
ONLINE APPENDIX TO “CROWDING IN SCHOOL CHOICE”

WILLIAM PHAN, RYAN TIERNEY, AND YU ZHOU

APPENDIX A. EXISTENCE OF RCE AND MAXIMAL RCE

We proceed in four subsections. In Section A.1 we study the set of fair al-
locations, which contains the set of RCEs, and which can be trivially shown
to be non-empty on our domain. In Section A.2 we show that RCEs, if they
exist, induce an upper lattice in welfare space, which then leads to Theorem
3. Proposition 2 is necessary for this argument, so we give its proof here as
well. In Section A.3, we uncover some dominance relations in the set of fair
allocations. These imply that RCEs will lie in the welfare-upper-envelope of
the fair allocations, and so will exist if the fair allocations induce a closed
set in welfare space, which we show in Section A.4.

A.1. Existence of Fair Allocations. Given profile R ∈ RN , schools s1
and sk+1 are connected by indifference* (CBI*) if they satisfy condition
(1) of connection by indifference for ρs1 = max{bs1 , 1/|N |} and ρsk+1

=
max{bsk+1

, 1/|N |}, and the same condition (2). A preference domain is thus
NCBI* if it contains no profiles at which a pair of schools is CBI*. The
maximal NCBI* domain is a proper superset of the NBCI domain.

Proposition 4. A fair allocation (ρ, σ), with each ρs ≥ max{bs, 1/|N |}, exists
on any NCBI* domain.

Proof. Consider ρ ∈ [0, 1]S such that each ρs = max{bs, 1/|N |}. Then we
have a standard school choice problem where the capacity of school s ∈ S
is min{b−1

s , |N |} (Section II.A). NCBI* implies that student preferences on
{(ρs, s) : s ∈ S} are strict, so the set of matchings that are non-wasteful
and satisfy no justified envy is non-empty [Roth and Sotomayor, 1990]. If σ
is such a matching for this problem, then (ρ, σ) is clearly a fair allocation in
our model. □

Note that by exhaustiveness and inferior empty schools, if (ρ, σ) is an
RCE, then each ρs >

1
|N |+1

. This fact, combined with the foregoing Propo-
sition and our proof strategy, make it without loss of generality to assume
henceforth that any fair allocation (ρ, σ) has each ρs >

1
|N |+1

.

A.2. The Upper-Lattice Property. Fix a preference profile R ∈ RN .
Given two allocations, (ρ, σ) and (γ, τ), construct the labeled, directed trans-
fer graph T on vertices S so that labeled arc s

i→ t ∈ T if σ(i) = s,
τ(i) = t, and s 6= t.26 We may omit the label when the identity of the

26A labeled, directed graphT on verticesS is a set of ordered triples (s, t, i) ∈ S×S×N
where (s, t) represents the arc and i is the label.

28
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student generating the arc is not important. Define the sets

S+ = {s ∈ S : γs > ρs} N+ = {i ∈ N : (γ, τ(i)) Pi (ρ, σ(i))}
S− = {s ∈ S : ρs > γs} N− = {i ∈ N : (ρ, σ(i)) Pi (γ, τ(i))}
S= = {s ∈ S : γs = ρs > bs} N= = {i ∈ N : (γ, τ(i)) Ii (ρ, σ(i))}
S∗ = {s ∈ S : γs = ρs = bs}.

We denote by s⇝t ⊆ T a path in the transfer graph with no repeated arcs.27

Note that since our graph may contain several arcs with the same orientation
between a given pair of vertices, there may be many distinct paths from s to t,
even on the same ordered list of vertices. We distinguish between different
paths by decoration, so that s⇝′t 6= s⇝t. A path is positive (negative)
if it contains an N+-labeled arc (N−-labeled arc). A positive (negative)
path is totally-positive (totally-negative) if it contains only labels from N+∪
N= (N− ∪ N=). A cycle is a path in which the first and last vertices are
identical and there are otherwise no repeated vertices. The in-degree of a
set of vertices V ⊆ S is the number of arcs s → t ∈ T with s /∈ V and
t ∈ V . Symmetrically, the out-degree is the number of such arcs where
s ∈ V and t /∈ V .

Let T̄ ⊇ T be the extended transfer graph that includes self cycles.
That is, we drop the requirement that s 6= t; so, if σ(i) = τ(i) = s, then
s

i→ s ∈ T̄ . Abusing terminology, a cycle decomposition F of extended
transfer graph T̄ is a collection of cycles of T̄ where each student i ∈ N
appears in exactly one cycle (possibly a self cycle).28 Let c denote a generic
element of F. Let

F= = {c ∈ F : (s, t, i) ∈ c ⇒ s 6= t & (ρ, σ) Ii (γ, τ)}
F+ = {c ∈ F \F= : (s, t, i) ∈ c ⇒ s 6= t & (γ, τ) Ri (ρ, σ)}
F− = {c ∈ F \F= : (s, t, i) ∈ c ⇒ s 6= t & (ρ, σ) Ri (γ, τ)}
F0 = {c ∈ F : c = {(s, s, i)} for some s and i}.

A cycle inF= is one where each involved student is indifferent between their
old and new school. Similarly, F+ is the set of totally-positive cycles; F−,
totally-negative cycles; F0, self cycles.

Recall that Proposition 2 posits the existence of a cycle decomposition
F with certain properties. We present a key tool in its proof, namely the
existence of a subfamily of cycles which will eventually constitute F+ ⊆ F.

27A path in T is a sequence of distinct arcs {(sk, tk, ik) : k = 1, . . . ,K}with tk−1 = sk
for each k ∈ {2, . . . ,K}.

28In the language defined in Section IV, each student appears in exactly one trading
cycle or self cycle.
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Proposition 5. Let (ρ, σ) and (γ, τ) be two RCEs for a profile R satisfying
NCBI*. Let T be the transfer graph from (ρ, σ) to (γ, τ). Every path in
T beginning in a positive arc is totally-positive, and every positive arc is
part of a totally-positive cycle. Every totally-positive cycle is confined to
S = S+ ∪ S= ∪ S∗. Finally, the totally-positive cycles in T can be (non-
uniquely) decomposed into a disjoint family of cycles.

Proof. We first establish several claims.

Claim 1. For each s ∈ S with σ[s] 6= ∅, the out-degree of s in T is at least
as large as its in-degree.

Proof of claim. For s ∈ S, with σ[s] 6= ∅, exhaustiveness yields bρ−1
s c =

|σ[s]|. Since |τ [s]| ∈ N, distribution feasibility gives |τ [s]| ≤ bγ−1
s c. Com-

bining these, since γs ≥ ρs (s ∈ S), we have
|τ [s]| ≤ bγ−1

s c ≤ bρ−1
s c = |σ[s]|,

Thus, for each arc entering s, there must be at least one exiting. □

Claim 2. If s i→ t ∈ T and i ∈ N+ ∪N=, then t ∈ S.

Proof of claim. Let s i→ t ∈ T . Assume t /∈ S, and so γt < ρt. This also
implies that ρt > bt. Then since (ρ, σ) is an RCE and σ(i) = s, by fairness,
(ρ, s) Ri (ρ, t). Since γt < ρt, (ρ, t) Pi (γ, t). Combining these, we get

(ρ, σ(i)) = (ρ, s) Pi (γ, t) = (γ, τ(i)) .

Thus, we have shown that t /∈ S implies i /∈ N+ ∪ N=, the contrapositive
of the desired conclusion. □
Claim 3. σ[S+] ⊆ N+ and τ(N+) ⊆ S+ ∪ S∗.

Proof of claim. For s ∈ S+, γs > ρs ≥ bs. Therefore, for each i ∈ N ,
fairness yields (γ, τ(i)) Ri (γ, s). In particular, for i ∈ σ[s], preference
monotonicity gives

(γ, τ(i)) Ri (γ, s) Pi (ρ, s) = (ρ, σ(i)) .

Thus, i ∈ N+.
Let i ∈ N+. If τ(i) /∈ S+, then ρτ(i) ≥ γτ(i) and by preference mono-

tonicity
(ρ, τ(i)) Ri (γ, τ(i)) Pi (ρ, σ(i)) ,

where the strict relation holds because i ∈ N+. Then since (ρ, σ) is an RCE
and therefore fair, bτ(i) = ρτ(i) ≥ γτ(i) ≥ bτ(i). This yields τ(i) ∈ S∗. □
Claim 4. Consider a path in T of the following form:

t
i→ u

j→ v
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with i ∈ N+ and j /∈ N+. Then j ∈ N=, u ∈ S∗, v ∈ S+ ∪ S=, and
σ[v] 6= ∅.

Proof of claim. By Claim 3 via contraposition, j /∈ N+ implies σ(j) = u /∈
S+, and so γu ≤ ρu. By preference monotonicity,

(ρ, u) Ri (γ, u) = (γ, τ(i)) Pi (ρ, σ(i)) ,

where the strict relation holds because i ∈ N+. It follows that σ(j) = u ∈
S∗ (so γu = ρu) and j �u i. Thus if j ∈ N−, we have

(γu, u) = (ρu, u) = (ρ, σ(j)) Pj (γ, τ(j))

implying, since τ(i) = u, that i �u j. In sum, we have j �u i and i �u j, a
contradiction. Thus, j ∈ N+ ∪ N=. By assumption we have that j /∈ N+,
so j ∈ N=. Since u ∈ S∗, if γv = bv, then j is indifferent between (bu, u)
and (bv, v), contradicting NCBI*. Moreover, if ρv > γv, then ρv > bv and

(ρ, v) Pj (γ, v) = (γ, τ(j)) Ij (ρ, σ(j)) ,

where the indifference relation holds because j ∈ N=. Since (ρ, σ) is an
RCE, fairness implies that ρv = bv, contradicting ρv > γv. Thus, γv ≥ ρv
and γv > bv, and so v ∈ S+ ∪ S=. Finally, if σ[v] = ∅, then

(ρ, u) = (ρ, σ(j)) Pj (ρ, v) = (1, v) Rj (γ, v) = (γ, τ(j)) ,

where the strict relation is by inferior empty schools, contradicting that j ∈
N=. Thus, σ[v] 6= ∅. □

Let s 1→ u ∈ T have 1 ∈ N+. We shall extend this to a path s⇝t. By
Claim 2, u ∈ S. If it were the case that σ[u] = ∅, then since (ρ, σ) is an
RCE, inferior empty schools implies

(ρ, s) P1 (ρ, u) = (1, u) R1 (γ, u) ,

contradicting that 1 ∈ N+. Thus, σ[u] 6= ∅. By Claim 1, there is u
2→

v ∈ T . If 2 ∈ N+, we could then start with this arc instead. Continuing
inductively, let j be the first student on the path who is not in N+ (if such
an student does not exist, the argument yields a totally-positive cycle, as
desired). We have, thus far, a path of the form

s
1→ u⇝v

j−1→ σ(j)
j→ w,

where u⇝v, if it exists, is labeled by N+ students and j − 1 ∈ N+. By
Claim 4, j ∈ N=, σ(j) ∈ S∗, w ∈ S+∪S=, and σ[w] 6= ∅. If w ∈ S+, then
the path is extended by an arc w

k→ w′ with k ∈ N+ (Claims 1 and 3). In
this case, our argument has returned to its starting point. Thus, we proceed
constructively, and when we arrive at an arc with an N+ label, call this the
escape condition of our proof.
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Assume, therefore, that w ∈ S=. Claim 1 implies there is w k→ w′ ∈ T .
Note that k ∈ N+ ∪N=, as otherwise,

(γw, w) = (ρw, w) = (ρ, σ(k)) Pk (γ, τ(k)) ,

violating that (γ, τ) is an RCE (recall the definition of S=). If k ∈ N+,
we have encountered the escape condition again, so assume k ∈ N=. By
Claim 2, w′ ∈ S. If w′ ∈ S+, then ρw′ < 1 so σ[w′] 6= ∅ (inferior empty
schools), and there must be an outgoing N+ arc from w′ (Claims 1 and 3);
again we have the escape condition. Thus, to continue the argument, assume
w′ ∈ S∗ ∪ S=. Now if w′ ∈ S∗, we have

σ(j)
j→ w

k→ w′

with σ(j) ∈ S∗, w ∈ S=, and j, k ∈ N=. This is an indifference path,
given ρ, connecting two S∗ schools, contradicting NCBI*. Conclude that
w′ ∈ S=, and recalling that k ∈ N=,

(ρ, w) Ik (γ, w
′) = (ρ, w′) .

Since (ρ, σ) is an RCE, by inferior empty schools, σ[w′] 6= ∅. We have
returned to the same situation as encountered at the beginning of this para-
graph, a non-empty school in S= with an incoming N= arc in T . We can
then therefore repeat the foregoing arguments and continue the path. In par-
ticular, w′ must have an outgoing arc w′ k′→ w′′, and k′ ∈ N+ ∪ N=. If
k′ ∈ N+, we get the escape condition, and if k′ ∈ N=, we again conclude
that w′′ ∈ S= and σ[w′′] 6= ∅.

Thus, we construct path s⇝t which can be decomposed as follows:

s
1→ u⇝v → σ(j)

j→ w⇝x → t

where
(1) u⇝v, is labeled by N+ students and touches only S schools,
(2) j ∈ N= and σ(j) ∈ S∗,
(3) w⇝x, is within S= and labeled by N= students,
(4) t ∈ S= ∪ S+.

These segments need not all exist, but we have shown, segment by segment,
that any N+ labeled arc s → u induces a path that is always labeled by N+∪
N= students, is always within S (except possibly for the very first vertex, s),
and can always be extended. It follows that we can find a cyclic sub-path, not
necessarily including s. However, by deleting the cycle from T (recording
its existence in F+ if appropriate), we preserve the vertex degree inequality
of Claim 1, and none of the other claims are affected. Thus, we may repeat
the argument. Eventually, we must find a cycle involving s, implying s ∈ S.
By further repeating the argument we construct a family of disjoint cycles.
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Note that in our construction each time we extend the path there may be
multiple candidate arcs; thus, choosing different arcs subsequently results
in different families of cycles.

□

Now we apply Proposition 5 to the NCBI domain and complete the proofs
of Proposition 2 and Theorem 3.

Proof of Proposition 2. First apply Proposition 5 to get a collection F+ of
disjoint, totally-positive cycles. Then apply it to the change from (γ, τ) to
(ρ, σ) to get a collection F− of disjoint, totally-negative cycles. Collection
F0 is constructed in the obvious way. To complete the proof of statement
(1) of the Proposition, we decompose T ′ = T \(F+∪F−∪F0) into disjoint
cycles.

By construction, T ′ contains only indifference arcs; equivalently, each arc
in T ′ is N=-labeled. Recall that Claim 3 in the proof of Proposition 5 yields
σ[S+] ⊆ N+. It follows that, for each u

i→ v ∈ T ′, u /∈ S+. Equivalently,
if u ∈ S+, then u has no outgoing arcs in T ′. Let s⇝t ⊆ T ′. We have
then that each vertex on this path, except possibly t, belongs to S \ S+. To
arrive at a contradiction, assume t ∈ S+. Then t has no outgoing arcs in T ′,
and so its in-degree is greater than its out-degree in T ′. Since F+, F−, and
F0 are all families of cycles, the in-degree of t in T is also greater than its
out-degree in T . Thus, |τ [t]| > |σ[t]|. Then by exhaustiveness we have

bρ−1
t c = |σ[t]| < |τ [t]| = bγ−1

t c,

yielding γt < ρt, contradicting t ∈ S+. In sum, every vertex touching s⇝t
belongs to S \ S+. Applying the same argument to the extended transfer
graph from (γ, τ) to (ρ, σ), we conclude that every vertex belongs to S\S−,
and so, in fact, every vertex belongs to S∗ ∪ S=.

The presence of the path s⇝t implies that only s or t could be empty in
one of the two RCEs. We show that neither s nor t is empty at either of the
two RCEs. Since there is u

i→ t ⊆ s⇝t, τ [t] 6= ∅, so suppose σ[t] = ∅.
Then by inferior empty schools, (ρ, u) Pi (1, v) = (γ, v), contradicting that
i ∈ N=. If τ [s] = ∅ then again consider the change from (γ, τ) to (ρ, σ).
Thus, no school on the path is empty at either RCE.

Since (ρ, σ) and (γ, τ) are both exhaustive, for each vertex u touched
by the path, bρ−1

u c = |σ[u]| and bγ−1
u c = |τ [u]|. Since u ∈ S∗ ∪ S=,

ρu = γu and so |σ[u]| = |τ [u]|. Thus, in T , the in-degree and out-degree
of u are equal. Removing cycles preserves this fact for T ′. For u = s,
since s has an outgoing arc in T ′, it has an incoming arc in T ′. For u = t,
since t has an incoming arc in T ′, it has an outgoing arc in T ′. Thus, s⇝t
can be extended to s′ → s⇝t → t′, with s′⇝t′ ⊆ T ′. We can repeat the
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argument, and since there are finitely many vertices, we will eventually find
a cycle that can itself be removed and the entire argument restarted. Thus,
we decompose T ′ into a family of cycles, and arrive at F=. In conclusion,
we have F = F+ ∪F− ∪F0 ∪F= as our desired cycle decomposition.

To show statement (2), let F be a cycle decomposition. Let s → t ∈
c ∈ F with s 6= t. By Proposition 5, if s → t is positive, then c ∈ F+.
Symmetrically, if s → t is negative, it is in F−. □

Proof of Theorem 3. Let T̄ be the extended transfer graph from (ρ, σ) to
(γ, τ). Given a cycle decomposition F of T̄ , let µ be the matching that
results from executing all cycles in F+ on σ. That is, if i labels an arc on a
cycle in F+, then µ(i) = τ(i), and otherwise µ(i) = σ(i). Let ζ = ρ ∨ γ.
We show that (ζ, µ) is an RCE.

By Proposition 2, the number of students at each school is unchanged from
σ to µ, so (ζ, µ) satisfies exhaustiveness. To check that (ζ, µ) is an alloca-
tion, it is sufficient to check the schools whose distribution has increased
from (ρ, σ) to (ζ, µ). Pick s ∈ S+, where S+ is defined as above. Since
|τ [s]| = |σ[s]|, and ζs = γs, distribution feasibility at school s then follows
from the distribution feasibility of (γ, τ), and since each ζs ≥ bs it respects
capacities.

So (ζ, µ) is an exhaustive allocation and the remainder of the argument
verifies that it satisfies fairness and inferior empty schools. Let N ′ be the
set of students in (1) a cycle in F+, or (2) a self cycle (s, s, ·) with s ∈ S+.
If i ∈ N ′ satisfies (1), then i ∈ N+ ∪ N=, and so (ζ, µ(i)) = (γ, τ(i)) Ri

(ρ, σ(i)). If i ∈ N ′ satisfies (2), then σ(i) = τ(i) = µ(i) ∈ S+, and so
i ∈ N+. Combining, we have

(2) ∀i ∈ N ′, (ζ, µ(i)) = (γ, τ(i)) Ri (ρ, σ(i)) .

Let i ∈ N+. If τ(i) 6= σ(i), then there is positive arc σ(i)
i→ τ(i) ∈ T ,

and by Proposition 5, there is a cycle c ∈ F+ with σ(i)
i→ τ(i) ∈ c.

If τ(i) = σ(i), then since i ∈ N+ we must have γσ(i) > ρσ(i). In sum,
N+ ⊆ N ′. Now let i /∈ N ′, so i /∈ N+. Let s = σ(i), and therefore
µ(i) = s, recalling that only agents labeling F+ cycles have µ(·) 6= σ(·).
Recall also that by Claim 3 in the proof of Proposition 5, σ[S+] ⊆ N+.
Thus, as i /∈ N+, ρs ≥ γs and so ζs = ρs. Moreover, (ρ, σ(i)) Ri (γ, τ(i)).
We conclude that

(3) ∀i ∈ N \N ′, (ζ, µ(i)) = (ρ, σ(i)) Ri (γ, τ(i)) .

Lines (2) and (3) yield

(4) ∀i ∈ N, (ζ, µ(i)) Ri max
Ri

{(ρ, σ(i)) , (γ, τ(i))}.
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By Theorem 2, the set of empty schools remains the same in (ρ, σ) and
(γ, τ), and so also in (ζ, µ). Thus, by line (4), and the fact that both (ρ, σ)
and (γ, τ) satisfy inferior empty schools, (ζ, µ) does as well.

Finally, suppose (ζ, s) Pi (ζ, µ(i)), which by line (4) implies
(ζ, s) Pi max

Ri

{(ρ, σ(i)) , (γ, τ(i))}.

By inferior empty schools there is j ∈ µ[s], so since (ζ, µ(j)) ∈ {(ρ, σ(j)) ,
(γ, τ(j))}, plugging the appropriate case into the previous line yields ζs =
bs and j �s i, since (ρ, σ) and (γ, τ) are RCEs. □

A.3. Domination Lemmas. Let Γ = {s i→ t : σ(i) = s 6= t and (ρ, t) Ri

(ρ, s)} be the weak-envy graph of allocation (ρ, σ).
Recall that a source set in a directed graph is a set of vertices that no arc

enters. Formally, it is a set S ′ ⊆ S such that if s → t ∈ Γ and s /∈ S ′, then
t /∈ S ′. The set of vertices upstream of s is

Us = {t ∈ S : t⇝s ⊆ Γ}.
Similar to the usage above, let S∗ = {s ∈ S : ρs = bs and σ[s] 6= ∅}. Say a
school s ∈ S is totally exhausted at (ρ, σ) if |σ[s]|ρs = 1.
Lemma 1. Let (ρ, σ) be a fair allocation forR ∈ RN with weak-envy graph
Γ. Suppose S ′ ⊆ S \ S∗, with σ[S ′] not empty, is a source set in Γ and that
no school in S ′ is totally exhausted. Then there is a fair allocation (γ, τ),
Pareto-dominating (ρ, σ) and with γ ⪈ ρ.
Proof. Let N ′ = σ[S ′]. For each s ∈ S ′, let ns = |σ[s]|. We shall con-
struct a non-transferable utility assignment game locally isomorphic to the
problem we currently face when restricted to N ′ and S ′. Let S be a set of∑

s∈S′ ns elements. Let f : S → S ′ have |f [s]| = ns.29 We view S as the
set of copies of the elements of S ′. Note that schools empty under (ρ, σ)
have an empty pre-image under f , and so are effectively excluded from the
assignment game. Thus, we now assume that for each s ∈ S ′, σ[s] 6= ∅, and
so ρs > bs.

Each s ∈ S consumes a bundle (l, i) ∈ R×N ′ and has simple preferences
represented by utility function Ws(l, i) = l; copies of schools care only
about resources. Each copy has an outside option denoted ws ∈ R, so that s
will withdraw from the matching (now an option) before accepting a bundle
giving utility less than ws. With slight abuse, we retain the same notation
for the students. Each i ∈ N ′ consumes a bundle (r, s) ∈ R × S and has
preferences so that

(r, s) Ri (r
′, s′) ⇐⇒ (r, f(s)) Ri (r

′, f(s′)).

29Recall, we use g−1(x) to denote the unique inverse of a bijection and g[x] to denote
the set-valued pre-image.
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Let Ui be a continuous utility function representation of Ri, extended to
R × S, and with the property that for each (r, s) ∈ R × S and each t ∈ S,
there is q ∈ R with Ui(q, t) = Ui(r, s). Assume that the outside option
utility for student i is less than min(r,s)∈[0,1]×S Ui(r, s). When a student and
a school match, one unit of divisible resource is produced, independent of
their identities. A feasible outcome in this assignment game is a vector ρ̂ ∈
[0, 1]S of resources together with a bijection σ̂ : N ′ → S. Each i ∈ N ′

consumes (ρ̂, σ̂(i)), where we reuse our notation from the model of school
choice with crowding, and each s ∈ S consumes (1− ρ̂s, σ̂

−1(s)). Agents i
and s block (ρ̂, σ̂) if there is ρ̂′s ∈ [0, 1] such that Ui(ρ̂

′
s, s) ≥ Ui(ρ̂, σ̂(i)) and

ρ̂′s < ρ̂s, where this latter of course implies the block gives s higher utility.
An allocation is stable if there are no blocks and each agent finds it at least
as good as their outside option.

Demange and Gale [1985] (henceforth D&G) show that, in this assign-
ment game, there is a unique student-optimal utility profile (u,w) ∈ RN ′ ×
RS in the space of utility profiles induced by stable outcomes. There may
be several stable outcomes that induce it. Moreover, because of student op-
timality, there is at least one s ∈ S with ws = ws.

Let (ρ̂, σ̂) be the assignment game outcome induced by (ρ, σ) in the state-
ment of the Lemma, but restricted to N ′ and S ′. We show in this para-
graph that, so long as ws ≤ 1 − ρf(s), this outcome is stable. Clearly, each
agent finds (ρ̂, σ̂) at least as good as their outside option. Since (ρ, σ) is
fair in the original model with crowding, for f(s) = σ(i) and f(s′) ∈ S ′,
(ρf(s), f(s)) Ri (ρf(s′), f(s

′)). Thus, for i and s′ to block in the assign-
ment game, given the construction of the preferences for students, i must
get ρ̂′s′ ≥ ρf(s′). Since ρ̂s′ = ρf(s′), we then have ρ̂′s′ ≥ ρ̂s′ . Recalling that
a block requires ρ̂′s′ < ρ̂s′ to raise the utility of the copied schools, we have
what was desired.

Fix ε > 0 and set each ws = 1− ρ̂s − ε. Let (γ̂, µ̂) be a student-optimal
outcome for this problem. Since (ρ̂, σ̂) is stable, Property 3 of D&G yields
that, for each s ∈ S, γ̂s ≥ ρ̂s; student and school interests are opposed in
the stable set.

Suppose there are s, s′ ∈ f [s] with γ̂s > γ̂s′ . Student i = µ̂−1(s′) gets γ̂s′
resource at s′. Since i cannot distinguish s and s′, Ui(γ̂s′ , s) = Ui(γ̂s′ , s

′).
Clearly then i and s block with resource level γ̂s′ . Conclude that copies
of the same school all get the same level of utility, and so we may define
partial distribution γ ∈ [0, 1]S

′ by setting each γs equal to the common γ̂s
of its copies. Complete the distribution by setting, γs = ρs for each s /∈ S ′.
We therefore have that γ ≥ ρ. Recalling that, at the student-optimal stable
outcome, some school s gets its utility lower bound ws = 1− ρ̂s − ε (D&G
Lemma 3), it follows that, for s = f(s), γs = ρs + ε. Thus, γ ⪈ ρ, and
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Lemma 1 in D&G also implies that for i = µ̂−1(s), (γ̂, µ̂(i)) Pi (ρ̂, σ̂(i)),
yielding that (γ̂, µ̂) Pareto dominates (ρ̂, σ̂) for the N ′ students. Finally,
define µ so that, for each s ∈ S ′, µ[s] = {i ∈ N : µ̂(i) ∈ f [s]}, and for
s /∈ S ′, µ[s] = σ[s].

To check that (γ, µ) is an allocation, we need only check distribution fea-
sibility for the S ′ schools. Each s ∈ S ′ has nsρs < 1, being not totally
exhausted. Then for ε small enough and any s ∈ f [s], since 1− γ̂s ≥ ws,

nsγs ≤ ns(1− ws) = ns(ρs + ε) < 1.

Next, we show that (γ, µ) is fair. Recall that for each s ∈ S ′, ρs > bs,
so there is a violation of fairness in (γ, µ) at s ∈ S ′ if there is i ∈ N
with (γ, s) Pi (γ, µ(i)). Since S ′ is a source set in Γ, for ε small enough,
it remains a source set in the weak-envy graph for (γ, µ). Thus, there is no
violation with students outsideN ′. Since (γ̂, µ̂) is stable, for each i ∈ N ′ and
each s ∈ S ′, (γ, µ(i)) Ri (γ, s). Thus the only possible fairness violations
involve i ∈ N ′ and s /∈ S ′. For such a potential pair, we have

(ρ, s) = (γ, s) Pi (γ, µ(i)) Ri (ρ, σ(i)) ,

where the last relation is because the stable match in the one-to-one problem
is the optimal stable match for theN ′ students. Since (ρ, σ) is fair, ρs = γs =
bs and each j ∈ σ[s] = µ[s] has j �s i.

Conclude by observing that, as students in N \ N ′ are indifferent be-
tween (γ, µ) and (ρ, σ), while the former Pareto dominates the latter when
restriced to N ′, (γ, µ) Pareto dominates (ρ, σ). □

Let Γ be the weak-envy graph of allocation (ρ, σ) at preferences R, and
let t⇝s ⊆ Γ. Construct τ so that for each i ∈ N with u

i→ v ∈ t⇝s,
τ(i) = v, and otherwise τ(i) = σ(i). We allow for s = t, so that the path
may be a cycle. We say that τ is the matching that results from executing
the path on matching σ. Clearly, all agents find τ at least as good as σ.

Lemma 2. Given profile R from the NCBI domain, let (ρ, σ) be a fair allo-
cation that is not an RCE. Then there is another fair allocation (γ, τ) for R
such that either 1) γ ⪈ ρ and τ = σ, or 2) (γ, τ) Pareto dominates (ρ, σ).

Proof. We begin by showing the following two claims.

Claim 5. Let (ρ, σ) be a fair allocation, and s ∈ S be such that |σ[s]| ≤
bρ−1

s c − 1. If there is i ∈ N such that (ρs, s) Pi (ρ, σ(i)), then (2) in the
conclusion of Lemma 2 holds.

Proof of claim. Let N ′ = {j ∈ N : (ρs, s) Pj (ρ, σ(j))}. Since i ∈ N ′, N ′

is non-empty. Let j = max≻s N
′. Since |σ[s] ≤ bρ−1

s c − 1, we can move at
least one student to s. Define matching τ so that τ(j) = s and τ(j′) = σ(j′)
for each j′ 6= j. Finally, let γ = ρ. It is easy to see that we introduce
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no violation of fairness, and (γ, τ) is fair and Pareto-dominates (ρ, σ) as
desired. □
Claim 6. Let (ρ, σ) be a fair allocation. Assume s ∈ S is not totally ex-
hausted and has ρs < 1 and Us = ∅, where Us are the upstream vertices of
s in weak-envy graph Γ of (ρ, σ). Then (1) in the conclusion of Lemma 2
holds.

Proof of claim. SinceUs = ∅, it holds that for each i ∈ N \σ[s], (ρ, σ(i)) Pi

(ρs, s). Since s is not totally exhausted and ρs < 1, there is ϵ > 0 such that
|σ[s]| ρs < |σ[s]| (ρs + ϵ) ≤ 1 and for each i ∈ N \ σ[s], (ρ, σ(i)) Pi

(ρs + ϵ, s). Let γ be such that γs = ρs + ϵ and γs′ = ρs′ for s′ 6= s. Keeping
the same matching so τ = σ, it is easy to see that we introduce no violation
of fairness, and we have that (γ, τ) is fair and the desired result. □

Let s ∈ S be such that
(5) |σ[s]| ≤ bρ−1

s c − 1.

In the following (Case 1 and 2 below), we study the relation between a school
satisfying line (5) and conclusions of Lemma 2 (or other properties). We
then show that a fair allocation violating either exhaustiveness or inferior
empty schools, so not an RCE, will lead to the conclusion of Lemma 2.

Recall S∗ = {s′ ∈ S : σ[s′] 6= ∅ & ρs′ = bs′}, and let S∗∗ = S∗ ∪ {s′ ∈
S : σ[s′] = ∅ & ρs′ = bs′}. Let Us be the upstream vertices of s in the
weak-envy graph Γ of (ρ, σ).
Case 1: s ∈ S∗∗.
Case 1.1: Us = ∅. If σ[s] 6= ∅, then combined with line (5), we have that
ρs < 1 and s is not totally exhausted. We therefore invoke Claim 6. Assume,
then, that σ[s] = ∅. If ρs < 1, then we invoke Claim 6 again. If ρs = 1, then
since Us = ∅, it holds that for each i ∈ N , (ρ, σ(i)) Pi (ρs, s). So s satisfies
inferior empty schools (and exhaustiveness vacuously).
Case 1.2: Us 6= ∅. Let N ′ = {j ∈ N : (ρs, s) Pj (ρ, σ(j))}. In the case
of N ′ 6= ∅, we invoke Claim 5 to arrive at conclusion (2) of the lemma. It
follows that N ′ = ∅ and so for each j ∈ N \ σ[s], we have (ρ, σ(j)) Rj

(ρs, s). Since Us 6= ∅ and N ′ = ∅, each arc σ(j)
j→ s ∈ Γ represents

indifference.
If there is t′ ∈ Us with ρ−1

t′ ∈ N, then by taking sub-paths, assume t′⇝s
is a minimal path starting from such a t′. Then, for every s′ ∈ S touched by
the path except s and t′, we have ρ−1

s′ /∈ N, and so ρs′ > bs′ (otherwise, since
b−1
s′ ∈ N, there is a shorter sub-path from s′ to s, contradicting minimality).

If t⇝s = t′ → s, then by the previous paragraph, t′ → s represents indif-
ference and we have a violation of NCBI. Otherwise, decompose t′⇝s as
t′ → u⇝v → s. Then u⇝v touches no S∗∗ vertices and so, since (ρ, σ)
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is a fair allocation, the arc t′ → u and all arcs in u⇝v represent indiffer-
ence. Again, v → s represents indifference. Since s ∈ S∗∗ and so ρ−1

s ∈ N,
recalling that ρ−1

t′ ∈ N, this path is a contradiction to NCBI. Conclude that
Us contains no vertex t′ with ρ−1

t′ ∈ N, which implies it contains neither a
totally exhausted vertex, nor a S∗∗ vertex. So, s /∈ Us. By definition, Us is
a source set in Γ. Since Us 6= ∅ (so σ[Us] 6= ∅), and Us ∩ S∗∗ = ∅ implies
Us ∩S∗ = ∅, we invoke Lemma 1 to arrive at conclusion (2) of the Lemma.

Case 2: s /∈ S∗∗.
Case 2.1: Us = ∅. The reasoning as in Case 1.1 holds.
Case 2.2: Us 6= ∅ and Us ∩ S∗∗ 6= ∅. Find a minimal path t⇝s ⊆ Γ with
t ∈ S∗∗. That is, by taking sub-paths, t⇝s touches S∗∗ only at t. Execute the
path to arrive at a new allocation (ρ, µ) with weak-envy graph Γµ. Observe
that (ρ, µ) is a fair allocation, as no student has entered a S∗∗-school and so
no violations of fairness can be introduced. Since t is the only school on the
path in S∗∗ and (ρ, σ) is fair, all arcs represent indifferences and so (ρ, µ)
is welfare equivalent to (ρ, σ). In particular, the student j who leaves t has
µ(j)

j→ t ∈ Γµ. Thus, the set of upstream vertices of t in Γµ, denoted Uµ
t ,

is non-empty. Observe now that

|µ[t]| = |σ[t]| − 1 ≤ bρ−1
t c − 1.

Thus, since (ρ, µ) is fair, t ∈ S∗∗ satisfies inequality (5), and Uµ
t 6= ∅, we

have arrived at Case 1.2 for allocation (ρ, µ) and with school t in place of
school s.
Case 2.3: Us 6= ∅ andUs∩S∗∗ = ∅. SinceUs 6= ∅, σ[Us] 6= ∅. ByUs∩S∗∗ =
∅ and S∗ ⊆ S∗∗, we have that Us ∩ S∗ = ∅ or Us ⊆ S \ S∗. By definition,
Us is a source set in Γ. If there are no totally exhausted schools in Us, then
we may invoke Lemma 1 to arrive at conclusion (2) of the lemma. Assume,
then, that there is t ∈ Us that is totally exhausted. Since {s}∪Us ⊆ S \S∗∗,
and since (ρ, σ) is fair, all the arcs between these vertices in Γ represent
indifferences. Suppose there is t′ ∈ Us, t′ 6= t, that is also totally exhausted.
Then there are two paths of indifference, t⇝s and t′⇝′s, in Γ, confined to
Us vertices. The concatenation of these, t⇝s ⇝′t′, represents a sequence
of indifferences connecting t and t′. This violates NCBI as both of these
vertices are totally exhausted and so ρ−1

t , ρ−1
t′ ∈ N. Therefore, t is the only

member of Us that is totally exhausted.
Execute t⇝s on (ρ, σ) to arrive at allocation (ρ, τ) with associated weak-

envy graph Γτ . Since the arcs in t⇝s all represent indifferences, (ρ, τ) is
welfare equivalent to (ρ, σ) and no violations of fairness are introduced with
S \S∗∗ schools. Moreover, as Us∩S∗∗ = ∅, there is no change in enrollment
at S∗∗ schools, and therefore no violation of fairness is introduced in these
either. In sum, (ρ, τ) is fair. We show that {s} ∪ Us is a source set in Γτ .
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Let u i→ v ∈ Γτ have u /∈ {s} ∪ Us. We show that v /∈ {s} ∪ Us. First, we
argue that u = τ(i) = σ(i). Suppose by contradiction that τ(i) 6= σ(i), then
i labels some arc on the path t⇝s ⊆ Γ. Stated formally, there is u′ i→ u ∈
t⇝s, with σ(i) = u′, and τ(i) = u. However, t⇝s touches only {s} ∪ Us

schools, contradicting that u /∈ {s} ∪ Us. Since u = τ(i) = σ(i), clearly
u

i→ v ∈ Γ, and since Us is a source set in Γ, v /∈ Us. Moreover, if v = s
then u ∈ Us, contradicting that u /∈ Us. Thus, v /∈ {s} ∪ Us.

Recall that our original path t⇝s ⊆ Γ represented only indifferences.
Since t is totally exhausted at (ρ, σ), ρ−1

t ∈ N. By NCBI, it follows that ρ−1
s

is not an integer, implying that ρ−1
s > bρ−1

s c. Thus,

|τ [s]| = |σ[s]|+ 1 ≤ bρ−1
s c < ρ−1

s ,

and so s is not totally exhausted at (ρ, τ). The schools in the middle of
the path have not changed the number of students they admit from σ to τ ,
so they remain not totally exhausted. Clearly, t is not totally exhausted at
(ρ, τ). Since t was the only totally exhausted school in Us under (ρ, σ),
we now have that {s} ∪ Us is a source set in Γτ with τ [{s} ∪ Us] 6= ∅
and no totally exhausted schools. Further, (Us ∪ {s}) ∩ S∗∗ = ∅ implies
(Us ∪ {s})∩ S∗ = ∅. We therefore invoke Lemma 1 to arrive at conclusion
(2) of the lemma.

We now complete the proof of the lemma. Since (ρ, σ) is fair but not an
RCE, it fails either inferior empty schools or exhaustiveness.

Suppose that (ρ, σ) does not satisfy inferior empty schools, i.e., there is
s ∈ S with σ[s] = ∅ such that either (i) ρs < 1, or (ii) for some i ∈ N ,
(ρs, s) Ri (ρ, σ(i)). Since σ[s] = ∅ and ρs ≤ 1, line (5) holds for s. If
only (i) holds but (ii) does not, i.e., for each i ∈ N , (ρ, σ(i)) Pi (ρs, s), then
Us = ∅, and we invoke Claim 6 to arrive at conclusion (1) of the lemma.
Now suppose that (ii) holds, so Us 6= ∅. If there is i ∈ N such that (ρs, s) Pi

(ρ, σ(i)), then since σ[s] = ∅ and ρs ≤ 1, it holds that |σ[s]| ≤ bρ−1
s c − 1.

Then we invoke Claim 5 to arrive at conclusion (2) of the lemma. If there is
no such i, then for each i ∈ N with (ρs, s) Ri (ρ, σ(i)), we have (ρs, s) Ii
(ρ, σ(i)). If ρs = bs, then we are in Case 1.2. In the case of ρs > bs, we
are in Case 2.2 or 2.3. Thus, if inferior empty schools is violated, the lemma
holds.

Suppose that (ρ, σ) does not satisfy exhaustiveness. Recall that exhaus-
tiveness requires that for each s ∈ S with σ[s] 6= ∅, |σ[s]| = bρ−1

s c; so
a violation of the property leads to line (5). Then Cases 1 and 2 cover all
possibilities, and all lead to either conclusion (1) or (2) of the lemma. □

A.4. Topological Argument to Complete the Proof.
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Theorem 6. Given R ∈ RN satisfying NCBI, let E be the set of RCEs for
R. Then

(1) E is not empty,
(2) E induces a closed upper-lattice in welfare space, and
(3) the set of distributions supporting the elements of E has a ≤-greatest

element, ρ∗(R), which itself supports the welfare-greatest elements
of E.

Proof. For each i ∈ N , let ui be a continuous utility function representation
of Ri. Fixing a matching σ, the function ρ ∈ [0, 1]S

Uσ

7→ (ui (ρ, σ(i)))i∈N
is continuous. Closed subsets of [0, 1]S are compact and so map to com-
pact sets under this function. We will show that the set of distributions ρ
such that (ρ, σ) is a fair allocation is closed: If (ρ, s) Pi (ρ, σ(i)) and
ρn → ρ, then for n sufficiently large, (ρn, s) Pi (ρn, σ(i)) by the conti-
nuity of preferences. Thus, if (ρn, σ) is a sequence of fair allocations then
ρns = bs for n sufficiently large—yielding ρs = bs—and each j ∈ σ[s] has
j �s i, so (ρ, σ) is fair. Since there are at most finitely many matchings,
the set A = {(u,ρ) ∈ RN × RS : (ρ, σ) is fair, ui = ui (ρ, σ(i))} is non-
empty (Proposition 4) and compact, being the finite union of compact sets.
In particular, A is the union of the graphs of the Uσ restricted to the com-
pact domains of distributions that induce fair allocations for the respective
matching σ.

Let (u,ρ) ∈ A be ≤-maximal.30 By definition, there is a fair allocation
that induces (u,ρ). If there are no RCEs that induce (u,ρ), then by Lemma
2, there is a fair allocation (γ, τ) inducing (v,γ) ⪈ (u,ρ), contradicting
maximality of (u,ρ). Thus, the ≤-upper envelope of A is the image of a
non-empty set E ⊆ E. By Theorem 3 then, the ≤-upper envelope of A is
an upper-lattice. Therefore, A has a ≤-greatest element. □
Proof of Theorem 1. It follows directly from statement (1) of Theorem 6.

□
Proof of Proposition 3. By Lemma 2 and Theorem 6, it follows that the cor-
respondence of welfare-greatest RCE, i.e., the maximal RCE, on the NCBI
domain is non-empty, single-valued in welfare, and satisfies student-optimal
fairness. □

APPENDIX B. PROOF OF THEOREM 4: STRATEGY-PROOFNESS

To begin, we establish two lemmas regarding the weak-envy graph at a
maximal RCE. The first is an immediate consequence of lemmas in Sec-
tion A.3, but highlights an important structural feature useful for proving

30Here, ≤ on Rk is the standard extension of ≤ on R.
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strategy-proofness. The second shows that at a maximal RCE no student is
indifferent between what they get and a school that is at capacity.

Lemma 3 (Connectedness). Let Γ be the weak-envy graph of φ(R), a max-
imal RCE mechanism, for R ∈ D. Let s ∈ S be non-empty and not totally
exhausted. Then there is t⇝s ⊆ Γ, consisting entirely of indifference arcs,
such that t is totally exhausted and the only such school touched by the path.

Proof. Let S∗ = {s′ ∈ S : σ[s′] 6= ∅ and ρ∗
s′(R) = bs′}. By exhaus-

tiveness, each s′ ∈ S∗ is totally exhausted. Let Us be the set of upstream
vertices of s in Γ, which is a source set in Γ by definition. Moreover, if
t → s ∈ Γ, then t ∈ Us, and so Us ∪ {s} is also a source set in Γ. If Us

contains no totally exhausted schools, then (Us ∪ {s})∩S∗ = ∅. Moreover,
σ[Us ∪ {s}] ⊇ σ[s] is non-empty, and so by Lemma 1, there is a fair allo-
cation Pareto-dominating φ(R), contradicting Proposition 3. It follows that
Us contains a totally exhausted school t and thus there is a path t⇝s ⊆ Γ.
If there is a totally exhausted u 6= t on the path, then we can take the sub-
path u⇝s ⊊ t⇝s such that u is the only totally exhausted school on the
sub-path. Thus, we may assume each u 6= t on the path t⇝s is not totally
exhausted. We show that for each u 6= t, it must be that ρu > bu. Suppose by
contradiction that there is u 6= t with ρu = bu. If u = s, then by assumption
σ[s] 6= ∅; if u 6= s, then u on the path u⇝s means σ[u] 6= ∅. Together with
ρu = bu, we have u ∈ S∗. Thus, u is totally exhausted—contradicting the
assumption above. To complete the proof of the lemma, observe that since
φ(R) is fair, each arc in t⇝s represents indifference. □
Lemma 4. Let R ∈ D, (ρ, σ) = φ(R), and S∗ = {s ∈ S : σ[s] 6=
∅ and ρs = bs}.

(1) For each i ∈ N and each s ∈ S∗ \ {σ(i)} such that (ρs, s) Ri

(ρ, σ(i)), we have (ρs, s) Pi (ρ, σ(i)).
(2) For each i ∈ N and s ∈ S \ {σ(i)} such that (ρs, s) Ii (ρ, σ(i)), we

have s ∈ S \ S∗.

Proof. (1). Let i ∈ N , s ∈ S∗, and (ρs, s) Ri (ρ, σ(i)). If σ(i) is totally
exhausted, then (ρs, s) Ii (ρ, σ(i)) is a violation of NCBI, and so the con-
clusion holds. Let σ(i) be not totally exhausted. By Lemma 3, there is a
path t⇝σ(i) ⊆ Γ consisting entirely of indifferences with t being totally
exhausted. If (ρs, s) Ii (ρ, σ(i)), then t⇝σ(i)

i→ s ⊆ Γ and t and s are
connected by indifference in violation of NCBI. Thus, (ρs, s) Pi (ρ, σ(i)).

(2). Let i ∈ N and (ρs, s) Ii (ρ, σ(i)), with s 6= σ(i). Then (ρs, s) Ri

(ρ, σ(i)), and so s ∈ S∗ would contradict (1). □
Given preference relation Ri ∈ R and bundle (r, s), let UC(Ri, (r, s)) =

{(r′, s′) ∈ [0, 1]× S : (r′, s′) Ri (r, s)} denote the upper contour set of Ri
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at (r, s). Say R′
i is a Maskin monotonic transformation of Ri at (r, s), which

we denoteR′
i ∈ T(Ri, (r, s)), ifUC(R′

i, (r, s)) ⊆ UC(Ri, (r, s)). SayR′
i ∈

T∗(Ri, (r, s)) if UC(R′
i, (r, s)) = UC(Ri, (r, s)). Note that, by the mono-

tonicity of preferences, each R′
i ∈ T∗(Ri, (r, s)) has the same indifference

set as Ri through point (r, s). Given a profile R ∈ RN and an allocation
(ρ, σ), T(R, (ρ, σ)) is the set of profiles R′ such that R′

i ∈ T(Ri, (ρ, σ(i)))
for each i ∈ N . The set T∗(R, (ρ, σ)) is defined analagously. It is straight-
forward to verify that if (ρ, σ) is an RCE for R and R′ ∈ T(R, (ρ, σ)), then
(ρ, σ) is an RCE for R′. We now prove a stronger property on the smaller
set of transformations T∗.

Theorem 7 (Locality). AssumingR ∈ D, for eachR′ ∈ T∗(R, φ(R))∩D,
ρ∗(R′) = ρ∗(R).

Proof. Let (ρ, σ) = φ(R) and (γ, τ) = φ(R′). SinceR′ is a Maskin mono-
tonic transform of R at (ρ, σ), (ρ, σ) is an RCE for R′. By Proposition 3
applied to R′, γ ≥ ρ. To show γ = ρ, suppose by contradiction that γ ⪈ ρ.
Recall the definitions of S+, S=, S∗, N+, and N= from Section A.2. Since
γ ⪈ ρ, S+∪S∗∪S= = S,N+∪N= = N , and, in particular, S+ 6= ∅. More-
over, since R′ ∈ T∗(R, (ρ, σ)), the set N+ does not depend on whether it
is defined with respect to R′ or R. Formally,

N+ = {i ∈ N : (γ, τ(i)) Pi (ρ, σ(i))} = {i ∈ N : (γ, τ(i)) P ′
i (ρ, σ(i))}.

A similar statement holds for N=.
Let Γ be the weak-envy graph of (ρ, σ) at R. Let

Γ∗ = Γ \ {t i→ u ∈ Γ : ρu = bu, ∃t′
j→ u ∈ Γ, j �u i}.

Thus Γ∗ is composed of all existing arcs into schools not at capacity and
only top-ranked arcs into schools at capacity. If Γ∗ has any cycles, then
by construction, each of these can be executed without violating fairness
(though not necessarily all of them). So if any cycle contains an arc that rep-
resents strict preference, then executing the cycle generates a fair allocation
that Pareto-dominates (ρ, σ) for R—contradicting the student-optimality of
RCE (Proposition 3). We shall show that when S+ 6= ∅, then such a cycle
exists.

Claim 7. Assume i ∈ N= has σ(i) = s 6= τ(i). Then there is j with
σ(j) = t 6= s = τ(j). Moreover, if s /∈ S∗, then s ∈ S=, j ∈ N= and
t

j→ s ∈ Γ∗.

Proof of claim. To arrive at a contradiction, assume s ∈ S+. Then

(γ, s) Pi (ρ, s) = (ρ, σ(i)) Ii (γ, τ(i)) ,
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where the indifference is because i ∈ N=. Then since R′
i ∈ T∗(Ri, (ρ, σ)),

this yields (γ, s) P ′
i (γ, τ(i)), which violates the fairness of (γ, τ)—being

an RCE—since γs > ρs ≥ bs. Thus, s /∈ S+.
Recalling that γ ≥ ρ we have that γs = ρs. Since (ρ, σ) and (γ, τ)

are both RCEs for R′, we can invoke Theorem 2, as σ(i) = s 6= τ(i), to
conclude that there is j with σ(j) = t 6= s = τ(j). Moreover, as (γ, τ) is
student-optimal for R′,

(ρs, s) = (γs, s) = (γ, τ(j)) R′
j (ρ, σ(j)) .

As R′
j ∈ T∗(Rj, (ρ, σ)), this implies (ρ, s) Rj (ρ, σ(j)), and so t

j→ s ∈ Γ.
If s /∈ S∗, then since s /∈ S+, this leaves s ∈ S=. Then t

j→ s ∈ Γ∗.
Moreover, recall that from Claim 3 in the proof of Proposition 5 we have
N+ ⊆ τ [S∗ ∪ S+]. As τ(j) = s ∈ S=, j ∈ N \N+ = N=. □

Claim 8. For each s ∈ S+, there are t ∈ S∗ and an indifference path
t⇝s ⊆ Γ∗ such that τ [t] 6= σ[t].

Proof of claim. By Theorem 2, |τ [s]| = |σ[s]|, and combined with γs > ρs
we have that s is not totally exhausted at (ρ, σ). By Lemma 3, there are a
totally exhausted school t and an indifference-only path t⇝s ⊆ Γ, where t
is the only totally exhausted school on the path. It follows that t⇝s ⊆ Γ∗.
Let w⇝s ⊆ t⇝s be the maximal (in inclusion) subpath that touches only
S+ schools. It may be that s is the only school on the path in S+, and so
w⇝s has no arcs. Since S+ schools cannot be totally exhausted at (ρ, σ),
and so t /∈ S+, w⇝s ⊊ t⇝s. Thus, we have {u i→ w⇝s} ⊆ t⇝s, with
u /∈ S+.

Since w ∈ S+ and (γ, τ) is fair for R′ we have γw > ρw ≥ bw and
(γ, τ(i)) R′

i (γ, w) P ′
i (ρ, w). Since u

i→ w ∈ t⇝s is an indifference
arc and R′

i ∈ T∗(Ri, (ρ, σ)), we have (ρ, w) I ′i (ρ, u). Since u /∈ S+,
ρu = γu, which by substitution into the previous yields (ρ, w) I ′i (γ, u). It
follows that (γ, τ(i)) P ′

i (γ, u) = (γ, σ(i)), yielding τ(i) 6= u = σ(i). If
u ∈ S∗, then u⇝s is the path required in the Claim, so assume henceforth
that u /∈ S∗.

Since u /∈ S∗ ∪S+, u ∈ S=. Then since τ(i) 6= u = σ(i), by Theorem 2,
there is j ∈ τ [u] \ σ[u]. Again invoking Claim 3 in the proof of Proposition
5 gives N+ ⊆ τ [S∗ ∪ S+]. Then since τ(j) = u ∈ S=, j ∈ N=. In sum,
we have j ∈ N= such that σ(j) 6= τ(j) = u, which yields

(ρu, u) = (γu, u) = (γ, τ(j)) Ij (ρ, σ(j))

and so v
j→ u ∈ Γ∗, with v = σ(j), is an indifference arc. If v ∈ S∗, then

v
j→ u

i→ w⇝s ⊆ Γ∗ is the path required by the claim. Otherwise, if v /∈
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S∗, then apply Claim 7 to agent j to get k ∈ N= with σ(k) = v′ 6= v = τ(k)

and v′
k→ v

j→ u
i→ w⇝s ⊆ Γ∗. If v′ /∈ S∗ then Claim 7 is triggered again,

and we repeat until we arrive at path of indifferences

(6) t′
k′→ v′⇝u

i→ w⇝s ⊆ Γ∗,

where t′ ∈ S∗, v′⇝u touches only S= schools (by Claim 7), w⇝s touches
only S+ schools, and finally σ(k′) = t′ 6= v′ = τ(k′). □

Claim 9. For each s ∈ S∗ with τ [s] 6= σ[s], there is t i→ s ∈ Γ∗. Moreover,
if t /∈ S+, then τ [t] 6= σ[t] and one of the following are true:

(1) t ∈ S∗

(2) t ∈ S= and there is k ∈ N= with σ(k) 6= t = τ(k).

Proof of claim. Fix s ∈ S∗ with τ [s] 6= σ[s]. Note that by Theorem 2, this
implies σ[s] 6= ∅. Moreover, there is j ∈ τ [s] \ σ[s]. Since N = N+ ∪N=

we have (γ, τ(j)) Rj (ρ, σ(j)). Thus, as τ(j) = s ∈ S∗ and so ρs = γs

we have an arc σ(j)
j→ s ∈ Γ. It follows that there is t

i→ s ∈ Γ∗. By
statement (1) of Lemma 4, (ρ, s) Pi (ρ, t) = (ρ, σ(i)). Since s ∈ S∗,
(γ, s) = (ρ, s) Pi (ρ, σ(i)).

We first show that i ∈ N+. Since t
i→ s ∈ Γ∗ and σ(j)

j→ s ∈ Γ, either
i �s j or i = j. Thus since τ(j) = s, by the fairness of (γ, τ) for R′,
(γ, τ(i)) R′

i (γ, s). We concluded the previous paragraph with (γ, s) Pi

(ρ, σ(i)), and so since R′
i ∈ T∗(Ri, (ρ, σ)), we have (γ, s) P ′

i (ρ, σ(i)). In
sum, (γ, τ(i)) P ′

i (ρ, σ(i)), as desired.
Observe that if τ(i) = σ(i), then i ∈ N+ and preference monotonicity

imply σ(i) = t ∈ S+. Thus, t /∈ S+ implies τ(i) 6= σ(i) = t, and so of
course τ [t] 6= σ[t]. Recalling that S = S∗ ∪ S+ ∪ S=, the only thing left
to prove is statement (2), so assume t ∈ S=. By Theorem 2, there is k with
σ(k) 6= t = τ(k). Since t ∈ S= and k ∈ N = N+ ∪N=,

(ρt, t) = (γ, τ(k)) Rk (ρ, σ(k)) .

As (ρ, σ) is fair for R, and t ∈ S= implies ρt > bt, we have (ρ, σ(k)) Rk

(ρ, t), yielding (ρ, σ(k)) Ik (ρ, t) = (γt, τ(k)) as desired. □
We now combine the above claims into a single induction step and con-

clude the proof. Assume t ∈ S∗ has τ [t] 6= σ[t]. By Claim 9, we find
s → t ⊆ Γ∗. If s ∈ S+, we invoke Claim 8 to construct path
(7) t′⇝s → t ⊆ Γ∗ with t′ ∈ S∗ and τ [t′] 6= σ[t′].

If s /∈ S+, then Claim 9 also yields τ [s] 6= σ[s] and its two further state-
ments. If s ∈ S∗ and so statement (1) prevails, then we have the path in line
(7) in a trivial way, with t′ = s. If s ∈ S= and so statement (2) prevails, then
there is k ∈ N= with σ(k) 6= s = τ(k). This allows us to invoke Claim 7,
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repeatedly if necessary, to construct the path in line (7), just as we did for
line (6) in the proof of Claim 8. In sum, if there is t ∈ S∗ with τ [t] 6= σ[t],
then there are t′ ∈ S∗ with τ [t′] 6= σ[t′] and a non-empty path t′⇝t ∈ Γ∗.
By the finiteness of S, we can proceed inductively until t′ = t. It thus only
remains to show the existence of such t. However, since we assumed there
is s ∈ S+, then Claim 8 yields t as desired.

We have found that if S+ 6= ∅, then there is a path in Γ∗ that contains a
strict preference arc and a repeated vertex. Thus, Γ∗ contains a cycle we can
execute to find a fair improvement over (ρ, σ) for R, a contradiction. Thus,
S+ = ∅ and since γ ≥ ρ, γ = ρ. □

We are now prepared to prove the incentive compatibility of φ.

Proof of Theorem 4. Let R′ = (R′
i, R−i) ∈ D. Suppose by contradiction

that φi(R
′) Pi φi(R). Let R′′

i ∈ T∗(Ri, φi(R)) be such that (1) R′′ =
(R′′

i ,R−i) ∈ D, and (2) for each s ∈ S, if (ρ∗(R′), s) 6= φi(R
′) then

φi(R
′) P ′′

i (1, s). Thus, φi(R
′) Pi φi(R) implies

(8) φi(R
′) P ′′

i φi(R).

Since R′′
i ∈ T(Ri, φi(R)) and all other students have the same preferences,

it can be verified that φ(R′) is an RCE for R′′. By definition of a maximal
RCE at R′′ (Proposition 3), we have φi(R

′′) R′′
i φi(R

′). Together with
line (8), it holds that

φi(R
′′) R′′

i φi(R
′) P ′′

i φi(R).

By R′′
i ∈ T∗(Ri, φi(R)), we have φi(R

′′) Pi φi(R). Thus, if i can manipu-
late φ at R via R′

i, then i can manipulate via R′′
i . Without loss of generality,

we assume henceforth that R′
i = R′′

i and so R′ = R′′. By Theorem 7 (Lo-
cality), ρ∗(R′) = ρ∗(R) =: ρ, so let (ρ, σ) = φ(R) and (ρ, τ) = φ(R′).

In the following, we shall therefore construct a classical school choice
problem from these and derive a contradiction to the strategy-proofness of
the student-optimal stable rule (Roth and Sotomayor [1990]) in this context.
Let S∗ = {s ∈ S : σ[s] 6= ∅, ρs = bs}. We collapse all the schools
in S \ S∗ into one classical school, s̀. Let the set of classical schools be
S = S∗ ∪ {s̀} with generic element s. The capacity for each s ∈ S∗ is
cs = 1

bs
, and the capacity for s̀ is cs̀ =

∑
s∈S\S∗ |σ[s]|. Since φ(R) and

φ(R′) are both RCEs for R′, by Theorem 2, each school is matched with
the same number of students at both allocations. This implies that S∗ =
{s ∈ S : τ [s] 6= ∅, ρs = bs} and cs̀ =

∑
s∈S\S∗ |τ [s]|. Matchings σ and τ in

our model map to matchings σ̄ and τ̄ in the classical model in the obvious
way: σ̄(i) = σ(i) if σ(i) ∈ S∗, σ̄(i) = s̀ if otherwise, and similarly for τ̄ and
τ . School priorities in the classical model will be denoted ▷. For s ∈ S∗,
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which maps to s ∈ S, set ▷s =�s. For s̀, set k ▷s̀ j if k ∈ τ [S \ S∗] and
j ∈ τ [S∗]. We shall not need to further specify ▷s̀.

Next we construct student preferences over S. We begin by deciding that
s̀ shall inherit the rank of the highest-ranked school in S \ S∗. That is, let
j ∈ N and choose s̀j ∈ S\S∗ such that for each t ∈ S\S∗, (ρ, s̀j) Rj (ρ, t).
Then we can define Rj over S so that s Rj t if and only if (ρ, s) Rj (ρ, t),
where s̀ ∈ S maps to s̀j for the purposes of constructing j’s preferences
(each j may have a different s̀j). As usual, denote by Pj the strict part of
Rj . By NCBI, Rj is strict on S \ {s̀}, and so equals Pj . It follows that Rj has
at most one non-singleton indifference class, of the form {s̀, t}. Assuming
s̀ 6= t, we break this tie using the following rules:

Rule 1: If σ(j) ∈ S \ S∗, then s̀ Pj t.
Rule 2: Otherwise, t Pj s̀.

Note that in the case of Rule 1, sinceφ(R) is an RCE, by fairness, σ(j)max-
imizes j’s welfare across schools in S \ S∗. By construction, s̀j also maxi-
mizes j’s welfare across schools in S \ S∗. Therefore, we have (ρ, σ(j)) Ij
(ρ, s̀j).

We therefore have a linear order Pj on S where, for each s, t ∈ S, s Pj t
implies (ρ, s) Rj (ρ, t). The converse need not be true; however, we have a
partial converse when s = σ(j). To see why, let (ρ, σ(j)) Rj (ρ, t). If the
relation is strict then σ̄(j) Pj t by construction. In the case of indifference,
by statement (2) of Lemma 4, we have t ∈ S \ S∗, and so t = s̀. If σ(j) ∈
S \ S∗, then σ̄(j) = s̀ = t. If σ(j) ∈ S∗, then by Rule 2, σ̄(j) Pj t. In sum,

(9) (ρ, σ(j)) Rj (ρ, t) =⇒
(
σ̄(j) Pj t or t = σ̄(j) = s̀

)
.

We now show that σ̄ is stable (no justified envy and non-wastefulness)
for the classical school choice problem (S, N,P, c,▷). Suppose t Pj σ̄(j),
so (ρ, t) Rj (ρ, σ(j)). We claim that (ρ, t) Pj (ρ, σ(j)). Suppose by
contradiction that (ρ, σ(j)) Rj (ρ, t). Applying line (9) and the assumption
that t Pj σ̄(j), we get t = σ̄(j) = s̀. This further implies σ̄(j) = t Pj σ̄(j), a
contradiction in terms. Conclude that (ρ, t) Pj (ρ, σ(j)). Since (ρ, σ) is an
RCE for R, by inferior empty schools, σ[t] 6= ∅, so σ̄[t] 6= ∅. Furthermore,
(1) by fairness, t ∈ S∗, and so for each k ∈ σ[t], k �t j, and (2) by fairness
and exhaustiveness, we have ρt = bt, and ρ−1

t = b−1
t = |σ[t]| = |σ̄[t]| =

ct. Thus, by (1) and (2), σ̄ satisfies no justified envy and non-wastefulness,
respectively.

We now show that τ̄ is stable for (S, N, (P′
i,P−i), c,▷). Recall that, by the

assumptions on R′
i, student i prefers φi(R

′) to each other school s at ρs = 1.
Thus, by construction, P′

i top ranks τ̄(i), and so we may restrict attention to
j 6= i. Suppose t Pj τ̄(j), so (ρ, t) Rj (ρ, τ(j)). Recall that (ρ, τ) is
an RCE for R′. By similar arguments as above, we have that τ̄ [t] 6= ∅.



48 WILLIAM PHAN, RYAN TIERNEY, AND YU ZHOU

Moreover, if (ρ, t) Pj (ρ, τ(j)), then we have (1) t ∈ S∗ implying ▷t =�t,
(2) for each k ∈ τ [t], k �t j, and (3) ρ−1

t = b−1
t = |τ [t]| = |τ̄ [t]| = ct.

Thus, we have that τ̄ is stable. If (ρ, t) Ij (ρ, τ(j)), then by statement (2) of
Lemma 4, t ∈ S \ S∗, so t = s̀. Since s̀ = t Pj τ̄(j), it holds that τ̄(j) 6= s̀,
so τ(j) /∈ S \ S∗ and τ(j) ∈ S∗. For each k ∈ τ̄ [̀s], we have k ∈ τ [S \ S∗]
and so by construction k ▷s̀ j. Recall that cs̀ =

∑
t∈S\S∗ |τ [t]| = |τ̄ [̀s]|. Thus,

we reach the desired conclusion.
Now we show that σ̄ is the student-optimal stable match for (S, N,P, c,▷).

Suppose by contradiction that µ̄ 6= σ̄ is a stable match that is at least as
good as σ̄ in the Pareto sense. Since (ρ, σ) is an RCE, for each j ∈ N ,
(ρ, σ(j)) Rj (ρ, s̀j), so recalling line (9), either σ̄(j) = s̀ or σ̄(j) Pj s̀.
Therefore, since µ̄ is Pareto at-least-as-good as σ̄, going from σ̄ to µ̄ cannot
involve moving students into s̀ who are not already there. Then by distribu-
tion feasibility, with reference to the exhaustiveness of (ρ, σ), no students
can move out of s̀. Thus, µ̄[̀s] = σ̄[̀s]. In other words, σ̄ to µ̄ involves
only reassignment of the students at schools in S∗. Let µ be a matching
in the school choice problem with crowding that coincides with µ̄ on S∗

and with σ otherwise. Since µ̄ 6= σ̄ is at least as good as σ̄, each reas-
signed j has µ̄(j) Pj σ̄(j), and since both schools are in S∗, by NCBI,
(ρ, µ(j)) Pj (ρ, σ(j)). Thus, (ρ, µ) Pareto dominates (ρ, σ), and as such
cannot be fair for R. As the distribution is unchanged and welfare not de-
creased, no violations of fairness can be introduced with schools in S \ S∗.
There are then j, k ∈ N with µ̄(j) = µ(j) = s ∈ S∗, (ρ, s) Pk (ρ, µ(k))
and k �s j. If µ(k) ∈ S∗, then µ(k) = µ̄(k). If µ(k) ∈ S \ S∗, then
µ(k) = σ(k) and σ̄(k) = s̀. Since µ̄[̀s] = σ̄[̀s], we have k ∈ µ̄[̀s] and so
µ̄(k) = s̀. In either case, as no tie-breaking is necessary, s Pk µ̄(k), and as
s ∈ S∗, ▷s =�s, contradicting that µ̄ satisfies no justified envy. We conclude
that there are no reassigned students within S∗, and thus S, and µ̄ = σ̄ as
desired.

Recall that τ̄ is stable for (S, N, (P′
i,P−i), c,▷). Since τ̄(i) is the top-

ranked school for P′
i, the student-optimal stable match at this problem as-

signs i to τ̄(i). By assumption, (ρ, τ(i)) Pi (ρ, σ(i)), so by construction
τ̄(i) Pi σ̄(i), contradicting that i is not able to manipulate the student-
optimal stable rule at the original problem (S, N,P, c,▷). □
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APPENDIX C. THE ALGORITHM

C.1. An Instance of the Algorithm. LetS = {s1, s2} andN = {1, 2, 3, 4}.
Students have linear preferences and their valuations are as follows:

v1(s1) =
√
11 and v1(s2) =

√
3

v2(s1) =
√
61 and v2(s2) =

√
13

v3(s1) =
√
7 and v3(s2) =

√
5

v4(s1) =
√
2 and v4(s2) =

√
17

The lower bounds are bs1 = bs2 = 1
2
. School s1 has the priority order

1 �s1 2 �s1 3 �s1 4. School s2 has the priority order 4 �s2 3 �s2 1 �s2 2.
Time begins at z0 = 1. The distribution is initialized atρz0 = (ρs1z0 , ρs2z0)

= (1, 1) and Qz0 is such that for each i ∈ N , we have Qiz0 = S. The algo-
rithm begins in the subroutine PAUSE.

At time z0, since for each i 6= 4, Diz0 = {s1} and D4z0 = {s2}, we
have E∗

z0
= {s1} (at ρz0 , each school can accept at most one student). Since

ρs1z0 = 1 > bs1 =
1
2
, go to subroutine DECREMENTING.

Advance time continuously from z0 = 1 to z1 =
√

7/5 in the DECREMENT-
ING subroutine. We have ρs1z1 =

ρs1z0 ·z0
z1

=
√

5/7, ρs2z1 = ρs2z0 = 1, and
for each i ∈ N , Qiz1 = Qiz0 = S. Note that for each z ∈ [1, z1), and each
i 6= 4, Diz = Diz0 . Since at time z1, D3z1 = {s1, s2} 6= D3z0 = {s1}, exit
condition (2) holds. Exit at z1 and go to subroutine PAUSE.

At time z1, E∗
z1

= {s1, s2} = S (at ρz1 , each school can accept at most
one student). Since each school s ∈ S has ρsz1 > bs =

1
2
, go to subroutine

DECREMENTING.
Advance time continuously from z1 =

√
7/5 to z2 = 2 in the DECREMENT-

ING subroutine. We have ρs1z2 =
ρs1z1 ·z1

z2
=

√
5/7·

√
7/5

2
= 1

2
, ρs2z2 = 1

2
·
√

7/5,
and for each i ∈ N , Qiz2 = Qiz1 = S. Note that for each z ∈ [z1, z2), and
each i ∈ N , Diz = Diz1 . Since at time z2, ρs1z2 = 1

2
, exit condition (1)

holds. Exit at z2 and go to subroutine PAUSE.
At time z2, E∗

z2
= {s1, s2} = S (at ρz2 , s1 can accept two students while

s2 can accept at most one student). Since ρs1z2 = bs1 =
1
2
, go to subroutine

REJECTION.
For s1, student 3 has the lowest priority among those such that s1 ∈ Diz2 ,

namely students i = 1, 2, 3. Thus, s1 rejects student 3, together with those
who have a priority lower than student 3, i.e., student 4. We advance one
unit of time and let z3 = z2+1 = 3. Then, ρz2 = ρz3 and Q1z3 = Q2z3 = S
while Q3z3 = Q4z3 = {s2}. Go to subroutine PAUSE.
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At time z3, since D1z3 = D2z3 = {s1} and D3z3 = D4z3 = {s2}, we
have that E∗

z3
= {s2} (at ρz3 , s1 can accept two students while s2 can only

accept one). Since ρs2z2 = ρs2z3 = 1
2
·
√

7/5 > 1
2
. We go to subroutine

DECREMENTING.
Advance time continuously from z3 = 3 to z4 = 3 ·

√
7/5 in the DECRE-

MENTING subroutine. We have ρs1z4 = ρs1z3 =
1
2
, ρs2z4 = 1

2
, andQz4 = Qz3 .

Note that for each z ∈ [z3, z4), and each i = 3, 4, Diz = Diz3 . Since at time
z4, ρs2z4 = 1

2
= bs2 , exit condition (1) holds. Exit at z4 and go to subroutine

PAUSE.
At time z4 = 3 ·

√
7/5, E∗

z4
is empty (at ρz4 , each school can accept two

students). Thus the algorithm terminates at (1
2
, 1
2
), students 1 and 2 enter s1,

and students 3 and 4 enter s2, which is indeed a maximal RCE.

C.2. Proof of Theorem 5. Consider a slightly modified but equivalent al-
gorithm. The modified algorithm unpacks the REJECTION subroutine into
some extraneous steps that make the proof simpler to show. Doing so allows
us to apply the concept of threshold equilibrium, which is a way of general-
izing price equilibrium so that more abstract objects can play the role of the
price.

AugmentN with a null element ϕ having the property that, for each s ∈ S
and each i ∈ N , i �s ϕ. Denote this new set N0. For each s ∈ S, let

Ts = {(r, i) ∈ [bs, 1]×N0 : i 6= ϕ =⇒ r = bs}.

A threshold (r, i) ∈ Ts at school s is simply a resource ratio and cutoff
for s. Namely, the second argument i will later be used to specify that all
students �s-higher than i are allowed to demand the school, while i and
below cannot. Define linear order ⊐s on Ts so that (r, i) ⊐s (q, j) if either
r < q or (r = q = bs and i �s j). Let ws denote the reflexive enlargement
of⊐s. With abuse of notation, write (ρ,a) to indicate the threshold (vector)
((ρs, as))s∈S , where each (ρs, as) ∈ Ts. Let (ρ,a) w (γ, b) if, for each
s ∈ S, (ρs, as) ws (γs, bs).

Given a threshold, student i’s constrained demand is

Ci(ρ,a) = {s ∈ S : i �s as and ∀t ∈ S, (i �t at =⇒ (ρ, s) Ri (ρ, t))} .

A threshold equilibrium (ρ,a, σ) is a threshold (ρ,a) and a matching σ such
that (ρ, σ) is an allocation and, for each i ∈ N , σ(i) ∈ Ci(ρ,a).

If allocation (ρ, σ) is fair, then for each s ∈ S, set as = ϕ if ρs > bs
and as = max≻s ({i ∈ N : (ρ, s) Pi (ρ, σ(i))} ∪ {ϕ}) if ρs = bs. Then
(ρ,a, σ) is a threshold equilibrium. On the other hand, if (ρ,a, σ) is a
threshold equilibrium and (ρs, s) Pi (ρσ(i), σ(i)), then s /∈ Ci(ρ,a), mean-
ing as �s i or as = i, and so ρs = bs by the definition of Ts. Then for each
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j ∈ σ[s], j �s as and so j �s i—indicating (ρ, σ) is fair. Thus, thresh-
old equilibria and fair allocations are equivalent. A maximal RCE is there-
fore also a student-optimal threshold equilibrium allocation (statement 3 of
Proposition 3). This implies that if (ρ,a, σ) is a student-optimal threshold
equilibrium at which empty schools have resource ratio 1, then ρ = ρ∗(R),
which is the distribution at maximal RCE, which by statement 1 of Proposi-
tion 3, is unique. The cutoff component of the threshold at a student-optimal
threshold equilibrium is not necessarily unique.31 However, setting as equal
to the highest-�s-ranked student j who has (ρ∗(R), s) Pj (ρ∗(R), σ(j))
will⊐s-minimize the cutoff and therefore the threshold. Since the welfare at
maximal RCE—and therefore at student-optimal threshold equilibrium—is
unique, the ⊐s-minimal threshold is independent of the particular student-
optimal threshold equilibrium in place (Proposition 3). In sum, the minimal
equilibrium threshold (ρ∗(R),a∗(R)) is well-defined. As R will remain
constant in what follows, we suppress the arguments of ρ∗ and a∗.

Given these concepts, we make a slight modification of the algorithm in
the main text that executes the same operations but with some further elab-
orated steps. Initialize the modified algorithm at (ρ1,a1) = ((1, . . . , 1),
(ϕ, . . . , ϕ)). Note that this will ensure that empty schools always have thresh-
old (1, ϕ). The PAUSE and DECREMENTING subroutines remain the same, with
constrained demand replacing rationed demand in the calculation of excess
demand. REJECTION, however, is modified so that, with each iteration, asz

is incremented one step. Thus, as,z+1 = min≻s{i ∈ N0 : i �s asz}. Let i
be the student identified in the REJECTION subroutine at time z in the original
algorithm. Then, in that algorithm, excluding s from Qj,z+1 where j is i or
any student �s-lower ranked than i, is the same as repeating the modified
REJECTION subroutine until as,z+k = i, for some k. We may assume that the
modified algorithm selects schools at REJECTION subroutines so that this is
precisely what happens.

The algorithm uses regimes of continuous and discrete time, and the be-
ginning and end of these regimes will vary from problem to problem. Fix a
preference profile R, and let Z be set of these regimes. We have the follow-
ing:

Claim 10. The set Z is the non-empty union of at-most-countably many
closed intervals and finitely many isolated points. It therefore has an at-
most-countable set z1 < z2 < . . . of boundary points. Finally, if s /∈ E∗

zk

then (ρs,zk+1
, as,zk+1

) = (ρs,zk , as,zk), and if [zk, zk+1] ⊆ Z, then z′ 7→ E∗
z′

is constant on [zk, zk+1).
31Consider changing a threshold by moving as down one spot in �s, allowing exactly

one new student to demand a school. If the student does not demand s, then the new thresh-
old and original matching still constitute a threshold equilibrium.
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Proof of claim. Let z ∈ R, and calculate E∗
z with respect to some threshold

(ρz,az). Assume E∗
z 6= ∅. If E∗

z contains a school t with ρt = bt, then the
modified algorithm would invoke the REJECTION subroutine at z and advance
time to z+1, exiting to PAUSE. Each s /∈ E∗

z has (ρs,z+1, as,z+1) = (ρsz, asz).
Otherwise, the modified algorithm invokes the DECREMENTING subroutine.
Let N ′ = {i ∈ N : Ci(ρz,az) ⊆ E∗

z}. By line (1) and the construction of
the price path in the DECREMENTING subroutine, there is ϵ > 0 such that for
each z′ > z with z′ − z < ϵ and each i ∈ N ′, Ci(ρz′ ,az′) = Ci(ρz,az).
Thus, E∗

z′ = E∗
z , and again note that for s /∈ E∗

z , (ρsz′ , asz′) = (ρsz, asz).
Let

Zz =
∪

{[z, z̃) : ∀z′ ∈ [z, z̃), ∀i ∈ N ′, Ci(ρz′ ,az′) = Ci(ρz,az)}.

We have shown this is not empty. It is clearly also the limit of an increas-
ing (in inclusion) sequence of half-open intervals, and so there is z′′ > z
such that Zz = [z, z′′). Moreover, E∗

z′ is constant on Zz and the mod-
ified algorithm would exit DECREMENTING and enter PAUSE at time z′′ to
recalculate E∗

z′′ , which may equal E∗
z . We have thus shown that DECRE-

MENTING lasts a closed interval of non-zero length, and for each s /∈ E∗
z ,

(ρs,z′′ , as,z′′) = (ρs,z, as,z). Obviously, there are at-most-countably many
invocations of DECREMENTING. As each school s can accept b−1

s students,
it need increment as at most |N | − b−1

s many times. So there are finitely
many invocations of the REJECTION subroutine, and thus finitely many iso-
lated points. In sum, there are at-most-countably many subroutine invoca-
tions in total, and therefore Z has a countable set z1 < z2 < . . . of boundary
points. Finally, we have shown in each case that, for each such zk, if s /∈ E∗

zk
,

then (ρs,zk+1
, as,zk+1

) = (ρs,zk , as,zk). □
Claim 11. Given z ∈ [zk, zk+1), assume (ρ∗,a∗) w (ρzk

,azk) and for some
s ∈ S, (ρsz, asz) = (ρ∗s, a

∗
s). Then (ρszk+1

, aszk+1
) = (ρsz, asz).

Proof of claim. Since E∗
z is constant on [zk, zk+1) by Claim 10, if s /∈ E∗

z ,
then s /∈ E∗

zk
and we are done. Assume, therefore, that s ∈ E∗

z . Let Ωz ⊆
E∗

z be a minimal (with respect to subset inclusion) subset of E∗
z such that

s ∈ Ωz and for each t ∈ Ωz, if there are t′ ∈ S and i ∈ N with {t, t′} ⊆
Ci(ρz,az) ⊆ E∗

z , then t′ ∈ Ωz. Let N(Ωz) = {i ∈ N : Ci(ρz,az) ∩
Ωz 6= ∅}. By construction of Ωz, a student i is in N(Ωz) if and only if
Ci(ρz,az) ⊆ Ωz. Thus, recalling condition (2) of the definition of excess
demand, we have

(10) |{i ∈ N(Ωz) : Ci(ρz,az) ⊆ Ωz}| >
∑
t∈Ωz

bρ−1
tz c.

By construction, for any pair {t1, tK} ⊆ Ωz, there is a chain
(ρt1 , t1) Ii1 (ρt2 , t2) Ii2 . . . (ρtK−1

, tK−1) IiK−1
(ρtK , tK),
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such that each tk ∈ Ωz and each ik ∈ N(Ωz). Thus, by NCBI, Ωz contains at
most one t ∈ S such that ρtz = bt. If there is a school t ∈ Ωz such that ρtz =
bt and s 6= t, then we have ρsz > bs. In such a case, the modified algorithm
is in the REJECTION subroutine, and therefore [z, z+1]∩Z = {z, z+1} and
(ρs,z+1, as,z+1) = (ρs,z, as,z), as desired.

The remaining cases are that either (1) ρsz = bs or (2) for each t ∈ Ωz,
ρtz > bt. We will show that either leads to contradiction, and thus the
previous paragraph is in fact the only case, and the Claim follows. Let
Ω∗

z = {t ∈ Ωz : (ρtz, atz) = (ρ∗t , a
∗
t )} so s ∈ Ω∗

z. The foregoing yields that
for each t ∈ Ωz \ Ω∗

z, ρtz > ρ∗t .
By line (10) and Hall’s Theorem (Hall [1935]), there is no threshold equi-

librium matching of N(Ωz) to Ωz. Let µ instead be a maximal matching
from N(Ωz) to Ωz such that (1) each matched student gets a school in their
constrained demand set, and (2) each school s ∈ Ωz is matched to bρ−1

sz c
students. It follows then that, for each i ∈ µ[Ω∗

z], Ci(ρz,az) ∩ Ω∗
z 6= ∅. Re-

calling condition (2) in the definition of excess demand for Ωz and Ω∗
z ⊆ Ωz,

Hall’s theorem then implies there is a student i ∈ N(Ωz) \ µ[Ω∗
z] with

Ci (ρz,az) ∩ Ω∗
z 6= ∅. Recall also that for each t ∈ Ωz \ Ω∗

z, ρtz > ρ∗t ,
and thresholds are incremented monotonically. Thus, by the definition of
N(Ωz), any j ∈ N(Ωz)withCj (ρz,az)∩Ω∗

z 6= ∅ satisfiesCj(ρ
∗,a∗) ⊆ Ω∗

z.
In sum, we have that for each j ∈ {i} ∪ µ[Ω∗

z], Cj(ρ
∗,a∗) ⊆ Ω∗

z. Then the
students whose constrained demand sets at (ρ∗,a∗) are a subset of Ω∗

z must
include {i} ∪ µ[Ω∗

z]. However,

|{i} ∪ µ[Ω∗
z]| = 1+|µ[Ω∗

z]| = 1+
∑
s∈Ω∗

z

bρ−1
sz c = 1+

∑
s∈Ω∗

z

bρ∗−1
s c >

∑
s∈Ω∗

z

bρ∗−1
s c,

where the second equality is because µ is a maximal feasible matching sat-
isfying (1) and (2) from above. The last inequality implies that we cannot
feasibly assign students in {i} ∪ µ[Ω∗

z] (whose constrained demand sets lie
in Ω∗

z) to Ω∗
z at (ρ∗,a∗). This contradicts the definition of a threshhold equi-

librium. □

We now conclude the proof, arguing that the modified algorithm con-
verges to a maximal RCE, implying that the original algorithm does as well.
First observe that in order for the set of boundary points of Z to be infinite,
there would have to be infinitely many invocations of REJECTION, as only
these separate DECREMENTING intervals. As the number of REJECTION invo-
cations is bounded by |S||N |, it follows that DECREMENTING is defined on
finitely many closed intervals of non-zero length. Moreover, if one of these
were unbounded, then by construction, there is s ∈ S such that ρsz → 0.
But then, for large enough z, ρ−1

sz > |N |, and so s could accomodate all
students, and therefore would not be in any set in excess demand. Thus, the
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set of boundary points of Z is of the form {z1, . . . , zT}, where zT = maxZ
(recalling that the endpoint of DECREMENTING is always a PAUSE instance).
In sum, DECREMENTING is defined on finitely many disjoint, closed inter-
vals, and the path ρz is continuous (though not differentiable). Moreover,
the modified algorithm terminates at zT , and so (ρzT

,azT ) has no excess
demand and therefore admits a threshold equilibrium.

Clearly, (ρ∗,a∗) w (ρ1,a1). Since each ρsz is continous, it will not
pass ρ∗s without first equaling it. Similarly, asz is incremented one step
at a time, and so will not pass a∗

s without equaling it. By Claim 11 and
induction, we find that for all z ∈ Z, (ρ∗,a∗) w (ρz,az). Recalling
that (ρ∗,a∗) is the unique minimal threshold that induces threshold equilib-
rium, and since the algorithm stops only at a threshold equilibrium (where
(ρzT

,azT ) w (ρ∗,a∗)), conclude that (ρ∗,a∗) = (ρzT
,azT ). Let σ be any

matching satisfying constrained demands at (ρ∗,a∗). Recall that the thresh-
olds were initialized at (1, ϕ), and so schools empty at σ have threshold
(1, ϕ). As discussed after the definition of threshold equilibrium, (ρ∗,a∗, σ)
is a student-optimal threshold equilibrium, and so (ρ∗, σ) is a maximal RCE.
Finally, recall that our modified algorithm is the same as the original, except
with the REJECTION subroutines elaborated in sub-steps. It follows that our
original algorithm also converges to a maximal RCE.

APPENDIX D. WHEN STUDENTS CAN BE UNMATCHED

We have defined and analyzed a class of models for school choice with
crowding. We have shown that a subclass of these models—the class that
satisfies NCBI—preserves the desirable properties of the standard model.
We now introduce a further subclass that naturally exhibits a possibility for
students to remain unmatched.

Consider a school choice with crowding problem with the following spe-
cial properties. The set of schools can be partitioned into two subsets: the
set of “real” schools S⋄, and the set of dummy schools Sϕ = {ϕi : i ∈ N}.
Priorities and lower bounds in this subclass are restricted: for each i ∈ N ,
bϕi

= 1, and for j 6= i, i �ϕi
j. Preferences in this subclass are also re-

stricted: each i has, for each j 6= i, (0, ϕi) Pi (1, ϕj). We shall show that, in
this class, (1, ϕi) is the outside option for student i.

Suppose that, at some RCE (ρ, σ), σ(i) = ϕj for j 6= i. Since

(1, ϕi) Pi (0, ϕi) Pi (1, ϕj) Ri (ρ, σ(i)) ,

by inferior empty schools, there must be a student k assigned to ϕi. More-
over, by respect of capacity, ρϕi

= bϕi
= 1. However, since i �ϕi

k, this
violates i’s priority. Therefore, in this subclass, no RCE ever assigns student
i to ϕj for j 6= i.
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Thus, for each i ∈ N , either σ(i) = ϕi or ϕi is empty. In both cases,
respect of capacity implies ρϕi

= 1, and so the assignment (1, ϕi) is an
outside option for i.

For each problem in this subclass, we may map it to a problem with a sin-
gle “null school” ϕ with unlimited capacity, as is standard in school choice,
by simply collapsing all the dummy schools to one point, without any re-
source. Furthermore, since any non-manipulable rule on a large domain re-
mains non-manipulable on a smaller domain, restricting any maximal RCE
mechanism to the subclass just defined results in a strategy-proof rule. Of
course, the existence, structural results, and algorithm carry over as well.


