Online Appendix for "Bank Runs, Fragility, and Credit Easing"

Manuel Amador and Javier Bianchi

A Proofs

A. 1 Proof of Lemma 1

The problem of a bank under default facing a sequence of prices $\left\{p_{t}\right\}_{t=0}^{\infty}$ is given by

$$
\begin{align*}
& V_{t}^{D}(k)=\max _{k^{\prime}, c} \log (c)+\beta V_{t+1}^{D}\left(k^{\prime}\right) \tag{A.1}\\
& \quad \text { subject to: } c=\left(p_{t}+z^{D}\right) k-p_{t} k^{\prime} .
\end{align*}
$$

We conjecture that

$$
\begin{equation*}
V_{t}^{D}(k)=\mathbb{B}_{t}^{D}+\frac{1}{1-\beta} \log \left(\left(z^{D}+p_{t}\right) k\right) \tag{A.2}
\end{equation*}
$$

Replacing this conjecture into (A.1) and substituting out consumption from the budget constraint, we have that

$$
\begin{equation*}
V_{t}^{D}(k)=\max _{k^{\prime}} \log \left(z^{D} k+p_{t}\left(k-k^{\prime}\right)\right)+\beta\left[\frac{1}{1-\beta} \log \left(k^{\prime}\left(p_{t+1}+z^{D}\right)\right)+\mathbb{B}_{t+1}^{D}\right] . \tag{A.3}
\end{equation*}
$$

The first-order condition with respect to k^{\prime} is given by

$$
\begin{equation*}
\frac{p_{t}}{z^{D} k+p_{t}\left(k-k^{\prime}\right)}=\left(\frac{\beta}{1-\beta}\right) \frac{1}{k^{\prime}} \quad \Rightarrow \quad k^{\prime}=\frac{\beta\left(z^{D}+p_{t}\right)}{p_{t}} k \tag{A.4}
\end{equation*}
$$

By the method of undetermined coefficients, we can now verify the conjecture and solve for \mathbb{B}_{t}^{D}. We substitute (A.4) into the right-hand side of (A.3) and replace the conjectured guess for $V_{t}^{D}(k)$ on the left-hand side of (A.3):

$$
\begin{aligned}
& \mathbb{B}_{t}^{D}+\frac{1}{1-\beta} \log \left(\left(z^{D}+p_{t}\right) k\right)=\log \left((1-\beta)\left(z^{D}+p_{t}\right) k\right)+ \\
& \beta\left[\frac{1}{1-\beta} \log \left(\beta R_{t+1}^{D}\left(z^{D}+p_{t}\right) k\right)+\mathbb{B}_{t+1}^{D}\right]
\end{aligned}
$$

where we have used the definition of R_{t+1}^{D}. Rearranging this equation, we can observe that the terms multiplying $\log (k)$ cancel out. After simplifying, we obtain that the conjectured value function is verified when \mathbb{B}_{t}^{D} satisfies

$$
\begin{equation*}
\mathbb{B}_{t}^{D}=\log (1-\beta)+\frac{\beta}{1-\beta} \log (\beta)+\frac{\beta}{1-\beta} \log \left(R_{t+1}^{D}\right)+\beta \mathbb{B}_{t+1}^{D} \tag{A.5}
\end{equation*}
$$

Iterating forward on this equation and imposing $\lim _{\tau \rightarrow \infty} \beta^{\tau} \log \left(R_{\tau+1}^{D}\right)=0$, as in Condition 1 , we have

$$
\begin{equation*}
\mathbb{B}_{t}^{D}=\frac{1}{1-\beta}\left[\frac{\beta}{1-\beta} \log (\beta)+\log (1-\beta)\right]+\frac{\beta}{1-\beta} \sum_{\tau \geq t} \beta^{\tau-t} \log \left(R_{\tau+1}^{D}\right) \tag{A.6}
\end{equation*}
$$

Replacing (A.6) in (A.2), we obtain that the value under default is given by

$$
V_{t}^{D}(k)=A+\frac{1}{1-\beta} \log \left(\left(z^{D}+p_{t}\right) k\right)+\frac{\beta}{1-\beta} \sum_{\tau \geq t} \beta^{\tau-t} \log \left(R_{\tau+1}^{D}\right)
$$

where $A=\left(\log (1-\beta)+\frac{\beta}{1-\beta} \log (\beta)\right) /(1-\beta)$. We thus arrived at the value of V^{D}, as stated in the lemma.

A. 2 Proof of Lemma 2

We conjecture that the value function is

$$
\begin{equation*}
V_{t}^{R}(n)=\frac{1}{1-\beta} \log (n)+\mathbb{B}_{t}^{R} \tag{A.7}
\end{equation*}
$$

The borrowing constraint must be such that the bank does not default at $t+1$. That is,

$$
\mathbb{B}_{t+1}^{R}+\frac{1}{1-\beta} \log \left(n^{\prime}\right) \geq \mathbb{B}_{t+1}^{D}+\frac{1}{1-\beta} \log \left(\left(z^{D}+p_{t+1}\right) k^{\prime}\right)
$$

Replacing n^{\prime} for the law of motion and manipulating this expression, we arrive at

$$
b^{\prime} \leq \frac{\left[\left(z+p_{t+1}\right)-\left(z^{D}+p_{t+1}\right) e^{(1-\beta)\left(\mathbb{B}_{t+1}^{D}-\mathbb{B}_{t+1}^{R}\right)}\right]}{R} k^{\prime} .
$$

Therefore, the borrowing constraint takes a linear form, as conjectured. In particular,

$$
b^{\prime} \leq \gamma_{t} p_{t+1} k^{\prime}
$$

where γ_{t} is the leverage parameter and is given by

$$
\begin{equation*}
\gamma_{t}=\frac{\left(z+p_{t+1}\right)-\left(z^{D}+p_{t+1}\right) e^{(1-\beta)\left(\mathbb{B}_{t+1}^{D}-\mathbb{B}_{t+1}^{R}\right)}}{R p_{t+1}} \tag{A.8}
\end{equation*}
$$

We establish next that if $R_{t+1}^{k}>R$, the borrowing constraint binds at time t.
Lemma A.1. If $R_{t+1}^{k}>R$, then the bank is against the borrowing constraint.
Proof. The proof is by contradiction. Denote by $\left(c_{t}^{*}, k_{t+1}^{*}, b_{t+1}^{*}\right)$ the solution to the bank problem with $b_{t+1}^{*}<\gamma_{t} p_{t+1} k_{t+1}^{*}$. Consider the following alternative policy: $\left(c_{t}^{*}, \tilde{k}_{t+1}+\Delta, \tilde{b}_{t+1}+\right.$
Δp_{t}), with $0<\Delta<\frac{\gamma_{t} p_{t+1} \tilde{k}_{t+1}-\tilde{b}_{t+1}}{p_{t}-\gamma_{t} p_{t+1}}$. The alternative allocation is feasible and delivers higher net worth, since

$$
\begin{aligned}
\tilde{n}_{t+1} & \left.=\left(\tilde{k}_{t+1}+\Delta\right)\left(z+p_{t+1}\right)-R \tilde{b}_{t+1}+\Delta p_{t}\right) \\
& \left.=\tilde{k}_{t+1}\left(z+p_{t+1}\right)-R \tilde{b}_{t+1}\right)+\Delta\left(R_{t+1}^{k}-R\right) \\
& >\tilde{k}_{t+1}\left(z+p_{t+1}\right)-R \tilde{b}_{t+1}=n_{t+1}^{*},
\end{aligned}
$$

where \tilde{n}_{t+1} and n_{t+1}^{*} are respectively the net worth under the alternative and original allocations. Since the alternative allocation delivers the same consumption and higher net worth, this contradicts that the original allocation with a slack borrowing constraint is optimal.

We now proceed to finish the proof of Lemma 2. Consider first the case with $R_{t+1}^{k}>R$. From Lemma A.1, we know that borrowing constraint binds, and hence we can use $b^{\prime}=$ $\gamma_{t} p_{t+1} k^{\prime}$. Replacing this in the law of motion for net worth and consumption, we obtain

$$
n^{\prime}=k^{\prime}\left(z+p_{t+1}\right)-\gamma_{t} p_{t+1} k^{\prime} R
$$

and $c=n-k^{\prime}\left(p_{t}-\gamma_{t} p_{t+1}\right)$. Replacing these two expressions and the conjectured value function (A.7) in the right-hand side of equation (2), we have

$$
\begin{equation*}
V_{t}^{R}(n)=\max _{k^{\prime}} \log \left(n-k^{\prime}\left(p_{t}-\gamma_{t} p_{t+1}\right)\right)+\beta\left[\frac{1}{1-\beta} \log \left(k^{\prime}\left(z+p_{t+1}\left(1-\gamma_{t} R\right)\right)+\mathbb{B}_{t+1}^{R}\right]\right. \tag{A.9}
\end{equation*}
$$

The first-order condition with respect to k^{\prime} is

$$
\frac{p_{t}-\gamma_{t} p_{t+1}}{n-k^{\prime}\left(p_{t}-\gamma_{t} p_{t+1}\right)}=\left(\frac{\beta}{1-\beta}\right) \frac{1}{k^{\prime}}
$$

and yields

$$
\begin{equation*}
k^{\prime}=\frac{\beta n}{p_{t}-\gamma p_{t+1}}, \quad c=(1-\beta) n, \tag{A.10}
\end{equation*}
$$

and

$$
n^{\prime}=\frac{\beta n}{p_{t}-\gamma_{t} p_{t+1}}\left(z+p_{t+1}\left(1-\gamma_{t} R\right)\right)
$$

Notice that by definition of R_{t+1}^{e}, we have that

$$
\begin{equation*}
R_{t+1}^{e}=\frac{z+p_{t+1}\left(1-\gamma_{t} R\right)}{p_{t}-\gamma_{t} p_{t+1}} \tag{A.11}
\end{equation*}
$$

If we use (A.10) and (A.11) and replace (A.7), on the left-hand side of (A.9)

$$
\mathbb{B}_{t}^{R}+\frac{1}{1-\beta} \log (n)=\log ((1-\beta) n)+\beta\left[\frac{1}{1-\beta} \log \left(\beta R_{t+1}^{e} n\right)+\mathbb{B}_{t+1}^{R}\right]
$$

Rearranging this equation, we can observe that the $\log (n)$ terms cancel out. We therefore obtain that the conjecture is verified when the \mathbb{B}_{t}^{R} satisfies

$$
\begin{equation*}
\mathbb{B}_{t}^{R}=\frac{\beta}{1-\beta} \log (\beta)+\log (1-\beta)+\frac{\beta}{1-\beta} \log \left(R_{t+1}^{e}\right)+\beta \mathbb{B}_{t+1}^{R} \tag{A.12}
\end{equation*}
$$

Iterating forward and imposing $\lim _{t \rightarrow \infty} \beta^{t} \mathbb{B}_{t}^{R}=0$, we have

$$
\begin{equation*}
\mathbb{B}_{t}^{R}=\frac{1}{1-\beta}\left[\frac{\beta}{1-\beta} \log (\beta)+\log (1-\beta)\right]+\frac{\beta}{1-\beta} \sum_{\tau \geq t} \beta^{\tau-t} \log \left(R_{\tau+1}^{e}\right) \tag{A.13}
\end{equation*}
$$

so the value under repayment is given by

$$
V_{t}^{R}(n)=\frac{1}{1-\beta} \log (n)+\mathbb{B}_{t}^{R}
$$

where \mathbb{B}_{t}^{R} is given by (A.13). Equivalently, using the definitions of R^{e} and A, we arrive at the expression for V^{R} in the Lemma.

Notice also from (A.10) and (A.10) and the fact that $b^{\prime}=\gamma_{t} p_{t+1} k^{\prime}$ that we have also verified the policies in item (ii) of the lemma for the case of $R_{t+1}^{k}>R$.

Finally, it is straightforward to verify that in the case of $R_{t+1}^{k}=R$, the conjectured value function (A.7) solves the Bellman equation, and the bank is now indifferent across b^{\prime}, k^{\prime}, while consumption remains given by (A.10). This completes the proofs of the three items in the lemma.

A. 3 Proof of Proposition 1

Rearranging (A.8), we obtain

$$
\begin{equation*}
\frac{\beta}{1-\beta} \log \left(\frac{z+p_{t+1}\left(1-\gamma_{t} R\right)}{z^{D}+p_{t+1}}\right)=\beta\left(\mathbb{B}_{t+1}^{D}-\mathbb{B}_{t+1}^{R}\right) \tag{A.14}
\end{equation*}
$$

To obtain an expression for the right-hand side of (A.14), we use (A.5) and (A.12), and obtain the result that the difference in the intercepts in the value functions is given by

$$
\begin{equation*}
\left.\mathbb{B}_{t}^{D}-\mathbb{B}_{t}^{R}=\beta\left(\mathbb{B}_{t+1}^{D}-\mathbb{B}_{t+1}^{R}\right)+\frac{\beta}{1-\beta}\left[\log \left(R_{t+1}^{D}\right)-\log \left(R_{t+1}^{e}\right)\right]\right) \tag{A.15}
\end{equation*}
$$

Using the definition of R_{t+1}^{D} and R_{t+1}^{e} and replacing (A.14), we get that

$$
\mathbb{B}_{t}^{D}-\mathbb{B}_{t}^{R}=\beta\left(\mathbb{B}_{t+1}^{D}-\mathbb{B}_{t+1}^{R}\right)-\frac{\beta}{1-\beta}\left[\log \left(\frac{z+p_{t+1}\left(1-\gamma_{t} R\right)}{p_{t}-\gamma_{t} p_{t+1}}\right)-\log \left(\frac{z^{D}+p_{t+1}}{p_{t}}\right)\right]
$$

Using that using that $\log \left(p_{t}-\gamma_{t} p_{t+1}\right)=\log \left(1-\gamma_{t} \frac{p_{t+1}}{p_{t}}\right)+\log \left(p_{t}\right)$, simplifying, and replacing (A.14), we arrive at

$$
\begin{equation*}
\mathbb{B}_{t}^{D}-\mathbb{B}_{t}^{R}=\frac{\beta}{1-\beta}\left[\log \left(1-\gamma_{t} \frac{p_{t+1}}{p_{t}}\right)\right] . \tag{A.16}
\end{equation*}
$$

If we update (A.16) one period forward and replace in (A.14), we arrive at

$$
\frac{z+p_{t+1}\left(1-\gamma_{t} R\right)}{z^{D}+p_{t+1}}=\left(1-\gamma_{t+1} \frac{p_{t+2}}{p_{t+1}}\right)^{\beta}
$$

which is the expression in the proposition.

A. 4 Proof of Lemma 4

The capital demand of a repaying bank with productivity z_{0} can be written as

$$
k_{1}^{R}\left(z_{0}\right)=\beta \frac{\left(z_{0}+p_{0}\right) \bar{K}-R B_{0}}{p_{0}-\gamma_{0} p_{1}}=\beta\left(\frac{\left(z_{0}+\gamma_{0} p_{1}\right) \bar{K}-R B_{0}}{p_{0}-\gamma_{0} p_{1}}+\bar{K}\right)
$$

We know from before that $k_{1}^{R}\left(z^{F}\right) \geq k_{1}^{D}$. We also have that $k_{1}^{R}\left(z^{R u n}\right) \geq k_{1}^{D}$, as $z^{R u n} \geq z^{F}$. So, independently of the default threshold, \hat{z}, we have

$$
\int_{\hat{z}}^{z}\left(k_{1}^{R}\left(z_{0}\right)-k_{1}^{D}\right) d F\left(z_{0}\right)>0
$$

where the inequality follows as the demand for capital is strictly increasing in z_{0}, and the threshold is interior. Market clearing at $t=0$ requires that

$$
\int_{\hat{z}}^{z} k_{1}^{R}\left(z_{0}\right) d F\left(z_{0}\right)+k_{1}^{D} F(\hat{z})=\bar{K}
$$

Subtracting the previous inequality, we have that

$$
\int_{\hat{z}}^{z} k_{1}^{R}\left(z_{0}\right) d F\left(z_{0}\right)+k_{1}^{D} F(\hat{z})-\int_{\hat{z}}^{z}\left(k_{1}^{R}\left(z_{0}\right)-k_{1}^{D}\right) d F\left(z_{0}\right)<\bar{K} .
$$

And thus, $k_{1}^{D}<\bar{K}$. It follows then that $\int_{\hat{z}}^{z}\left(k_{1}^{R}\left(z_{0}\right)-\bar{K}\right) d F\left(z_{0}\right)>0$. The capital demand inequality implies

$$
\begin{aligned}
& \int_{\hat{z}}^{z}\left(\beta \frac{\left(z_{0}+p_{0}\right) \bar{K}-R B_{0}}{p_{0}-\gamma_{0} p_{1}}-\bar{K}\right) d F\left(z_{0}\right)>0 \\
& \quad \Rightarrow \beta \int_{\hat{z}}^{z}\left(\frac{\left(z_{0}+\gamma_{0} p_{1}\right) \bar{K}-R B_{0}}{p_{0}-\gamma_{0} p_{1}}\right) d F\left(z_{0}\right)>(1-\beta) \bar{K}(1-F(\hat{z}))>0
\end{aligned}
$$

which delivers

$$
\int_{\hat{z}}^{z}\left(\left(z_{0}+\gamma_{0} p_{1}\right) \bar{K}-R B_{0}\right) d F\left(z_{0}\right)>0,
$$

as $p_{0}>\gamma_{0} p_{1}$, an equilibrium requirement. We can then rewrite the capital demand of repaying banks as:

$$
\int_{\hat{z}}^{z} k_{1}^{R}\left(z_{0}\right) d F\left(z_{0}\right)=\beta\left[\frac{\int_{\hat{z}}^{z}\left(\left(z_{0}+\gamma_{0} p_{1}\right) \bar{K}-R B_{0}\right) d F\left(z_{0}\right)}{p_{0}-\gamma_{0} p_{1}}+\bar{K}(1-F(\hat{z}))\right] .
$$

Given what we have just shown, the numerator of the first term inside the square brackets is strictly positive, and thus it follows that an increase in p_{0} strictly reduces demand from inframarginal repaying banks.

