
Online Appendix to

Micro Risks and (Robust) Pareto Improving
Policies

A Liquidity Premium on Government Bonds
In this appendix, we provide an alternative perspective on the wedge between the return to phys-
ical capital and the interest rate on government bonds. We set 𝜇 = 1 and instead appeal to a large
body of work documenting that government bonds carry a “convenience yield” or a “liquidity pre-
mium,” as documented in Krishnamurthy and Vissing-Jorgensen (2012a). In particular, govern-
ment bonds pay a lower yield than comparable AAA corporate bonds or other non-government
safe assets.

We model this as an intermediation technology that uses government debt as an input. Sup-
pose that for every 𝑏 units of government debt held on its balance sheet, the representative in-
termediary generates 𝜌(·)𝑏 units of the numeraire good. The arguments of 𝜌 can be any of the
aggregate state variables, including the stock of government debt or total output. However, the
technology is seen as constant returns to scale from the perspective of an individual competitive
intermediary.48

The representative intermediary earns 𝑟𝑘 − 𝛿 for every unit of capital held and 𝑟𝑏 + 𝜌(·) for
every unit of government debt, where 𝑟𝑏 is the interest paid on government bonds. Competition
in the intermediation sector yields the following arbitrage conditions:

𝑟𝑘𝑡 − 𝛿 = 𝑟𝑏𝑡 + 𝜌𝑡 = 𝑟𝑡 ,

where 𝑟 is the interest rate paid to households on deposits.
In what follows, we re-trace the relevant steps of the benchmark analysis. As we proceed, we

do not restate the technical assumptions made for each respective result.

A.1 Revisiting Lemma 1 and Corollary 1
As in the benchmark model, the amount raised in any period by the government via factor taxes
is

𝐹 (𝐾𝑡 , 𝑁 𝑜 ) −𝑤𝑜𝑁 𝑜 − (𝑟𝑡 + 𝛿)𝐾𝑡 ,

where zero markups imply Π𝑜 = 0. In the initial equilibrium, the tax revenues are used to pay for
the initial debt,

𝑟𝑏𝑜𝐵𝑜 = (𝑟𝑜 − 𝜌𝑜 )𝐵𝑜 = 𝐹 (𝐾𝑜 , 𝑁 𝑜 ) −𝑤𝑜𝑁 𝑜 − (𝑟𝑜 + 𝛿)𝐾𝑜 .
48This intermediation technology for government bonds has antecedents in monetary models, where money is

used to reduce transaction costs as in Kimbrough (1986) and Schmitt-Grohé and Uribe (2004). Note, however, that 𝜌
is a function of aggregate variables; for example, the aggregate quantity of government debt. This implies that the
“liquidity service” of an individual bond held by an intermediary depends on how large is the total stock of bonds
held by the intermediation sector as a whole. In this sense, there is a systemic component to the intermediation
technology.
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The change in tax revenues for 𝑡 ≥ 0 is therefore:

𝐹 (𝐾𝑜 , 𝑁 𝑜 ) − 𝐹 (𝐾𝑡 , 𝑁 𝑜 ) − (𝑟𝑡 + 𝛿)𝐾𝑡 + (𝑟𝑜 + 𝛿)𝐾𝑜 + (𝑟𝑜 − 𝜌𝑜 )𝐵𝑜 .

The equivalent of (3) is therefore

𝐵𝑡+1 − (1 + 𝑟𝑡 − 𝜌𝑡︸ ︷︷ ︸
𝑟𝑏𝑡

)𝐵𝑡 −𝑇𝑡 ≥ 𝐹 (𝐾𝑜 , 𝑁 𝑜 ) − 𝐹 (𝐾𝑡 , 𝑁 𝑜 ) − (𝑟𝑜 + 𝛿)𝐾𝑜 + (𝑟𝑡 + 𝛿)𝐾𝑡 − (𝑟𝑜 − 𝜌𝑜 )︸    ︷︷    ︸
𝑟𝑏𝑜

𝐵𝑜 .

The only difference between this expression and (3) is that the rate of government debt 𝑟𝑏 = 𝑟 − 𝜌
differs from the return on capital by 𝜌𝑡 .

Liquidity services are part of aggregate output (which are included in the interest households
earn on deposits). Hence, income accounting implies

𝐹 (𝐾𝑜 , 𝑁 𝑜 ) + 𝜌𝑜𝐵𝑜 = 𝑤𝑜𝑁 𝑜 + (𝑟𝑜 + 𝛿)𝐾𝑜 + 𝑟𝑜𝐵𝑜 .

Following the same steps as in the proof of Corollary 1, we obtain

C𝑡 ≤ 𝐹 (𝐾𝑡 , 𝑁 𝑜 ) + (1 − 𝛿)𝐾𝑡 + 𝐾𝑡+1 + 𝜌𝑡𝐵𝑡 .

This is the same as in the benchmark, once we recognize liquidity services as part of aggregate
output. Note that while increasing government debt generates resources, it may also raise the
equilibrium interest rate, requiring the government to intervene in factor markets as in the base-
line. This suggests that the elasticity of aggregate savings also plays a role, as shown below.

A.2 Revisiting Corollary 2
Taking the last inequality and subtracting consumption in the initial equilibrium, we obtain

𝐶𝑡 ≤ 𝐹 (𝐾𝑡 , 𝑁 𝑜 ) − 𝐹 (𝐾𝑜 , 𝑁 𝑜 ) + (1 − 𝛿)𝐾𝑡 − 𝐾𝑡+1 + (𝜌𝑡𝐵𝑡 − 𝜌𝑜𝐵𝑜) ,

which is the same as in the benchmark given the additional liquidity services.
It is useful to consider a perturbation from a laissez-faire initial equilibrium in which all taxes

are zero and 𝐵𝑜 = 0. This provides a reference that is undistorted by fiscal policy, and hence there
are no welfare gains from correcting initial tax distortions. This implies:

𝐹𝐾 (𝐾𝑜 , 𝑁 𝑜 ) = 𝑟𝑜 + 𝛿,

or 𝑅𝑘 = 𝑅𝑜 , where we recall that 𝑅𝑘 = 1 + 𝐹𝐾 (𝐾𝑜 , 𝑁 𝑜 ) − 𝛿 and 𝑅𝑜 = 1 + 𝑟𝑜 .
The counterpart of equation (9) is

𝐾𝑡+1 +
(
𝐶𝑡 − 𝜌𝑡𝐵𝑡

)
≤ 𝑅𝑘𝐾𝑡 .

Note that as 𝐵𝑜 = 0, 𝜌𝑡𝐵𝑡 is the change in liquidity services. Hence, the counterpart to equation
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(10) is
∞∑︁
𝑡=0

𝑅−𝑡
𝑘

(
𝐶𝑡 − 𝜌𝑡𝐵𝑡

)
≤ 0.

This requires that the present value of consumption innovations net of liquidity services is less
than zero. Now suppose we have a small innovation to the interest rate at time 𝜏 > 0. Following
the same steps as in the benchmark analysis, we have

∞∑︁
𝑡=0

𝑅−𝑡
𝑘

𝜕C𝑡
𝜕𝑟𝜏

= (𝑅𝑜 − 𝑅𝑘)
∞∑︁
𝑡=0

𝑅−𝑡
𝑘

𝜕A𝑡

𝜕𝑟𝜏
+ 𝑅−𝜏

𝑘
𝐴𝑜

= 𝑅−𝜏
𝑘
𝐴𝑜 ,

where the second line uses 𝑅𝑜 = 𝑅𝑘 , as there is no markup.
Assuming regularity conditions for 𝜌 and small changes to 𝐵𝑡 , we can approximate

𝜌𝑡𝐵𝑡 ≈ 𝜌𝑜 (𝐵𝑡 − 𝐵𝑜 ) + (𝜌𝑡 − 𝜌𝑜 )𝐵𝑜 = 𝜌𝑜𝐵𝑡 ,

where the last equality uses 𝐵𝑜 = 0 and 𝜌𝑜 is the marginal product of liquidity services in the
initial equilibrium.

At the margin, the returns to physical capital net of depreciation and to government bonds
inclusive of liquidity services are equated in the initial equilibrium. To a first order, it therefore is
irrelevant whether changes in household wealth are backed by changes in 𝐾𝑡 or 𝐵𝑡 . For exposi-
tional purposes, suppose changes in household wealth are equivalent to changes in government
bonds

𝐵𝑡 −��>
0

𝐵𝑜

∆𝑟𝜏
=

∆A𝑡

∆𝑟𝜏
and therefore for small changes we have49

𝜌𝑡𝐵𝑡 ≈ 𝜌𝑜
𝜕A𝑡

𝜕𝑟𝜏
× ∆𝑟𝜏 .

The sufficient condition for a feasible RPI becomes

𝑅−𝜏
𝑘
𝐴𝑜 − 𝜌𝑜

∞∑︁
𝑡=0

𝑅−𝑡
𝑘

𝜕A𝑡

𝜕𝑟𝜏
< 0.

Rearranging, and using our definition of 𝜉𝑡,𝜏 from the benchmark, the counterpart of equation
(14) becomes

𝜌𝑜

𝑅𝑜

∞∑︁
𝑡=0

𝑅
−(𝑡−𝜏)
𝑘

𝜉𝑡,𝜏 > 1.

49If 𝐵𝑜 ̸= 0, the 𝜌𝑜 in the following expression would be replaced by 𝜌𝑜
(
1 + 𝜕𝜌/𝜕𝐵×𝐵𝑜

𝜌𝑜

)
. The latter term is the

elasticity of the convenience yield to changes in government bonds. It is this elasticity that is the focus of event
studies surrounding quantitative easing (QE) episodes, such as Krishnamurthy and Vissing-Jorgensen (2012b) and
Koijen, Koulischer, Nguyen, and Yogo (2021).
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This is similar to the benchmark’s equation (14), but with the liquidity premium replacing the
wedge between the marginal product of capital and the interest rate. In the benchmark, the
government could exploit that wedge, which existed because of a markup. In this alternative, the
government can generate liquidity services by issuing debt. The larger the marginal product of
bonds in generating liquidity services, the easier it is to satisfy feasibility.50 We obtain the result
that the roles of 𝑅𝑘 and 𝜉𝑡,𝜏 in the infinite sum is exactly the same as in the benchmark.

B Transfers When Capital is Below the Golden Rule
Consider the following notion of monotonicity of aggregate consumption with respect to trans-
fers:

Definition 5. We say C = {C𝑡 }𝑡≥0 is weakly increasing in T if T ′ ≥ T implies C(r,T ′) ≥
C(r,T ), where the inequality holds for all 𝑡 in the respective sequences. If T ′ ≥ T for which
there is a 𝑡 such that 𝑇 ′

𝑡 > 𝑇𝑡 implies C(r,T ′) ≥ C(r,T ) and that there is an 𝑠 such that
C𝑠 (r,T ′) > C𝑠 (r,T ), we say C is strictly increasing in T .

This is a natural property, in that holding constant all interest rates, one would naturally
expect an increase in lump sum transfers would induce households (in aggregate) to consume
more.51

The following result says that if consumption is weakly increasing in transfers, then we can
ignore the role of transfers when looking for an RPI (as long as an interest rate have changed).
That is, transfers are not necessary for evaluating feasibility:

Lemma 5 (Transfers are not necessary). Suppose thatC is weakly increasing inT . Let (r,T )
be a feasible RPI where for some 𝑡 , 𝑟𝑡 > 𝑟𝑜 . Then (r,T ′) where T ′ = {−(𝑟𝑡 − 𝑟𝑜 )𝑎}𝑡≥0 is also a
feasible RPI.

Proof. Note that an RPI requires that 𝑟𝑡 ≥ 𝑟𝑜 and𝑇𝑡 ≥ −(𝑟𝑡 −𝑟𝑜 )𝑎. The fact that the C is weakly increasing implies
thatC𝑡 (r,T ) ≥ C𝑡 (r,T ′), asT ≥ T ′. The sequence of𝐾𝑡 that implements the (r,T ) then also implements (r,T ′).
Given that 𝑟𝑡 > 𝑟𝑜 for some 𝑡 , it follows that (r,T ′) is a feasible RPI. □

The following result says that if consumption is strictly increasing in transfers, than an RPI is
not feasible without a change in an the interest rate. That is, transfers alone are not sufficient:

Lemma 6 (Transfer are not sufficient). Suppose thatC is strictly increasing inT . If𝐾𝑜 < 𝐾★,
then there is no feasible RPI in which r = r𝑜 .

50If Ricardian equivalence held, then a version of the Friedman rule would apply; that is, the government should
issue debt until the marginal return to liquidity services is driven to zero. Here, issuing debt is not neutral, and hence
will change allocations and factor prices and potentially violate the requirements of an RPI.

51For an individual agent in incomplete markets it is possible to construct examples where individual consump-
tion falls given an increase in future transfers. However, we are counting on heterogeneity to guarantee that such
individual behavior does not aggregate. Wolf (2021) presents examples of permanent income and hand to mouth
households where these assumptions hold. See also Farhi, Olivi, and Werning, 2022 for general comparative statics
results for incomplete market economies.
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Proof. Suppose there is a feasible RPI, (r𝑜 ,T ). There must be a non-negative sequence of {𝐾𝑡 }∞𝑡=0 such that

C𝑡 (r𝑜 ,T ′) + 𝐾𝑡+1 ≤ 𝐹 (𝐾𝑡 , 𝑁𝑜 ) + (1 − 𝛿)𝐾𝑡

Exploiting the concavity of technology, and that 𝐶𝑜 = 𝐹 (𝐾𝑜 , 𝑁𝑜 ) − 𝛿𝐾𝑜 , we have that

𝐾𝑡+1 − 𝐾𝑜 ≤ (𝑅𝑘 − 1)(𝐾𝑡 − 𝐾𝑜 ) − (C𝑡 (r𝑜 ,T ) −𝐶𝑜 ).

Note that 𝑅𝑘 > 1, together with C increasing in T , implies that 𝐾𝑡 ≤ 𝐾𝑜 for all 𝑡 .
Let 𝑠 be the first time where C𝑠−1(r𝑜 ,T ) > 𝐶𝑜 (such a time exists, given that C is strict increasing in T ). Then,
the above implies that 𝐾𝑠 < 𝐾𝑜 . Now note that

𝐾𝑠+𝑚 − 𝐾𝑜 ≤ (𝑅𝑘 − 1)𝑚(𝐾𝑠 − 𝐾𝑜 )

Given that 𝑅𝑘 > 1, it follows then that 𝐾𝑡 < 0 for 𝑡 large enough, a contradiction. □

When we focus on the case where the economy operates below the Golden Rule, the above
result tells us that in a feasible RPI (under a reasonable assumption on C) an interest rate must
changes at some date. The reason is that with only increases in transfers, aggregate consump-
tion will be higher at all times with the RPI than originally, an impossibility given the resource
constraint and 𝐾𝑜 < 𝐾★.

C Proofs

C.1 Proof of Lemma 1
Towards sufficiency, suppose that the conditions of the lemma hold. Then, for 𝑡 ≥ 0, set 𝜏𝑛𝑡 such
that

𝐹𝑁 (𝐾𝑡 , 𝑁 𝑜 )
(1 + 𝜏𝑛𝑡 )𝜇

= 𝑤𝑜 .

This ensures the labor market clears at 𝑤𝑡 = 𝑤𝑜 and 𝑁𝑡 = 𝑁 𝑜 , where GHH preferences ensure
that the households are willing to supply 𝑁 𝑜 at wage𝑤𝑜 . Note that as 𝐾0 = 𝐾𝑜 is given, 𝜏𝑛0 is the
same as the initial equilibrium. Similarly, the government taxes or subsidizes profits so that

Π𝑡 = (1 − 𝜏𝜋𝑡 )Π̃𝑡 = (1 − 𝜏𝜋𝑡 )(𝜇 − 1)𝐹 (𝐾𝑡 , 𝑁 𝑜 )/𝜇 = Π𝑜 .

This determines 𝜏𝜋𝑡 . Given that at 𝑡 = 0, 𝐾0 is given, 𝜏𝜋0 is as in the initial equilibrium.
Finally, the government must ensure that the representative firm’s choice of capital is consis-

tent with the risk-free interest rate for all 𝑡 ≥ 1:

𝐹𝐾 (𝐾𝑡 , 𝑁 𝑜 ) = (1 + 𝜏𝑘𝑡 )𝜇𝑟𝑘𝑡 = (1 + 𝜏𝑘𝑡 )𝜇(𝑟𝑡 + 𝛿),

which then determines 𝜏𝑘𝑡 . For 𝑡 = 0, as highlighted in footnote 20, we require that 𝑟𝑘0 remains
unchanged, and as 𝐾0 is given and 𝑟0 = 𝑟𝑜 , 𝜏𝑘0 remains as in the original equilibrium.

The sequence of tax rates defined above ensure that firms optimize and markets clear for labor
and capital. By definition of A𝑡 and condition (i) of the lemma, the market for assets also clears
given {𝑟𝑡 ,𝑇𝑡 }.
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The final equilibrium condition involves government revenues and transfers. The total gov-
ernment revenue (before transfers) of this tax policy at all 𝑡 ≥ 0 is given by

Revenue = 𝜏𝑛𝑡 𝑤
𝑜𝑁 𝑜 + 𝜏𝑘𝑡 𝑟

𝑘
𝑡 𝐾𝑡 + 𝜏𝜋𝑡 Π̃𝑡

= (1 + 𝜏𝑛𝑡 )𝑤𝑜𝑁 𝑜 + (1 + 𝜏𝑘𝑡 )𝑟𝑘𝑡 𝐾𝑡 − (1 − 𝜏𝜋𝑡 )Π̃𝑡 −𝑤𝑜𝑁 𝑜 − 𝑟𝑘𝑡 𝐾𝑡 + Π̂𝑡

=
𝐹𝑁 (𝐾𝑡 , 𝑁 𝑜 )𝑁 𝑜 + 𝐹𝐾 (𝐾𝑡 , 𝑁 𝑜 )𝐾𝑡

𝜇
− Π𝑜 −𝑤𝑜𝑁 𝑜 − 𝑟𝑘𝑡 𝐾𝑡 +

(𝜇 − 1)𝐹 (𝐾𝑡 , 𝑁 𝑜 )
𝜇

= 𝐹 (𝐾𝑡 , 𝑁 𝑜 ) − Π𝑜 −𝑤𝑜𝑁 𝑜 − 𝑟𝑘𝑡 𝐾𝑡 ,

where the third line uses (1−𝜏𝜋𝑡 )Π̂𝑡 = Π𝑜 ; the firm’s first-order condition for labor and capital; and
Π̂𝑡 = (𝜇−1)𝐹/𝜇. The last line follows from Euler’s theorem. Note that national income accounting
implies

𝐹 (𝐾𝑜 , 𝑁 𝑜 ) = Π𝑜 +𝑤𝑜𝑁 𝑜 + 𝑟𝑘𝑜𝐾𝑜 + 𝑟𝑜𝐵𝑜 .

Hence, we can replace Π𝑜 +𝑤𝑜𝑁 𝑜 = 𝐹 (𝐾𝑜 , 𝑁 𝑜 ) − 𝑟𝑘𝑜𝐾𝑜 − 𝑟𝑜𝐵𝑜 and 𝑟𝑘𝑡 = 𝑟𝑡 + 𝛿 to obtain

Revenue = 𝐹 (𝐾𝑡 , 𝑁 𝑜 ) − 𝐹 (𝐾𝑜 , 𝑁 𝑜 ) − (𝑟𝑡 + 𝛿)𝐾𝑡 + (𝑟𝑜 + 𝛿)𝐾𝑜 + 𝑟𝑜𝐵𝑜 . (C.17)

As transfers equals revenue plus net debt issuance, we have

𝑇𝑡 ≤ 𝐹 (𝐾𝑡 , 𝑁 𝑜 ) − 𝐹 (𝐾𝑜 , 𝑁 𝑜 ) − (𝑟𝑡 + 𝛿)𝐾𝑡 + (𝑟𝑜 + 𝛿)𝐾𝑜 + 𝑟𝑜𝐵𝑜 + 𝐵𝑡+1 − (1 + 𝑟𝑡 )𝐵𝑡 ,

where the inequality allows for free disposal of government surpluses. This is condition (3), and
thus ensures that the government has a non-negative surplus at every 𝑡 given the proposed taxes,
transfers, and debt issuances. This establishes that given the sequences in the premise, we can
construct a tax plan that implements an equilibrium.

Necessity of condition (i) in the lemma follows from the market clearing condition in the
definition of equilibrium. The necessity of condition (ii) follows from firm optimization and the
government budget constraint. □

C.2 Proof of Corollary 1
Using

𝐹 (𝐾𝑜 , 𝑁 𝑜 ) = 𝑤𝑜𝑁 𝑜 + Π𝑜 + (𝑟𝑜 + 𝛿)𝐾𝑜 + 𝑟𝑜𝐵𝑜 ,

we have
C𝑡 = 𝐹 (𝐾𝑜 , 𝑁 𝑜 ) − (𝑟𝑜 + 𝛿)𝐾𝑜 − 𝑟𝑜𝐵𝑜 + (1 + 𝑟𝑡 )A𝑡 − A𝑡+1 +𝑇𝑡 .

Using A𝑡 = 𝐾𝑡 + 𝐵𝑡 , this is equivalent to

C𝑡 + 𝐾𝑡+1 = 𝐹 (𝐾𝑜 , 𝑁 𝑜 ) − (𝑟𝑜 + 𝛿)𝐾𝑜 − 𝑟𝑜𝐵𝑜 + (1 + 𝑟𝑡 )(𝐾𝑡 + 𝐵𝑡 ) − 𝐵𝑡+1 +𝑇𝑡 .

Substituting into (6) and re-arranging gives (3). □
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C.3 Proof of Lemma 2
For a given 𝜈 , let T ′ = T 𝑜 +𝑇𝜈 be the new transfer sequence. From the continuity condition, we
have

C𝑡 (r𝑜 ,T ′) −𝐶𝑜 ≤ |C𝑡 (r𝑜 ,T ′) −𝐶𝑜 |≤ 𝑀𝜈.

For 𝑡 = 0, we have

C𝑡 (r𝑜 ,T ′) + 𝐾★ ≤ 𝐶𝑜 +𝑀𝜈 + 𝐾★

= 𝐹 (𝐾𝑜 , 𝑁 𝑜 ) − 𝛿𝐾𝑜 + 𝐾★ +𝑀𝜈
= 𝐹 (𝐾𝑜 , 𝑁 𝑜 ) + (1 − 𝛿)𝐾𝑜 + (𝑀𝜈 + 𝐾★ − 𝐾𝑜 )

and hence the condition in Corollary 1 holds for 0 < 𝜈 ≤ (𝐾𝑜 − 𝐾★)/𝑀 ≡ 𝜈1, as 𝐾𝑜 > 𝐾★.
For 𝑡 ≥ 1, it is sufficient if

𝑀𝜈 +𝐶𝑜 ≤ 𝐹 (𝐾★, 𝑁 𝑜 ) − 𝛿𝐾★,

or, using 𝐶𝑜 = 𝐹 (𝐾𝑜 , 𝑁 𝑜 ) − 𝛿𝐾𝑜 ,

𝑀𝜈 ≤ 𝐹 (𝐾★, 𝑁 𝑜 ) − 𝛿𝐾★ − (𝐹 (𝐾𝑜 , 𝑁 𝑜 ) − 𝛿𝐾𝑜) .

Letting 𝜈2 ≡ 𝑀−1 (
𝐹 (𝐾★, 𝑁 𝑜 ) − 𝛿𝐾★ − (𝐹 (𝐾𝑜 , 𝑁 𝑜 ) − 𝛿𝐾𝑜)

)
> 0, this condition is satisfied if 0 <

𝜈 ≤ 𝜈2.
Collecting, for 0 < 𝜈 ≤ min{𝜈1, 𝜈2}, the transfer scheme T ′ = T 𝑜 + T̂𝜈 is implementability

and represents an RPI. □

C.4 Proof of Proposition 1
For a given 𝜈 , let r′ ≡ r𝑜 + r̂𝜈 . Note that (r′,T 𝑜 ) is an RPI. Let us propose the following sequence
of {𝐾𝑡 }∞𝑡=0:

𝐾𝑡 = 𝐾𝑜 + 𝑅−1
𝑘

∞∑︁
𝑠=0

𝑅−𝑠
𝑘

(C𝑡+𝑠 (r′,T 𝑜 ) −𝐶𝑜 ) + ℎ𝜈, for 𝑡 ≥ 1.

with 𝐾0 = 𝐾𝑜 . We will check that such sequence implements (r′,T 𝑜 ) for 𝜈 small enough.
Note that

|𝐾𝑡 − 𝐾𝑜 | ≤ 𝑅−1
𝑘

∞∑︁
𝑠=0

𝑅−𝑠
𝑘
|C𝑡+𝑠 (r′,T 𝑜 ) −𝐶𝑜 |+ℎ𝜈

≤ 𝑅−1
𝑘

∞∑︁
𝑠=0

𝑅−𝑠
𝑘
𝜈𝑀 + ℎ𝜈 =

[(
1

𝑅𝑘 − 1

)
𝑀 + ℎ

]
𝜈 ≡ 𝑀0𝜈,

where the second line uses property (ii). Then, there exists 𝜈1 < 𝜖 such that 𝐾𝑡 > 0 for all 𝑡 ≥ 0
and 𝜈 < 𝜈1.
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Let

𝐹𝐾𝐾 ≡ − sup
𝐾

{|𝐹𝐾𝐾 (𝐾, 𝑁 𝑜 )|: |𝐾 − 𝐾𝑜 |≤ 𝑀0𝜈1}.

As 𝐹𝐾𝐾 is continuous and this is a compact domain, 𝐹𝐾𝐾 is finite. Note that for 𝜈 < 𝜈1, Taylor’s
theorem implies that

𝐹 (𝐾𝑡 , 𝑁 𝑜 ) + (1 − 𝛿)𝐾𝑡 = 𝐹 (𝐾𝑜 , 𝑁 𝑜 ) + (1 − 𝛿)𝐾𝑜 + 𝑅𝑘 (𝐾𝑡 − 𝐾𝑜 ) +
1
2
𝐹𝐾𝐾 (𝐾, 𝑁 𝑜 )(𝐾𝑡 − 𝐾𝑜 )2

for some 𝐾 between 𝐾𝑜 ad 𝐾𝑡 . Using that 𝐹 (𝐾𝑜 , 𝑁 𝑜 ) + (1−𝛿)𝐾𝑜 = 𝐶𝑜 +𝐾𝑜 and that |𝐾𝑡 −𝐾𝑜 |≤ 𝑀0𝜈 ,
we have that

𝐹 (𝐾𝑡 , 𝑁 𝑜 ) + (1 − 𝛿)𝐾𝑡 ≥ 𝐶𝑜 + 𝐾𝑜 + 𝑅𝑘 (𝐾𝑡 − 𝐾𝑜 ) +
𝐹𝐾𝐾

2
(𝑀0𝜈)2

Then, a sufficient condition for (6) from Corollary 1 is

C0(r′,T 𝑜 ) + 𝐾1 ≤ 𝐶𝑜 + 𝐾𝑜

C𝑡 (r′,T 𝑜 ) + 𝐾𝑡+1 ≤ 𝐶𝑜 + 𝐾𝑜 + 𝑅𝑘 (𝐾𝑡 − 𝐾𝑜 ) +
𝐹𝐾𝐾

2
(𝑀0𝜈)2, for all 𝑡 ≥ 1.

For the first inequality, using the proposed 𝐾1, we have that

∞∑︁
𝑠=0

𝑅−𝑠
𝑘

(C𝑠 (r′,T 𝑜 ) −𝐶𝑜 ) + ℎ𝜈 ≤ 0

which holds given (i).
For the second inequalities, using the proposed {𝐾𝑡 }, we have

∞∑︁
𝑠=0

𝑅−𝑠
𝑘

(C𝑡+𝑠 (r′,T 𝑜 ) −𝐶𝑜 ) + ℎ𝜈 ≤
∞∑︁
𝑠=0

𝑅−𝑠
𝑘

(C𝑡+𝑠 (r′,T 𝑜 ) −𝐶𝑜 ) + 𝑅𝑘ℎ𝜈 +
𝐹𝐾𝐾

2
(𝑀0𝜈)2

0 ≤ (𝑅𝑘 − 1)ℎ𝜈 +
𝐹𝐾𝐾

2
(𝑀0𝜈)2

Given that ℎ > 0, there exists 𝜈2 > 0 such that

(𝑅𝑘 − 1)ℎ ≥ −𝐹𝐾𝐾
2
𝑀2

0𝜈

for all 𝜈 ∈ (0, 𝜈2).
Let 𝜈 = min{𝜈1, 𝜈2}. Then (r′,T 𝑜 ) for any 𝜈 ∈ (0, 𝜈) is a feasible RPI. □

C.5 Proof of Corollary 2
Divide both sides of equation 12 by𝑅−𝜏

𝐾
𝐴𝑜 , factor out𝑅𝑜 , and use the definition of 𝜉𝑡,𝜏 to obtain (14).

As shown in the text, this implies (11) is satisfied, which in turn is sufficient for (i) in Proposition
1. Condition (ii) holds by the differentiability of C𝑡 , which is implied by the differentiability of A𝑡
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stated in the premise. □

C.6 Proof of Lemma 3
As in the benchmark model’s Corollary 2, consider a policy that sets 𝑟𝑡 = 𝑟𝑜 for all 𝑡 ̸= 𝜏 and
𝑟𝜏 = 𝑟𝑜 + ∆𝑟𝜏 for some 𝜏 > 0 and ∆𝑟𝜏 > 0. Recall that in the representative agent environment,
𝑅𝑜 ≡ 1 + 𝑟𝑜 = 1/𝛽 . From the Euler equation, we have

𝑐𝑡 =

{
𝑐 for 𝑡 ≤ 𝜏 − 1
𝑐 for 𝑡 ≥ 𝜏,

where 𝑐 and 𝑐 satisfy the Euler equation at time 𝜏 − 1:

𝑢′(𝑐) = 𝛽(1 + 𝑟𝜏 )𝑢′(𝑐).

For small changes around the initial equilibrium consumption 𝐶𝑜 , we can differentiate this to
obtain:

𝑢′′(𝐶𝑜 )
𝑑𝑐

𝑑𝑟𝜏
= 𝛽𝑢′(𝐶𝑜 ) + 𝑢′′(𝐶𝑜 )

𝑑𝑐

𝑑𝑟𝜏
,

where we use the fact that 1 + 𝑟𝑜 = 1/𝛽 . Rearranging, we have

𝑑𝑐

𝑑𝑟𝜏
−
𝑑𝑐

𝑑𝑟𝜏
= 𝐶𝑜𝛽𝜁 , (C.18)

where 𝜁 = −𝑢′(𝐶𝑜 )/(𝑢′′(𝐶𝑜 )𝐶𝑜 ).
Using 𝛽 = 1/𝑅𝑜 , the budget constraint requires:

𝑐
𝜏−1∑︁
𝑡=0

𝛽𝑡 +
𝑐

1 + 𝑟𝜏

∞∑︁
𝑡=0

𝛽𝑡+𝜏−1 = 𝑅𝑜𝐴𝑜 + (𝑤𝑜𝑁 𝑜 + Π𝑜 )

(
𝜏−1∑︁
𝑡=0

𝛽𝑡 +
1

1 + 𝑟𝜏

∞∑︁
𝑡=0

𝛽𝑡+𝜏−1

)
.

Differentiating and using 𝐶𝑜 = 𝑤𝑜𝑁 𝑜 + Π𝑜 + 𝑟𝑜𝐴𝑜 , we obtain:

𝑑𝑐

𝑑𝑟𝜏
+ 𝛽𝜏

(
𝑑𝑐

𝑑𝑟𝜏
−
𝑑𝑐

𝑑𝑟𝜏

)
= 𝛽𝜏+1𝑟𝑜𝐴𝑜 .

Combining this with (C.18), we obtain:

𝑑𝑐

𝑑𝑟𝜏
= 𝛽𝜏+1 (𝑟𝑜𝐴𝑜 − 𝜁𝐶𝑜)

𝑑𝑐

𝑑𝑟𝜏
=
𝑑𝑐

𝑑𝑟𝜏
+ 𝛽𝜁𝐶𝑜 .
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This implies

∞∑︁
𝑡=0

𝑅−𝑡
𝑘

𝜕C𝑡
𝜕𝑟𝜏

=
∞∑︁
𝑡=0

𝑅−𝑡
𝑘

𝑑𝑐

𝑑𝑟𝜏
+

∞∑︁
𝑡=𝜏

𝑅−𝑡
𝑘

(
𝑑𝑐

𝑑𝑟𝜏
−
𝑑𝑐

𝑑𝑟𝜏

)
=

(
1

1 − 𝑅−1
𝑘

)
𝛽𝜏+1 (𝑟𝑜𝐴𝑜 − 𝜁𝐶𝑜) +

(
𝑅−𝜏
𝑘

1 − 𝑅−1
𝑘

)
𝛽𝜁𝐶𝑜 .

Letting 𝜏 → ∞, equation (11) is satisfied if 𝑟𝑜𝐴𝑜 < 𝜁𝐶𝑜 , or 𝜁 > 𝑟𝑜𝐴𝑜

𝐶𝑜
, which is the condition in the

lemma. □

C.7 Proof of Proposition 2
Towards a contradiction, suppose there is a feasible RPI, (r,T ). Given that we start from the
laissez-faire allocation, this requires that T is non-negative. From the feasibility condition in
Corollary 1, we have that there exists a sequence of 𝐾𝑡 such that

𝑤𝑜𝑁 𝑜 + Π𝑜 + (1 + 𝑟𝑡 )A(r,T ) − A𝑡+1(r,T ) +𝑇𝑡 ≤ 𝐹 (𝐾𝑡 , 𝑁 𝑜 ) + (1 − 𝛿)𝐾𝑡 − 𝐾𝑡+1

≤ 𝐹 (𝐾𝑜 , 𝑁 𝑜 ) + (1 − 𝛿)𝐾𝑜︸                     ︷︷                     ︸
𝐶𝑜+𝐾𝑜

+𝑅𝑘 (𝐾𝑡 − 𝐾𝑜 ) − 𝐾𝑡+1

where the last inequality follows from concavity of 𝐹 . Using that 𝑅𝑘 = 1 + 𝑟𝑜 as 𝜇 = 1, we have

𝑤𝑜𝑁 𝑜 + Π𝑜 +𝑇𝑡 + (1 + 𝑟𝑡 )A𝑡 (r,T ) − A𝑡+1(r,T ) ≤ 𝐶𝑜 + (1 + 𝑟𝑜 )(𝐾𝑡 − 𝐾𝑜 ) − (𝐾𝑡+1 − 𝐾𝑜 )
−𝑟𝑜𝐴𝑜 + (1 + 𝑟𝑡 )A𝑡 (r,T ) − A𝑡+1(r,T ) +𝑇𝑡 ≤ (1 + 𝑟𝑜 )(𝐾𝑡 − 𝐾𝑜 ) − (𝐾𝑡+1 − 𝐾𝑜 )

And thus

A𝑡+1(r,T ) − 𝐾𝑡+1 ≥ (1 + 𝑟𝑡 )(A𝑡 (r,T ) − 𝐾𝑡 ) + (𝑟𝑡 − 𝑟𝑜 )𝐾𝑡 +𝑇𝑡

Note that starting from the laissez-faire implies that𝐾𝑜 = 𝐴𝑜 , and thus A𝑡+1(r,T )−𝐾𝑡+1 is always
non-negative, and turns strictly positive whenever 𝑟𝑡 > 𝑟𝑜 or 𝑇𝑡 > 0. Hence, we have that

A𝑡+1(r,T ) − 𝐾𝑡+1 ≥ (1 + 𝑟𝑜 )(A𝑡 (r,T ) − 𝐾𝑡 ) + (𝑟𝑡 − 𝑟𝑜 )𝐾𝑡 +𝑇𝑡

and given that 𝑟𝑜 > 0 (𝐾𝑜 < 𝐾★ and 𝜇 = 1), it follows that A𝑡+1(r,T ) − 𝐾𝑡+1 must necessarily go
to infinity at 𝑡 increases. The finite technology implies that 𝐾𝑡 must remain bounded, and thus
A𝑡+1(r,T ) → ∞. The assumption in the proposition then implies that for any 𝑀 there exists a
𝑠 such that C𝑠 (r,T ) > 𝑀 . For 𝑀 sufficiently large, the resource constraint at 𝑠 must be violated,
generating the contradiction. □
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C.8 Proof of Lemma 4
The proof follows similar steps as the proof of Corollary 1. Factor taxes are defined in the same
manner as in the proof of that corollary. The government budget constraint is:

𝑇𝑡 (𝑠𝑡 ) ≤ 𝐹 (𝑠𝑡 , 𝐾𝑡 (𝑠𝑡−1), 𝑁 𝑜
𝑡 (𝑠𝑡 )) − 𝐹 (𝑠𝑡 , 𝐾𝑜𝑡 (𝑠𝑡−1), 𝑁 𝑜

𝑡 (𝑠𝑡 ))−
𝑟𝑘𝑡 (𝑠𝑡 )𝐾𝑡 (𝑠𝑡−1) + 𝑟𝑘𝑜𝑡 (𝑠𝑡 )𝐾𝑜𝑡 (𝑠𝑡−1) + 𝐵𝑡+1(𝑠𝑡 ) − (1 + 𝑟𝑡 (𝑠𝑡−1))𝐵𝑡 (𝑠𝑡−1).

The aggregated household budget set is:

𝐶𝑡 (𝑠𝑡 ) = 𝑤𝑜
𝑡 (𝑠𝑡 )𝑁 𝑜

𝑡 (𝑠𝑡 )+Π𝑜𝑡 (𝑠
𝑡 )+(1+𝑟𝑘𝑡 (𝑠𝑡 )−𝛿)𝐾𝑡 (𝑠𝑡−1)−𝐾𝑡+1(𝑠𝑡 )+(1+𝑟𝑡 (𝑠𝑡−1))𝐵𝑡 (𝑠𝑡−1)−𝐵𝑡+1(𝑠𝑡 )+𝑇𝑡 (𝑠𝑡 ).

We have
𝐹 (𝑠𝑡 , 𝐾𝑜𝑡 (𝑠𝑡−1), 𝑁 𝑜

𝑡 (𝑠𝑡 )) = 𝑤𝑜
𝑡 (𝑠𝑡 )𝑁 𝑜

𝑡 (𝑠𝑡 ) + Π𝑜𝑡 (𝑠
𝑡 ) + 𝑟𝑘𝑜𝑡 (𝑠𝑡 )𝐾𝑜𝑡 (𝑠𝑡−1).

Using this to substitute for 𝑤𝑜
𝑡 (𝑠𝑡 )𝑁 𝑜

𝑡 (𝑠𝑡 ) + Π𝑜𝑡 (𝑠𝑡 ) in the HH budget constraint, and then use the
resulting expression to substitute for 𝑇𝑡 in the government budget constraint, we obtain the ex-
pression in the lemma:

𝐶𝑡 (𝑠𝑡 ) ≤ 𝐹 (𝑠𝑡 , 𝐾𝑡 (𝑠𝑡−1), 𝑁 𝑜
𝑡 (𝑠𝑡 )) + (1 − 𝛿)𝐾𝑡 (𝑠𝑡−1) − 𝐾𝑡+1(𝑠𝑡 ).

This condition ensures that the government budget constraint and aggregate market clearing
hold, given a sequence of functions 𝐶𝑡 (𝑠𝑡 ) and 𝐾𝑡+1(𝑠𝑡 ). A necessary and sufficient condition for
equilibrium is that the aggregate household policy for consumption, C(𝑠𝑡 ; r, r,T ) satisfies the
above resource condition and the sequence 𝐾 (𝑠𝑡 ) ∈ K(𝑠𝑡 ; r, r,T ). □

D Simulation

D.1 Preferences and Technology
The utility function we consider for households is of the Epstein-Zin form

𝑉𝑖𝑡 =

{
(1 − 𝛽)𝑥1−1/𝜁

𝑖𝑡
+ 𝛽

(
E𝑧𝑉

1−𝛾
𝑖𝑡+1

) 1−1/𝜁
1−𝛾

} 1
1−1/𝜁

, (D.19)

where 𝛽 is the discount factor, 𝜁 is the elasticity of intertemporal substitution,𝛾 is the risk aversion
coefficient, and 𝑥 is the composite of consumption and labor 𝑥𝑖𝑡 = 𝑐𝑖𝑡 − 𝑛1/𝜈

𝑖𝑡
. The parameter

𝜈 controls the Frisch elasticity of the labor supply. We set some of the preference parameters
to conventional values in the literature and others as part of the calibration. The elasticities
of intertemporal substitution and of labor supply are set to the common parameter values of 1
and 0.2, respectively. The discount factor and coefficient of risk aversion are set as part of the
calibration exercise described below. We set the borrowing constraint to zero for all households.

An important part of the parametrization is the stochastic structure for idiosyncratic shocks.
We adopt the structure and estimates from Krueger, Mitman, and Perri (2016), which use micro
data on after-tax labor earnings from the PSID. Idiosyncratic productivity shocks 𝑧𝑖𝑡 contain a
persistent and a transitory component, and their process is as follows: log 𝑧𝑖𝑡 = 𝑧𝑖𝑡 + 𝜀𝑖𝑡 and
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𝑧𝑖𝑡 = 𝜌𝑧𝑧𝑖𝑡−1+𝜂𝑖𝑡 , with persistence 𝜌𝑧 and innovations of the persistent and transitory shocks (𝜂, 𝜀),
and associated variances given by (𝜎2

𝜂 , 𝜎
2
𝜀 ). We set the three parameters controlling this process

(𝜌𝑧, 𝜎2
𝜂 , 𝜎

2
𝜀 ) to .9695, .0320, and .0435, respectively, to reflect the estimated earnings risk in Krueger,

Mitman, and Perri (2016) for employed individuals and the endogenous labor supply decision in
our model. We discretize this process into 10 points, based on the Rouwenhurst method.

As mentioned in the text, we take a parsimonious approach to allocating profits to house-
holds and assume a distinct class of entrepreneurs who are endowed with managerial talent and
consume profit distributions in a hand-to-mouth manner.

The technology specification is Cobb-Douglas, 𝐹 (𝐾, 𝑁 ) = 𝐾𝛼𝑁 1−𝛼 . We use standard values
for the coefficient 𝛼 and for the depreciation rate of capital 𝛿 . The values are 𝛼 = 0.3 and 𝛿 = 0.1.
The markup parameter 𝜇 is set to 1.4.

We calibrate the discount factor and the coefficient of relative risk aversion as follows. We
target a steady state with 60% debt-to-output and capital-to-output of 2.5, where the debt corre-
sponds to the US average over the period 1966-2021 and the capital ratio is taken from Aiyagari
and McGrattan (1998). We treat this steady state as the result of a constant-K policy starting from
a laissez-faire economy. The average interest rate relative to growth in the US over the sample
period is -1.4%, which will be the target for the return on bonds in our steady state. The resulting
parameter values are a discount factor of 𝛽 = 0.993 and a coefficient of risk avers is 𝛾 = 5.5.

D.2 Constant-K Simulation
Our “baseline fiscal policy” is the one which keeps capital constant starting from the laissez-faire.

Table 2: Baseline Constant-𝐾 Policy and Laissez-Faire Economies

Data Constant-𝐾 Policy Laissez-Faire
Aggregates
Public Debt (% output) 60 60 0
Interest Rates(%) -1.4 -1.4 -1.7
Capital (rel. output) 2.5 2.6 2.6
Wealth Distribution
Q1 Wealth Share -1 1 1
Q2 Wealth Share 1 4 4
Q3 Wealth Share 4 11 10
Q4 Wealth Share 13 23 23
Q5 Wealth Share 83 61 63

Table 2 presents some moments in the stationary equilibrium of the economy with baseline
constant-𝐾 fiscal policy and the laissez-faire economy. The levels of public debt, interest rates, and
capital in the economy with the baseline fiscal policy match the data moments by construction.52

The table shows that an increase in debt to output of 60% raises interest rates by 0.3 percentage
points. We also present some moments on the wealth distribution in the steady states—namely
the wealth share of each asset quintile—and compare them with data as reported in Krueger,

52The economy is dynamically efficient, also by construction. To see this, 𝐹𝐾 = 𝛼𝑌/𝐾 = 0.3/2.5 = 0.12, which is
greater than the depreciation rate of 0.10.
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Mitman, and Perri (2016). Our model economies generate skewed distributions of wealth, with
most of the wealth being held by the top quintile of the distribution, although they are not quite
as skewed as the data. In addition in our model economies, a small fraction of agents, about 2%,
are at their borrowing constraint at any period.

D.3 Debt Laffer Curve
We revisit the logic of Figure 1. In particular, long-run seigniorage is given by−𝑟𝐵, while the costs
are captured by ∆𝑟 × 𝐾0. In Figure D.1, we plot these two components for stationary equilibria
with different levels of debt to output for the constant-𝐾 policy studied in subsection 5.2. At each
debt level, tax policy is set to deliver laissez-faire wages and profits. As can be seen, up until debt
levels of roughly 1.7 times the level of output, seigniorage exceeds fiscal costs, implying positive
lump-sum transfers to households. Beyond this level of debt, the increase in interest rates makes
weakly positive transfers infeasible.

Note that these two curves intersect while seigniorage is still increasing in debt. Eventually,
𝑟 becomes close enough to zero that seigniorage begins to decline in debt. The peak of this Laffer
curve occurs at debt levels roughly four times output. Feasible Pareto-improving levels of debt
consistent with a constant-𝐾 policy, however, are much lower than this peak.

While Figure D.1 establishes only that the policy is feasible in the new steady state, the anal-
ysis of transition dynamics in the baseline case above suggests that feasibility in the steady state
is the critical metric. Along the transition, the government is a net issuer of bonds. As long as the
revenue from the net issuances dominates any overshooting of the interest rate, feasibility rests
on long-run considerations.

Figure D.1: Steady-State Seigniorage and Tax Revenue across Debt
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D.4 Computational Algorithm
This appendix describes the computational algorithm we use in solving the model. The code is
available at

https://github.com/manuelamador/micro risks pareto improving policies.
Our procedure consists of three steps. First, we compute the initial and final stationary equi-

libria. The initial one is the laissez-faire equilibrium and the final one has fiscal policy active. A
second step computes the transition of this economy. Finally, we compute the aggregate savings
elasticities associated with an initial laissez-faire equilibrium and operationalize Corollary 2.

D.5 Stationary Equilibrium
The computations of the policy and value functions rely on an endogenous grid method, modified
for the presence of Epstein-Zin preferences. In particular, we use the value function, equation
(D.19), together with the first order condition with respect to consumption:

(1 − 𝛽)𝑥−1/𝜁
𝑖𝑡

≥ 𝛽

(
E𝑧𝑉

1−𝛾
𝑖𝑡+1

) 𝛾−1/𝜁
1−𝛾
E𝑧

(
𝑉

−𝛾
𝑖𝑡+1

𝑑𝑉𝑖𝑡+1

𝑎𝑖𝑡+1

)
.

The envelope condition implies

𝑑𝑉𝑖𝑡+1

𝑎𝑖𝑡+1
= (1 − 𝛽)𝑅𝑡+1𝑉

1/𝜁
𝑖𝑡+1𝑥

−1/𝜁
𝑖𝑡+1 .

Taken together, we obtain the following Euler equation:

𝑥
−1/𝜁
𝑖𝑡

≥ 𝛽

(
E𝑧𝑉

1−𝛾
𝑖𝑡+1

) 𝛾−1/𝜁
1−𝛾
E𝑧

(
𝑉

1/𝜁−𝛾
𝑖𝑡+1 𝑅𝑡+1𝑥

−1/𝜁
𝑖𝑡+1

)
(D.20)

We let 𝜂𝑖𝑡 ≡ 𝑅−𝜁𝑡 𝑥𝑖𝑡 .

Initial. To compute the initial laissez-faire stationary equlibrium, we proceed as follows. Given
a guess for the initial interest rate 𝑅𝑜 , we obtain the wage level consistent with the technology
𝑤𝑜 . We then solve the household problem given wages and interest rates, 𝑤𝑜 , 𝑅𝑜 (and set 𝑇 𝑜 =
0). We do this as follows. Given the wage, the labor supply is easily obtained from the GHH
preferences. We then iterate backwards using an endogenous grid method based on (D.20) and
the value function (D.19). That is, we start with a guess for 𝑉𝑖𝑡+1 and 𝜂𝑖𝑡+1 and use the Euler
equation and the value function to compute the values of 𝑉𝑖𝑡 and 𝜂𝑖𝑡 that are consistent with the
guess and the borrowing constraint, using a linear interpolation. We iterate until 𝑉 and 𝜂 have
converged to some tolerance.

Having solved the households problem, we use the stationary policy function to obtain a
transition function for the distribution of households (as in Young, 2010), and compute the implied
stationary distribution, ∆𝑜 (𝑎, 𝑧). To obtain the stationary general equilibrium, we repeat this for
different values of 𝑅𝑜 until the aggregate of household savings in the stationary state is consistent
(for a given tolerance) with the capital stock given 𝑅𝑜 and the implied total labor supply, 𝑁 𝑜 .
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Final. The final stationary equilibrium computation follows a similar approach as the initial
one. In this case, we know that the wage, and the labor supply remain equal to the values in
the initial equilibrium. For a given guess of the interest rate 𝑅1, a target level of government
debt 𝐵1 and a long-run level of capital 𝐾1, we use the government budget constraint to obtain
the implied transfers, 𝑇 1, that make the government budget constraint hold with equality in the
stationary equilibrium (using inequality (3) with equality). We then solve the household problem
given 𝑤𝑜 , 𝑅1 and 𝑇 1. As in the initial stationary equilibrium, we iterate on 𝑅1 (and obtaining a
new 𝑇 1) until the aggregate of the household savings equal the sum of 𝐾1 and 𝐵1.

D.6 Transition
At time 0, the government announces a sequence of fiscal policies that implements a sequence of
capital and debt {𝐾𝑡 , 𝐵𝑡 }𝐻𝑡=0. We will assume that at period𝐻 , the economy is in the final stationary
equilibrium, with 𝐾𝐻 = 𝐾1 and 𝐵𝐻 = 𝐵1.

We use Lemma 1 to compute the transition as follows. We start with a guess of interest rates
{𝑅0, 𝑅1, 𝑅2, ..., 𝑅𝐻 } with 𝑅0 = 𝑅𝑜 and 𝑅𝐻 = 𝑅1. Given this guess, we can use (3) with equality to
obtain the sequence of implied transfers,𝑇𝑡 . Starting from the value function𝑉 1 and the additional
state 𝜂1 set at the values of the final equilibrium, we use the Euler equation and the value function
to iterate backwards and construct a sequence of𝑉𝑡 and𝜂𝑡 . With these sequences, we compute the
policy functions and the transition function for the distribution of households. We then, starting
from Λ𝑜 , iterate forward the evolution of the distribution. With this, we compute the aggregate
of the household savings at each time, 𝐴𝑡 . We then look for a root: a sequence {𝑅𝑡 } such that
𝐴𝑡 = 𝐵𝑡 + 𝐾𝑡 for all 𝑡 ≤ 𝐻 (up to some tolerance), as required by Lemma 1.53

D.7 Transition with Aggregate Shocks
We extend our algorithm to incorporate aggregate uncertainty that is resolved in period 1. We
start the economy at time 𝑡 = 0 from the same initial stationary laissez-faire equilibrium as in
the previous examples. Agents understand that at 𝑡 = 1 the economy is hit with an aggregate
productivity shock, 𝑍1 ∈ {𝑍ℎ, 𝑍 𝑙 } with equal probability, and that the productivity reverts to the
initial level over time.

We first recover the path of aggregate capital that will arise in the laissez-faire economy
after introducing the shock. Given that the borrowing limit is 0 (and there are not short-selling
constraints), we do not need to solve a portfolio problem, as households will only invest in capital.
We guess and iterate on two paths on capital returns that generate market clearing given the
household optimization and aggregation. We assume that the economy is back at the initial
steady state levels after 𝐻 periods (that is, the capital paths have converged back to where they
started). The procedure to compute this is similar to what we did in the benchmark exercise.
From this step, we recover the laissez-faire sequences of capital, one for each of the two shock
paths, {𝐾ℎ0 , 𝐾ℎ1 , ..., 𝐾ℎ𝐻 } and {𝐾𝑙0, 𝐾𝑙1, ..., 𝐾𝑙𝐻 }. Note that given our shock structure, 𝐾ℎ0 = 𝐾𝑙0 = 𝐾0,
and 𝐾ℎ1 = 𝐾𝑙1.

53For this part, we use a quasi-newton method based on the Jacobian of the aggregate asset function at the initial
equilibrium. The computation of the jacobian is discussed in the next subsection.
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The government announces a sequence of fiscal policies that implement a sequence of capital
and debt {𝐾 𝑗

𝑡 , 𝐵𝑡 }𝐻𝑡=0 for 𝑗 = {ℎ, 𝑙} where 𝐾 remains as in the laissez-faire transition. The paths
of 𝐵 are assumed equal to the path in the benchmark exercise and independent of the shock.
As before, we assume that at period 𝐻 , the economy is in the final stationary equilibrium, with
𝐾𝐻 = 𝐾1 and 𝐵𝐻 = 𝐵1.

We compute the transitions as follows. We start with guesses for capital returns and risk-free
rates. Given the shock structure, the returns on capital net of depreciation 𝑅𝑘𝑡 and bonds 𝑅𝑡 are
equal to each other for 𝑡 > 1. This means that we need to guess the paths for the returns to capital
{𝑅 𝑗,𝑘1 , 𝑅

𝑗,𝑘

2 , ..., 𝑅
𝑗,𝑘

𝐻
} for 𝑗 = {ℎ, 𝑙} and the risk-free rate from period 0 to 1, 𝑅1, with 𝑅 𝑗0 = 𝑅𝑜 and

𝑅
𝑗

𝐻
= 𝑅1 for 𝑗 = {ℎ, 𝑙}. Given these guesses, we can use (16) to obtain the sequence of implied

transfers,𝑇 𝑗𝑡 . As above, starting from the value function𝑉 1 and composite 𝑥1 set at the values of
the final equilibrium, we use the Euler equation and the value function to iterate backwards up
to 𝑡 = 1 and construct sequences of𝑉 𝑗

𝑡 and 𝑥 𝑗𝑡 for each shock path 𝑗 = {ℎ, 𝑙}. Note that from 𝑡 = 1
on, each path does not face uncertainty, and therefore the households do not choose a portfolio
between capital and bonds.

The problem at 𝑡 = 0, however, contains a portfolio problem, which we solve using a change
of variables and by generalizing the endogenous grid method. Let 𝜃𝑖 be household’s 𝑖 share of
total savings 𝑎𝑖,1 allocated to risky capital and (1 − 𝜃𝑖 ) be the share allocated to bonds. At 𝑡 = 0
households choose total savings𝑎𝑖,1 and the portfolio𝜃𝑖 to satisfy an Euler equation and a portfolio
equation:

𝑥
−1/𝜁
𝑖,0 ≥ 𝛽

(
E𝑧𝑉

1−𝛾
𝑖,1

) 𝛾−1/𝜁
1−𝛾
E𝑧, 𝑗

(
𝑉

1/𝜁−𝛾
𝑖,1 ((1 − 𝜃𝑖 )𝑅1 + 𝜃𝑖𝑅𝑘,𝑗1 )𝑥−1/𝜁

𝑖,1

)
𝑅1E𝑧, 𝑗

(
𝑉

1/𝜁−𝛾
𝑖,1 𝑥

−1/𝜁
𝑖,1

)
+ 𝜆𝑖 = E𝑧, 𝑗

(
𝑉

1/𝜁−𝛾
𝑖,1 (𝑅𝑘,𝑗1 )𝑥−1/𝜁

𝑖,1

)
+ 𝜆

𝑖

where 𝜆𝑖 is the multiplier of the constraint that 𝜃𝑖 > 0 and 𝜆
𝑖

is the multiplier of the constraint
that 𝜃𝑖 < 1.

In our backward iteration, we arrive at 𝑡 = 1, with 𝑥𝑖,1 and 𝑉𝑖,1. We first solve for 𝜃𝑖 using the
portfolio equation above by taking into account that 𝑥𝑖,1 and 𝑉𝑖,1 depend on total cash-on-hand
𝜔𝑖,1 which is the portfolio return, 𝜔𝑖,𝑡 = (𝜃𝑖𝑅𝑘,𝑗1 + (1−𝜃𝑖 )𝑅1)𝑎1. Effectively, we perform a change of
variables and solve for optimal 𝜃𝑖 to satisfy the portfolio equation, using interpolation. We then
iterate back to period 0 and solve for optimal savings, taking into account that optimal 𝜃𝑖 depends
on 𝑎1, using the Euler equation.

We now have all the sequences of 𝑉 𝑗

𝑖𝑡
and 𝑥 𝑗

𝑖𝑡
for all households. With these sequences, we

compute the policy functions and the transition function for the distribution of households. We
then, starting from Λ𝑜 , iterate forward the evolution of the distribution. With this, we compute
the aggregate of the household savings at each time,𝐴 𝑗𝑡 for 𝑗 = {ℎ, 𝑙} and also compute the capital
demand in period 0, K1. We then look for a root: sequences {𝑅𝑘,𝑗𝑡 } and 𝑅1 such that 𝐴 𝑗𝑡 = 𝐵 𝑗𝑡 + 𝐾 𝑗

𝑡

for all 𝑡 ≤ 𝐻 and 𝑗 = {ℎ, 𝑙} and K1 = 𝐾1 (up to some tolerance).

D.8 Elasticities
The computation of the elasticities we fixed a horizon, 𝐻 , and set a value 𝜏 < 𝐻 to be the date
where the interest rate changes. We then solve for the sequence of 𝑉 and 𝜂 associated with a
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sequence of interest rates such that 𝑅𝑡 = 𝑅𝑜 for 𝑡 ̸= 𝜏 and 𝑅𝜏 = 𝑅𝑜 +∆, by iterating backwards from
𝑡 = 𝜏 and starting with the laissez-faire equilibrium values. We iterate forward the distribution
and compute the implied aggregate savings at each date from 𝑡 = 1 to 𝐻 , 𝐴𝑢𝑝𝑡 . We do the same
for a sequence of interest rates such that 𝑅𝑡 = 𝑅𝑜 for 𝑡 ̸= 𝜏 and 𝑅𝜏 = 𝑅𝑜 − ∆, and obtain the
sequence of aggregate savings, 𝐴𝑑𝑜𝑤𝑛𝑡 . We then compute the (two-sided) numerical derivative,
(𝐴𝑢𝑝𝑡 −𝐴𝑑𝑜𝑤𝑛𝑡 )/(2∆) at each time up to 𝐻 , and use these to construct the elasticities 𝜉𝑡,𝜏 .54

E The Growth Economy
In this appendix, we show how the key expressions of Section 2 are modified by the presence
of exogenous labor-augmenting technological growth. The derivations are standard and are in-
cluded for completeness.

Assume technology is given by

𝑌𝑡 = 𝐹 (𝐾𝑡 , (1 + 𝑔)𝑡𝐿𝑡 ),

where𝑔 ≥ 0 is the constant rate of growth of labor-augmenting technology. Letting a tilde denote
variables divided by (1 + 𝑔)𝑡 , constant returns implies

�̃�𝑡 ≡ (1 + 𝑔)−𝑡𝑌𝑡 = 𝐹 (�̃�𝑡 , 𝐿𝑡 ).

The representative firm’s first-order conditions are (dropping 𝑡 subscripts)

𝐹𝑘 (�̃�, 𝐿) = 𝜇(1 + 𝜏𝑘 )𝑟𝑘

𝐹𝑙 (�̃�, 𝐿) = 𝜇(1 + 𝜏𝑛)�̃� .

We also have Π̃ = (1 − 𝜏𝜋 )(𝜇 − 1)𝐹 (�̃�, 𝐿)/𝜇.
Given the absence of a wealth effect on labor supply, we assume that the disutility of working

grows at rate 𝑔 as well (dropping 𝑖 and 𝑡 indicators):

𝑥 (𝑐, 𝑛) = 𝑐 − (1 + 𝑔)𝑡𝑣(𝑛),

giving us
𝑥 (𝑐, 𝑛) ≡ (1 + 𝑔)−𝑡𝑥 (𝑐, 𝑛) = 𝑐 − 𝑣(𝑛).

We also assume that the borrowing constraint is scaled by (1 + 𝑔)𝑡 .
We can write the household’s problem as

𝑉𝑡 (𝑎, 𝑧, 𝜃 ) = max
𝑎′,𝑛,𝑐

𝜙(𝑥 (𝑐, 𝑛), ℎ(𝑉𝑡+1(𝑎′, 𝑧′, 𝜃 ′)))

s.t. 𝑐 + 𝑎′ ≤ 𝑤𝑡𝑧𝑛 + 𝜃Π𝑡 + (1 + 𝑟𝑡 )𝑎 +𝑇𝑡
𝑎′ ≥ (1 + 𝑔)𝑡+1𝑎,

where we have altered the last constraint to account for growth and ℎ is a certainty equivalent
54This is what Auclert, Bardóczy, Rognlie, and Straub, 2021 refer to as the “direct method”.

xvii



operator. The constraint set can be rewritten as

𝑐 + (1 + 𝑔)𝑎′ ≤ �̃�𝑡𝑧𝑛 + 𝜃 Π̃𝑡 + (1 + 𝑟𝑡 )𝑎 +𝑇𝑡
𝑎′ ≥ 𝑎.

Thus, if (𝑐, 𝑛, 𝑎′) is feasible at time 𝑡 , then (𝑐, 𝑛, 𝑎′) satisfies the normalized constraint set and vice
versa. If we assume 𝜙 is constant-returns in 𝑥 and ℎ is homogeneous of degree 1, if 𝑉𝑡 (𝑎, 𝑧, 𝜃 )
satisfies the consumer’s Bellman equation, then �̃�𝑡 (𝑎, 𝑧, 𝜃 ) ≡ (1 + 𝑔)−𝑡𝑉𝑡 (𝑎, 𝑧, 𝜃 ) satisfies

�̃�𝑡 (𝑎, 𝑧, 𝜃 ) = max
𝑐,𝑛,𝑎′

𝜙(𝑥 (𝑐, 𝑛), (1 + 𝑔)ℎ(�̃�𝑡+1(𝑎′, 𝑧′, 𝜃 ′))),

subject to the normalized constraint set, and vice versa.55

Note that for an interior optimum for 𝑛, the first-order condition can be expressed as follows:

𝑣′(𝑛) = 𝑧�̃� .

Hence, labor supply is constant as long as �̃� remains constant.
The government’s budget constraint can be rewritten in normalized form:

𝑇𝑡 = 𝜏𝑛𝑡 �̃�𝑡𝑁𝑡 + 𝜏𝑘𝑡 𝑟
𝑘
𝑡 �̃�𝑡 + 𝜏𝜋𝑡 Π̃𝑡/(1 − 𝜏𝜋𝑡 ) + (1 + 𝑔)�̃�𝑡+1 − (1 + 𝑟𝑡 )�̃�𝑡 .

Let �̃�𝑡 ≡ 𝜏𝑛𝑡 �̃�
𝑜𝑁 𝑜 + 𝜏𝑘𝑡 𝑟𝑘𝑡 �̃�𝑡 + 𝜏𝜋𝑡 Π̃𝑜/(1 − 𝜏𝜋𝑡 ) denote normalized tax revenue before transfers

when keeping after tax normalized wages and profits constant. Following the same steps as the
proof of Lemma 1, we have

�̃�𝑡 = 𝐹 (�̃�𝑡 , 𝑁 𝑜 ) − 𝐹 (�̃�𝑜 , 𝑁 𝑜 ) − (𝑟𝑡 + 𝛿)�̃�𝑡 + (𝑟𝑜 + 𝛿)�̃�𝑜 .

Condition (iii) of Lemma 1 (equation (3)) becomes

(1 + 𝑔)�̃�𝑡+1 − (1 + 𝑟𝑡 )�̃�𝑡 −𝑇𝑡 ≥ 𝐹 (�̃�𝑜 , 𝑁 𝑜 ) − 𝐹 (�̃�𝑡 , 𝑁 𝑜 ) − (𝑟𝑜 + 𝛿)�̃�𝑜 + (𝑟𝑡 + 𝛿)�̃�𝑡 .

Condition (ii) becomes 𝑇𝑡 ≥ −(𝑟𝑡 − 𝑟𝑜 )�̃�, and condition (i) remains unchanged. Note that in a
steady state (that is, relevant aggregates grow at rate 𝑔), Condition (iii) becomes

(𝑔 − 𝑟𝑠𝑠 )�̃�𝑠𝑠 −𝑇𝑠𝑠 ≥ 𝐹 (�̃�0, 𝑁
𝑜 ) − 𝐹 (�̃�𝑠𝑠, 𝑁 𝑜 ) − (𝑟𝑜 + 𝛿)�̃�𝑜 + (𝑟𝑡 + 𝛿)�̃�𝑠𝑠 .

Hence, debt increases government revenues in the steady state as long as 𝑔 > 𝑟𝑠𝑠 . Expressions in
Claims 1 and 2 are adjusted in a similar fashion to obtain normalized equivalents.
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