income is z. Let (ĉ, ẑ) be type B’s optimal consumption and income in

the absence of taxes. (Of course ĉ = ẑ).
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Now consider a family of tax policies
(
T ζ,u

)
parameterized by real numbers ζ and u, where

ζ ≥ 0, defined by

T ζ,u (z, x) =

T̄ c̃,ζ (z) with c̃ = c̃A (u, ζ) , if x = A,

b
gB(ĉ,ẑ) (u− u∗) , if x = B.

I now explain this tax policy. First consider type A agents. At T ζ,u, type A agents face linear tax

policy of the form T̄ c∗,z∗ where c∗ = c̃A (u, ζ) and z∗ = ζ. As explained above, this leads type A

agents to select consumption c̃A (u, ζ) and income ζ, and hence to attain utility u. Type B agents

face only a lumpsum tax b
gB(ĉ,ẑ) (u− u∗), where u∗ is defined by (D.8) and b satisfies (D.9).

By construction, holding fixed u and varying ζ in T ζ,u, type A agents’ utilities remain constant

at u when facing T ζ,u. The taxes faced by type B agents do not depend on ζ. Hence, all agents are

indifferent when facing T ζ,u as ζ varies while u is held fixed, and so by Pareto indifference along

paths (Proposition 2), which, as explained above, continues to hold in the non-quasilinear case, we

have:

T ζ,u ∼g T ζ′,u, ∀ζ, ζ ′, ∀u. (D.10)

Let TA (z, ζ, u) be the taxes paid by type A agents under T ζ,u when earning income z. (TB (z, ζ, u)

is defined similarly for type B agents.) Let UA (ζ, u) be type A agents’ utility when facing tax

policy T ζ,u and let cA
(
T ζ,u

)
and zA

(
T ζ,u

)
be respectively the optimal consumption and income

for type A agents when facing tax policy T ζ,u. It follows form the envelope theorem that

∂

∂u
UA (ζ, u) = − ∂

∂c
UA

(
cA

(
T ζ,u

)
, zA

(
T ζ,u

)) ∂

∂u′

∣∣∣∣
u′=u

TA

(
z
(
T ζ,u

)
, ζ, u′

)
. (D.11)

On the other hand because, for all u and ζ, UA (ζ, u) = u, it follows that

∂

∂u
UA (ζ, u) = 1, ∀ζ,∀u. (D.12)

Putting (D.11) and (D.12) together, we have

∂

∂u

∣∣∣∣
u=u′

TA

(
zA

(
T ζ,u

)
, ζ, u′

)
= − 1

∂
∂cUA (cA (T ζ,u) , zA (T ζ,u))

.

By construction we have:

∂

∂u′

∣∣∣∣
u′=u

TB

(
zB

(
T ζ,u

)
, ζ, u′

)
=

b

gB (ĉ, ẑ)

Note that when ζ = z0 and u = u∗, zA
(
T ζ,u

)
= z0 and cA

(
T ζ,u

)
= c̃A (u∗, z0) = c0. Also, when

u = u∗, type B agents face no taxes under T ζ,u, and hence cB
(
T ζ,u

)
= ĉ and zB

(
T ζ,u

)
= ẑ. It
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follows that ∫
gi

(
T z0,u∗

) ∂

∂u

∣∣∣∣
u=u∗

Ti

(
zi

(
T z0,u∗

)
, z0, u

)
di

=

∫ 1
2

0
gA (c0, z0)

(
− 1

∂
∂cUA (c0, z0)

)
di︸ ︷︷ ︸

type A agents

+

∫
1
2

g (ĉ, ẑ)
b

gB (ĉ, ẑ)
di︸ ︷︷ ︸

type B agents

=
1

2

(
− gA (c0, z0)

∂
∂cUA (c0, z0)

+ b

)
> 0,

where the inequality follows from (D.9). Similarly,

∫
gi

(
T z1,u∗

) ∂

∂u

∣∣∣∣
u=u∗

Ti

(
zi

(
T z1,u∗

)
, z1, u

)
di =

1

2

(
− gA (c1, z1)

∂
∂cUA (c1, z1)

+ b

)
< 0.

It follows from the local improvement principle (Proposition 1), which also continues to hold in the

non-quasilinear case, that for sufficiently small ϵ > 0,

T z0,u∗ ≻g T z0,u∗+ϵ, and

T z1,u∗ ≺g T z1,u∗+ϵ.
(D.13)

Putting together (D.10) and (D.13), we have the social preference cycle:

T z1,u∗ ≺g T z1,u∗+ϵ ∼g T z0,u∗+ϵ ≺g T z0,u∗ ∼g T z1,u∗
.

So, on the assumption that welfare weights are not structurally utilitarian, we have derived a cycle.

D.4 Proof of Theorem 3 without quasilinearity

In this section, I explain how to modify the proof of Theorem 3 when quasilinearity is no longer

assumed. (The statement of the theorem must be modified to appeal to the assumptions of Sections

D.1 and D.4.1 rather than Section V.A.)

D.4.1 Additional structure for the non-quasilinear version of Theorem 3

I now assume, as in Section V.A, that there are no observable characteristics, but there is a

single one-dimensional real valued unobservable characteristic y, so that we can write Ui (ci, zi) =

U (ci, zi; yi), and that the function i 7→ yi is smooth and that the derivative of yi with respect to

i is positive at all values of i in I = [0, 1]. Moreover, I assume the single-crossing condition that,

for all (c, z, y) ∈ R× Z × Y , d
dy

∂
∂z

U(c,z,y)
∂
∂c

U(c,z,y)
> 0. This single crossing condition implies that for every

regular tax policy T , i 7→ zi (T ) is strictly increasing in i. Note that in Section V.A, we assumed

that ∂2

∂y∂zv (z, y) < 0, so that when U (c, z; y) = u (c− v (z, y)), d
dy

∂
∂z

U(c,z,y)
∂
∂c

U(c,z,y)
= − ∂2

∂y∂zv (z, y) > 0. So

the above single-crossing condition generalizes the assumption we made in the quasilinear case.

47



D.4.2 Modifications of the main lemmas

Theorem 3 is proven by means of a series of lemmas, and in this section I will discuss how these

lemmas must be altered when we drop the assumption of quasilinearity and revert to the weaker

assumptions of Sections D.1 and D.4.1 above.

D.4.2.1 Lemma 1

Lemma 1 is unaltered relative to the quasilinear case and the proof is identical.

D.4.2.2 Corollary 3

The following result is the non-quasilinear analog of Corollary 3.

Corollary D.1 Let h be related to g as specified by (D.3) and (D.5). If g is not structurally

utilitarian, then there exists a regular tax policy T for which there exist agents ia, ib ∈ (0, 1) with

ia < ib such that either

∀i ∈ (ia, ib) ,
∂

∂zi
hi (Ui (T ) , zi (T )) < 0 (D.14)

or

∀i ∈ (ia, ib) ,
∂

∂zi
hi (Ui (T ) , zi (T )) > 0. (D.15)

In the proof of Corollary D.1, Proposition D.1 plays the role that Proposition 3 plays in the proof

of Corollary 3; moreover the proof of Corollary D.1 is a bit more involved than that of Corollary 3

because one cannot rely on the convenient properties of quasilinear preferences.

D.4.2.3 Lemma 2

We also have the following lemma, which is an analog of Lemma 2.

Lemma D.1 Assume that
(
T θ,ϵ

)
is well-behaved and satisfies (15). Then (17) holds if and only

if

∫
mi (θ0, ϵ0)

[
∂2

∂θ∂zi

∣∣∣∣
θ=θ0,zi=zi(θ0,ϵ0)

T (zi, θ, ϵ0)
∂

∂ϵ

∣∣∣∣
ϵ=ϵ0

T (zi (θ0, ϵ0) , θ0, ϵ)

− ∂2

∂ϵ∂zi

∣∣∣∣
ϵ=ϵ0,zi=zi(θ0,ϵ0)

T (zi, θ0, ϵ)
∂

∂θ

∣∣∣∣
θ=θ0

T (zi (θ0, ϵ0) , θ, ϵ0)

]
di < 0.

(D.16)

where

mi (θ0, ϵ0) =

[
∂
∂ci

Ui (ci (θ0, ϵ0) , zi (θ0, ϵ0))
]2

∂
∂zi

hi (Ui (θ0, ϵ0) , zi (θ0, ϵ0))

d2

dz2i

∣∣∣
zi=zi(θ0,ϵ0)

Ui (zi − T (zi) , zi)
.
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The structure of the proof is similar to the structure of the proof of Lemma 2, and features terms

A, B, and C, which play the same role as the terms A, B, and C in Lemma 2. However precise

details of these terms differ in the two lemmas. In Lemma D.1,

A =

∫
mi (θ0, ϵ0)

∂2

∂ϵ∂zi

∣∣∣∣
ϵ=ϵ0,zi=zi(θ0,ϵ0)

T (zi, θ0, ϵ)
∂

∂θ

∣∣∣∣
θ=θ0

T (zi (θ0, ϵ0) , θ, ϵ0) di

B =

∫
mi (θ0, ϵ0)

∂2

∂θ∂zi

∣∣∣∣
θ=θ0,zi=zi(θ0,ϵ0)

T (zi, θ, ϵ0)
∂

∂ϵ

∣∣∣∣
ϵ=ϵ0

T (zi (θ0, ϵ0) , θ0, ϵ) di

C =

∫
gi

 ∂2Ti

∂θ∂ϵ
+

[
∂2Ti
∂θ∂zi

∂Ti
∂ϵ + ∂2Ti

∂ϵ∂zi
∂Ti
∂θ

] [
∂2Ui

∂c2i

(
1− ∂Ti

∂zi

)
+ ∂2Ui

∂ci∂zi

]
+ ∂Ui

∂ci
∂2Ti
∂θ∂zi

∂2Ti
∂ϵ∂zi

d2Ui

dz2i

 di

−
∫

∂g̃i
∂ui

∂Ui

∂ci

∂Ti

∂θ

∂Ti

∂ϵ
di+

∫
∂g̃i
∂zi

[
∂2Ui

∂c2i

(
1− ∂Ti

∂zi

)
+ ∂2Ui

∂ci∂zi

]
∂Ti
∂θ

∂Ti
∂ϵ

d2Ui

dz2i

di

(D.17)

The following table explicitly defines the shorthand terms in the in the expression for C.

gi = gi (θ0, ϵ0)
∂g̃i
∂ui

= ∂
∂ui

g̃i (Ui (θ0, ϵ0) , zi (θ0, ϵ0))
∂g̃i
∂zi

= ∂
∂zi

g̃i (Ui (θ0, ϵ0) , zi (θ0, ϵ0))
∂Ui
∂ci

= ∂
∂ci

Ui (ci (θ0, ϵ0) , zi (θ0, ϵ0))
∂2Ui

∂c2i
= ∂2

∂c2i
Ui (ci (θ0, ϵ0) , zi (θ0, ϵ0))

∂2Ui
∂ci∂zi

= ∂2

∂ci∂zi
Ui (ci (θ0, ϵ0) , zi (θ0, ϵ0))

d2Ui

dz2i
= d2

dz2i

∣∣∣
zi=zi(θ0,ϵ0)

Ui (zi − T (zi) , zi)
∂Ti
∂zi

= ∂
∂zi

T (zi (θ0, ϵ0) , θ0, ϵ0)

∂Ti
∂θ = ∂

∂θ

∣∣
θ=θ0

T (zi (θ0, ϵ0) , θ, ϵ0)
∂Ti
∂ϵ = ∂

∂ϵ

∣∣
ϵ=ϵ0

T (zi (θ0, ϵ0) , θ0, ϵ)
∂2Ti
∂θ∂zi

= ∂2

∂θ∂zi

∣∣∣
θ=θ0,zi=zi(θ0,ϵ0)

T (zi, θ, ϵ0)
∂2Ti
∂ϵ∂zi

= ∂2

∂ϵ∂zi

∣∣∣
ϵ=ϵ0,zi=zi(θ0,ϵ0)

T (zi, θ0, ϵ)

∂2Ti
∂θ∂ϵ =

∂2

∂θ∂ϵ

∣∣∣
θ=θ0,ϵ=ϵ0

T (zi (θ0, ϵ0) , θ, ϵ)

(D.18)

The proof of Lemma D.1 relies on several facts. First observe that, by (D.4),

∂

∂zi
ki (ui, zi) =

∂2

∂c2i
Ui (c̃i (ui, zi) , zi)

∂

∂zi
c̃i (ui, zi) +

∂2

∂zi∂ci
Ui (c̃i (ui, zi) , zi) .

It follows from agent i’s first order condition that 1−T ′ (zi (θ0, ϵ0)) = −
∂

∂zi
Ui(ci(θ0,ϵ0),zi(θ0,ϵ0))

∂
∂ci

Ui(ci(θ0,ϵ0),zi(θ0,ϵ0))
. Using

(D.2) and the fact that c̃i (Ui (θ0, ϵ0) , zi (θ0, ϵ0)) = ci (θ0, ϵ0) and the abbreviations in (D.18), we

have

∂

∂zi
ki (Ui (θ0, ϵ0) , zi (θ0, ϵ0)) =

∂2Ui

∂c2i

(
1− ∂Ti

∂zi

)
+

∂2Ui

∂ci∂zi
. (D.19)
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Moreover, applying the implicit function theorem to the agent’s first order conditions, using the

abbreviations in (D.18), we have

∂

∂θ
z (θ0, ϵ0) =

[
∂2Ui

∂c2i

(
1− ∂Ti

∂zi

)
+ ∂2Ui

∂ci∂zi

]
∂Ti
∂θ + ∂Ui

∂ci
∂2Ti
∂θ∂zi

d2Ui

dz2i

,

∂zi
∂ϵ

(θ0, ϵ0) =

[
∂2Ui

∂c2i

(
1− ∂Ti

∂zi

)
+ ∂2Ui

∂ci∂zi

]
∂Ti
∂ϵ + ∂Ui

∂ci
∂2Ti
∂ϵ∂zi

d2Ui

dz2i

.

(D.20)

Using the envelope theorem, (D.6), (D.19), and (D.20), it is staightforward to show that when

A,B, and C are defined as in (D.17), then (21) and (22) hold, and then the argument for Lemma

D.1 proceeds similarly to the argument for Lemma 2.

D.4.2.4 Lemma 3

Lemma 3 needs to be modified as follows for the non-quasilinear case:

Lemma D.2 Let T be a regular tax policy and let ia, ib ∈ (0, 1) be such that ia < ib. Then there

exists a well-behaved family
(
T θ,ϵ

)
with T θ0,ϵ0 = T for some interior parameter values θ0, ϵ0 and

that satisfies (15), (16), and

∂2

∂θ∂zi

∣∣∣∣
θ=θ0,zi=zi(θ0,ϵ0)

T (zi, θ, ϵ0)
∂

∂ϵ

∣∣∣∣
ϵ=ϵ0

T (zi (θ0, ϵ0) , θ0, ϵ)

− ∂2

∂ϵ∂zi

∣∣∣∣
ϵ=ϵ0,zi=zi(θ0,ϵ0)

T (zi, θ0, ϵ)
∂

∂θ

∣∣∣∣
θ=θ0

T (zi (θ0, ϵ0) , θ, ϵ0)

> 0, if i ∈ (ia, ib) ,

= 0, if i ̸∈ (ia, ib) .
(D.21)

The reason that the inequality points in opposite directions in Lemmas 3 and D.2 is that, in the

lemma preceding Lemma D.2, namely, Lemma D.1, the term 1

d2

dz2
i

∣∣∣∣
zi=zi(θ0,ϵ0)

Ui(zi−T (zi),zi)
, which is

negative, has been absorbed into mi (θ0, ϵ0), whereas, in Lemma 2, the corresponding term was

part of ∂
∂θ

∣∣
θ=θ0

zi (θ, ϵ0) and
∂
∂ϵ

∣∣
ϵ=ϵ0

zi (θ0, ϵ).
21 In any event, just as in the quasilinear case, it was

possible, with a slight modification in the construction to flip the inequality in (23) (see Lemma

A.2), it is also possible to do the same for (D.21).

The proof of Lemma D.2 is similar to the poof of Lemma 3. The construction of the family(
T θ,ϵ

)
is the same as in Lemma 3; the fact that i 7→ zi (T ) is increasing, which is used in the

construction, now follows from the single-crossing condition. Many other aspects of the argument

21In particular, in the quasilinear case, using the fact that, by construction, T θ0,ϵ0 = T , we have ∂
∂θ

∣∣
θ=θ0

zi (θ, ϵ0) =

−
d
dθ |θ=θ0

d
dzi

∣∣∣
zi=zi(θ0,ϵ0)

Ui(zi−T (zi,θ,ϵ0),zi)

d2

dz2
i

∣∣∣∣
zi=zi(θ0,ϵ0)

Ui(zi−T (zi),zi)
and ∂

∂θ

∣∣
ϵ=ϵ0

zi (θ, ϵ0) is similar. Note that, in the non-quasilinear case, the

term ∂2

∂θ∂zi

∣∣∣
θ=θ0,zi=zi(θ0,ϵ0)

T (zi, θ, ϵ0) differs from ∂
∂θ

∣∣
θ=θ0

zi (θ, ϵ0) in a number of ways, and not just in omitting

the denominator d2

dz2i

∣∣∣
zi=zi(θ0,ϵ0)

Ui (zi − T (zi) , zi).
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are unchanged. As (D.16) and (D.21), unlike (20) and (23), do not feature the terms ∂
∂θ

∣∣
θ=θ0

zi (θ, ϵ0)

and ∂
∂ϵ

∣∣
ϵ=ϵ0

zi (θ0, ϵ), we no longer have to appeal to the conditions (A.37) and (A.38). In place of

(A.40), we now derive the condition,

∀i ∈ (ia, ib) ,

∂2

∂θ∂zi

∣∣∣∣
θ=θ0,zi=zi(θ0,ϵ0)

T (zi, θ, ϵ0)
∂

∂ϵ

∣∣∣∣
ϵ=ϵ0

T (zi (θ0, ϵ0) , θ0, ϵ)

− ∂2

∂ϵ∂zi

∣∣∣∣
ϵ=ϵ0,zi=zi(θ0,ϵ0)

T (zi, θ0, ϵ)
∂

∂θ

∣∣∣∣
θ=θ0

T (zi (θ0, ϵ0) , θ, ϵ0)

=

+︷ ︸︸ ︷
µ′
1 (zi (T ))

+︷ ︸︸ ︷
η1 (zi (T ))−


+ on (i3,i4),− on (i4,i5)︷ ︸︸ ︷

η′1 (zi (T )) ×

− on (i3,i4),+ on (i4,i5)︷ ︸︸ ︷
[µ1 (zi (T ))− 1]

 > 0.

(D.22)

The equality (D.22) appeals to similar facts as (A.40) to derive and sign the relevant terms on

the right hand side of the equality. The argument that the expression on the right hand side of

(D.21) is equal to zero outside of (ia, ib) is similar to the corresponding argument in Lemma 3. This

completes the summary of how the proof of Lemma D.2 differs from that of Lemma 3.

D.4.2.5 Lemma 4

Lemma 4 continues to hold in the non-quasilinear case, and its proof in the non-quasilinear case

is very similar to its proof in the quasilinear case. In particular, note that, for each i, the terms

mi (θ0, ϵ0) and
∂
∂zi

hi (Ui (θ0, ϵ0) , zi (θ0, ϵ0)) always have opposite signs when nonzero, and one term

is equal to zero if and only if the other is equal to zero as well.

D.4.2.6 Lemma 5

The basic structure of the argument for Lemma 5, as explained in Section A.13 of the appendix, is

unchanged. However, some of the lemmas supporting Lemma 5 must be modified. In the proof of

Lemma A.3, the specific expressions in (B.21) must be modified because they depend on the assump-

tion of quasilinearity, but the equality d
dε

∣∣
ε=0

zi (T + ε (∆T1 − s′ (0)∆T2)) =
d
dξ

∣∣∣
ξ=0

zi
(
T +∆T ξ

)
continues to hold, so the proof can proceed as before. Similarly, in in the proof of Lemma B.1

the specific terms in (B.1) depend on quasilinearity but d
dε

∣∣
ε=0

zi (T + ε (r1∆T γ + r2∆T2)) =

r1
d
dε

∣∣
ε=0

zi (T + ε∆T1) + r2
d
dε

∣∣
ε=0

zi (T + ε∆T2) still holds, and so again the proof can proceed

as before. In Lemma B.2, (B.2) becomes

d

dε

∣∣∣∣
ε=0

R (T + ε∆T ) =

∫ z1

z0

∆T (z) ℓT (z) dz −
∫ z1

z0

∆T ′ (z) kT (z) dz,

51



where

ℓT (z) =

1−
[

∂2

∂c2
Uι(z) (z − T (z) , z) (1− T ′ (z)) + ∂2

∂c∂zUι(z) (z − T (z) , z)
]
T ′ (z)

d2

dz̃2

∣∣∣
z̃=z

Uι(z) (z̃ − T (z̃) , z̃)

h (z) ,
∀z ∈ [z0, z1] ,

and kT (z) is modified to become:

kT (z) =
∂
∂cUι(z) (z − T (z) , z)T ′ (z)

d2

dz̃2

∣∣∣
z̃=z

Uι(z) (z̃ − T (z̃) , z̃)
h (z) , ∀z ∈ [z0, z1] .

Accordingly, in the proof of Lemma B.3, (B.9) becomes

d

dε

∣∣∣∣
ε=0

R (T + ε∆T γ
1 ) =

∫ zγ∗

z0

∆T γ
1 (z) ℓT (z) dz −

∫ zγ∗

z0

d

dz
∆T γ

1 (z) kT (z) dz,

and (B.10) becomes

lim
γ→∞

∫ zγ∗

z0

∆T γ
1 (z) ℓT (z) dz = 0.

Otherwise the proofs of Lemmas B.2 and B.3 remain the same. Some of the precise details of Lemma

C.1 need to be changed, but the basic structure of the argument, which relies on the single-crossing

property, remains the same. The proofs of Lemmas A.4, B.4, B.5 and C.2 are unchanged.
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