
Online Appendix for “Bank Runs, Fragility, and Credit
Easing”

Manuel Amador and Javier Bianchi

A Proofs

A.1 Proof of Lemma 1

The problem of a bank under default facing a sequence of prices {pt}∞t=0 is given by

V D
t (k) = max

k′,c
log(c) + βV D

t+1(k
′) (A.1)

subject to: c = (pt + zD)k − ptk
′.

We conjecture that

V D
t (k) = BD

t +
1

1− β
log((zD + pt)k). (A.2)

Replacing this conjecture into (A.1) and substituting out consumption from the budget
constraint, we have that

V D
t (k) = max

k′
log(zDk + pt(k − k′)) + β

[
1

1− β
log(k′(pt+1 + zD)) + BD

t+1

]
. (A.3)

The first-order condition with respect to k′ is given by

pt
zDk + pt(k − k′)

=

(
β

1− β

)
1

k′ ⇒ k′ =
β(zD + pt )

pt
k. (A.4)

By the method of undetermined coefficients, we can now verify the conjecture and solve for
BD

t . We substitute (A.4) into the right-hand side of (A.3) and replace the conjectured guess
for V D

t (k) on the left-hand side of (A.3):

BD
t +

1

1− β
log((zD + pt)k) = log

(
(1− β)(zD + pt)k

)
+

β

[
1

1− β
log

(
βRD

t+1(z
D + pt)k

)
+ BD

t+1

]
.

where we have used the definition of RD
t+1. Rearranging this equation, we can observe that

the terms multiplying log(k) cancel out. After simplifying, we obtain that the conjectured
value function is verified when BD

t satisfies

BD
t = log(1− β) +

β

1− β
log(β) +

β

1− β
log

(
RD

t+1

)
+ βBD

t+1. (A.5)
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Iterating forward on this equation and imposing limτ→∞ βτ log
(
RD

τ+1

)
= 0, as in Condition

1, we have

BD
t =

1

1− β

[
β

1− β
log(β) + log(1− β)

]
+

β

1− β

∑
τ≥t

βτ−t log
(
RD

τ+1

)
. (A.6)

Replacing (A.6) in (A.2), we obtain that the value under default is given by

V D
t (k) = A+

1

1− β
log((zD + pt)k) +

β

1− β

∑
τ≥t

βτ−t log
(
RD

τ+1

)
,

where A = (log(1− β) + β
1−β

log(β))/(1− β). We thus arrived at the value of V D, as stated
in the lemma. □

A.2 Proof of Lemma 2

We conjecture that the value function is

V R
t (n) =

1

1− β
log(n) + BR

t . (A.7)

The borrowing constraint must be such that the bank does not default at t+1. That is,

BR
t+1 +

1

1− β
log(n′) ≥ BD

t+1 +
1

1− β
log((zD + pt+1)k

′).

Replacing n′ for the law of motion and manipulating this expression, we arrive at

b′ ≤

[
(z + pt+1)− (zD + pt+1)e

(1−β)(BD
t+1−BR

t+1)
]

R
k′.

Therefore, the borrowing constraint takes a linear form, as conjectured. In particular,

b′ ≤ γtpt+1k
′,

where γt is the leverage parameter and is given by

γt =
(z + pt+1)− (zD + pt+1)e

(1−β)(BD
t+1−BR

t+1)

Rpt+1

. (A.8)

We establish next that if Rk
t+1 > R, the borrowing constraint binds at time t.

Lemma A.1. If Rk
t+1 > R, then the bank is against the borrowing constraint.

Proof. The proof is by contradiction. Denote by (c∗t , k
∗
t+1, b

∗
t+1) the solution to the bank

problem with b∗t+1 < γtpt+1k
∗
t+1. Consider the following alternative policy: (c

∗
t , k̃t+1+∆, b̃t+1+
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∆pt), with 0 < ∆ < γtpt+1k̃t+1−b̃t+1

pt−γtpt+1
. The alternative allocation is feasible and delivers higher

net worth, since

ñt+1 = (k̃t+1 +∆)(z + pt+1)−Rb̃t+1 +∆pt)

= k̃t+1(z + pt+1)−Rb̃t+1) + ∆(Rk
t+1 −R)

> k̃t+1(z + pt+1)−Rb̃t+1 = n∗
t+1,

where ñt+1 and n∗
t+1 are respectively the net worth under the alternative and original alloca-

tions. Since the alternative allocation delivers the same consumption and higher net worth,
this contradicts that the original allocation with a slack borrowing constraint is optimal. □

We now proceed to finish the proof of Lemma 2. Consider first the case with Rk
t+1 > R.

From Lemma A.1, we know that borrowing constraint binds, and hence we can use b′ =
γtpt+1k

′. Replacing this in the law of motion for net worth and consumption, we obtain

n′ = k′(z + pt+1)− γtpt+1k
′R

and c = n − k′(pt − γtpt+1). Replacing these two expressions and the conjectured value
function (A.7) in the right-hand side of equation (2), we have

V R
t (n) = max

k′
log(n− k′(pt − γtpt+1)) + β

[
1

1− β
log(k′(z + pt+1(1− γtR)) + BR

t+1

]
, (A.9)

The first-order condition with respect to k′ is

pt − γtpt+1

n− k′(pt − γtpt+1)
=

(
β

1− β

)
1

k′

and yields

k′ =
βn

pt − γpt+1

, c = (1− β)n, (A.10)

and

n′ =
βn

pt − γtpt+1

(z + pt+1(1− γtR)).

Notice that by definition of Re
t+1, we have that

Re
t+1 =

z + pt+1(1− γtR)

pt − γtpt+1

. (A.11)

If we use (A.10) and (A.11) and replace (A.7), on the left-hand side of (A.9)

BR
t +

1

1− β
log(n) = log ((1− β)n) + β

[
1

1− β
log(βRe

t+1n) + BR
t+1

]
.
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Rearranging this equation, we can observe that the log(n) terms cancel out. We therefore
obtain that the conjecture is verified when the BR

t satisfies

BR
t =

β

1− β
log(β) + log(1− β) +

β

1− β
log(Re

t+1) + βBR
t+1. (A.12)

Iterating forward and imposing limt→∞ βtBR
t = 0, we have

BR
t =

1

1− β

[
β

1− β
log(β) + log(1− β)

]
+

β

1− β

∑
τ≥t

βτ−t log
(
Re

τ+1

)
, (A.13)

so the value under repayment is given by

V R
t (n) =

1

1− β
log(n) + BR

t ,

where BR
t is given by (A.13). Equivalently, using the definitions of Re and A, we arrive at

the expression for V R in the Lemma.
Notice also from (A.10) and (A.10) and the fact that b′ = γtpt+1k

′ that we have also
verified the policies in item (ii) of the lemma for the case of Rk

t+1 > R.
Finally, it is straightforward to verify that in the case of Rk

t+1 = R, the conjectured value
function (A.7) solves the Bellman equation, and the bank is now indifferent across b′, k′,
while consumption remains given by (A.10). This completes the proofs of the three items in
the lemma. □

A.3 Proof of Proposition 1

Rearranging (A.8), we obtain

β

1− β
log

(
z + pt+1(1− γtR)

zD + pt+1

)
= β(BD

t+1 − BR
t+1). (A.14)

To obtain an expression for the right-hand side of (A.14), we use (A.5) and (A.12), and
obtain the result that the difference in the intercepts in the value functions is given by

BD
t − BR

t = β(BD
t+1 − BR

t+1) +
β

1− β

[
log(RD

t+1)− log(Re
t+1)

]
), (A.15)

Using the definition of RD
t+1 and Re

t+1 and replacing (A.14), we get that

BD
t − BR

t = β(BD
t+1 − BR

t+1)−
β

1− β

[
log

(
z + pt+1(1− γtR)

pt − γtpt+1

)
− log

(
zD + pt+1

pt

)]
.

Using that using that log(pt−γtpt+1) = log
(
1− γt

pt+1

pt

)
+log(pt), simplifying, and replacing

(A.14), we arrive at

BD
t − BR

t =
β

1− β

[
log

(
1− γt

pt+1

pt

)]
. (A.16)

If we update (A.16) one period forward and replace in (A.14), we arrive at

z + pt+1(1− γtR)

zD + pt+1

=

(
1− γt+1

pt+2

pt+1

)β

,

which is the expression in the proposition. □
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A.4 Proof of Lemma 4

The capital demand of a repaying bank with productivity z0 can be written as

kR
1 (z0) = β

(z0 + p0)K −RB0

p0 − γ0p1
= β

(
(z0 + γ0p1)K −RB0

p0 − γ0p1
+K

)
.

We know from before that kR
1 (z

F ) ≥ kD
1 . We also have that kR

1 (z
Run) ≥ kD

1 , as z
Run ≥ zF .

So, independently of the default threshold, ẑ, we have∫ z

ẑ

(kR
1 (z0)− kD

1 )dF (z0) > 0,

where the inequality follows as the demand for capital is strictly increasing in z0, and the
threshold is interior. Market clearing at t = 0 requires that∫ z

ẑ

kR
1 (z0)dF (z0) + kD

1 F (ẑ) =K.

Subtracting the previous inequality, we have that∫ z

ẑ

kR
1 (z0)dF (z0) + kD

1 F (ẑ)−
∫ z

ẑ

(kR
1 (z0)− kD

1 )dF (z0) <K.

And thus, kD
1 < K. It follows then that

∫ z

ẑ
(kR

1 (z0) −K)dF (z0) > 0. The capital demand
inequality implies∫ z

ẑ

(
β
(z0 + p0)K −RB0

p0 − γ0p1
−K

)
dF (z0) > 0

⇒ β

∫ z

ẑ

(
(z0 + γ0p1)K −RB0

p0 − γ0p1

)
dF (z0) > (1− β)K(1− F (ẑ)) > 0,

which delivers ∫ z

ẑ

((z0 + γ0p1)K −RB0)dF (z0) > 0,

as p0 > γ0p1, an equilibrium requirement. We can then rewrite the capital demand of
repaying banks as:∫ z

ẑ

kR
1 (z0)dF (z0) = β

[∫ z

ẑ
((z0 + γ0p1)K −RB0)dF (z0)

p0 − γ0p1
+K(1− F (ẑ))

]
.

Given what we have just shown, the numerator of the first term inside the square brackets
is strictly positive, and thus it follows that an increase in p0 strictly reduces demand from
inframarginal repaying banks. □
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