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OA.1 Proof of Theorem 2

To show that H, C Z(FF, FT), consider any H € H,. Let 4 € M and any r € R, be a signal
and a selection rule, respectively, such that H™(-|u,r) = H. By the definition of H™(-|u, 1),
it must be that, for all z € R,

HT(z|p,r) < p({G € Fo|G7H (1) < a}) = p({G € Fo|G(x) > 7}).

Now consider any = € R. Clearly, u({G € Fy|G(x) > 7}) < 1, since p is a probability
measure. Moreover, let M (q) := p({G € Fo|G(x) > ¢}) for all ¢ € [0,1]. From (1), it
follows that the left-limit of 1 — M is a CDF and a mean-preserving spread of a Dirac
measure at F'(x). Therefore, whenever 7 > F(z), then M (7) can be at most F(x)/T to
have a mean of F(z).! Together, this implies that u({G € Fo|G(x) > 7}) < Ff(x) for all
r €R.

At the same time, by the definition of H7(-|u,r), it must be that, for all z € R,

H™(z7 |p,7) > p({G € Fo|G7H(r1) < 2}) = u({G € Fo|G(x) > 7}).

Consider any = € R. Since p is a probability measure, it must be that u({G € Fy|G(x) >
7}) > 0. Furthermore, let M (q) := u({G € Fo|G(z) > ¢}) for all ¢ € [0,1]. From (1), it
follows that 1 — M is a CDF and a mean-preserving spread of a Dirac measure at F(z).
Therefore, whenever 7 < F(z), then M_ (7) must be at least (F(z) —7)/(1 — 7) to have a
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'More specifically, to maximize the probability at 7, a mean-preserving spread of F(z) must assign prob-
ability F'(z)/7 at 7, and probability 1 — F(x)/7 at 0.



mean of F(z).? Together, this implies that u({G € Fy|G(z) > 7}) > F}, for all z € R, which,
in turn, implies that Fj(z) < H™ (2™ |u, ) < H(x|p,r) < F(x) for all = € R, as desired.

To prove that Z(F}, F]) C H,, we first show that for any extreme point H of Z(F}, FT),
there exists a signal ;1 € M and a selection rule r € R, such that H(z) = H™(x|u,r) for all
x € R. Consider any extreme point H of Z(FF, FT). By Theorem 1, there exists a countable
collection of intervals {(z,,, Z,)}7°, such that H satisfies 1 and 2. Since (1—F[(x))Fj(z) =0
for allz ¢ [F~Y(7), F~1(77)], there exists at most one n € N such that 0 < H(z,) = F}(x,) =
Fi(z,) = H(T,) < 1. Therefore, for z and T defined as

z = sup{z,|n e N, H(z,) = F[(z,)},

and
7 :=inf{Z,|n € N, H(Z,) = Fi(T,)},

respectively, it must be that T > z, and that for all n € N, either 7,, < z and H(z,) = F](z,);
or z, > 7 and H(T, ) = F;(T,). Henceforth, let N; be the collection of n € N such that
T, <7 and H(z,) = F](z,), and let Ny be the collection of n € N such that z,, > z and
H(z,)) = FL(Z,). Note that Ny UNy = N and that [Ny NNy| <1, with z, =z and 7, =7
whenever n € Ny N Ns.

We now construct a signal u € M and a selection rule r € R, such that H7(-|u,r) = H.
To this end, let n := H(Z~) — H(z) and let & := inf{z € [z,Z||H(z) = H(Z")}. Note that
by the definition of z and Z, if n > 0, then € (2,7) and H(x) = H(z) for all z € [z, %),
while H(z) = H(z") for all € [2,7). In particular, F}(2) > H(2) = F[(z) +n, and hence
F(z) — 7 > F(x). Likewise, F(2) + (1 —7)n < F(z~). Let

Y= FY[F(z)—m"), and 7:=F YF(@)+(1—1))).

It then follows that z < y < r <y <7, with at least one inequality being strict if n > 0.
Next, define F as follows: F = 0 if n = 0; and
0, ifrz<y
Bl) = § HO=E@m) g ey )
1, ife>7y

if n> 0. Clearly F € Fy if >0, and 2 € [F~(r), F-!(7+)]. Moreover, for all z € R, let

2More specifically, to minimize the probability at 7, a mean-preserving spread of Fy(x) must assign
probability (F(z) — 7)/(1 — 7) at 1, and probability 1 — (F(z) — 7)/(1 — 7) at 0.
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By construction, nF + (1 —n)F = F. From the definition of y and g, it can be shown that
Fe Fo as well. Furthermore,
~ ~ F@ )—F(z)—n 1 T 1—7

F@) - Flz) = o [T FE )

F(x)| .

Next, define E and E as follows:

F(z) )
~ F%()—Sagggff_);{()%)_)n), if x < x
Fi(z) = F(g)%»z(F(;_) g@)in), if v € [z,7) ;
L, ifr>7T
and
O’ if < x
~ (1—a) (F(z)—F(z)—n) ) -
F2(-T> = 1-F(Z )+(1—a)(F(z~)—F(z)—n)’ if x - [£7 ZL') ’
F(z)-F(a)+(1-o)(F(@)—F(z)-n) : _
I—F( )+(1 04) F(;p ) F(x) ) 3 1f X Z xT
where
LF(x)
o= - _ .
(1= FE) + 5 F()

By construction, &F, 4 (1 — a&)F, = F, where @ € (0,1) is given by & := [F(z) + «(F(z) —
F(z) —n)]/(1 — ). Moreover, Fy(z) > 7, and F5(z~) < 7.

Now define two classes of distributions, {F*},<, and {FZ},>z, as follows:

0, if z<x F(z), if z<x
F(2) = }E(g), if z€[z,z) ; and F¥(2):=< F(z), ifz€[T,z) .
F(z), ifz>z 1, if 2>

Note that since Fi(z) > 7 and Fy(z7) < 7, = € [(F¥)"X(7), (F)"}(++)] for all z < z and
e [(F&)=Y(r), (F£)"Y(71)] for all 2 > Z. Moreover, for any n € N; and for any m € Ny, let

)= == [ F()F(da),

=n

and

wwy_ﬁ@g—ﬁ%¢é Fr(2)dB(da),

=“m

for all z € R. By construction, Z?{Z,Em € Fo and 7, € [(ﬁf)—l(ﬂ’(ﬁ{z)—l(fr)]’ z, €
[(ﬁ?)_l(ﬂ’ (ﬁgm)_l(TJr)] for all n € Ny and m € N,.



Next, for any z € R, let G” € Fy be defined as

Flz(z), if x € (—00,Z]\ Unen, [Z,,, Tn)
Go(z) e Fr(z), if x € [z,,T,), n € Nl_ ’
F;’(z), if x € [Z,00)\ UnmeN, [Z,s Tm)
Fg”(z), if v €[z, Tm), m € Ny
for all z € R. Let
Iﬁm), ife <z
~ n
H(r):=¢ T2 ifrelrm) ,
Hoon - ife>7

and define /i as
pHGT € Folr < 2}) = H(z2),

for all z € R. Then, by construction, for any z € R,

/ F(2)p(dF) = / G*(2)H(dx) = F(2). (OA.1)
F R
Moreover, let 7 : Fyp — A(R) be defined as

@) = { 5{G*1(7—+)}7 iftG=G*", x>7T

5{@—1(7)}, otherwise

for all G € Fo. It then follows that H7 (x|, 7) = H(z) for all z € R. Next, let u € A(Fp),r €
R, together be defined as
= (L= n)fi+nd;py,

and

a, fG=F
r(G) = fs{x}’ G o
7(G), otherwise

for all G € Fy. Since F = nF + (1 —n)F, together with (OA.1), we have u € M. Moreover,
since H™(-|fi,7) = H, we have H™(z|pu,r) = H(z) for all z € R.

Lastly, let " be a collection of probability measures v € A(R x Fy) such that v({(z,G) €
R x Folz € [G7H(7),G7'(7T)]}) =1 and

G(z)vy(dz,dG) = F(z),

Rx Fo



for all z € R. Define a linear functional = : I' — Fj as

2] = (=00, 2, Fo),

for all v € T" and for all + € R. Then, since for any H in the set of extreme points
ext(Z(F}, FT)) of Z(FF, F]), there exists i € M and 7 € R, such that H™(z|i,7) = H(z)
for all z € R, it must be that ext(Z(F}, F7)) C Z(I).

Now consider any H € Z(Ff, FT). Since Z(FE, FT) is a compact and convex set of a
metrizable, locally convex topological space,®> Choquet’s theorem implies that there exists a
probability measure Ay € A(Z(FF, FT)) with Ay (ext(Z(F}, FT))) = 1 such that

/ F(@)Ag (Al = H(x),
I(FEFL)

for all z € R. Define a measure Ay by
Au(A) == An({E(0)|y € A}),

for all measurable A C I'. Since Ay (ext(Z(Fh, FT))) = 1 and ext(Z(Fg, F7)) C E(I), Ay is

a probability measure on I'. For any x € R and for any measurable A C F, let
A(=00.2],4) 1= [ 5((=o0,), HRn(d)
r

and let u(A) := (R, A). By construction, for all z € R,

[ ctamaer= [ ([ B G()1(d5,46) ) Rud) = F(o),

and hence p € M. Furthermore, by the disintegration theorem (c.f., Cinlar 2010, the-
orem 2.18), there exists a transition probability r : Fy — A(R) such that y(dz,dG) =
r(dz|G)u(d@). Since Ag(T) = 1, and since r is a transition probability, we have r € R..

3To see this, recall that for any sequence {H, } C Z(F}, FT), Helly’s selection theorem implies that there
exists a subsequence {H,, } C {H,} that converges pointwise (and hence, in weak-*) to some H € Z(FF, FT).



Finally, for any x € R, since = is affine,

H7(x|p,r) = y((—00,z], Fo) =Z(7)[]

=/ E(Y)[x]An(dy)

- / Fi(2) Ay (dH)
ext(I(F}"%‘,FZ))

=H(x),
as desired. This completes the proof. |

OA.2 Proof of Theorem 3

By Theorem 2,

ﬁfr CH, :I(F}E’Fg)
It remains to show that

U Z(Fie, Fi¥) € ..

e>0
To this end, let M, be the collection of i € M such that u({G € Fo|G(r) < GH(rH)}) =
0. Consider any ¢ > 0 and any extreme point H of Z(Fg®, F;°). By Theorem 1, there
exists a countable collection of intervals {(z,,,Z,)}»>, such that H satisfies 1 and 2. Since
(1 — Fpf(z))Fp (x) = 0 for all @ # F,'(7), there exists at most one n € N such that
0 < H(z,) = Fp(z,) = F;°(z,)) = H(T, ) < 1. Therefore, for z and T defined as

z:=sup{z,|n €N, H(z,) = F5°(z,)} and Z:=inf{z,|neN, H(T,)=F"(T,)}

respectively, it must be that Z > z, and that, for all n € N, either 7, < z and H(z,) =
F®(z,), or z, > T and H(T, ) = F5°(7, ). Henceforth, let Ny be the collection of n € N
such that 7, < 7 and H(z,) = F;®(z,), and let Ny be the collection of n € N such that
z, >z and H(Z,) = F;°(T,). Note that N; UNy = N and that [Ny " Ny| < 1, with z,, = 2
and T,, = ¥ whenever n € N; N Ns.

We now construct a signal y € M, such that H™(-|u) = H. First, let n := H(z~) — H(z)
and let & := inf{x € [z,T]|H(z) = H(Z~)}. Note that, by the definition of z and Z, if n > 0,
then z € (z,7) and H(z) = H(z) for all z € [z,2), while H(z) = H(Z") for all z € [2,7).
In particular, F;°(2) > H(Z) = F;"(z) +n, and hence F (&) — (7 +¢)n > F(z). Likewise,
F@)+(1—=7+¢e)n < F(z). Now let

Y= F Y F@)—(t+¢e)n), and 7:=FF@) +(1—-7+e)n).



It then follows that x < y <& <y <7, with at least one inequality being strict if n > 0.
Next, define F as follows: F =0 if n = 0; and
0, ifz<y
o) = { Z=@=Gean g0 gy )
1, ifxr>7y

if > 0. Clearly F € Foif n > 0, and & = ﬁ_l(T). Moreover, for all z € R, let

L—n

By construction, nF + (1 —n)F = F. From the definition of y and g, it can be shown that
Fe Fo as well. Furthermore,

~ ~ F@)-F(x)-n 1 T—¢ 1—(t+¢) .
1—n S l-n|l—(r—¢) T+e Fla)

Next, define fl and ﬁQ as follows:

~ o
Fia) = { ol

and
0, ife<zx
= (1=0)(F(«)—F(z) —) - z
B(@) =1 Treraare)raon 10 € 2T)
F(z)~F(z)+(1-)(F(@ )~ F(z)—n) fr>ST
1=F(@ )+(1—a)(F@)—F(2)—n) ’ =

where
1—(7+¢) F(JT)

T+e =

(1 - F(z7)) + =52 F (2)

T—€
1—(r—¢)

By construction, &F; + (1 — &)F, = F, where & € (0,1) is given by & := [F(z) + a(F(T~) —
F(z) —n)]/(1 — 7). Moreover, Fy(z) =7+¢>7, and Fy(T ) =7 —¢ < 7.

Now define two classes of distributions, {F*},<, and {F¥},>z, as follows:

0, if z <2 F(2), it z <
FY(z) = ]i(g), if z € [z,2) ; and Fy(z) = F@), ifze€ [z, x)
F(z), ifz>z 1, if 2>z



Note that since Fy(z) > 7 and Fy(T") < 7, 2 = (F¥)7Y(r) = (F*)~!(s*) for all # < z and
x = (FF)~Y(7) = (F¥)~}(+") for all z > Z. Moreover, for any n € Ny and for any m € Ny,

let

)= == [ F()F(a),

and

Fma:ﬁ%%ﬁﬁwlwwmmx

for all z € R. By construction, F*, FI* € Fy and 7, = (F")7Y(r) = (F")"Y(+1), z,, =
(Fy)~Y(1) = (F3)~Y(7+) for all n € Ny and m € Ny. Next, for any = € R, let G* € F be
defined as

Fr(2), if x € (—00, ]\ Unen, [z, Tn)
éx(z) — %”(z), | if x_E [z, Tn), N € Nl_ ’
F¥(z), ifx € [T,00)\ UneNny [T Tm)
Fir(2), if x € [x,,,Tm), m € Ny
for all z € R. Let
Iﬁx), ifer<zx
- n
H(w):=¢ T2 ifrelrm) ,
%);", ifz>7x

and define /i as
L({G" € Folw < 2}) == H(2),

for all z € R. Then, by construction, for any z € R,

/F G(2)i(dG) = / G (=) (dx) = F(2). (OA2)

R

Furthermore, H™(z|f1) = H(z) for all z € R. As a result, from (OA.2), for u € A(Fy) defined
as
= (L= n)i+ 0oz,

since F = nF + (1 —n)F, it must be that p € M, . Moreover, since H™(-|) = H, we have
H7(xz|p) = H(z) for all z € R.

Lastly, consider any H € Z(Fy°, F[*). Since Z(Fg°, F[*) is a convex and compact set
in a metrizable space, Choquet’s theorem implies that there exists a probability measure
Ay € A(Z(FR°, F7)) that assigns probability 1 to ext(Z(Fg®, F;°)) such that

H(z) = / H(z)Ay(dH).
I(FR°.FL%)



Meanwhile, define the linear functional = : MVT — Fo as
E()z] == a({G € Fo|G™H(7) < a}),
for all o1 € j\A/l/T and for all z € R. Now, define a probability measure A on /\A/l/T by
Au(A) = Ay ({E(R)|fi € A}),

forall A C M. Then, since Ay (ext(Z(FEF, FT<))) = 1 and since, for any H € ext(Z(FE*, F1<)),

—~

there exists i € M, such that H(z) = H7(z|f), it must be that Ay (M,) = 1, and hence

Ay is a probability measure on M. Let i1 € M, be defined as

i) = [ ul) Rt

M

for all measurable A C Fy. Then, since = is linear, it follows that

H(zx) = H(z)Ap(dH) = | Z(u)[z]Ax(d
W= [ ... Ao = [ =iRatan

=E(p)[]
=H"(z|p),

and therefore, H € H,. Together, for any £ > 0, any H € Z(Fg°, F{®) must be in H.. In
other words,
Uz(Fge, FI°) S .

e>0

This completes the proof. |

OA.3 Proof of Corollary 1

For 1, consider any H € H,. By Theorem 2, H € Z(F}, F}). Thus, (F{)™'(r) < H (7)) <
H7Y (%) < (FE)~*(7%), and therefore [H (1), H*(v")] C [(F{)~' (), (FE)~*(r1)]. Con-
versely, consider any interval Q = [z,7] C [(F1)™'(r), (F%)~*(r+)]. Then, let H be defined

as

0, ifrx<z
H(z):=<¢ 7, ifxezT) ,
1, ifx>7x

for all z € R. Then H € Z(FY, F2) and Q = [H~}(7), H™*(r")]. Moreover, by Theorem 2,
He H,, as desired.
For 2, consider any H € ﬁq. By Theorem 2, H € Z(F}, F}). Thus, it must be that



[H(7), H™ (7)) C [(F)~ (7). (F)~(r)]. Conversely, for any & € ((F{)~(r), (F&)~(r+)),
note that since # > (F#)~*(7) and since F is continuous, we have F'(Z)/7 > ¢. Similarly, we
also have (F(2)—7)/(1—7) < q. Let ¢ := min{F(z)/7—q,q—(F(2)—7)/(1—7)}. Then, either
&= (FF) Y1) or & = (FE7)~!(7). Since both F° and FE° are in Z(FE*, F°), Theorem 3
implies that 2 = H!(7) for some H € fIq. Lastly, note that under a signal € M such that
v assigns probability 7 to F] and probability 1 — 7 to F}, we have p € Mq and H(z|p) =1
for all z € [(F})7'(7), (F)~"(7)]. Hence, [(F])7"(7), (Fg)~'(7)] € [H}(7), H'(77)] for
some H € }NIq, as desired. [ |

OA.4 Proof of Corollary 4

(1) and (ii) follow immediately from the fact that any H € Z(FF, FT) is dominated by FF,
and dominates F7, and that vg(z) is increasing in x for all x < a and is decreasing in x for
all z > a.

For (iii), suppose that for any a < a, Hfa is not optimal. Then, since at least one
extreme point of Z(FF, FT) must be the solution of (3), consider any such extreme point and
denote it by H. By Theorem 1, there exists a countable collection of intervals {[z,,,Z,)}52,
such that conditions 1 and 2 of Theorem 1 hold. Since H, Cﬁ is not optimal for any a < @,
H # Hga for all @ < @. In particular, there must exist n € N such that z,, < 7, and
either H(Z,,~) > Fi(T,) or H(z,) < F[(z,). Let a be the minimizer of vg and suppose
that @ < F~!(7). Suppose that H(z,) > F%(T,). Then it must be that H(z,) = F}(z,).
Moreover, since H(Z, ) > Fg(z,), H(Z,) > Fi(T,) as well. If 7, < a, then by replacing
H(z) with min{F] (z), H(Z,)} for all z € [z,,T,) and otherwise leaving H unchanged, the
resulting distribution H must still be in Z(FF, FT). Since vg is strictly decreasing on [z,,, T,,),
H must give a higher value, a contradiction. If, on the other hand, Z, > a, then since
H(z,) > Fj(7,) and since F' is continuous, there exists y > 7, such that H(z, ) > F(y).
Moreover, since H satisfies conditions 1 and 2, H(x) > H(Z,,) for all x € [Z,,y). Therefore,
by replacing H(z) with H(z,)) for all x € [7,y) and leaving H unchanged otherwise, the
resulting H must still be in Z(FF, F]). Since vg is strictly increasing on [T, y), H must give
a higher value, a contradiction. Analogous arguments also lead to a contradiction for the
case of H(z,) < Ff(z,), as well as a > F~(7). Therefore, HS; must be optimal for some
a < a.

For (iv), note that F' is not an extreme point of Z(F}, F]) according to Theorem 1.

Therefore, it is never the unique solution of (3). [
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OA.5 Proof of Proposition 2

Let 9(G) := sup,e(g-1(r),g-1(r+) Vs () for all G € Fy. Then, by Theorem 2,

cav(0)[F] < cav(v)[F] =  sup /Rvg(x)H(dx).

HEL(F},F])

Meanwhile, by Theorem 3,

sup /Rvg(x)H(da:) < cav(0)[F].

HeUoZ(FR®,Fr°)

Together, since cl({Z(Fg°, F{°)}) = Z(FE, FT), (3) then follows. |

OA.6 Proof of Corollary 5

For necessity, consider any H € H, such that H(z)—H(z_,) =0, forall ke {1,..., K}
Then for any k € {1,...,K}, S.F 6, = H(z;). Since H € H.,, there exists a signal u € M
for which p-almost all posteriors have a unique 7-quantile and H(z; ) = u({G € Fo|G (1) <
zk}) = p({G € Folt < G(z)}). Since p € M, G(z) is a mean-preserving spread of F'(zy)
when G ~ u. Thus, u({G € Fo|t < G(z)}) < F(z)/7, and hence (4) holds. Analogous
arguments can be applied to show that (5) holds as well.

For sufficiency, consider any prediction dataset (6;,)5%_; such that (4) and (5) hold. Let H
be the distribution that assigns probability 6y at (2x + zx—1)/2. Then, there exists € > 0 such
that H € Z(Fg°, F; ). By Theorem 3, there exists a signal p with u({G € F|G~(7) <
GY(77)}) = 0 such that H(z) = H7(x|u) for all # € R, which in turn implies that u

T-quantile-rationalizes (0;)5_,, as desired. [ |

OA.7 Proofs of Proposition 3 and Proposition 5

We prove the following result that leads to Proposition 3 and Proposition 5 immediately.*

Theorem OA.1. Let F(x) := 2 and F(z) := 0 for all x € [0,1]. For any J € N, for any
collection of bounded linear functionals {T';}7_, on L'([0,1]) and for any collection {~;}{_, C

4Rolewicz (1984) characterizes the extreme points of bounded Lipschitz functions defined on the unit
interval that vanish at zero, and he shows that a function is an extreme point of the unit ball of this set if and
only if the absolute value of its derivative equals 1 almost everywhere (see also Rolewicz 1986; Farmer 1994;
Smarzewski 1997). The convex set of interest here is different. First, functions in Z(F, F) are subject to an
additional monotonicity constraint. Second, these functions are bounded by F and F under the pointwise
dominance order, rather than the Lipschitz (semi) norm. In particular, functions in Z(F, F) may have
unbounded derivatives, whenever well-defined. Lastly, Theorem OA.1 below characterizes the extreme points
of this set subject to finitely many other linear constraints, which are not present in the characterization of
Rolewicz (1984).
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R, let Z¢ be a convex subset of Z(F,F) defined as
I¢:={H € Z(F,F)|Tj(H) > v;, Vj € {1,..., J}}.

Suppose that H € I¢ is an extreme point of I¢. Then there exists countably many intervals
{lz,,, Tn)}5, such that:

1. H(z) = for allx ¢ UX [z, Tp).
2. For alln,m € N, with n # m, H is constant on [z,,T,) and H(z,) # H(z,,).

3. For all but at most J many n € N, H(z,) =z

n-

Proof. Consider any extreme point H of Z¢. We first claim that for any = € (0,1), it must
be either H(x) = z or H(y) = H(z) for all y € (x,z + §) for some 6 > 0. To see this,
note that since Z¢ is a subset of Z(F, F) defined by J linear constraints, Proposition 2.1 of
Winkler (1988) implies that there exists {H]}jill C ext(Z(F,F)) and {)\]}3];’11 C [0, 1] such
that H(x) = Zj:ll NjHj(x) for all x € [0, 1] and Zj:ll A; = 1. Now suppose that H(z) < x
for some = € (0,1). Then there must exist a nonempty subset J C {1,...,J + 1} such that
Hj(z) < z for all j € J and that H;(z) = x for all j € {1,...,J 4+ 1}\J. Since H; is an
extreme point of Z(F, F) for all j € J, Theorem 1 implies that for each j € 7, there exists
an interval [z7,7/) containing x on which H; is constant. Let (z,7) be the interior of the

intersection of {[z7,77)},c7. Then it must be that

H(y) =ay+(1—a)n

for all y € (z,7), for some n < z, and a € (0, 1). Now suppose that for any § > 0, there exists
y € (x,240) such that H(z) < H(y). Take any 6 € (0, min{(1—a)(z—n)/(1+a), z—z, T—z})
and let 2, := 2 — § and 2* := x + 6. Then it must be that H(y) < z for any y € [z,,2"]
and that H(z*) < x.. Moreover, the function h : [z.,2*] — [H(x.), H(z")] defined as
h(y) := H(y) for all y € [z,,x*] must not be a step function, since otherwise, as h is right-
continuous on (., z*), there must be some § > 0 such that H(y) = h(y) = h(z) = H(z) for
all y € [z,2 4 0), a contradiction. Meanwhile, since each functional T'; : L'([0,1]) — R is
bounded, Riesz’s representation implies that there must exist ®; € L>([0, 1]) such that

I;(H) = /O H(z)®;(z) dz,

forall He T (F, F). Therefore, since any extreme point of the collection of nondecreasing,
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right-continuous functions A from [z,,z*] to [H(z,), H(x*)] such that

*

[ iz,

for all j € {1,...,J} is a step function with at most J + 1 steps, as implied by Proposition
2.1 of Winkler (1988), the function A is not an extreme point of this collection. Thus, there
exists two distinct functions hq, hy @ [z4,2*] — [H(z.), H(z*)] and A € (0,1) such that
h(y) = Ahi(y) + (1 — X)ha(y) for all y € [x,,2*] and that

/ hi(z)®,(x)de = / H(z)®,(z)dz, (OA.3)
for all j € {1,...,J} and for all [ € {1,2}. Now let Hy, Hs be defined as

| H), ifyé|r.,2] ) H(y), ify¢ [z, 2]
Hily) := { iy, ifye o] ) '_{ ha(y), if y € [wy,27]

Then, H = AH; + (1 — A\)Hy and H; # Hs. Moreover, since hq(y), ha(y) < H(z*) < z, for
all y € [z.,2*], and since H € Z(F, F), it must be that both H, and H, are in Z(F, F).
Furthermore, by (OA.3), it must be that

*

Fj(Hz)Z/O Hy(x)®;(x) dx:/[OlN *] (), (x) dx+/x R
= H(z)®,(x)dx m*HZL'q)jgjdx
/[0,11\[x*,m*] (2)®;(z) +/z* (2)®;(z)

:/0 H(z)®;(z)dx
Z"Yjv

for all j € {1,...,J} and for all [ € {1,2}. Thus, Hy, Hy € Z° a contradiction. Together,
for any x € (0, 1), it must be either H(xz) = x or H(y) = H(x) for all y € (x,z + 0) for some
6> 0.

Let X C [0,1] be the collection of = € [0,1] such that H(x) = z. For any x ¢ X, let
0, :=sup{y € [0,1]|H(y) = H(x)} and §, := inf{y € [0,1]|H(y) = H(z)}. Then it must be
J, < 6, for all x ¢ X. Moreover, for any z,y € [0,1\X with z < y, H(z) < H(y) if and
only if 4, < §,. Therefore, [0,1]\X can be expressed as a union of a collection I of disjoint
intervals. Since I is a collection of disjoint intervals on [0, 1], each element of I must uniquely
contain at least one rational number. Thus, there exists an injective map from the collection

I to a subset of rational numbers in [0, 1], and therefore the collection I must be countable.
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Enumerate I as {[z,,T,)}>2, and suppose that there is a subset N of these intervals,
with |N| > J, such that H(z,) < z,. For each n € N/, since H(z,,) < z,, and since H(z) =z
for all ¢ U, [z,,,T,), H must be discontinuous at z,. Let n, :== H(z,) — H(z,,) for all
n € N, and let n := min{7n, }nen. Furthermore, let ¢ € R be defined as

for all n € A and for all j € {1,...,J}. Then the |N| x J matrix ¢ := ((ﬁ”);fﬁ/ ..... 5 isa

linear map from R to R7. Since |N| > J, dim(null(®)) > 1, and thus there must exist a

nonzero vector {f, }nen such that

> ¢rh, =0, (OA.4)

for all j € {1,...,J}. Let e := min{n/4|h,|, (z, — H(z,)) /40| nenr, and let H be defined
as
A):={ O H7EUevlinTa)
eh,, ifxelx, T,),neN

Then, since {]Aln}nej\/ is a nonzero vector in RV! and since ¢ > 0, H # 0. Moreover, since
e < n/4d|hy| for all n € N, H(z) — |H(z)| = H(z,) — e|ha| > H(z,) — n/2 > H(z;) +n/4 >
H(z) + |PAI(33)| for all # < z,, and for all n € N. Therefore, both H + H and H — H are
nondecreasing. Meanwhile, since for any n € A" and for any z € [z,,T,), H(z) + |H(z)| =
H(z,)+€|ha| < z,, both H+ H and H — H are in Z(F, F). In addition, by (OA.4), for any
jed{l,...,J},

1 R ~
H H P (x)dx = H(x)®;(x)d H(x)®;(x)d hn @7
/0 ( (x) M (x)) ’ <x> v /;) 1 \UnEN'[fC Zn) (x) ’ (x) o /Une.'\/'[l’n@n) (x) ’ (m) e TLEZ./V ¢]
/ H(x

2737

and

H(z)®;(z) dz + / H(z)®(z)dz — ¢ Y hao}

Unen([z,,,Zn) neN

[ ) = Ao, = [

/ Hiz
>
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Together, both H + H and H — H are in Z¢, and hence, H is not an extreme point, a

contradiction. This completes the proof. ]

Proofs of Proposition 8 and Proposition 5. Note that since |¢.(x|e)| is dominated by an in-
tegrable function on [0, 1], one can apply the dominated convergence theorem to show that
the objective function of both (7) and (10) are continuous in (H,e) and (H, z), respectively.
Similarly, the constraint set can be shown to be closed. Therefore, both (7) and (10) admit
a solution.

Consequently, since for any fixed e and z, the objective is continuous in H and the feasible
set is compact and convex in (7) and (10), respectively, Proposition 3 and the first part of
Proposition 5 follow immediately from Theorem OA.1, with J = 2 and J = 1, respectively.
This is because any H satisfying conditions 1 through 3 correspond to a contingent debt
contract with at most J non-defaultable face values. The uniqueness part of Proposition 5
further follows from the fact that the objective of (10) is strictly convex in H when ®(-|s)
has full support for all s € S, and hence, every solution must be an extreme point of the
feasible set. |

OA.8 Proof of Proposition 4

Let IT*(e) be the value of the entrepreneur’s problem (7) for a fixed e € [0, €]. We first show
that there exists Lagrange multipliers A} # 0 and A5 > 0 such that

e = s [ mnstele) o ([ @ - H@o.tele) s - ')

HEI(F,F

A (/01 H(z)o(sle) do — (1 + m) ] (OA.5)

To this end, we adopt a similar argument as Nikzad (2023). For any fixed e € [0, ] and for
any v € R, let M.(vy) be the value of

Lo J o~ H()o(ele) de (o)

s.t. / [z — H(x)]pe(x]e) dz = C'(e) (OA.6)

0
i H(z)p(xz|e)dx > .

Note that .
M ((1+7r)) =11"(e) = /0 (x — H*(z))p(x|e)dz — C(e), (OA.7)
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where H* is a solution of (7) with a fixed e. Moreover, M, is nonincreasing and concave in
v. Indeed, monotonicity follows from the ordered structure of the feasible set as v increases.
For concavity, consider any 71,72 € R and let 4 := Ay, + (1 — \)v, for any A € (0,1). Since
(OA.6) admits a solution, there exists Hy, H, € Z(F, F) such that

/O (& — Hy(2))d(xle) dz — C(e) = M () / (2 — Hylw))é(xle) dz — Cle) = M(m).
Furthermore,
/0 (2 — Hy(x))do(xle) dz = C'(e)
[ @t do = 5

for i € {1,2}. Let H* := AH; + (1 — \)H,, we must have H* € Z(F, F) and

/ (& — H(2))u]e) dz = C'(¢)
/ H*(z e)dx >y,
Thus,
M) = / (& — HN2))d(xle) dz — C(e)

- / (2 — H,(2)é(xle) da + (1 — A) / (2 — Hy(x))b(ele) da
=AM (1) + (L = X)) Me(72).

Since M, is nonincreasing and concave, and since (1 + r)I is an interior of the set

{/H e) dz

there exists A3 > 0 such that

H e I(F,F), /0 (v — H(z))pe(z]e) dv = C’(e)},

Me(y) < Me((L+7)1) = A5(y = (L + 7))
for all ¥ € R. Meanwhile, for any H € Z(F, F) such that
1
/ (z — H(2))pu(z]e) dz = C'(e), (OA.3)
0
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it must be that

v/ ' H(x)o(ale) w)= | (o H(@)(ale) de — C(o),

by the definition of M,. Together with (OA.7), we have

M((1+1)T) = / (2 — H* (2))(ale) dz — C(e)

Z/Ol(x—H(x))gb(| de — C +/\*(/ Hi dx—(l—i—r)]),
(OA.9)

for all H € Z(F, F) such that (OA.8) holds. Since H* is feasible for (7) with the fixed e,
(OA.9) implies

/01(93 — H*(2))¢(zle) dr + Aj (/1 Hlz)plzle)ds =1+ T)])

1
2/(1’—H( ))o (1:|)dx+)\*(/H |)dx—(1+7")[), (OA.10)
0
for all H € Z(F, F) satisfying (OA.8). Now let
1
L.(H;\) ::/(x—H(x))ng( le)dz — C +)\(/ H(z dx—(l—i—?“)]),
0
and let L£.(\) be the value of
sup L.(H;\) (OA.11)
HEI(F,F)

S+, /0 (= H(2))pu(]e) dz = C'(c).

Then, (OA.10) implies that H* solves (OA.11) with A = A} and

£ = / (x — H*(2))é(a]e) dz — C(e).

Meanwhile, by the definition of £.(\),

L0 > / (2 — H(x))é(z]e) dz — C(e)
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for all feasible H of (7) with fixed e. Finally, since the constraint in (OA.11) is an equality,
standard results (see, e.g., Theorem 3.12 of Anderson and Nash 1987) implies that there exits
A1 # 0 such that (OA.5) holds.

For any fixed e € [0, €], since the primal problem (7) is convex for any fixed e € [0, ¢,
there exists an extreme point H* of the feasible set that attains I1*(e). By Theorem OA.1,
there exists a countable collection of intervals {[x,,,Z,)}32, such that H* satisfies conditions
1 through 3 for J = 2. Meanwhile, as established above, H* must also solve the dual problem
(OA.5) of (7) for this fixed e. Note that the dual problem can be written as

o { [ @I+ R)60le) - X6l as 45

with x € R being a constant that does not depend on H. Moreover,

de(zle) < 1—1—)\;.

(14 23)0(ale) ~ Noulale) 20 = Sontd < 2

Since ¢.(-|e)/¢(-|e) is at most N-peaked, there must be a finite interval partition {I;}X | of
[0, 1] with K < 2N such that ¢.(x|e)/o(z|e) — (1+ A3)/A} takes the same sign for all x € Ij.

Therefore, if there are more than N +1 intervals on which H* is constant, then either there
are at least two of them contained in a single interval I, with ¢.(x|e)/@(z|e) < (1+\5)/A} for
all z € I, or there is at least one of them contained in an interval I; with ¢.(x|e)/¢(z]e) >
(L 4+ X5)/A; for all z € [;. If there are two intervals [z,,T,), [2,,, Tm), With Z,, < z,,, that
are contained in some Iy with ¢.(z|e)/P(xle) < (1 + A3)/A} for all x € Iy, then, since by
condition 2 of Theorem OA.1, H*(z,) < H*(z,,), for H** defined as

e { (@), it ¢ [0, )
H*(z,), ifx€lz,,Tn)

for all x € [0,1], H** € Z(F, F) and yields a higher value to the objective of (OA.5) than
H~*. Likewise, if there is at least one interval on which H* is constant that is contained in

some I; such that ¢.(x|e)/p(xzle) < (14 A})/A7 for all z € [}, then, since H*(z) < x for all
x € (x,,T,), for H* defined as

€Tr) .=
max{z, H*(Z,)}, ifze€l;

for all z € [0,1], H* € Z(F, F) and yields a higher value to the objective of (OA.5) than H*.
Thus, H* cannot be a solution of the dual problem (OA.5) for this fixed e, a contradiction.
Consequently, the solution H* to the primal problem (7) for any fixed e € [0, €] cannot admit
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more than N + 1 intervals where H* is constant. As a result, H* is a contingent debt contract

with at most N + 1 face values. Since e € [0, €] is arbitrary, this completes the proof. |
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