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Real-time Agenda Control + Manipulable Preferencesww�
Dictatorial Power



Collective Choice Problem

Policy space X , compact and metrizable (e.g., finite set or subset of Euclidean space).

Policy chosen by single agenda setter and n voters, where n is odd. Agenda setter doesn’t vote.

Preferences:

• Agenda setter’s (continuous) preference relation is <A.

• Voter i ’s (continuous) preference relation is <i .

• �M denotes strict (typically intransitive) majority relation:

x �M y ⇐⇒ x �i y for at least
n + 1

2
voters.

• Complete Information: All preferences are commonly known.



Extensive Form: Amendment Procedure

Legislature deliberates in a series of T <∞ rounds.

In each round t ∈ {1, . . . ,T}:

• There is a default policy, x t−1 ∈ X .

• The initial default, x0, is fixed exogenously.

• AS proposes an amendment at ∈ X .

• Voters vote between x t−1 and at .

• The policy with majority support becomes new default, x t , for round t + 1.

The final policy emerging from this process, xT , is implemented.



Interpretation of Amendment Procedure

1. Finite number of rounds: dynamic procedure for static collective choice.

Negotiations concern a time-dated policy (e.g., budget for 2024) and cannot proceed past the

(known) implementation date (e.g., January 1, 2024).

2. Evolving default: can be interpreted in two ways.

(a) “Provisional bills” arising during negotiations, prior to final passage of any actual bill.

(b) Distinct bills are passed (and supersede previously passed bills) prior to implementation date.

Our results also apply to legislative procedures such as closed- and open-rule bargaining.



Equilibrium Concept

All players can condition actions on history of prior actions, and is sequentially rational.

No player can commit to future actions.

Standard solution concept: Subgame Perfect equilibria with “as-if pivotal” voting

• Each voter compares continuation outcome if current amendment passes to that if it fails.

If she has strict preferences between two outcomes, she votes accordingly.

• Outcome-equivalent to “roll call voting” with fixed sequential order in each round.



How We Depart from the Literature

Prior work: Agenda setter commits to a fixed slate of proposals (a1, . . . , aT ).

Proposals cannot be tailored to prevailing default option.

McKelvey (’76, ’79): With myopic voters, agenda setter achieves favorite policy.

Generically, �M is globally intransitive =⇒ ∃ a majority chain from x0 → x∗A.

Shepsle-Weingast (’84): If voters are sophisticated, agenda setter is limited to 2-chains.

That is, y for which ∃z such that y <M z <M x0 =⇒ agenda setter is tightly constrained!

This paper: Agenda setter makes proposals in real time.

• Flexibility: She can tailor her proposal to current default option.

• No commitment: Each proposal must be sequentially rational for her.
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What is Manipulability?



Improvability and Manipulability

Definition

Policy x is improvable if ∃ y such that y �A x and y �M x . Otherwise, x is unimprovable.

• Unimprovable policies are core of suitably defined cooperative game.

• Any policy in agenda setter’s favorite set X ∗A : = arg maxx∈X uA(x) is unimprovable.

Definition

A collective choice problem is Manipulable if every x /∈ X ∗A is improvable.

That is, the only unimprovable policies are agenda setter’s favorites.



Definition

A collective choice problem is Manipulable if every x /∈ X ∗A is improvable.

Related to prevalence of intransitivities in majority relation �M :

• If there is a Condorcet Winner, manipulability holds iff X ∗A = {CW }.
• Intuitively, greater intransitivity makes it easier for agenda setter to find mutual improvements.

• Distinct from McKelvey’s Chaos: ∀ x and y , ∃ sequence of majority improvements from x to y .



Definition

A collective choice problem is Manipulable if every x /∈ X ∗A is improvable.

Satisfied generically in canonical settings:

• Distributive politics.

• Spatial politics with 3 or more dimensions.



Manipulability in Distributive Politics

Example: divide-the-dollar problem:

• X =
{
x ∈ [0, 1]n+1 : xA + x1 + · · ·+ xn ≤ 1

}
• For all players, ui (x) = xi

This problem is Manipulable: If xA 6= 1, then either:

• x is inefficient =⇒ ∃y � x that’s strictly preferred by everyone.

• Some voter i has positive share (xi > 0)

=⇒ AS can extract xi and divide among herself and remaining n − 1 voters.

Same logic applies to general class of Distribution Problems, defined after main analysis.



Manipulability in Spatial Politics

Suppose X = Rd and player i ’s preferences are ui (x) = − 1
2 ||x − x∗i ||2.

Theorem

If d ≥ 3, problem is Manipulable for “generic” specifications of (x∗A, x
∗
1 , . . . , x

∗
n ) ∈ Rd(n+1).

“Generic” = Full-measure and open-dense set.

Proof and discussion of this result comes after the main analysis.
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2. Main Results
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6. Conclusion



Dictatorial Power

Main finding is (informally) that:

Manipulability ⇔ AS obtains her favorite policy in every equilibrium (given sufficiently many rounds).

We establish this under different technical conditions:

• Theorem 1: Exact result if |X | <∞ and preferences are strict.

• Theorem 2: Approximate result for continuous X and preferences, if discretized to finite grid.

• Theorem 3: Approximate result for continuous X and preferences, in class of equilibria.



Definition. A collective choice problem has Generic Finite Alternatives if X is finite and each player’s

preferences are antisymmetric.

Theorem 1

Suppose the collective choice problem satisfies Generic Finite Alternatives.

The collective choice problem is Manipulable.~w�
Agenda setter obtains her favorite policy in every equilibrium for every initial default,

if # of rounds exceeds |X | − 1.

Recall that Manipulability means that for every x /∈ X ∗A , ∃y such that y �A x and y �M x .



Agenda Setter’s Favorite Improvement

Proof uses the operator: φ(x) ≡ arg maxy<Mx uA(y).

By definition,

• For every x , φt+1(x)<A φ
t(x).

• The fixed points of φ are unimprovable.

• If T ≥ |X | − 1, then policy φT (x) is unimprovable for every x .

(Recall: a policy x is unimprovable if @ y such that y �A x and y �M x .)



Equilibrium Characterization

For game with T rounds & initial default x0, let

fT (x0) ≡
⋃

equilibria

{policies chosen w.p. > 0 in equilibrium}

Lemma 1

Under Generic Finite Alternatives, for every horizon T and initial default x0,

fT (x0) = {φT (x0)}.

• For every T and unimprovable x0, fT (x0) = {x0}.
• For every T ≥ |X | − 1,

⋃
x0∈X fT (x0) = {Unimprovable Policies}.

Theorem 1 follows from Lemma 1 because Manipulability’s defn is that Unimprovable Policies = X ∗A .



φ(x) ≡ arg maxy<Mx uA(y)

a→ b means that b = φ(a)Suppose x0 is initial default option.

x0

One-round Game

φ(x0)

One-round Game

φ(x0)

AS moves policy to φ(x0).

Two-round Game

Rejecting first proposal leads to φ(x0) in any eqm.

φ(x0)

Two-round Game

Rejecting first proposal leads to φ(x0) in any eqm.

Accepting first proposal y leads to φ(y) in any eqm.

φ(x0)

φ2(x0)

Two-round Game

Rejecting first proposal leads to φ(x0) in any eqm.

Accepting first proposal φ(x0) leads to φ2(x0) in any eqm.

Agenda setter achieves φ2(x0). Three-round Game

In a three-round game, unimprovable policy is reached.In a one-round game, “effective policy space” is φ(X ).

Players identify policy x with its continuation outcome φ(x).

φ pares away some improvable policies.

In a two-round game, effective policy space is φ2(X ).

Players identify policy x with its continuation outcome φ2(x).

φ2 pares away more improvable policies.

Iterating operator eventually leads to fixed points:

T ≥ |X | − 1 =⇒ φT (X ) = {Unimprovable Policies}.

φT pares away all improvable policies.
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Lemma 1∗

Under Generic Finite Alternatives,

fT (x0) = {φT (x0)} for every T and x0.

All equilibria are outcome-equivalent to “greedy” one in which AS proposes φ(current default).

1. Greedy strategy implements same outcome if voters were myopic, as in McKelvey’76.

Myopic voters compare φt(x0) and φt−1(x0).

2. Sophisticated voters reason backward, comparing φT (x0) and φT−1(x0).

Hence, same coalition of voters support all on-path proposals.

3. Transitions need not be gradual: iff φT (x0) unimprovable, ∃ eqm that jumps straight there.



Theorem 1

Suppose the collective choice problem satisfies Generic Finite Alternatives.

The collective choice problem is Manipulable.~w�
Agenda setter obtains her favorite policy in every eqm for every initial default,

if # of rounds exceeds |X | − 1.

Other Voting Rules:

• Consider general voting rule, modeled as collection D ⊆ 2N of winning coalitions.

• Use appropriate analog of Manipulability:

∀x /∈ X ∗A , ∃policy y and winning coalition D ∈ D such that y �A x and y �i x for every i ∈ D.



Theorem 1

Suppose the collective choice problem satisfies Generic Finite Alternatives.

The collective choice problem is Manipulable.~w�
Agenda setter obtains her favorite policy in every eqm for every initial default,

if # of rounds exceeds |X | − 1.

Potential Issues:

• Manipulability is neither full-measure nor zero-measure in R|X |×(n+1).

• The number of rounds →∞ as |X | → ∞.

We address both issues in Theorems 2 and 3 (in different ways).



Discretizing a Continuous Policy Space

We now consider a general policy space X satisfying Manipulability.

One perspective: Continuous X is an idealization and actual policy choice is discrete.

Start with any Manipulable problem and study generic fine discretizations thereof.

• Discretized problem may fail Manipulability.

• Horizon length for approximate dictatorial power that is uniform across discretizations.



Generic Grids and Thin Individual Indifference

Definition. A generic ε-grid is a finite subset Xε ⊆ X for which maxx∈X d(x ,Xε) < ε, and the

preferences of players restricted to Xε are strict.

We consider collective choice problems that admit generic ε-grids for every sufficiently small ε > 0.

Fact: This is equivalent to preferences satisfying Thin Individual Indifference:

Ii (x)\{x} has empty interior for every player i and policy x ,

where Ii (x) = {y ∈ X : y ∼i x} is player i ’s indifference curve going through policy x .



Theorem 2 (in words)

Suppose the collective choice problem satisfies Thin Individual Indifference.

The collective choice problem is Manipulable.~w�
Agenda setter obtains within δ of highest payoff in sufficiently fine grids (ε < εδ)

and sufficiently long horizons (T ≥ Tδ).

Comments:

• Manipulability is imposed on the ambient policy space but may be violated on the grid.

• Agenda setter obtains within δ of highest payoff in X , not merely that on the grid.

• The horizon Tδ depends on δ, but not the fineness/choice of the grid.



Theorem 2 Proof

Suppose the collective choice problem satisfies Thin Individual Indifference.

The collective choice problem is Manipulable.~w�
For every δ > 0, ∃ εδ > 0 and Tδ ∈ N such that if

(a) policies are restricted to any generic ε-grid Xε with ε < εδ, and

(b) there are T ≥ Tδ rounds,

then ∀ initial defaults x0 ∈ Xε, and in any equilibrium, AS’s payoff is at least

max
x∈X

uA(x)− δ.



What About the Continuous Limit?

Prior results considered finite policy spaces, either directly or as discretizations of ambient space.

Analysis exploited strict preferences.

Theorem 3: Directly address general X and non-strict preferences using equilibrium refinement.

Both voter and AS indifference introduce complications.

One (standard) resolution is to focus on MPE with proposal-favored tie-breaking.

We use the weaker notion of Non-Capricious equilibrium:

(a) Mapping from histories to continuation outcomes is pure & Markovian.

(b) For each voter i and pair of policies x 6= y s.t. x ∼i y , at every history-proposal pair for which

I x is the continuation outcome if the proposal is accepted and
I y is the continuation outcome if the proposal is rejected,

voter i either (i) always votes for the proposal or (ii) always votes against the proposal.



Approximate Dictatorial Power in Continuous Policy Spaces

Theorem 3

The collective choice problem is Manipulable.~w�
Agenda setter obtains within δ of highest payoff with sufficiently long horizons

(T ≥ Tδ) for every initial default in any Non-Capricious equilibrium.

Divide-the-Dollar example: With NC tie-breaking, get exact result with T = 3. Example

With capricious tie-breaking, approx. result may fail.



Taking Stock

Main finding is (informally) that:

Manipulability ⇔ AS obtains her favorite policy in every equilibrium (given sufficiently many rounds).

We formally established this under different technical conditions:

• Theorem 1: Exact result if X is finite & prefs are strict.

• Theorem 2: Approximate result for discretized general problems. (+ bounded # rounds)

• Theorem 3: Approximate result for general problems in class of equilibria. (+ address indifference)



Real-time Agenda Control + Manipulable Preferencesww�
Dictatorial Power

Why does Manipulability hold in Distributive & Spatial Politics?



1. Model & Manipulability

2. Main Results

3. Distributive Politics

4. Spatial Politics

5. Commitments, Procedures, and Deadlines

6. Conclusion



Distribution Problems

Definition

A collective choice problem is a Distribution Problem if it satisfies for every x and i :

1. Scarcity: If player i is not getting her favorite (ui (x) < ui ), then either

(a) ∃ player j 6= i who is getting better than his worst (uj(x) > uj), or

(b) There is a Pareto improvement (∃ y such that uk(y) > uk(x) for all k).

2. Transferability: If ui (x) > ui , then ∃ y such that uj(y) > uj(x) for all j 6= i .

Examples:

• Divide-the-dollar.

• Pork-barrel projects where costs and benefits can be redistributed.

• Public decisions with (potentially imperfectly) transferable utility.



Distribution Problems are Manipulable

Theorem

Every Distribution Problem is Manipulable under any “veto-proof” voting rule.

Proof: Suppose the policy is Pareto efficient.

• If AS isn’t getting her favorite, then, by Scarcity, ∃ voter i who’s getting better than his worst.

• By Transferability, can find strict improvement for AS and all voters j 6= i at expense of voter i .



Distributive Politics: Implications

Theorem

Every Distribution Problem is Manipulable under any veto-proof voting rule.

Theorem Divide-the-Dollar

For any Distribution Problem satisfying Thin Individual Indifference:

(a) If the voting rule is a quota rule with q < n, then AS obtains payoff u∗
A in every Non-Capricious

equilibrium regardless of the initial default if there are T ≥ dn/(n − q)e rounds.

(b) For any veto-proof voting rule, the same conclusion holds if there are T ≥ n rounds.

Note: the minimal number of rounds for a quota rule coincides with the Nakamura number.



Distributive Politics: Broader Implications

AS achieves exact dictatorial power in any problem by bundling policies with transfers / pork.

Pork greases wheels =⇒ Manipulability ⇒ AS obtains favorite policy without making payments.

Chosen policy need not maximize total surplus.

Pork-Barrel Politics:

• Suppose there are public projects that involve benefits and costs.

• Agenda setter may maximize total benefits while offloading all costs on others.
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Manipulability is Generic in Spatial Politics

Suppose X = Rd where d ≥ 3 and player i ’s preferences are ui (x) = − 1
2 ||x − x∗i ||2.

Theorem

This problem is manipulable for a full-measure and open-dense set of (x∗A, x
∗
1 , . . . , x

∗
n ) ∈ Rd(n+1).

Genericity condition: when restricted to any 3 policy dimensions, no 4 ideal points are coplanar.

We will give proof for d = 3. Condition is then:

• No 4 ideal points are coplanar.

• ( =⇒ ) No 3 ideal points are colinear.

What We’ll Prove

If X = R3 and no 4 ideal points are coplanar, this problem is manipulable:

x∗A is only unimprovable policy.



x∗A

x is initial default and x∗A is AS’s favorite.

We want to show that x is improvable: ∃z such that z �A x and z �M x .

x

y∗A

x = y∗A, AS’s constrained ideal point on the plane.

x∗i

x∗j

y∗i

y∗j

y∗A

y∗i and y∗j are constrained ideal points for i and j .

Can do this for all voters.

Claim 1: At most two constrained ideal points and y∗A are collinear.

x∗k

Suppose towards contradiction that this is true for a third voter k.

Then {x∗A, x∗i , x∗j , x∗k } all lie on the same plane, violating genericity.Claim 2: Either y∗i 6= y∗A or y∗j 6= y∗A (or both).
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y∗A

y∗i

y∗j

Let’s look at the plane: at most 2 voter (constrained) ideal points on this line.

There are (n − 2) other (constrained) ideal points lurking.

At least (n − 1)/2 of the points lie above or below the line.Moving in this direction makes all (n − 1)/2 voters and voter j strictly better off.

Since y∗A is AS’s constrained ideal point, a small movement induces a second-order loss for her.
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Let’s look at the plane: at most 2 voter (constrained) ideal points on this line.

There are (n − 2) other (constrained) ideal points lurking.

At least (n − 1)/2 of the points lie above or below the line.
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Since y∗A is AS’s constrained ideal point, a small movement induces a second-order loss for her.



x∗A

x is initial default and x∗A is AS’s favorite. We want to show that x is improvable.

x

y

We found a nearby y on the plane that makes (n + 1)/2 voters strictly better off.

Moving from x → y induces only a second-order loss for agenda setter.

z

Thus, we can find z such that z �A x and z �M x .
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Necessity of ≥ 3 Policy Dimensions

Single dimension:

• Euclidean prefs =⇒ ∃ Median Voter whose ideal point x∗med is a Condorcet Winner.

• Hence, all policies between x∗A and x∗med are unimprovable.

Two-dimensional case:

• Fact: Manipulability fails whenever x∗A 6∈ CH ({x∗1 , . . . , x∗n }).

• The set of unimprovable policies is a line segment (measure-0), but equilibrium dynamics force

policies onto this line.

• Contrasts with McKelvey’s (1976) Chaos Theorem: �M is globally intransitive iff d ≥ 2.



Spatial Politics: Implications

Theorem∗

Spatial Politics with Euclidean prefs is (generically) Manipulable ⇐⇒ d ≥ 3 policy dimensions.

=⇒ AS can generate Manipulable problem by linking policy decisions.

Faced with 2D policy decision, AS can obtain her favorite policy by introducing

a third policy dimension to deliberations — even if that third dimension is

“settled” (i.e., AS already obtains favorite policy in that dimension).
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What We Did: Conclusion

Real-time agenda control without commitment in an amendment agenda with a finite horizon.

What happens if each of these is modified?



Value of Commitment: Example Commitment Benchmark

Suppose z is initial default.

AS can achieve w with fixed slate (w , y).

Not sequentially rational.

Without commitment, AS achieves only x .

A Non-Manipulable Problem

w x y z

w

x

y

z

AS’s Prefs Majority Relation

a→ b ≡ b � a
a ≡ unimprovable



Adjournment Provisions

Many common legislative procedures involve cloture rules:

• Closed-rule bargaining or, equivalently, successive/Euro-Latin agendas

I deliberations adjourn as soon as a proposal passes

• Open-rule bargaining

I deliberations adjourn early (only) if the current default is “moved”

We show that our results apply to all of these procedures.

More generally, real-time agenda control =⇒ these procedures (and more) are outcome-equivalent.



Procedural Equivalence

Generalized Amendment Procedures

AS can propose amendment a either:

• without an adjournment provision, denoted by (a, 0). Passage =⇒ a becomes new default.

• with an adjournment provision, denoted by (a, 1). Passage =⇒ a is implemented.

The procedure is Rich if AS’s feasible sets of proposals satisfy:

At each history, everything in X × {0} is feasible and/or everything in X × {1} is feasible.

Theorem Proof

Under Generic Finite Alternatives, for any voting rule D and generalized amendment procedure

satisfying richness:

For all T and x0, the unique equilibrium outcome is φTD(x0).



The Role of Deadlines

Agenda embodies a dynamic procedure to solve static or time-indexed collective choice problem.

• Players negotiate over policy that prevails at a given calendar date τ .

• Each round of bargaining takes at least ∆ > 0 units of time.

• At most T = bτ/∆c rounds of deliberation.

Even if deadline were uncertain, our results apply so long as deadline is sufficiently predictable.

• Distribution Problems: only 3 rounds of predictability needed for exact dictatorial power.

• Generally, AS obtains within δ of maximal payoff given Tδ rounds of predictability.



An Infinite-Horizon Model (Anesi-Siedmann’14)

No terminal round: Game ends only if AS proposes prevailing default option or amendment is rejected.

Suppose policy z is initial default.

Claim: Agenda setter achieves only y .

Logic: Voters predict that if x or w become

default option, then w is implemented.

As y �M w , voters reject moves from y to x .

Perpetual Reconsideration

w x y z

w

x

y

z

AS’s Prefs Majority Relation

a→ b ≡ b � a
Manipulability X



Horizon Comparisons

Theorem

Suppose the collective choice problem satisfies Generic Finite Alternatives.

Then exactly one of the following two statements holds:

1. For some initial default, the agenda setter:

(a) the agenda setter strictly prefers 2 ≤ T <∞ rounds to a single round, and

(b) the agenda setter strictly prefers a single round to the infinite horizon.

2. For all initial defaults, the agenda setter is equally well off across all three protocols.

Implications: Non-monotonicity + Strategic benefit of deadlines.
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Summary

New model of real-time agenda control without commitment.

Main finding: AS has dictatorial power ⇐⇒ problem is Manipulable.

• Applies to broad class of legislative procedures & voting rules

Manipulability is satisfied in canonical distributive & spatial models.

• AS may strategically create Manipulability by using pork/transfers or linking policy decisions.



Thank you!



Proof Sketch: Manipulability =⇒ Approx. Dictatorial Power Back

AS’s δ-suboptimal policies: Γδ := {x ∈ X : uA(x) ≤ u∗A − δ}.

Manipulability, continuity, compactness =⇒ ∃ ηδ > 0 such that every y ∈ Γδ is “ηδ-improvable” in X .

Sufficiently fine grid (ε < εδ) =⇒ every y ∈ Γδ ∩ Xε is “ηδ2 -improvable” in Xε.

=⇒ From any initial default x0 ∈ Xε, AS can obtain at least uA − δ within

Tδ :=
⌈uA − uA

ηδ/2

⌉
rounds in the discretized problem. (Tδ is independent of ε < εδ & other details of grid.)



Divide-the-Dollar with NC Tie-Breaking Back to Theorem 3 Back to Distribution Problems

Setting. X = ∆n+1 and ui (x) = xi . For simplicity, focus on the three-voter (n = 3) case.

Assume WLOG that x01 ≥ x02 ≥ x03 , and that x03 > 0.

MPE with NC Tie-Breaking.

Voters always break ties in favor of proposal. AS proposes φ̂(x) when default is x , where

φ̂(x) := Policy in which AS

{
extracts share from richest voter,

breaks ties toward lower-index voters.

One-round game → φ̂(x0) = (0, x02 , x
0
3 , 1− x02 − x03 ).

Two-round game → φ̂2(x0) = (0, 0, x03 , 1− x03 ).

Three-round game → φ̂3(x0) = (0, 0, 0, 1) = x∗A.

AS obtains exactly her favorite policy in T = 3 rounds.



Divide-the-Dollar with Capricious Tie-Breaking Back to Theorem 3

Setting. X = ∆n+1 and ui (x) = xi . For simplicity, focus on the three-voter (n = 3) case.

Assume WLOG that x01 ≥ x02 ≥ x03 , and that x03 > 0.

MPE with Capricious Tie-Breaking.

Voters always break ties in favor of proposal⇐⇒ it’s final or penultimate round.

AS proposes φ̂(x) when default is x , where

φ̂(x) := Policy in which AS

{
extracts share from richest voter,

breaks ties toward lower-index voters.

One-round game → φ̂(x0) = (0, x02 , x
0
3 , 1− x02 − x03 ).

Two-round game → φ̂2(x0) = (0, 0, x03 , 1− x03 ).

Three-round game: No proposals pass b/c at least two voters get 0 upon both passage & rejection.

AS can’t “bribe” voters with ε > 0 shares b/c they’ll be extracted in future!

=⇒ By induction, AS’s payoff is ≤ 1− x03 even as T →∞.



The Commitment Benchmark Back

AS commits to a strategy in the dynamic game (including horizon T ).

Note: this allows for flexible proposals, unlike the literature’s models of fixed agendas.

Definition

Policy y is reachable from x if ∃ a sequence {ak}Kk=0 such that

y = aK �M aK−1 �M . . . �M a0 = x .

Proposition

If AS has commitment power, she can obtain her favorite policy that’s reachable from x0.

Prediction familiar from classic results for “binary voting trees” (e.g., Farquharson 1969; Miller 1977).

Without commitment, Lemma 1 =⇒ AS can only obtain policies that are credibly reachable:

ak+1 = φ(ak)



Procedural Equivalence: Proof Sketch Back

By backward induction.

• In final round T , adjournments don’t matter. Suppose we’ve extended this back to round T − k.

• Consider round t = T − k − 1. Recall that, in baseline model:

I rejection of proposal → eqm. continuation outcome z := φk(x t−1).

I AS (optimally) induces continuation outcome φ(z).

• Richness guarantees that (at least) one of two cases holds: Necessity of Richness

1. If (φ(x t−1), 0) is feasible, AS can propose it → continuation outcome φ(z).

2. If (φ(z), 1) is feasible, AS can propose it → immediate implementation of φ(z).



Necessity of Richness Back

GFA & Manipulability hold.

By Theorem 1, w implemented by

amendment procedure when T ≥ 3.

Consider AGA with history-indep. feasible set:

(w , 1), (x , 0), (y , 1), (z , 1)

Claim. If x0 = z , then y implemented ∀T .

• (y , 1) proposed & passed when T = 1.

• Nothing but (y , 1) can pass when T ≥ 2.

Where the proof breaks:

• φ(z) = y , but (y , 0) not feasible.

• φ2(z) = x , but (x , 1) not feasible.

w x y z

w

x

y

z

AS’s Prefs Majority Relation

Note: a→ b ≡ b � a
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