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OA.1 Proof of Theorem 2

To show that Hτ ⊆ I(F τ
R, F

τ
L), consider any H ∈ Hτ . Let µ ∈ M and any r ∈ Rτ be a signal

and a selection rule, respectively, such that Hτ (·|µ, r) = H. By the definition of Hτ (·|µ, r),
it must be that, for all x ∈ R,

Hτ (x|µ, r) ≤ µ({G ∈ F0|G−1(τ) ≤ x}) = µ({G ∈ F0|G(x) ≥ τ}).

Now consider any x ∈ R. Clearly, µ({G ∈ F0|G(x) ≥ τ}) ≤ 1, since µ is a probability

measure. Moreover, let M+
x (q) := µ({G ∈ F0|G(x) ≥ q}) for all q ∈ [0, 1]. From (1), it

follows that the left-limit of 1 − M+
x is a CDF and a mean-preserving spread of a Dirac

measure at F (x). Therefore, whenever τ ≥ F (x), then M+
x (τ) can be at most F (x)/τ to

have a mean of F (x).1 Together, this implies that µ({G ∈ F0|G(x) ≥ τ}) ≤ F τ
L(x) for all

x ∈ R.

At the same time, by the definition of Hτ (·|µ, r), it must be that, for all x ∈ R,

Hτ (x−|µ, r) ≥ µ({G ∈ F0|G−1(τ+) < x}) = µ({G ∈ F0|G(x) > τ}).

Consider any x ∈ R. Since µ is a probability measure, it must be that µ({G ∈ F0|G(x) >

τ}) ≥ 0. Furthermore, let M−
x (q) := µ({G ∈ F0|G(x) > q}) for all q ∈ [0, 1]. From (1), it

follows that 1 − M−
x is a CDF and a mean-preserving spread of a Dirac measure at F (x).

Therefore, whenever τ ≤ F (x), then M−
x (τ) must be at least (F (x) − τ)/(1 − τ) to have a

∗Yale School of Management, Email: kaihao.yang@yale.edu
†Yale School of Management, Email: alexander.zentefis@yale.edu
1More specifically, to maximize the probability at τ , a mean-preserving spread of F (x) must assign prob-

ability F (x)/τ at τ , and probability 1− F (x)/τ at 0.
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mean of F (x).2 Together, this implies that µ({G ∈ F0|G(x) > τ}) ≥ F τ
R for all x ∈ R, which,

in turn, implies that F τ
R(x) ≤ Hτ (x−|µ, r) ≤ Hτ (x|µ, r) ≤ F τ

L(x) for all x ∈ R, as desired.

To prove that I(F τ
R, F

τ
L) ⊆ Hτ , we first show that for any extreme point H of I(F τ

R, F
τ
L),

there exists a signal µ ∈ M and a selection rule r ∈ Rτ such that H(x) = Hτ (x|µ, r) for all
x ∈ R. Consider any extreme point H of I(F τ

R, F
τ
L). By Theorem 1, there exists a countable

collection of intervals {(xn, xn)}∞n=1 such that H satisfies 1 and 2. Since (1−F τ
L(x))F

τ
R(x) = 0

for all x /∈ [F−1(τ), F−1(τ+)], there exists at most one n ∈ N such that 0 < H(xn) = F τ
L(xn) =

F τ
R(x

−
n ) = H(x−

n ) < 1. Therefore, for x and x defined as

x := sup{xn|n ∈ N, H(xn) = F τ
L(xn)},

and

x := inf{xn|n ∈ N, H(x−
n ) = F τ

R(x
−
n )},

respectively, it must be that x ≥ x, and that for all n ∈ N, either xn ≤ x andH(xn) = F τ
L(xn);

or xn ≥ x and H(x−
n ) = F τ

R(x
−
n ). Henceforth, let N1 be the collection of n ∈ N such that

xn ≤ x and H(xn) = F τ
L(xn), and let N2 be the collection of n ∈ N such that xn ≥ x and

H(x−
n ) = F τ

R(x
−
n ). Note that N1 ∪ N2 = N and that |N1 ∩ N2| ≤ 1, with xn = x and xn = x

whenever n ∈ N1 ∩ N2.

We now construct a signal µ ∈ M and a selection rule r ∈ Rτ such that Hτ (·|µ, r) = H.

To this end, let η := H(x−) −H(x) and let x̂ := inf{x ∈ [x, x]|H(x) = H(x−)}. Note that

by the definition of x and x, if η > 0, then x̂ ∈ (x, x) and H(x) = H(x) for all x ∈ [x, x̂),

while H(x) = H(x−) for all x ∈ [x̂, x). In particular, F τ
L(x̂) ≥ H(x̂) = F τ

L(x) + η, and hence

F (x̂)− τη ≥ F (x). Likewise, F (x̂) + (1− τ)η ≤ F (x−). Let

y := F−1([F (x̂)− τη]+), and y := F−1(F (x̂) + (1− τ)η)).

It then follows that x ≤ y ≤ x̂ ≤ y ≤ x, with at least one inequality being strict if η > 0.

Next, define F̂ as follows: F̂ ≡ 0 if η = 0; and

F̂ (x) :=


0, if x < y

F (x)−(F (x̂)−τη)
η

, if x ∈ [y, y)

1, if x ≥ y

,

if η > 0. Clearly F̂ ∈ F0 if η > 0, and x̂ ∈ [F̂−1(τ), F̂−1(τ+)]. Moreover, for all x ∈ R, let

F̃ (x) :=
F (x)− ηF̂ (x)

1− η
.

2More specifically, to minimize the probability at τ , a mean-preserving spread of F0(x) must assign
probability (F (x)− τ)/(1− τ) at 1, and probability 1− (F (x)− τ)/(1− τ) at 0.
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By construction, ηF̂ + (1 − η)F̃ = F . From the definition of y and y, it can be shown that

F̃ ∈ F0 as well. Furthermore,

F̃ (x−)− F̃ (x) =
F (x−)− F (x)− η

1− η
=

1

1− η

[
τ

1− τ
(1− F (x−)) +

1− τ

τ
F (x)

]
.

Next, define F̃1 and F̃2 as follows:

F̃1(x) :=


F (x)

F (x)+α(F (x−)−F (x)−η)
, if x < x

F (x)α(F (x)−F (x)−η)

F (x)+α(F (x−)−F (x)−η)
, if x ∈ [x, x)

1, if x ≥ x

;

and

F̃2(x) :=


0, if x < x

(1−α)(F (x)−F (x)−η)

1−F (x−)+(1−α)(F (x−)−F (x)−η)
, if x ∈ [x, x)

F (x)−F (x)+(1−α)(F (x−)−F (x)−η)

1−F (x−)+(1−α)(F̃ (x−)−F̃ (x)−η)
, if x ≥ x

,

where

α :=
1−τ
τ
F (x)

τ
1−τ

(1− F (x−)) + 1−τ
τ
F (x)

.

By construction, α̃F̃1 + (1− α̃)F̃2 = F̃ , where α̃ ∈ (0, 1) is given by α̃ := [F (x) + α(F (x−)−
F (x)− η)]/(1− η). Moreover, F̃1(x) ≥ τ , and F̃2(x

−) ≤ τ .

Now define two classes of distributions, {F̃ x
1 }x≤x and {F̃ x

2 }x≥x, as follows:

F̃ x
1 (z) :=


0, if z < x

F̃ (x), if z ∈ [x, x)

F̃ (z), if z ≥ x

; and F̃ x
2 (z) :=


F̃ (z), if z < x

F̃ (x−), if z ∈ [x, x)

1, if z ≥ x

.

Note that since F̃1(x) ≥ τ and F̃2(x
−) ≤ τ , x ∈ [(F̃ x

1 )
−1(τ), (F̃ x

1 )
−1(τ+)] for all x ≤ x and

x ∈ [(F̃ x
2 )

−1(τ), (F̃ x
2 )

−1(τ+)] for all x ≥ x. Moreover, for any n ∈ N1 and for any m ∈ N2, let

F̃ n
1 (z) :=

1

F̃ (xn)− F̃ (xn)

∫ xn

xn

F̃ x
1 (z)F̃ (dx),

and

F̃m
2 (z) :=

1

F̃ (xm)− F̃ (xm)

∫ xm

xm

F̃ x
2 (z) dF̃ (dx),

for all z ∈ R. By construction, F̃ n
1 , F̃

m
2 ∈ F0 and xn ∈ [(F̃ n

1 )
−1(τ), (F̃ n

1 )
−1(τ+)], xm ∈

[(F̃m
2 )−1(τ), (F̃m

2 )−1(τ+)] for all n ∈ N1 and m ∈ N2.
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Next, for any x ∈ R, let G̃x ∈ F0 be defined as

G̃x(z) :=


F̃ x
1 (z), if x ∈ (−∞, x]\ ∪n∈N1 [xn, xn)

F̃ n
1 (z), if x ∈ [xn, xn), n ∈ N1

F̃ x
2 (z), if x ∈ [x,∞)\ ∪m∈N2 [xm, xm)

F̃m
2 (z), if x ∈ [xm, xm), m ∈ N2

,

for all z ∈ R. Let

H̃(x) :=


H(x)
1−η

, if x < x
H(x)
1−η

, if x ∈ [x, x)
H(x)−η
1−η

, if x ≥ x

,

and define µ̃ as

µ̃({G̃x ∈ F0|x ≤ z}) := H̃(z),

for all z ∈ R. Then, by construction, for any z ∈ R,∫
F
F (z)µ̃(dF ) =

∫
R
G̃x(z)H̃(dx) = F̃ (z). (OA.1)

Moreover, let r̃ : F0 → ∆(R) be defined as

r̃(G) :=

{
δ{G−1(τ+)}, if G = G̃x, x ≥ x

δ{G−1(τ)}, otherwise
,

for all G ∈ F0. It then follows that Hτ (x|µ̃, r̃) = H̃(x) for all x ∈ R. Next, let µ ∈ ∆(F0), r ∈
Rτ together be defined as

µ := (1− η)µ̃+ ηδ{F̂},

and

r(G) :=

{
δ{x̂}, if G = F̂

r̃(G), otherwise
,

for all G ∈ F0. Since F = ηF̂ + (1− η)F̃ , together with (OA.1), we have µ ∈ M. Moreover,

since Hτ (·|µ̃, r̃) = H̃, we have Hτ (x|µ, r) = H(x) for all x ∈ R.

Lastly, let Γ be a collection of probability measures γ ∈ ∆(R×F0) such that γ({(x,G) ∈
R ×F0|x ∈ [G−1(τ), G−1(τ+)]}) = 1 and∫

R×F0

G(x)γ(dx, dG) = F (x),
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for all x ∈ R. Define a linear functional Ξ : Γ → F0 as

Ξ(γ)[x] := γ((−∞, x],F0),

for all γ ∈ Γ and for all x ∈ R. Then, since for any Ĥ in the set of extreme points

ext(I(F τ
R, F

τ
L)) of I(F τ

R, F
τ
L), there exists µ̂ ∈ M and r̂ ∈ Rτ such that Hτ (x|µ̂, r̂) = Ĥ(x)

for all x ∈ R, it must be that ext(I(F τ
R, F

τ
L)) ⊆ Ξ(Γ).

Now consider any H ∈ I(F τ
R, F

τ
L). Since I(F τ

R, F
τ
L) is a compact and convex set of a

metrizable, locally convex topological space,3 Choquet’s theorem implies that there exists a

probability measure ΛH ∈ ∆(I(F τ
R, F

τ
L)) with ΛH(ext(I(F τ

R, F
τ
L))) = 1 such that∫

I(F τ
R,F τ

L)

Ĥ(x)ΛH(dĤ) = H(x),

for all x ∈ R. Define a measure Λ̃H by

Λ̃H(A) := ΛH({Ξ(γ)|γ ∈ A}),

for all measurable A ⊆ Γ. Since ΛH(ext(I(F τ
R, F

τ
L))) = 1 and ext(I(F τ

R, F
τ
L)) ⊆ Ξ(Γ), Λ̃H is

a probability measure on Γ. For any x ∈ R and for any measurable A ⊆ F0, let

γ((−∞, x], A) :=

∫
Γ

γ̃((−∞, x], A)Λ̃H(dγ̃),

and let µ(A) := γ(R, A). By construction, for all x ∈ R,∫
F
G(x)µ(dG) =

∫
Γ

(∫
R×F0

G(x)γ̃(dx̃, dG)

)
Λ̃H(dγ̃) = F (x),

and hence µ ∈ M. Furthermore, by the disintegration theorem (c.f., Çinlar 2010, the-

orem 2.18), there exists a transition probability r : F0 → ∆(R) such that γ(dx, dG) =

r(dx|G)µ(dG). Since Λ̃H(Γ) = 1, and since r is a transition probability, we have r ∈ Rτ .

3To see this, recall that for any sequence {Hn} ⊆ I(F τ
R, F

τ
L), Helly’s selection theorem implies that there

exists a subsequence {Hnk
} ⊆ {Hn} that converges pointwise (and hence, in weak-*) to some H ∈ I(F τ

R, F
τ
L).
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Finally, for any x ∈ R, since Ξ is affine,

Hτ (x|µ, r) = γ((−∞, x],F0) =Ξ(γ)[x]

=

∫
Γ

Ξ(γ̃)[x]Λ̃H(dγ̃)

=

∫
ext(I(F τ

R,F τ
L))

Ĥ(x)ΛH(dĤ)

=H(x),

as desired. This completes the proof. ■

OA.2 Proof of Theorem 3

By Theorem 2,

H̃τ ⊆ Hτ = I(F τ
R, F

τ
L).

It remains to show that ⋃
ε>0

I(F τ,ε
R , F τ,ε

L ) ⊆ H̃τ .

To this end, let M̃τ be the collection of µ ∈ M such that µ({G ∈ F0|G−1(τ) < G−1(τ+)}) =
0. Consider any ε > 0 and any extreme point H of I(F τ,ε

R , F τ,ε
L ). By Theorem 1, there

exists a countable collection of intervals {(xn, xn)}∞n=1 such that H satisfies 1 and 2. Since

(1 − F τ,ε
R (x))F τ,ε

L (x) = 0 for all x ̸= F−1
0 (τ), there exists at most one n ∈ N such that

0 < H(xn) = F τ,ε
R (xn) = F τ,ε

L (x−
n ) = H(x−

n ) < 1. Therefore, for x and x defined as

x := sup{xn|n ∈ N, H(xn) = F τ,ε
R (xn)} and x := inf{xn|n ∈ N, H(x−

n ) = F τ,ε
L (x−

n )},

respectively, it must be that x ≥ x, and that, for all n ∈ N, either xn ≤ x and H(xn) =

F τ,ε
L (xn), or xn ≥ x and H(x−

n ) = F τ,ε
R (x−

n ). Henceforth, let N1 be the collection of n ∈ N

such that xn ≤ x and H(xn) = F τ,ε
L (xn), and let N2 be the collection of n ∈ N such that

xn ≥ x and H(x−
n ) = F τ,ε

R (x−
n ). Note that N1 ∪ N2 = N and that |N1 ∩ N2| ≤ 1, with xn = x

and xn = x whenever n ∈ N1 ∩ N2.

We now construct a signal µ ∈ M̃τ such that Hτ (·|µ) = H. First, let η := H(x−)−H(x)

and let x̂ := inf{x ∈ [x, x]|H(x) = H(x−)}. Note that, by the definition of x and x, if η > 0,

then x̂ ∈ (x, x) and H(x) = H(x) for all x ∈ [x, x̂), while H(x) = H(x−) for all x ∈ [x̂, x).

In particular, F τ,ε
L (x̂) ≥ H(x̂) = F τ,ε

L (x) + η, and hence F (x̂) − (τ + ε)η ≥ F (x). Likewise,

F (x̂) + (1− τ + ε)η ≤ F (x−). Now let

y := F−1(F (x̂)− (τ + ε)η), and y := F−1(F (x̂) + (1− τ + ε)η).
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It then follows that x ≤ y ≤ x̂ ≤ y ≤ x, with at least one inequality being strict if η > 0.

Next, define F̂ as follows: F̂ ≡ 0 if η = 0; and

F̂ (x) :=


0, if x < y

F (x)−(F (x̂)−(τ+ε)η)
η

, if x ∈ [y, y)

1, if x ≥ y

,

if η > 0. Clearly F̂ ∈ F0 if η > 0, and x̂ = F̂−1(τ). Moreover, for all x ∈ R, let

F̃ (x) :=
F (x)− ηF̂ (x)

1− η
.

By construction, ηF̂ + (1 − η)F̃ = F . From the definition of y and y, it can be shown that

F̃ ∈ F0 as well. Furthermore,

F̃ (x−)− F̃ (x) =
F (x−)− F (x)− η

1− η
=

1

1− η

[
τ − ε

1− (τ − ε)
(1− F (x−)) +

1− (τ + ε)

τ + ε
F (x)

]
.

Next, define F̃1 and F̃2 as follows:

F̃1(x) :=


F (x)

F (x)+α(F (x−)−F (x)−η)
, if x < x

F (x)α(F (x)−F (x)−η)

F (x)+α(F (x−)−F (x)−η)
, if x ∈ [x, x)

1, if x ≥ x

;

and

F̃2(x) :=


0, if x < x

(1−α)(F (x)−F (x)−η)

1−F (x−)+(1−α)(F (x−)−F (x)−η)
, if x ∈ [x, x)

F (x)−F (x)+(1−α)(F (x−)−F (x)−η)

1−F (x−)+(1−α)(F̃ (x−)−F̃ (x)−η)
, if x ≥ x

,

where

α :=

1−(τ+ε)
τ+ε

F (x)

τ−ε
1−(τ−ε)

(1− F (x−)) + 1−(τ+ε)
τ+ε

F (x)
.

By construction, α̃F̃1 + (1− α̃)F̃2 = F̃ , where α̃ ∈ (0, 1) is given by α̃ := [F (x) + α(F (x−)−
F (x)− η)]/(1− η). Moreover, F̃1(x) = τ + ε > τ , and F̃2(x

−) = τ − ε < τ .

Now define two classes of distributions, {F̃ x
1 }x≤x and {F̃ x

2 }x≥x, as follows:

F̃ x
1 (z) :=


0, if z < x

F̃ (x), if z ∈ [x, x)

F̃ (z), if z ≥ x

; and F̃ x
2 (z) :=


F̃ (z), if z < x

F̃ (x−), if z ∈ [x, x)

1, if z ≥ x

.
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Note that since F̃1(x) > τ and F̃2(x
−) < τ , x = (F̃ x

1 )
−1(τ) = (F̃ x

1 )
−1(τ+) for all x ≤ x and

x = (F̃ x
2 )

−1(τ) = (F̃ x
2 )

−1(τ+) for all x ≥ x. Moreover, for any n ∈ N1 and for any m ∈ N2,

let

F̃ n
1 (z) :=

1

F̃ (xn)− F̃ (xn)

∫ xn

xn

F̃ x
1 (z)F̃ (dx),

and

F̃m
2 (z) :=

1

F̃ (xm)− F̃ (xm)

∫ xm

xm

F̃ x
2 (z)F̃ (dx),

for all z ∈ R. By construction, F̃ n
1 , F̃

m
2 ∈ F0 and xn = (F̃ n

1 )
−1(τ) = (F̃ n

1 )
−1(τ+), xm =

(F̃m
2 )−1(τ) = (F̃m

2 )−1(τ+) for all n ∈ N1 and m ∈ N2. Next, for any x ∈ R, let G̃x ∈ F0 be

defined as

G̃x(z) :=


F̃ x
1 (z), if x ∈ (−∞, x]\ ∪n∈N1 [xn, xn)

F̃ n
1 (z), if x ∈ [xn, xn), n ∈ N1

F̃ x
2 (z), if x ∈ [x,∞)\ ∪m∈N2 [xm, xm)

F̃m
2 (z), if x ∈ [xm, xm), m ∈ N2

,

for all z ∈ R. Let

H̃(x) :=


H(x)
1−η

, if x < x
H(x)
1−η

, if x ∈ [x, x)
H(x)−η
1−η

, if x ≥ x

,

and define µ̃ as

µ̃({G̃x ∈ F0|x ≤ z}) := H̃(z),

for all z ∈ R. Then, by construction, for any z ∈ R,∫
F0

G(z)µ̃(dG) =

∫
R
G̃x(z)H̃(dx) = F̃ (z). (OA.2)

Furthermore, Hτ (x|µ̃) = H̃(x) for all x ∈ R. As a result, from (OA.2), for µ ∈ ∆(F0) defined

as

µ := (1− η)µ̃+ ηδ{F̂},

since F = ηF̂ + (1 − η)F̃ , it must be that µ ∈ M̃τ . Moreover, since Hτ (·|µ̃) = H̃, we have

Hτ (x|µ) = H(x) for all x ∈ R.

Lastly, consider any H ∈ I(F τ,ε
R , F τ,ε

L ). Since I(F τ,ε
R , F τ,ε

L ) is a convex and compact set

in a metrizable space, Choquet’s theorem implies that there exists a probability measure

ΛH ∈ ∆(I(F τ,ε
R , F τ,ε

L )) that assigns probability 1 to ext(I(F τ,ε
R , F τ,ε

L )) such that

H(x) =

∫
I(F τ,ε

R ,F τ,ε
L )

H̃(x)ΛH(dH̃).
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Meanwhile, define the linear functional Ξ : M̃τ → F0 as

Ξ(µ̃)[x] := µ̃({G ∈ F0|G−1(τ) ≤ x}),

for all µ̃ ∈ M̃τ and for all x ∈ R. Now, define a probability measure Λ̃ on M̃τ by

Λ̃H(A) := ΛH({Ξ(µ̃)|µ̃ ∈ A}),

for allA ⊆ M̃τ . Then, since ΛH(ext(I(F τ,ε
R , F τ,ε

L ))) = 1 and since, for any H̃ ∈ ext(I(F τ,ε
R , F τ,ε

L )),

there exists µ̃ ∈ M̃τ such that H(x) = Hτ (x|µ̃), it must be that Λ̃H(M̃τ ) = 1, and hence

Λ̃H is a probability measure on M̃τ . Let µ̃ ∈ M̃τ be defined as

µ̃(A) :=

∫
M̃τ

µ(A)Λ̃H(dµ),

for all measurable A ⊆ F0. Then, since Ξ is linear, it follows that

H(x) =

∫
I(F τ,ε

R ,F τ,ε
L )

H̃(x)ΛH(dH̃) =

∫
M̃τ

Ξ(µ)[x]Λ̃H(dµ)

=Ξ(µ̃)[x]

=Hτ (x|µ̃),

and therefore, H ∈ H̃τ . Together, for any ε > 0, any H ∈ I(F τ,ε
R , F τ,ε

L ) must be in H̃τ . In

other words, ⋃
ε>0

I(F τ,ε
R , F τ,ε

L ) ⊆ H̃τ .

This completes the proof. ■

OA.3 Proof of Corollary 1

For 1, consider any H ∈ Hq. By Theorem 2, H ∈ I(F q
R, F

q
L). Thus, (F q

L)
−1(τ) ≤ H−1(τ) ≤

H−1(τ+) ≤ (F q
R)

−1(τ+), and therefore [H−1(τ), H−1(τ+)] ⊆ [(F q
L)

−1(τ), (F q
R)

−1(τ+)]. Con-

versely, consider any interval Q = [x, x] ⊆ [(F q
L)

−1(τ), (F q
R)

−1(τ+)]. Then, let Ĥ be defined

as

Ĥ(x) :=


0, if x < x

τ, if x ∈ [x, x)

1, if x ≥ x

,

for all x ∈ R. Then Ĥ ∈ I(F q
L, F

q
R) and Q = [H−1(τ), H−1(τ+)]. Moreover, by Theorem 2,

Ĥ ∈ Hq, as desired.

For 2, consider any H ∈ H̃q. By Theorem 2, H ∈ I(F q
R, F

q
L). Thus, it must be that
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[H−1(τ), H−1(τ+)] ⊆ [(F q
L)

−1(τ), (F q
R)

−1(τ)]. Conversely, for any x̂ ∈ ((F q
L)

−1(τ), (F q
R)

−1(τ+)),

note that since x̂ > (F q
L)

−1(τ) and since F is continuous, we have F (x̂)/τ > q. Similarly, we

also have (F (x̂)−τ)/(1−τ) < q. Let ε := min{F (x̂)/τ−q, q−(F (x̂)−τ)/(1−τ)}. Then, either
x̂ = (F q,ε

L )−1(τ) or x̂ = (F q,ε
R )−1(τ). Since both F q,ε

L and F q,ε
R are in I(F q,ε

R , F q,ε
L ), Theorem 3

implies that x̂ = H−1(τ) for some H ∈ H̃q. Lastly, note that under a signal µ ∈ M such that

µ assigns probability τ to F τ
L and probability 1− τ to F τ

R, we have µ ∈ M̃q and Hq(x|µ) = τ

for all x ∈ [(F q
L)

−1(τ), (F q
R)

−1(τ)]. Hence, [(F q
L)

−1(τ), (F q
R)

−1(τ)] ⊆ [H−1(τ), H−1(τ+)] for

some H ∈ H̃q, as desired. ■

OA.4 Proof of Corollary 4

(i) and (ii) follow immediately from the fact that any H ∈ I(F τ
R, F

τ
L) is dominated by F τ

R

and dominates F τ
L , and that vS(x) is increasing in x for all x ≤ a and is decreasing in x for

all x > a.

For (iii), suppose that for any a ≤ a, HC
a,a is not optimal. Then, since at least one

extreme point of I(F τ
R, F

τ
L) must be the solution of (3), consider any such extreme point and

denote it by H. By Theorem 1, there exists a countable collection of intervals {[xn, xn)}∞n=1

such that conditions 1 and 2 of Theorem 1 hold. Since HC
a,a is not optimal for any a ≤ a,

H ̸= HC
a,a for all a ≤ a. In particular, there must exist n ∈ N such that xn < xn and

either H(xn
−) > F τ

R(xn) or H(xn) < F τ
L(xn). Let a be the minimizer of vS and suppose

that a ≤ F−1(τ). Suppose that H(x−
n ) > F τ

R(xn). Then it must be that H(xn) = F τ
L(xn).

Moreover, since H(x−
n ) > F τ

R(xn), H(xn) > F τ
R(xn) as well. If xn ≤ a, then by replacing

H(x) with min{F τ
L(x), H(xn)} for all x ∈ [xn, xn) and otherwise leaving H unchanged, the

resulting distribution Ĥ must still be in I(F τ
R, F

τ
L). Since vS is strictly decreasing on [xn, xn),

Ĥ must give a higher value, a contradiction. If, on the other hand, xn > a, then since

H(xn) > F τ
R(xn) and since F is continuous, there exists y > xn such that H(x−

n ) > F τ
R(y).

Moreover, since H satisfies conditions 1 and 2, H(x) > H(x−
n ) for all x ∈ [xn, y). Therefore,

by replacing H(x) with H(x−
n ) for all x ∈ [x, y) and leaving H unchanged otherwise, the

resulting Ĥ must still be in I(F τ
R, F

τ
L). Since vS is strictly increasing on [xn, y), Ĥ must give

a higher value, a contradiction. Analogous arguments also lead to a contradiction for the

case of H(xn) < F τ
L(xn), as well as a > F−1(τ). Therefore, HC

a.a must be optimal for some

a ≤ a.

For (iv), note that F is not an extreme point of I(F τ
R, F

τ
L) according to Theorem 1.

Therefore, it is never the unique solution of (3). ■
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OA.5 Proof of Proposition 2

Let v̄(G) := supx∈[G−1(τ),G−1(τ+)] vS(x) for all G ∈ F0. Then, by Theorem 2,

cav(v̂)[F ] ≤ cav(v̄)[F ] = sup
H∈I(F τ

R,F τ
L)

∫
R
vS(x)H(dx).

Meanwhile, by Theorem 3,

sup
H∈∪ε>0I(F τ,ε

R ,F τ,ε
L )

∫
R
vS(x)H(dx) ≤ cav(v̂)[F ].

Together, since cl({I(F τ,ε
R , F τ,ε

L )}) = I(F τ
R, F

τ
L), (3) then follows. ■

OA.6 Proof of Corollary 5

For necessity, consider any H ∈ H̃τ such that H(z−k )−H(z−k−1) = θk for all k ∈ {1, . . . , K}.
Then for any k ∈ {1, . . . , K},

∑k
i=1 θi = H(z−k ). Since H ∈ H̃τ , there exists a signal µ ∈ M

for which µ-almost all posteriors have a unique τ -quantile and H(z−k ) = µ({G ∈ F0|G−1(τ) <

zk}) = µ({G ∈ F0|τ < G(zk)}). Since µ ∈ M, G(zk) is a mean-preserving spread of F (zk)

when G ∼ µ. Thus, µ({G ∈ F0|τ < G(zk)}) < F (zk)/τ , and hence (4) holds. Analogous

arguments can be applied to show that (5) holds as well.

For sufficiency, consider any prediction dataset (θk)
K
k=1 such that (4) and (5) hold. Let H

be the distribution that assigns probability θk at (zk+ zk−1)/2. Then, there exists ε > 0 such

that H ∈ I(F τ,ε
R , F τ,ε

L ). By Theorem 3, there exists a signal µ with µ({G ∈ F0|G−1(τ) <

G−1(τ+)}) = 0 such that H(x) = Hτ (x|µ) for all x ∈ R, which in turn implies that µ

τ -quantile-rationalizes (θk)
K
k=1, as desired. ■

OA.7 Proofs of Proposition 3 and Proposition 5

We prove the following result that leads to Proposition 3 and Proposition 5 immediately.4

Theorem OA.1. Let F (x) := x and F (x) := 0 for all x ∈ [0, 1]. For any J ∈ N, for any

collection of bounded linear functionals {Γj}Jj=1 on L1([0, 1]) and for any collection {γj}Jj=1 ⊆
4Rolewicz (1984) characterizes the extreme points of bounded Lipschitz functions defined on the unit

interval that vanish at zero, and he shows that a function is an extreme point of the unit ball of this set if and
only if the absolute value of its derivative equals 1 almost everywhere (see also Rolewicz 1986; Farmer 1994;
Smarzewski 1997). The convex set of interest here is different. First, functions in I(F , F ) are subject to an
additional monotonicity constraint. Second, these functions are bounded by F and F under the pointwise
dominance order, rather than the Lipschitz (semi) norm. In particular, functions in I(F , F ) may have
unbounded derivatives, whenever well-defined. Lastly, Theorem OA.1 below characterizes the extreme points
of this set subject to finitely many other linear constraints, which are not present in the characterization of
Rolewicz (1984).
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R, let Ic be a convex subset of I(F , F ) defined as

Ic :=
{
H ∈ I(F , F )|Γj(H) ≥ γj, ∀j ∈ {1, . . . , J}

}
.

Suppose that H ∈ Ic is an extreme point of Ic. Then there exists countably many intervals

{[xn, xn)}∞n=1 such that:

1. H(x) = x for all x /∈ ∪∞
n=1[xn, xn).

2. For all n,m ∈ N, with n ̸= m, H is constant on [xn, xn) and H(xn) ̸= H(xm).

3. For all but at most J many n ∈ N, H(xn) = xn.

Proof. Consider any extreme point H of Ic. We first claim that for any x ∈ (0, 1), it must

be either H(x) = x or H(y) = H(x) for all y ∈ (x, x + δ) for some δ > 0. To see this,

note that since Ic is a subset of I(F , F ) defined by J linear constraints, Proposition 2.1 of

Winkler (1988) implies that there exists {Hj}J+1
j=1 ⊆ ext(I(F , F )) and {λj}J+1

j=1 ⊆ [0, 1] such

that H(x) =
∑J+1

j=1 λjHj(x) for all x ∈ [0, 1] and
∑J+1

j=1 λj = 1. Now suppose that H(x) < x

for some x ∈ (0, 1). Then there must exist a nonempty subset J ⊆ {1, . . . , J + 1} such that

Hj(x) < x for all j ∈ J and that Hj(x) = x for all j ∈ {1, . . . , J + 1}\J . Since Hj is an

extreme point of I(F , F ) for all j ∈ J , Theorem 1 implies that for each j ∈ J , there exists

an interval [xj, xj) containing x on which Hj is constant. Let (x, x) be the interior of the

intersection of {[xj, xj)}j∈J . Then it must be that

H(y) = αy + (1− α)η

for all y ∈ (x, x), for some η < x, and α ∈ (0, 1). Now suppose that for any δ > 0, there exists

y ∈ (x, x+δ) such thatH(x) < H(y). Take any δ̂ ∈ (0,min{(1−α)(x−η)/(1+α), x−x, x−x})
and let x∗ := x − δ̂ and x∗ := x + δ̂. Then it must be that H(y) < x for any y ∈ [x∗, x

∗]

and that H(x∗) < x∗. Moreover, the function h : [x∗, x
∗] → [H(x∗), H(x∗)] defined as

h(y) := H(y) for all y ∈ [x∗, x
∗] must not be a step function, since otherwise, as h is right-

continuous on (x∗, x
∗), there must be some δ > 0 such that H(y) = h(y) = h(x) = H(x) for

all y ∈ [x, x + δ), a contradiction. Meanwhile, since each functional Γj : L1([0, 1]) → R is

bounded, Riesz’s representation implies that there must exist Φj ∈ L∞([0, 1]) such that

Γj(H̃) =

∫ 1

0

H̃(x)Φj(x) dx,

for all H̃ ∈ I(F , F ). Therefore, since any extreme point of the collection of nondecreasing,
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right-continuous functions h̃ from [x∗, x
∗] to [H(x∗), H(x∗)] such that∫ x∗

x∗

h̃(x)Φj(x) dx ≥ γj

for all j ∈ {1, . . . , J} is a step function with at most J + 1 steps, as implied by Proposition

2.1 of Winkler (1988), the function h is not an extreme point of this collection. Thus, there

exists two distinct functions h1, h2 : [x∗, x
∗] → [H(x∗), H(x∗)] and λ ∈ (0, 1) such that

h(y) = λh1(y) + (1− λ)h2(y) for all y ∈ [x∗, x
∗] and that∫ x∗

x∗

hl(x)Φj(x) dx =

∫ x∗

x∗

H(x)Φj(x) dx, (OA.3)

for all j ∈ {1, . . . , J} and for all l ∈ {1, 2}. Now let H1, H2 be defined as

H1(y) :=

{
H(y), if y /∈ [x∗, x

∗]

h1(y), if y ∈ [x∗, x
∗]

; H2(y) :=

{
H(y), if y /∈ [x∗, x

∗]

h2(y), if y ∈ [x∗, x
∗]

.

Then, H = λH1 + (1 − λ)H2 and H1 ̸= H2. Moreover, since h1(y), h2(y) ≤ H(x∗) < x∗ for

all y ∈ [x∗, x
∗], and since H ∈ I(F , F ), it must be that both H1 and H2 are in I(F , F ).

Furthermore, by (OA.3), it must be that

Γj(Hl) =

∫ 1

0

Hl(x)Φj(x) dx =

∫
[0,1]\[x∗,x∗]

H(x)Φj(x) dx+

∫ x∗

x∗

hl(x)Φj(x) dx

=

∫
[0,1]\[x∗,x∗]

H(x)Φj(x) dx+

∫ x∗

x∗

H(x)Φj(x) dx

=

∫ 1

0

H(x)Φj(x) dx

≥γj,

for all j ∈ {1, . . . , J} and for all l ∈ {1, 2}. Thus, H1, H2 ∈ Ic, a contradiction. Together,

for any x ∈ (0, 1), it must be either H(x) = x or H(y) = H(x) for all y ∈ (x, x+ δ) for some

δ > 0.

Let X ⊆ [0, 1] be the collection of x ∈ [0, 1] such that H(x) = x. For any x /∈ X, let

δx := sup{y ∈ [0, 1]|H(y) = H(x)} and δx := inf{y ∈ [0, 1]|H(y) = H(x)}. Then it must be

δx < δx for all x /∈ X. Moreover, for any x, y ∈ [0, 1]\X with x < y, H(x) < H(y) if and

only if δx < δy. Therefore, [0, 1]\X can be expressed as a union of a collection I of disjoint

intervals. Since I is a collection of disjoint intervals on [0, 1], each element of I must uniquely

contain at least one rational number. Thus, there exists an injective map from the collection

I to a subset of rational numbers in [0, 1], and therefore the collection I must be countable.

13



Enumerate I as {[xn, xn)}∞n=1 and suppose that there is a subset N of these intervals,

with |N | > J , such that H(xn) < xn. For each n ∈ N , since H(xn) < xn and since H(x) = x

for all x /∈ ∪∞
n=1[xn, xn), H must be discontinuous at xn. Let ηn := H(xn) − H(x−

n ) for all

n ∈ N , and let η := min{ηn}n∈N . Furthermore, let ϕn
j ∈ R be defined as

ϕn
j :=

∫ xn

xn

Φj(x) dx,

for all n ∈ N and for all j ∈ {1, . . . , J}. Then the |N | × J matrix Φ := (ϕn
j )

n∈N
j∈{1,...,J} is a

linear map from R|N | to RJ . Since |N | > J , dim(null(Φ)) ≥ 1, and thus there must exist a

nonzero vector {ĥn}n∈N such that ∑
n∈N

ϕn
j ĥn = 0, (OA.4)

for all j ∈ {1, . . . , J}. Let ε := min{η/4|ĥn|, (xn −H(xn))/4|ĥn|}n∈N , and let Ĥ be defined

as

Ĥ(x) :=

{
0, if x /∈ ∪n∈N [xn, xn)

εĥn, if x ∈ [xn, xn), n ∈ N
.

Then, since {ĥn}n∈N is a nonzero vector in R|N | and since ε > 0, Ĥ ̸= 0. Moreover, since

ε < η/4|ĥn| for all n ∈ N , H(x)− |Ĥ(x)| = H(xn)− ε|ĥn| > H(xn)− η/2 > H(x−
n ) + η/4 >

H(x) + |Ĥ(x)| for all x < xn and for all n ∈ N . Therefore, both H + Ĥ and H − Ĥ are

nondecreasing. Meanwhile, since for any n ∈ N and for any x ∈ [xn, xn), H(x) + |Ĥ(x)| =
H(xn) + ε|ĥn| < xn, both H + Ĥ and H − Ĥ are in I(F , F ). In addition, by (OA.4), for any

j ∈ {1, . . . , J},∫ 1

0

(H(x) + Ĥ(x))Φj(x) dx =

∫
[0,1]\∪n∈N [xn,xn)

H(x)Φj(x) dx+

∫
∪n∈N [xn,xn)

H(x)Φj(x) dx+ ε
∑
n∈N

ĥnϕ
n
j

=

∫ 1

0

H(x)Φj(x) dx

≥γj,

and∫ 1

0

(H(x)− Ĥ(x))Φj(x) dx =

∫
[0,1]\∪n∈N [xn,xn)

H(x)Φj(x) dx+

∫
∪n∈N [xn,xn)

H(x)Φj(x) dx− ε
∑
n∈N

ĥnϕ
n
j

=

∫ 1

0

H(x)Φj(x) dx

≥γj.
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Together, both H + Ĥ and H − Ĥ are in Ic, and hence, H is not an extreme point, a

contradiction. This completes the proof. ■

Proofs of Proposition 3 and Proposition 5. Note that since |ϕe(x|e)| is dominated by an in-

tegrable function on [0, 1], one can apply the dominated convergence theorem to show that

the objective function of both (7) and (10) are continuous in (H, e) and (H, z), respectively.

Similarly, the constraint set can be shown to be closed. Therefore, both (7) and (10) admit

a solution.

Consequently, since for any fixed e and z, the objective is continuous in H and the feasible

set is compact and convex in (7) and (10), respectively, Proposition 3 and the first part of

Proposition 5 follow immediately from Theorem OA.1, with J = 2 and J = 1, respectively.

This is because any H satisfying conditions 1 through 3 correspond to a contingent debt

contract with at most J non-defaultable face values. The uniqueness part of Proposition 5

further follows from the fact that the objective of (10) is strictly convex in H when Φ(·|s)
has full support for all s ∈ S, and hence, every solution must be an extreme point of the

feasible set. ■

OA.8 Proof of Proposition 4

Let Π∗(e) be the value of the entrepreneur’s problem (7) for a fixed e ∈ [0, ē]. We first show

that there exists Lagrange multipliers λ∗
1 ̸= 0 and λ∗

2 ≥ 0 such that

Π∗(e) = sup
H∈I(F ,F )

[ ∫ 1

0

(x−H(x))ϕ(x|e) dx+λ∗
1

(∫ 1

0

(x−H(x))ϕe(x|e) dx− C ′(e)

)
+λ∗

2

(∫ 1

0

H(x)ϕ(x|e) dx− (1 + r)I

)]
. (OA.5)

To this end, we adopt a similar argument as Nikzad (2023). For any fixed e ∈ [0, ē] and for

any γ ∈ R, let Me(γ) be the value of

sup
H∈I(F ,F )

[∫ 1

0

[x−H(x)]ϕ(x|e) dx− C(e)

]
s.t.

∫ 1

0

[x−H(x)]ϕe(x|e) dx = C ′(e) (OA.6)∫ 1

0

H(x)ϕ(x|e) dx ≥ γ.

Note that

Me((1 + r)I) = Π∗(e) =

∫ 1

0

(x−H∗(x))ϕ(x|e) dx− C(e), (OA.7)
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where H∗ is a solution of (7) with a fixed e. Moreover, Me is nonincreasing and concave in

γ. Indeed, monotonicity follows from the ordered structure of the feasible set as γ increases.

For concavity, consider any γ1, γ2 ∈ R and let γλ := λγ1 + (1− λ)γ2 for any λ ∈ (0, 1). Since

(OA.6) admits a solution, there exists H1, H2 ∈ I(F , F ) such that∫ 1

0

(x−H1(x))ϕ(x|e) dx− C(e) = M(γ1);

∫ 1

0

(x−H2(x))ϕ(x|e) dx− C(e) = M(γ2).

Furthermore, ∫ 1

0

(x−Hi(x))ϕe(x|e) dx = C ′(e)∫ 1

0

Hi(x)ϕ(x|e) dx ≥ γi

for i ∈ {1, 2}. Let Hλ := λH1 + (1− λ)H2, we must have Hλ ∈ I(F , F ) and∫ 1

0

(x−Hλ(x))ϕe(x|e) dx = C ′(e)∫ 1

0

Hλ(x)ϕ(x|e) dx ≥ γλ.

Thus,

Me(γ
λ) ≥

∫ 1

0

(x−Hλ(x))ϕ(x|e) dx− C(e)

=λ

∫ 1

0

(x−H1(x))ϕ(x|e) dx+ (1− λ)

∫ 1

0

(x−H2(x))ϕ(x|e) dx

=λMe(γ1) + (1− λ)Me(γ2).

Since Me is nonincreasing and concave, and since (1 + r)I is an interior of the set{∫ 1

0

H(x)ϕ(x|e) dx
∣∣∣∣H ∈ I(F , F ),

∫ 1

0

(x−H(x))ϕe(x|e) dx = C ′(e)

}
,

there exists λ∗
2 ≥ 0 such that

Me(γ) ≤ Me((1 + r)I)− λ∗
2(γ − (1 + r)I)

for all γ ∈ R. Meanwhile, for any H ∈ I(F , F ) such that∫ 1

0

(x−H(x))ϕe(x|e) dx = C ′(e), (OA.8)
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it must be that

Me

(∫ 1

0

H(x)ϕ(x|e) dx
)

≥
∫ 1

0

(x−H(x))ϕ(x|e) dx− C(e),

by the definition of Me. Together with (OA.7), we have

Me((1 + r)I) =

∫ 1

0

(x−H∗(x))ϕ(x|e) dx− C(e)

≥
∫ 1

0

(x−H(x))ϕ(x|e) dx− C(e) + λ∗
2

(∫ 1

0

H(x)ϕ(x|e) dx− (1 + r)I

)
,

(OA.9)

for all H ∈ I(F , F ) such that (OA.8) holds. Since H∗ is feasible for (7) with the fixed e,

(OA.9) implies∫ 1

0

(x−H∗(x))ϕ(x|e) dx+ λ∗
2

(∫ 1

0

H∗(x)ϕ(x|e) dx− (1 + r)I

)
≥
∫ 1

0

(x−H(x))ϕ(x|e) dx+ λ∗
2

(∫ 1

0

H(x)ϕ(x|e) dx− (1 + r)I

)
, (OA.10)

for all H ∈ I(F , F ) satisfying (OA.8). Now let

Le(H;λ) :=

∫ 1

0

(x−H(x))ϕ(x|e) dx− C(e) + λ

(∫ 1

0

H(x)ϕ(x|e) dx− (1 + r)I

)
,

and let Le(λ) be the value of

sup
H∈I(F ,F )

Le(H;λ) (OA.11)

s.t.

∫ 1

0

(x−H(x))ϕe(x|e) dx = C ′(e).

Then, (OA.10) implies that H∗ solves (OA.11) with λ = λ∗
2 and

Le(λ
∗
2) =

∫ 1

0

(x−H∗(x))ϕ(x|e) dx− C(e).

Meanwhile, by the definition of Le(λ),

Le(λ) ≥
∫ 1

0

(x−H(x))ϕ(x|e) dx− C(e)
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for all feasible H of (7) with fixed e. Finally, since the constraint in (OA.11) is an equality,

standard results (see, e.g., Theorem 3.12 of Anderson and Nash 1987) implies that there exits

λ1 ̸= 0 such that (OA.5) holds.

For any fixed e ∈ [0, ē], since the primal problem (7) is convex for any fixed e ∈ [0, ē],

there exists an extreme point H∗ of the feasible set that attains Π∗(e). By Theorem OA.1,

there exists a countable collection of intervals {[xn, xn)}∞n=1 such that H∗ satisfies conditions

1 through 3 for J = 2. Meanwhile, as established above, H∗ must also solve the dual problem

(OA.5) of (7) for this fixed e. Note that the dual problem can be written as

sup
H∈I(F ,F )

[∫ 1

0

H(x)[(1 + λ∗
2)ϕ(x|e)− λ∗

1ϕe(x|e)] dx+ κ

]
,

with κ ∈ R being a constant that does not depend on H. Moreover,

(1 + λ∗
2)ϕ(x|e)− λ∗

1ϕe(x|e) ≥ 0 ⇐⇒ ϕe(x|e)
ϕ(x|e)

≤ 1 + λ∗
2

λ∗
1

.

Since ϕe(·|e)/ϕ(·|e) is at most N -peaked, there must be a finite interval partition {Ik}Kk=1 of

[0, 1] with K ≤ 2N such that ϕe(x|e)/ϕ(x|e)− (1+ λ∗
2)/λ

∗
1 takes the same sign for all x ∈ Ik.

Therefore, if there are more than N+1 intervals on whichH∗ is constant, then either there

are at least two of them contained in a single interval Ik with ϕe(x|e)/ϕ(x|e) < (1+λ∗
2)/λ

∗
1 for

all x ∈ Ik, or there is at least one of them contained in an interval Ij with ϕe(x|e)/ϕ(x|e) >
(1 + λ∗

2)/λ
∗
1 for all x ∈ Ij. If there are two intervals [xn, xn), [xm, xm), with xn ≤ xm, that

are contained in some Ik with ϕe(x|e)/ϕ(x|e) < (1 + λ∗
2)/λ

∗
1 for all x ∈ Ik, then, since by

condition 2 of Theorem OA.1, H∗(xn) < H∗(xm), for H
∗∗ defined as

H∗∗(x) :=

{
H∗(x), if x /∈ [xn, xm)

H∗(xn), if x ∈ [xn, xm)
,

for all x ∈ [0, 1], H∗∗ ∈ I(F , F ) and yields a higher value to the objective of (OA.5) than

H∗. Likewise, if there is at least one interval on which H∗ is constant that is contained in

some Ij such that ϕe(x|e)/ϕ(x|e) < (1 + λ∗
2)/λ

∗
1 for all x ∈ Ij, then, since H∗(x) < x for all

x ∈ (xn, xn), for H
∗∗ defined as

H∗∗(x) :=

{
H∗(x), if x /∈ Ij

max{x,H∗(xn)}, if x ∈ Ij
,

for all x ∈ [0, 1], H∗∗ ∈ I(F , F ) and yields a higher value to the objective of (OA.5) than H∗.

Thus, H∗ cannot be a solution of the dual problem (OA.5) for this fixed e, a contradiction.

Consequently, the solution H∗ to the primal problem (7) for any fixed e ∈ [0, ē] cannot admit

18



more than N+1 intervals where H∗ is constant. As a result, H∗ is a contingent debt contract

with at most N + 1 face values. Since e ∈ [0, ē] is arbitrary, this completes the proof. ■
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