Online Appendix for Monotone Function Intervals: Theory and Applications

Kai Hao Yang^{*} Alexander K. Zentefis[†]

May 1, 2024

OA.1 Proof of Theorem 2

To show that $\mathcal{H}_{\tau} \subseteq \mathcal{I}(F_R^{\tau}, F_L^{\tau})$, consider any $H \in \mathcal{H}_{\tau}$. Let $\mu \in \mathcal{M}$ and any $r \in \mathcal{R}_{\tau}$ be a signal and a selection rule, respectively, such that $H^{\tau}(\cdot|\mu, r) = H$. By the definition of $H^{\tau}(\cdot|\mu, r)$, it must be that, for all $x \in \mathbb{R}$,

$$H^{\tau}(x|\mu, r) \le \mu(\{G \in \mathcal{F}_0 | G^{-1}(\tau) \le x\}) = \mu(\{G \in \mathcal{F}_0 | G(x) \ge \tau\}).$$

Now consider any $x \in \mathbb{R}$. Clearly, $\mu(\{G \in \mathcal{F}_0 | G(x) \geq \tau\}) \leq 1$, since μ is a probability measure. Moreover, let $M_x^+(q) := \mu(\{G \in \mathcal{F}_0 | G(x) \geq q\})$ for all $q \in [0,1]$. From (1), it follows that the left-limit of $1 - M_x^+$ is a CDF and a mean-preserving spread of a Dirac measure at F(x). Therefore, whenever $\tau \geq F(x)$, then $M_x^+(\tau)$ can be at most $F(x)/\tau$ to have a mean of F(x).¹ Together, this implies that $\mu(\{G \in \mathcal{F}_0 | G(x) \geq \tau\}) \leq F_L^{\tau}(x)$ for all $x \in \mathbb{R}$.

At the same time, by the definition of $H^{\tau}(\cdot|\mu, r)$, it must be that, for all $x \in \mathbb{R}$,

$$H^{\tau}(x^{-}|\mu, r) \ge \mu(\{G \in \mathcal{F}_{0}|G^{-1}(\tau^{+}) < x\}) = \mu(\{G \in \mathcal{F}_{0}|G(x) > \tau\}).$$

Consider any $x \in \mathbb{R}$. Since μ is a probability measure, it must be that $\mu(\{G \in \mathcal{F}_0 | G(x) > \tau\}) \geq 0$. Furthermore, let $M_x^-(q) := \mu(\{G \in \mathcal{F}_0 | G(x) > q\})$ for all $q \in [0, 1]$. From (1), it follows that $1 - M_x^-$ is a CDF and a mean-preserving spread of a Dirac measure at F(x). Therefore, whenever $\tau \leq F(x)$, then $M_x^-(\tau)$ must be at least $(F(x) - \tau)/(1 - \tau)$ to have a

^{*}Yale School of Management, Email: kaihao.yang@yale.edu

[†]Yale School of Management, Email: alexander.zentefis@yale.edu

¹More specifically, to maximize the probability at τ , a mean-preserving spread of F(x) must assign probability $F(x)/\tau$ at τ , and probability $1 - F(x)/\tau$ at 0.

mean of F(x).² Together, this implies that $\mu(\{G \in \mathcal{F}_0 | G(x) > \tau\}) \ge F_R^{\tau}$ for all $x \in \mathbb{R}$, which, in turn, implies that $F_R^{\tau}(x) \le H^{\tau}(x^-|\mu, r) \le H^{\tau}(x|\mu, r) \le F_L^{\tau}(x)$ for all $x \in \mathbb{R}$, as desired.

To prove that $\mathcal{I}(F_R^{\tau}, F_L^{\tau}) \subseteq \mathcal{H}_{\tau}$, we first show that for any extreme point H of $\mathcal{I}(F_R^{\tau}, F_L^{\tau})$, there exists a signal $\mu \in \mathcal{M}$ and a selection rule $r \in \mathcal{R}_{\tau}$ such that $H(x) = H^{\tau}(x|\mu, r)$ for all $x \in \mathbb{R}$. Consider any extreme point H of $\mathcal{I}(F_R^{\tau}, F_L^{\tau})$. By Theorem 1, there exists a countable collection of intervals $\{(\underline{x}_n, \overline{x}_n)\}_{n=1}^{\infty}$ such that H satisfies 1 and 2. Since $(1 - F_L^{\tau}(x))F_R^{\tau}(x) = 0$ for all $x \notin [F^{-1}(\tau), F^{-1}(\tau^+)]$, there exists at most one $n \in \mathbb{N}$ such that $0 < H(\underline{x}_n) = F_L^{\tau}(\underline{x}_n) =$ $F_R^{\tau}(\overline{x}_n) = H(\overline{x}_n) < 1$. Therefore, for \underline{x} and \overline{x} defined as

$$\underline{x} := \sup\{\underline{x}_n | n \in \mathbb{N}, \ H(\underline{x}_n) = F_L^{\tau}(\underline{x}_n)\},\$$

and

$$\overline{x} := \inf\{\overline{x}_n | n \in \mathbb{N}, \, H(\overline{x}_n^-) = F_R^{\tau}(\overline{x}_n^-)\},\$$

respectively, it must be that $\overline{x} \geq \underline{x}$, and that for all $n \in \mathbb{N}$, either $\overline{x}_n \leq \underline{x}$ and $H(\underline{x}_n) = F_L^{\tau}(\underline{x}_n)$; or $\underline{x}_n \geq \overline{x}$ and $H(\overline{x}_n) = F_R^{\tau}(\overline{x}_n)$. Henceforth, let \mathbb{N}_1 be the collection of $n \in \mathbb{N}$ such that $\overline{x}_n \leq \overline{x}$ and $H(\underline{x}_n) = F_L^{\tau}(\underline{x}_n)$, and let \mathbb{N}_2 be the collection of $n \in \mathbb{N}$ such that $\underline{x}_n \geq \underline{x}$ and $H(\overline{x}_n) = F_R^{\tau}(\overline{x}_n)$. Note that $\mathbb{N}_1 \cup \mathbb{N}_2 = \mathbb{N}$ and that $|\mathbb{N}_1 \cap \mathbb{N}_2| \leq 1$, with $\underline{x}_n = \underline{x}$ and $\overline{x}_n = \overline{x}$ whenever $n \in \mathbb{N}_1 \cap \mathbb{N}_2$.

We now construct a signal $\mu \in \mathcal{M}$ and a selection rule $r \in \mathcal{R}_{\tau}$ such that $H^{\tau}(\cdot|\mu, r) = H$. To this end, let $\eta := H(\overline{x}^{-}) - H(\underline{x})$ and let $\hat{x} := \inf\{x \in [\underline{x}, \overline{x}] | H(x) = H(\overline{x}^{-})\}$. Note that by the definition of \underline{x} and \overline{x} , if $\eta > 0$, then $\hat{x} \in (\underline{x}, \overline{x})$ and $H(x) = H(\underline{x})$ for all $x \in [\underline{x}, \hat{x})$, while $H(x) = H(\overline{x}^{-})$ for all $x \in [\hat{x}, \overline{x})$. In particular, $F_{L}^{\tau}(\hat{x}) \ge H(\hat{x}) = F_{L}^{\tau}(\underline{x}) + \eta$, and hence $F(\hat{x}) - \tau \eta \ge F(\underline{x})$. Likewise, $F(\hat{x}) + (1 - \tau)\eta \le F(\overline{x}^{-})$. Let

$$\underline{y} := F^{-1}([F(\hat{x}) - \tau \eta]^+), \text{ and } \overline{y} := F^{-1}(F(\hat{x}) + (1 - \tau)\eta)).$$

It then follows that $\underline{x} \leq \underline{y} \leq \hat{x} \leq \overline{y} \leq \overline{x}$, with at least one inequality being strict if $\eta > 0$. Next, define \widehat{F} as follows: $\widehat{F} \equiv 0$ if $\eta = 0$; and

$$\widehat{F}(x) := \begin{cases} 0, & \text{if } x < \underline{y} \\ \frac{F(x) - (F(\widehat{x}) - \tau \eta)}{\eta}, & \text{if } x \in [\underline{y}, \overline{y}) \\ 1, & \text{if } x \ge \overline{y} \end{cases},$$

if $\eta > 0$. Clearly $\widehat{F} \in \mathcal{F}_0$ if $\eta > 0$, and $\widehat{x} \in [\widehat{F}^{-1}(\tau), \widehat{F}^{-1}(\tau^+)]$. Moreover, for all $x \in \mathbb{R}$, let

$$\widetilde{F}(x) := \frac{F(x) - \eta \widehat{F}(x)}{1 - \eta}.$$

²More specifically, to minimize the probability at τ , a mean-preserving spread of $F_0(x)$ must assign probability $(F(x) - \tau)/(1 - \tau)$ at 1, and probability $1 - (F(x) - \tau)/(1 - \tau)$ at 0.

By construction, $\eta \widehat{F} + (1 - \eta) \widetilde{F} = F$. From the definition of \underline{y} and \overline{y} , it can be shown that $\widetilde{F} \in \mathcal{F}_0$ as well. Furthermore,

$$\widetilde{F}(\overline{x}^{-}) - \widetilde{F}(\underline{x}) = \frac{F(\overline{x}^{-}) - F(\underline{x}) - \eta}{1 - \eta} = \frac{1}{1 - \eta} \left[\frac{\tau}{1 - \tau} (1 - F(\overline{x}^{-})) + \frac{1 - \tau}{\tau} F(\underline{x}) \right].$$

Next, define \widetilde{F}_1 and \widetilde{F}_2 as follows:

$$\widetilde{F}_1(x) := \begin{cases} \frac{F(x)}{F(\underline{x}) + \alpha(F(\overline{x}^-) - F(\underline{x}) - \eta)}, & \text{if } x < \underline{x} \\ \frac{F(\underline{x}) \alpha(F(x) - F(\underline{x}) - \eta)}{F(\underline{x}) + \alpha(F(\overline{x}^-) - F(\underline{x}) - \eta)}, & \text{if } x \in [\underline{x}, \overline{x}) \\ 1, & \text{if } x \ge \overline{x} \end{cases}$$

and

$$\widetilde{F}_2(x) := \begin{cases} 0, & \text{if } x < \underline{x} \\ \frac{(1-\alpha)(F(x)-F(\underline{x})-\eta)}{1-F(\overline{x}^-)+(1-\alpha)(F(\overline{x}^-)-F(\underline{x})-\eta)}, & \text{if } x \in [\underline{x}, \overline{x}) \\ \frac{F(x)-F(\underline{x})+(1-\alpha)(F(\overline{x}^-)-F(\underline{x})-\eta)}{1-F(\overline{x}^-)+(1-\alpha)(\tilde{F}(\overline{x}^-)-\tilde{F}(\underline{x})-\eta)}, & \text{if } x \ge \overline{x} \end{cases}$$

where

$$\alpha := \frac{\frac{1-\tau}{\tau}F(\underline{x})}{\frac{\tau}{1-\tau}(1-F(\overline{x}^{-})) + \frac{1-\tau}{\tau}F(\underline{x})}$$

By construction, $\widetilde{\alpha}\widetilde{F}_1 + (1 - \widetilde{\alpha})\widetilde{F}_2 = \widetilde{F}$, where $\widetilde{\alpha} \in (0, 1)$ is given by $\widetilde{\alpha} := [F(\underline{x}) + \alpha(F(\overline{x}^-) - F(\underline{x}) - \eta)]/(1 - \eta)$. Moreover, $\widetilde{F}_1(\underline{x}) \ge \tau$, and $\widetilde{F}_2(\overline{x}^-) \le \tau$.

Now define two classes of distributions, $\{\widetilde{F}_1^x\}_{x\leq \underline{x}}$ and $\{\widetilde{F}_2^x\}_{x\geq \overline{x}}$, as follows:

$$\widetilde{F}_1^x(z) := \begin{cases} 0, & \text{if } z < x \\ \widetilde{F}(\underline{x}), & \text{if } z \in [x, \underline{x}) \\ \widetilde{F}(z), & \text{if } z \ge \underline{x} \end{cases}; \text{ and } \widetilde{F}_2^x(z) := \begin{cases} \widetilde{F}(z), & \text{if } z < \overline{x} \\ \widetilde{F}(\overline{x}^-), & \text{if } z \in [\overline{x}, x) \\ 1, & \text{if } z \ge x \end{cases}$$

Note that since $\widetilde{F}_1(\underline{x}) \geq \tau$ and $\widetilde{F}_2(\overline{x}) \leq \tau$, $x \in [(\widetilde{F}_1^x)^{-1}(\tau), (\widetilde{F}_1^x)^{-1}(\tau^+)]$ for all $x \leq \underline{x}$ and $x \in [(\widetilde{F}_2^x)^{-1}(\tau), (\widetilde{F}_2^x)^{-1}(\tau^+)]$ for all $x \geq \overline{x}$. Moreover, for any $n \in \mathbb{N}_1$ and for any $m \in \mathbb{N}_2$, let

$$\widetilde{F}_1^n(z) := \frac{1}{\widetilde{F}(\overline{x}_n) - \widetilde{F}(\underline{x}_n)} \int_{\underline{x}_n}^{\overline{x}_n} \widetilde{F}_1^x(z) \widetilde{F}(\mathrm{d}x),$$

and

$$\widetilde{F}_2^m(z) := \frac{1}{\widetilde{F}(\overline{x}_m) - \widetilde{F}(\underline{x}_m)} \int_{\underline{x}_m}^{\overline{x}_m} \widetilde{F}_2^x(z) \,\mathrm{d}\widetilde{F}(\mathrm{d}x),$$

for all $z \in \mathbb{R}$. By construction, $\widetilde{F}_1^n, \widetilde{F}_2^m \in \mathcal{F}_0$ and $\overline{x}_n \in [(\widetilde{F}_1^n)^{-1}(\tau), (\widetilde{F}_1^n)^{-1}(\tau^+)], \underline{x}_m \in [(\widetilde{F}_2^m)^{-1}(\tau), (\widetilde{F}_2^m)^{-1}(\tau^+)]$ for all $n \in \mathbb{N}_1$ and $m \in \mathbb{N}_2$.

Next, for any $x \in \mathbb{R}$, let $\widetilde{G}^x \in \mathcal{F}_0$ be defined as

$$\widetilde{G}^{x}(z) := \begin{cases} \widetilde{F}_{1}^{x}(z), & \text{if } x \in (-\infty, \overline{x}] \setminus \bigcup_{n \in \mathbb{N}_{1}} [\underline{x}_{n}, \overline{x}_{n}) \\ \widetilde{F}_{1}^{n}(z), & \text{if } x \in [\underline{x}_{n}, \overline{x}_{n}), \ n \in \mathbb{N}_{1} \\ \widetilde{F}_{2}^{x}(z), & \text{if } x \in [\overline{x}, \infty) \setminus \bigcup_{m \in \mathbb{N}_{2}} [\underline{x}_{m}, \overline{x}_{m}) \\ \widetilde{F}_{2}^{m}(z), & \text{if } x \in [\underline{x}_{m}, \overline{x}_{m}), \ m \in \mathbb{N}_{2} \end{cases},$$

for all $z \in \mathbb{R}$. Let

$$\widetilde{H}(x) := \begin{cases} \frac{H(x)}{1-\eta}, & \text{if } x < \underline{x} \\ \frac{H(\underline{x})}{1-\eta}, & \text{if } x \in [\underline{x}, \overline{x}) \\ \frac{H(x)-\eta}{1-\eta}, & \text{if } x \ge \overline{x} \end{cases},$$

and define $\tilde{\mu}$ as

$$\tilde{\mu}(\{\widetilde{G}^x \in \mathcal{F}_0 | x \le z\}) := \widetilde{H}(z),$$

for all $z \in \mathbb{R}$. Then, by construction, for any $z \in \mathbb{R}$,

$$\int_{\mathcal{F}} F(z)\tilde{\mu}(\mathrm{d}F) = \int_{\mathbb{R}} \tilde{G}^{x}(z)\tilde{H}(\mathrm{d}x) = \tilde{F}(z).$$
(OA.1)

Moreover, let $\tilde{r} : \mathcal{F}_0 \to \Delta(\mathbb{R})$ be defined as

$$\tilde{r}(G) := \begin{cases} \delta_{\{G^{-1}(\tau^+)\}}, & \text{if } G = \widetilde{G}^x, \ x \ge \overline{x} \\ \delta_{\{G^{-1}(\tau)\}}, & \text{otherwise} \end{cases},$$

for all $G \in \mathcal{F}_0$. It then follows that $H^{\tau}(x|\tilde{\mu}, \tilde{r}) = \tilde{H}(x)$ for all $x \in \mathbb{R}$. Next, let $\mu \in \Delta(\mathcal{F}_0), r \in \mathcal{R}_{\tau}$ together be defined as

$$\mu := (1 - \eta)\tilde{\mu} + \eta \delta_{\{\widehat{F}\}},$$

and

$$r(G) := \begin{cases} \delta_{\{\hat{x}\}}, & \text{if } G = \widehat{F} \\ \widetilde{r}(G), & \text{otherwise} \end{cases},$$

for all $G \in \mathcal{F}_0$. Since $F = \eta \widehat{F} + (1 - \eta) \widetilde{F}$, together with (OA.1), we have $\mu \in \mathcal{M}$. Moreover, since $H^{\tau}(\cdot | \widetilde{\mu}, \widetilde{r}) = \widetilde{H}$, we have $H^{\tau}(x | \mu, r) = H(x)$ for all $x \in \mathbb{R}$.

Lastly, let Γ be a collection of probability measures $\gamma \in \Delta(\mathbb{R} \times \mathcal{F}_0)$ such that $\gamma(\{(x, G) \in \mathbb{R} \times \mathcal{F}_0 | x \in [G^{-1}(\tau), G^{-1}(\tau^+)]\}) = 1$ and

$$\int_{\mathbb{R}\times\mathcal{F}_0} G(x)\gamma(\mathrm{d} x,\mathrm{d} G) = F(x),$$

for all $x \in \mathbb{R}$. Define a linear functional $\Xi : \Gamma \to \mathcal{F}_0$ as

$$\Xi(\gamma)[x] := \gamma((-\infty, x], \mathcal{F}_0),$$

for all $\gamma \in \Gamma$ and for all $x \in \mathbb{R}$. Then, since for any \widehat{H} in the set of extreme points $\operatorname{ext}(\mathcal{I}(F_R^{\tau}, F_L^{\tau}))$ of $\mathcal{I}(F_R^{\tau}, F_L^{\tau})$, there exists $\widehat{\mu} \in \mathcal{M}$ and $\widehat{r} \in \mathcal{R}_{\tau}$ such that $H^{\tau}(x|\widehat{\mu}, \widehat{r}) = \widehat{H}(x)$ for all $x \in \mathbb{R}$, it must be that $\operatorname{ext}(\mathcal{I}(F_R^{\tau}, F_L^{\tau})) \subseteq \Xi(\Gamma)$.

Now consider any $H \in \mathcal{I}(F_R^{\tau}, F_L^{\tau})$. Since $\mathcal{I}(F_R^{\tau}, F_L^{\tau})$ is a compact and convex set of a metrizable, locally convex topological space,³ Choquet's theorem implies that there exists a probability measure $\Lambda_H \in \Delta(\mathcal{I}(F_R^{\tau}, F_L^{\tau}))$ with $\Lambda_H(\text{ext}(\mathcal{I}(F_R^{\tau}, F_L^{\tau}))) = 1$ such that

$$\int_{\mathcal{I}(F_R^{\tau}, F_L^{\tau})} \widehat{H}(x) \Lambda_H(\mathrm{d}\widehat{H}) = H(x),$$

for all $x \in \mathbb{R}$. Define a measure $\widetilde{\Lambda}_H$ by

$$\widetilde{\Lambda}_H(A) := \Lambda_H(\{\Xi(\gamma) | \gamma \in A\})$$

for all measurable $A \subseteq \Gamma$. Since $\Lambda_H(\text{ext}(\mathcal{I}(F_R^{\tau}, F_L^{\tau}))) = 1$ and $\text{ext}(\mathcal{I}(F_R^{\tau}, F_L^{\tau})) \subseteq \Xi(\Gamma)$, $\widetilde{\Lambda}_H$ is a probability measure on Γ . For any $x \in \mathbb{R}$ and for any measurable $A \subseteq \mathcal{F}_0$, let

$$\gamma((-\infty, x], A) := \int_{\Gamma} \tilde{\gamma}((-\infty, x], A) \widetilde{\Lambda}_H(\mathrm{d}\tilde{\gamma}),$$

and let $\mu(A) := \gamma(\mathbb{R}, A)$. By construction, for all $x \in \mathbb{R}$,

$$\int_{\mathcal{F}} G(x)\mu(\mathrm{d}G) = \int_{\Gamma} \left(\int_{\mathbb{R}\times\mathcal{F}_0} G(x)\tilde{\gamma}(\mathrm{d}\tilde{x},\mathrm{d}G) \right) \tilde{\Lambda}_H(\mathrm{d}\tilde{\gamma}) = F(x),$$

and hence $\mu \in \mathcal{M}$. Furthermore, by the disintegration theorem (c.f., Çinlar 2010, theorem 2.18), there exists a transition probability $r : \mathcal{F}_0 \to \Delta(\mathbb{R})$ such that $\gamma(\mathrm{d}x, \mathrm{d}G) = r(\mathrm{d}x|G)\mu(\mathrm{d}G)$. Since $\widetilde{\Lambda}_H(\Gamma) = 1$, and since r is a transition probability, we have $r \in \mathcal{R}_{\tau}$.

³To see this, recall that for any sequence $\{H_n\} \subseteq \mathcal{I}(F_R^{\tau}, F_L^{\tau})$, Helly's selection theorem implies that there exists a subsequence $\{H_{n_k}\} \subseteq \{H_n\}$ that converges pointwise (and hence, in weak-*) to some $H \in \mathcal{I}(F_R^{\tau}, F_L^{\tau})$.

Finally, for any $x \in \mathbb{R}$, since Ξ is affine,

$$H^{\tau}(x|\mu, r) = \gamma((-\infty, x], \mathcal{F}_0) = \Xi(\gamma)[x]$$
$$= \int_{\Gamma} \Xi(\tilde{\gamma})[x] \widetilde{\Lambda}_H(\mathrm{d}\tilde{\gamma})$$
$$= \int_{\mathrm{ext}(\mathcal{I}(F_R^{\tau}, F_L^{\tau}))} \widehat{H}(x) \Lambda_H(\mathrm{d}\widehat{H})$$
$$= H(x),$$

as desired. This completes the proof.

OA.2 Proof of Theorem 3

By Theorem 2,

$$\mathcal{H}_{\tau} \subseteq \mathcal{H}_{\tau} = \mathcal{I}(F_R^{\tau}, F_L^{\tau}).$$

It remains to show that

$$\bigcup_{\varepsilon>0} \mathcal{I}(F_R^{\tau,\varepsilon}, F_L^{\tau,\varepsilon}) \subseteq \widetilde{\mathcal{H}}_{\tau}.$$

To this end, let $\widetilde{\mathcal{M}}_{\tau}$ be the collection of $\mu \in \mathcal{M}$ such that $\mu(\{G \in \mathcal{F}_0 | G^{-1}(\tau) < G^{-1}(\tau^+)\}) = 0$. Consider any $\varepsilon > 0$ and any extreme point H of $\mathcal{I}(F_R^{\tau,\varepsilon}, F_L^{\tau,\varepsilon})$. By Theorem 1, there exists a countable collection of intervals $\{(\underline{x}_n, \overline{x}_n)\}_{n=1}^{\infty}$ such that H satisfies 1 and 2. Since $(1 - F_R^{\tau,\varepsilon}(x))F_L^{\tau,\varepsilon}(x) = 0$ for all $x \neq F_0^{-1}(\tau)$, there exists at most one $n \in \mathbb{N}$ such that $0 < H(\underline{x}_n) = F_R^{\tau,\varepsilon}(\underline{x}_n) = F_L^{\tau,\varepsilon}(\overline{x}_n) = H(\overline{x}_n) < 1$. Therefore, for \underline{x} and \overline{x} defined as

$$\underline{x} := \sup\{\underline{x}_n | n \in \mathbb{N}, \ H(\underline{x}_n) = F_R^{\tau,\varepsilon}(\underline{x}_n)\} \quad \text{ and } \quad \overline{x} := \inf\{\overline{x}_n | n \in \mathbb{N}, \ H(\overline{x}_n^-) = F_L^{\tau,\varepsilon}(\overline{x}_n^-)\},$$

respectively, it must be that $\overline{x} \geq \underline{x}$, and that, for all $n \in \mathbb{N}$, either $\overline{x}_n \leq \underline{x}$ and $H(\underline{x}_n) = F_L^{\tau,\varepsilon}(\underline{x}_n)$, or $\underline{x}_n \geq \overline{x}$ and $H(\overline{x}_n) = F_R^{\tau,\varepsilon}(\overline{x}_n)$. Henceforth, let \mathbb{N}_1 be the collection of $n \in \mathbb{N}$ such that $\overline{x}_n \leq \overline{x}$ and $H(\underline{x}_n) = F_L^{\tau,\varepsilon}(\underline{x}_n)$, and let \mathbb{N}_2 be the collection of $n \in \mathbb{N}$ such that $\underline{x}_n \geq \underline{x}$ and $H(\overline{x}_n) = F_R^{\tau,\varepsilon}(\overline{x}_n)$. Note that $\mathbb{N}_1 \cup \mathbb{N}_2 = \mathbb{N}$ and that $|\mathbb{N}_1 \cap \mathbb{N}_2| \leq 1$, with $\underline{x}_n = \underline{x}$ and $\overline{x}_n = \overline{x}$ whenever $n \in \mathbb{N}_1 \cap \mathbb{N}_2$.

We now construct a signal $\mu \in \widetilde{\mathcal{M}}_{\tau}$ such that $H^{\tau}(\cdot|\mu) = H$. First, let $\eta := H(\overline{x}^{-}) - H(\underline{x})$ and let $\hat{x} := \inf\{x \in [\underline{x}, \overline{x}] | H(x) = H(\overline{x}^{-})\}$. Note that, by the definition of \underline{x} and \overline{x} , if $\eta > 0$, then $\hat{x} \in (\underline{x}, \overline{x})$ and $H(x) = H(\underline{x})$ for all $x \in [\underline{x}, \hat{x})$, while $H(x) = H(\overline{x}^{-})$ for all $x \in [\hat{x}, \overline{x})$. In particular, $F_{L}^{\tau,\varepsilon}(\hat{x}) \ge H(\hat{x}) = F_{L}^{\tau,\varepsilon}(\underline{x}) + \eta$, and hence $F(\hat{x}) - (\tau + \varepsilon)\eta \ge F(\underline{x})$. Likewise, $F(\hat{x}) + (1 - \tau + \varepsilon)\eta \le F(\overline{x}^{-})$. Now let

$$\underline{y} := F^{-1}(F(\hat{x}) - (\tau + \varepsilon)\eta), \quad \text{and} \quad \overline{y} := F^{-1}(F(\hat{x}) + (1 - \tau + \varepsilon)\eta)$$

It then follows that $\underline{x} \leq \underline{y} \leq \hat{x} \leq \overline{y} \leq \overline{x}$, with at least one inequality being strict if $\eta > 0$. Next, define \widehat{F} as follows: $\widehat{F} \equiv 0$ if $\eta = 0$; and

$$\widehat{F}(x) := \begin{cases} 0, & \text{if } x < \underline{y} \\ \frac{F(x) - (F(\widehat{x}) - (\tau + \varepsilon)\eta)}{\eta}, & \text{if } x \in [\underline{y}, \overline{y}) \\ 1, & \text{if } x \ge \overline{y} \end{cases},$$

if $\eta > 0$. Clearly $\widehat{F} \in \mathcal{F}_0$ if $\eta > 0$, and $\widehat{x} = \widehat{F}^{-1}(\tau)$. Moreover, for all $x \in \mathbb{R}$, let

$$\widetilde{F}(x) := \frac{F(x) - \eta F(x)}{1 - \eta}.$$

By construction, $\eta \widehat{F} + (1 - \eta) \widetilde{F} = F$. From the definition of \underline{y} and \overline{y} , it can be shown that $\widetilde{F} \in \mathcal{F}_0$ as well. Furthermore,

$$\widetilde{F}(\overline{x}^{-}) - \widetilde{F}(\underline{x}) = \frac{F(\overline{x}^{-}) - F(\underline{x}) - \eta}{1 - \eta} = \frac{1}{1 - \eta} \left[\frac{\tau - \varepsilon}{1 - (\tau - \varepsilon)} (1 - F(\overline{x}^{-})) + \frac{1 - (\tau + \varepsilon)}{\tau + \varepsilon} F(\underline{x}) \right].$$

Next, define \widetilde{F}_1 and \widetilde{F}_2 as follows:

$$\widetilde{F}_1(x) := \begin{cases} \frac{F(x)}{F(\underline{x}) + \alpha(F(\overline{x}^-) - F(\underline{x}) - \eta)}, & \text{if } x < \underline{x} \\ \frac{F(\underline{x}) + \alpha(F(\overline{x}^-) - F(\underline{x}) - \eta)}{F(\underline{x}) + \alpha(F(\overline{x}^-) - F(\underline{x}) - \eta)}, & \text{if } x \in [\underline{x}, \overline{x}) \\ 1, & \text{if } x \ge \overline{x} \end{cases}$$

and

$$\widetilde{F}_2(x) := \begin{cases} 0, & \text{if } x < \underline{x} \\ \frac{(1-\alpha)(F(x)-F(\underline{x})-\eta)}{1-F(\overline{x}^-)+(1-\alpha)(F(\overline{x}^-)-F(\underline{x})-\eta)}, & \text{if } x \in [\underline{x}, \overline{x}) \\ \frac{F(x)-F(\underline{x})+(1-\alpha)(F(\overline{x}^-)-F(\underline{x})-\eta)}{1-F(\overline{x}^-)+(1-\alpha)(\widetilde{F}(\overline{x}^-)-\widetilde{F}(\underline{x})-\eta)}, & \text{if } x \ge \overline{x} \end{cases}$$

where

$$\alpha := \frac{\frac{1-(\tau+\varepsilon)}{\tau+\varepsilon}F(\underline{x})}{\frac{\tau-\varepsilon}{1-(\tau-\varepsilon)}(1-F(\overline{x}^{-})) + \frac{1-(\tau+\varepsilon)}{\tau+\varepsilon}F(\underline{x})}$$

By construction, $\widetilde{\alpha}\widetilde{F}_1 + (1 - \widetilde{\alpha})\widetilde{F}_2 = \widetilde{F}$, where $\widetilde{\alpha} \in (0, 1)$ is given by $\widetilde{\alpha} := [F(\underline{x}) + \alpha(F(\overline{x}^-) - F(\underline{x}) - \eta)]/(1 - \eta)$. Moreover, $\widetilde{F}_1(\underline{x}) = \tau + \varepsilon > \tau$, and $\widetilde{F}_2(\overline{x}^-) = \tau - \varepsilon < \tau$.

Now define two classes of distributions, $\{\widetilde{F}_1^x\}_{x \leq \underline{x}}$ and $\{\widetilde{F}_2^x\}_{x \geq \overline{x}}$, as follows:

$$\widetilde{F}_1^x(z) := \begin{cases} 0, & \text{if } z < x \\ \widetilde{F}(\underline{x}), & \text{if } z \in [x, \underline{x}) \\ \widetilde{F}(z), & \text{if } z \ge \underline{x} \end{cases}; \text{ and } \widetilde{F}_2^x(z) := \begin{cases} \widetilde{F}(z), & \text{if } z < \overline{x} \\ \widetilde{F}(\overline{x}^-), & \text{if } z \in [\overline{x}, x) \\ 1, & \text{if } z \ge x \end{cases}$$

Note that since $\widetilde{F}_1(\underline{x}) > \tau$ and $\widetilde{F}_2(\overline{x}^-) < \tau$, $x = (\widetilde{F}_1^x)^{-1}(\tau) = (\widetilde{F}_1^x)^{-1}(\tau^+)$ for all $x \leq \underline{x}$ and $x = (\widetilde{F}_2^x)^{-1}(\tau) = (\widetilde{F}_2^x)^{-1}(\tau^+)$ for all $x \geq \overline{x}$. Moreover, for any $n \in \mathbb{N}_1$ and for any $m \in \mathbb{N}_2$, let

$$\widetilde{F}_1^n(z) := \frac{1}{\widetilde{F}(\overline{x}_n) - \widetilde{F}(\underline{x}_n)} \int_{\underline{x}_n}^{\overline{x}_n} \widetilde{F}_1^x(z) \widetilde{F}(\mathrm{d}x),$$

and

$$\widetilde{F}_2^m(z) := \frac{1}{\widetilde{F}(\overline{x}_m) - \widetilde{F}(\underline{x}_m)} \int_{\underline{x}_m}^{\overline{x}_m} \widetilde{F}_2^x(z) \widetilde{F}(\mathrm{d}x),$$

for all $z \in \mathbb{R}$. By construction, $\widetilde{F}_1^n, \widetilde{F}_2^m \in \mathcal{F}_0$ and $\overline{x}_n = (\widetilde{F}_1^n)^{-1}(\tau) = (\widetilde{F}_1^n)^{-1}(\tau^+), \underline{x}_m = (\widetilde{F}_2^m)^{-1}(\tau) = (\widetilde{F}_2^m)^{-1}(\tau^+)$ for all $n \in \mathbb{N}_1$ and $m \in \mathbb{N}_2$. Next, for any $x \in \mathbb{R}$, let $\widetilde{G}^x \in \mathcal{F}_0$ be defined as

$$\widetilde{G}^{x}(z) := \begin{cases} F_{1}^{x}(z), & \text{if } x \in (-\infty, \overline{x}] \setminus \bigcup_{n \in \mathbb{N}_{1}} [\underline{x}_{n}, \overline{x}_{n}) \\ \widetilde{F}_{1}^{n}(z), & \text{if } x \in [\underline{x}_{n}, \overline{x}_{n}), n \in \mathbb{N}_{1} \\ \widetilde{F}_{2}^{x}(z), & \text{if } x \in [\overline{x}, \infty) \setminus \bigcup_{m \in \mathbb{N}_{2}} [\underline{x}_{m}, \overline{x}_{m}) \\ \widetilde{F}_{2}^{m}(z), & \text{if } x \in [\underline{x}_{m}, \overline{x}_{m}), m \in \mathbb{N}_{2} \end{cases}$$

for all $z \in \mathbb{R}$. Let

$$\widetilde{H}(x) := \begin{cases} \frac{H(x)}{1-\eta}, & \text{if } x < \underline{x} \\ \frac{H(\underline{x})}{1-\eta}, & \text{if } x \in [\underline{x}, \overline{x}) \\ \frac{H(x)-\eta}{1-\eta}, & \text{if } x \ge \overline{x} \end{cases},$$

and define $\tilde{\mu}$ as

$$\tilde{\mu}(\{\widetilde{G}^x \in \mathcal{F}_0 | x \le z\}) := \widetilde{H}(z),$$

for all $z \in \mathbb{R}$. Then, by construction, for any $z \in \mathbb{R}$,

$$\int_{\mathcal{F}_0} G(z)\tilde{\mu}(\mathrm{d}G) = \int_{\mathbb{R}} \widetilde{G}^x(z)\widetilde{H}(\mathrm{d}x) = \widetilde{F}(z).$$
(OA.2)

Furthermore, $H^{\tau}(x|\tilde{\mu}) = \tilde{H}(x)$ for all $x \in \mathbb{R}$. As a result, from (OA.2), for $\mu \in \Delta(\mathcal{F}_0)$ defined as

$$\mu := (1 - \eta)\tilde{\mu} + \eta \delta_{\{\widehat{F}\}},$$

since $F = \eta \widehat{F} + (1 - \eta) \widetilde{F}$, it must be that $\mu \in \widetilde{\mathcal{M}}_{\tau}$. Moreover, since $H^{\tau}(\cdot | \widetilde{\mu}) = \widetilde{H}$, we have $H^{\tau}(x|\mu) = H(x)$ for all $x \in \mathbb{R}$.

Lastly, consider any $H \in \mathcal{I}(F_R^{\tau,\varepsilon}, F_L^{\tau,\varepsilon})$. Since $\mathcal{I}(F_R^{\tau,\varepsilon}, F_L^{\tau,\varepsilon})$ is a convex and compact set in a metrizable space, Choquet's theorem implies that there exists a probability measure $\Lambda_H \in \Delta(\mathcal{I}(F_R^{\tau,\varepsilon}, F_L^{\tau,\varepsilon}))$ that assigns probability 1 to $\operatorname{ext}(\mathcal{I}(F_R^{\tau,\varepsilon}, F_L^{\tau,\varepsilon}))$ such that

$$H(x) = \int_{\mathcal{I}(F_R^{\tau,\varepsilon}, F_L^{\tau,\varepsilon})} \widetilde{H}(x) \Lambda_H(\mathrm{d}\widetilde{H}).$$

Meanwhile, define the linear functional $\Xi : \widetilde{\mathcal{M}}_{\tau} \to \mathcal{F}_0$ as

$$\Xi(\tilde{\mu})[x] := \tilde{\mu}(\{G \in \mathcal{F}_0 | G^{-1}(\tau) \le x\}),$$

for all $\tilde{\mu} \in \widetilde{\mathcal{M}}_{\tau}$ and for all $x \in \mathbb{R}$. Now, define a probability measure $\widetilde{\Lambda}$ on $\widetilde{\mathcal{M}}_{\tau}$ by

$$\widetilde{\Lambda}_H(A) := \Lambda_H(\{\Xi(\widetilde{\mu}) | \widetilde{\mu} \in A\}),$$

for all $A \subseteq \widetilde{\mathcal{M}}_{\tau}$. Then, since $\Lambda_H(\operatorname{ext}(\mathcal{I}(F_R^{\tau,\varepsilon}, F_L^{\tau,\varepsilon}))) = 1$ and since, for any $\widetilde{H} \in \operatorname{ext}(\mathcal{I}(F_R^{\tau,\varepsilon}, F_L^{\tau,\varepsilon})))$, there exists $\widetilde{\mu} \in \widetilde{\mathcal{M}}_{\tau}$ such that $H(x) = H^{\tau}(x|\widetilde{\mu})$, it must be that $\widetilde{\Lambda}_H(\widetilde{\mathcal{M}}_{\tau}) = 1$, and hence $\widetilde{\Lambda}_H$ is a probability measure on $\widetilde{\mathcal{M}}_{\tau}$. Let $\widetilde{\mu} \in \widetilde{\mathcal{M}}_{\tau}$ be defined as

$$\tilde{\mu}(A) := \int_{\widetilde{\mathcal{M}}_{\tau}} \mu(A) \widetilde{\Lambda}_H(\mathrm{d}\mu),$$

for all measurable $A \subseteq \mathcal{F}_0$. Then, since Ξ is linear, it follows that

$$\begin{split} H(x) &= \int_{\mathcal{I}(F_R^{\tau,\varepsilon}, F_L^{\tau,\varepsilon})} \widetilde{H}(x) \Lambda_H(\mathrm{d}\widetilde{H}) = \int_{\widetilde{\mathcal{M}}_{\tau}} \Xi(\mu)[x] \widetilde{\Lambda}_H(\mathrm{d}\mu) \\ &= \Xi(\widetilde{\mu})[x] \\ &= H^{\tau}(x|\widetilde{\mu}), \end{split}$$

and therefore, $H \in \widetilde{\mathcal{H}}_{\tau}$. Together, for any $\varepsilon > 0$, any $H \in \mathcal{I}(F_R^{\tau,\varepsilon}, F_L^{\tau,\varepsilon})$ must be in $\widetilde{\mathcal{H}}_{\tau}$. In other words,

$$\bigcup_{\varepsilon>0} \mathcal{I}(F_R^{\tau,\varepsilon}, F_L^{\tau,\varepsilon}) \subseteq \widetilde{\mathcal{H}}_{\tau}.$$

This completes the proof.

OA.3 Proof of Corollary 1

For 1, consider any $H \in \mathcal{H}_q$. By Theorem 2, $H \in \mathcal{I}(F_R^q, F_L^q)$. Thus, $(F_L^q)^{-1}(\tau) \leq H^{-1}(\tau) \leq H^{-1}(\tau^+) \leq (F_R^q)^{-1}(\tau^+)$, and therefore $[H^{-1}(\tau), H^{-1}(\tau^+)] \subseteq [(F_L^q)^{-1}(\tau), (F_R^q)^{-1}(\tau^+)]$. Conversely, consider any interval $Q = [\underline{x}, \overline{x}] \subseteq [(F_L^q)^{-1}(\tau), (F_R^q)^{-1}(\tau^+)]$. Then, let \widehat{H} be defined as

$$\widehat{H}(x) := \begin{cases} 0, & \text{if } x < \underline{x} \\ \tau, & \text{if } x \in [\underline{x}, \overline{x}) \\ 1, & \text{if } x \ge \overline{x} \end{cases}$$

for all $x \in \mathbb{R}$. Then $\widehat{H} \in \mathcal{I}(F_L^q, F_R^q)$ and $Q = [H^{-1}(\tau), H^{-1}(\tau^+)]$. Moreover, by Theorem 2, $\widehat{H} \in \mathcal{H}_q$, as desired.

For 2, consider any $H \in \widetilde{\mathcal{H}}_q$. By Theorem 2, $H \in \mathcal{I}(F_R^q, F_L^q)$. Thus, it must be that

 $[H^{-1}(\tau), H^{-1}(\tau^+)] \subseteq [(F_L^q)^{-1}(\tau), (F_R^q)^{-1}(\tau)].$ Conversely, for any $\hat{x} \in ((F_L^q)^{-1}(\tau), (F_R^q)^{-1}(\tau^+)),$ note that since $\hat{x} > (F_L^q)^{-1}(\tau)$ and since F is continuous, we have $F(\hat{x})/\tau > q$. Similarly, we also have $(F(\hat{x})-\tau)/(1-\tau) < q$. Let $\varepsilon := \min\{F(\hat{x})/\tau-q, q-(F(\hat{x})-\tau)/(1-\tau)\}.$ Then, either $\hat{x} = (F_L^{q,\varepsilon})^{-1}(\tau)$ or $\hat{x} = (F_R^{q,\varepsilon})^{-1}(\tau).$ Since both $F_L^{q,\varepsilon}$ and $F_R^{q,\varepsilon}$ are in $\mathcal{I}(F_R^{q,\varepsilon}, F_L^{q,\varepsilon}),$ Theorem 3 implies that $\hat{x} = H^{-1}(\tau)$ for some $H \in \tilde{H}_q$. Lastly, note that under a signal $\mu \in \mathcal{M}$ such that μ assigns probability τ to F_L^{τ} and probability $1-\tau$ to F_R^{τ} , we have $\mu \in \widetilde{M}_q$ and $H^q(x|\mu) = \tau$ for all $x \in [(F_L^q)^{-1}(\tau), (F_R^q)^{-1}(\tau)].$ Hence, $[(F_L^q)^{-1}(\tau), (F_R^q)^{-1}(\tau)] \subseteq [H^{-1}(\tau), H^{-1}(\tau^+)]$ for some $H \in \tilde{H}_q$, as desired.

OA.4 Proof of Corollary 4

(i) and (ii) follow immediately from the fact that any $H \in \mathcal{I}(F_R^{\tau}, F_L^{\tau})$ is dominated by F_R^{τ} and dominates F_L^{τ} , and that $v_S(x)$ is increasing in x for all $x \leq a$ and is decreasing in x for all x > a.

For (*iii*), suppose that for any $\underline{a} \leq \overline{a}$, $H_{a,\overline{a}}^{C}$ is not optimal. Then, since at least one extreme point of $\mathcal{I}(F_R^{\tau}, F_L^{\tau})$ must be the solution of (3), consider any such extreme point and denote it by H. By Theorem 1, there exists a countable collection of intervals $\{[\underline{x}_n, \overline{x}_n)\}_{n=1}^{\infty}$ such that conditions 1 and 2 of Theorem 1 hold. Since $H_{a,\overline{a}}^C$ is not optimal for any $\underline{a} \leq \overline{a}$, $H \neq H_{\underline{a},\overline{a}}^C$ for all $\underline{a} \leq \overline{a}$. In particular, there must exist $n \in \mathbb{N}$ such that $\underline{x}_n < \overline{x}_n$ and either $H(\overline{x_n}) > F_R^{\tau}(\overline{x_n})$ or $H(\underline{x_n}) < F_L^{\tau}(\underline{x_n})$. Let a be the minimizer of v_S and suppose that $a \leq F^{-1}(\tau)$. Suppose that $H(\overline{x}_n) > F_R^{\tau}(\overline{x}_n)$. Then it must be that $H(\underline{x}_n) = F_L^{\tau}(\underline{x}_n)$. Moreover, since $H(\overline{x}_n) > F_R^{\tau}(\overline{x}_n), \ H(\overline{x}_n) > F_R^{\tau}(\overline{x}_n)$ as well. If $\overline{x}_n \leq a$, then by replacing H(x) with $\min\{F_L^{\tau}(x), H(\overline{x}_n)\}$ for all $x \in [\underline{x}_n, \overline{x}_n)$ and otherwise leaving H unchanged, the resulting distribution \widehat{H} must still be in $\mathcal{I}(F_R^{\tau}, F_L^{\tau})$. Since v_S is strictly decreasing on $[\underline{x}_n, \overline{x}_n)$, \widehat{H} must give a higher value, a contradiction. If, on the other hand, $\overline{x}_n > a$, then since $H(\overline{x}_n) > F_R^{\tau}(\overline{x}_n)$ and since F is continuous, there exists $y > \overline{x}_n$ such that $H(\overline{x}_n) > F_R^{\tau}(y)$. Moreover, since H satisfies conditions 1 and 2, $H(x) > H(\overline{x}_n)$ for all $x \in [\overline{x}_n, y)$. Therefore, by replacing H(x) with $H(\overline{x}_n)$ for all $x \in [\overline{x}, y)$ and leaving H unchanged otherwise, the resulting \widehat{H} must still be in $\mathcal{I}(F_R^{\tau}, F_L^{\tau})$. Since v_S is strictly increasing on $[\overline{x}_n, y)$, \widehat{H} must give a higher value, a contradiction. Analogous arguments also lead to a contradiction for the case of $H(\underline{x}_n) < F_L^{\tau}(\underline{x}_n)$, as well as $a > F^{-1}(\tau)$. Therefore, $H_{\underline{a},\overline{a}}^C$ must be optimal for some $\underline{a} \leq \overline{a}.$

For (iv), note that F is not an extreme point of $\mathcal{I}(F_R^{\tau}, F_L^{\tau})$ according to Theorem 1. Therefore, it is never the unique solution of (3).

OA.5 Proof of Proposition 2

Let $\bar{v}(G) := \sup_{x \in [G^{-1}(\tau), G^{-1}(\tau^+)]} v_S(x)$ for all $G \in \mathcal{F}_0$. Then, by Theorem 2,

$$\operatorname{cav}(\hat{v})[F] \le \operatorname{cav}(\bar{v})[F] = \sup_{H \in \mathcal{I}(F_R^{\tau}, F_L^{\tau})} \int_{\mathbb{R}} v_S(x) H(\mathrm{d}x).$$

Meanwhile, by Theorem 3,

$$\sup_{H \in \cup_{\varepsilon > 0} \mathcal{I}(F_R^{\tau,\varepsilon}, F_L^{\tau,\varepsilon})} \int_{\mathbb{R}} v_S(x) H(\mathrm{d}x) \le \operatorname{cav}(\hat{v})[F].$$

Together, since $cl(\{\mathcal{I}(F_R^{\tau,\varepsilon}, F_L^{\tau,\varepsilon})\}) = \mathcal{I}(F_R^{\tau}, F_L^{\tau}), (3)$ then follows.

OA.6 Proof of Corollary 5

For necessity, consider any $H \in \widetilde{\mathcal{H}}_{\tau}$ such that $H(z_k^-) - H(z_{k-1}^-) = \theta_k$ for all $k \in \{1, \ldots, K\}$. Then for any $k \in \{1, \ldots, K\}$, $\sum_{i=1}^k \theta_i = H(z_k^-)$. Since $H \in \widetilde{\mathcal{H}}_{\tau}$, there exists a signal $\mu \in \mathcal{M}$ for which μ -almost all posteriors have a unique τ -quantile and $H(z_k^-) = \mu(\{G \in \mathcal{F}_0 | G^{-1}(\tau) < z_k\}) = \mu(\{G \in \mathcal{F}_0 | \tau < G(z_k)\})$. Since $\mu \in \mathcal{M}$, $G(z_k)$ is a mean-preserving spread of $F(z_k)$ when $G \sim \mu$. Thus, $\mu(\{G \in \mathcal{F}_0 | \tau < G(z_k)\}) < F(z_k)/\tau$, and hence (4) holds. Analogous arguments can be applied to show that (5) holds as well.

For sufficiency, consider any prediction dataset $(\theta_k)_{k=1}^K$ such that (4) and (5) hold. Let H be the distribution that assigns probability θ_k at $(z_k + z_{k-1})/2$. Then, there exists $\varepsilon > 0$ such that $H \in \mathcal{I}(F_R^{\tau,\varepsilon}, F_L^{\tau,\varepsilon})$. By Theorem 3, there exists a signal μ with $\mu(\{G \in \mathcal{F}_0 | G^{-1}(\tau) < G^{-1}(\tau^+)\}) = 0$ such that $H(x) = H^{\tau}(x|\mu)$ for all $x \in \mathbb{R}$, which in turn implies that μ τ -quantile-rationalizes $(\theta_k)_{k=1}^K$, as desired.

OA.7 Proofs of Proposition 3 and Proposition 5

We prove the following result that leads to Proposition 3 and Proposition 5 immediately.⁴

Theorem OA.1. Let $\overline{F}(x) := x$ and $\underline{F}(x) := 0$ for all $x \in [0, 1]$. For any $J \in \mathbb{N}$, for any collection of bounded linear functionals $\{\Gamma_j\}_{j=1}^J$ on $L^1([0, 1])$ and for any collection $\{\gamma_j\}_{j=1}^J \subseteq$

⁴Rolewicz (1984) characterizes the extreme points of bounded Lipschitz functions defined on the unit interval that vanish at zero, and he shows that a function is an extreme point of the unit ball of this set if and only if the absolute value of its derivative equals 1 almost everywhere (see also Rolewicz 1986; Farmer 1994; Smarzewski 1997). The convex set of interest here is different. First, functions in $\mathcal{I}(\underline{F}, \overline{F})$ are subject to an additional monotonicity constraint. Second, these functions are bounded by \underline{F} and \overline{F} under the pointwise dominance order, rather than the Lipschitz (semi) norm. In particular, functions in $\mathcal{I}(\underline{F}, \overline{F})$ may have unbounded derivatives, whenever well-defined. Lastly, Theorem OA.1 below characterizes the extreme points of this set subject to finitely many other linear constraints, which are not present in the characterization of Rolewicz (1984).

 \mathbb{R} , let \mathcal{I}^c be a convex subset of $\mathcal{I}(\underline{F}, \overline{F})$ defined as

$$\mathcal{I}^{c} := \left\{ H \in \mathcal{I}(\underline{F}, \overline{F}) | \Gamma_{j}(H) \geq \gamma_{j}, \, \forall j \in \{1, \dots, J\} \right\}.$$

Suppose that $H \in \mathcal{I}^c$ is an extreme point of \mathcal{I}^c . Then there exists countably many intervals $\{[\underline{x}_n, \overline{x}_n)\}_{n=1}^{\infty}$ such that:

- 1. H(x) = x for all $x \notin \bigcup_{n=1}^{\infty} [\underline{x}_n, \overline{x}_n)$.
- 2. For all $n, m \in \mathbb{N}$, with $n \neq m$, H is constant on $[\underline{x}_n, \overline{x}_n)$ and $H(\underline{x}_n) \neq H(\underline{x}_m)$.
- 3. For all but at most J many $n \in \mathbb{N}$, $H(\underline{x}_n) = \underline{x}_n$.

Proof. Consider any extreme point H of \mathcal{I}^c . We first claim that for any $x \in (0, 1)$, it must be either H(x) = x or H(y) = H(x) for all $y \in (x, x + \delta)$ for some $\delta > 0$. To see this, note that since \mathcal{I}^c is a subset of $\mathcal{I}(\underline{F}, \overline{F})$ defined by J linear constraints, Proposition 2.1 of Winkler (1988) implies that there exists $\{H_j\}_{j=1}^{J+1} \subseteq \text{ext}(\mathcal{I}(\underline{F}, \overline{F}))$ and $\{\lambda_j\}_{j=1}^{J+1} \subseteq [0, 1]$ such that $H(x) = \sum_{j=1}^{J+1} \lambda_j H_j(x)$ for all $x \in [0, 1]$ and $\sum_{j=1}^{J+1} \lambda_j = 1$. Now suppose that H(x) < xfor some $x \in (0, 1)$. Then there must exist a nonempty subset $\mathcal{J} \subseteq \{1, \ldots, J+1\}$ such that $H_j(x) < x$ for all $j \in \mathcal{J}$ and that $H_j(x) = x$ for all $j \in \{1, \ldots, J+1\} \setminus \mathcal{J}$. Since H_j is an extreme point of $\mathcal{I}(\underline{F}, \overline{F})$ for all $j \in \mathcal{J}$, Theorem 1 implies that for each $j \in \mathcal{J}$, there exists an interval $[\underline{x}^j, \overline{x}^j)$ containing x on which H_j is constant. Let $(\underline{x}, \overline{x})$ be the interior of the intersection of $\{[\underline{x}^j, \overline{x}^j]\}_{j \in \mathcal{J}}$. Then it must be that

$$H(y) = \alpha y + (1 - \alpha)\eta$$

for all $y \in (\underline{x}, \overline{x})$, for some $\eta < x$, and $\alpha \in (0, 1)$. Now suppose that for any $\delta > 0$, there exists $y \in (x, x+\delta)$ such that H(x) < H(y). Take any $\hat{\delta} \in (0, \min\{(1-\alpha)(x-\eta)/(1+\alpha), x-\underline{x}, \overline{x}-x\})$ and let $x_* := x - \hat{\delta}$ and $x^* := x + \hat{\delta}$. Then it must be that H(y) < x for any $y \in [x_*, x^*]$ and that $H(x^*) < x_*$. Moreover, the function $h : [x_*, x^*] \to [H(x_*), H(x^*)]$ defined as h(y) := H(y) for all $y \in [x_*, x^*]$ must not be a step function, since otherwise, as h is right-continuous on (x_*, x^*) , there must be some $\delta > 0$ such that H(y) = h(y) = h(x) = H(x) for all $y \in [x, x+\delta)$, a contradiction. Meanwhile, since each functional $\Gamma_j : L^1([0,1]) \to \mathbb{R}$ is bounded, Riesz's representation implies that there must exist $\Phi_j \in L^{\infty}([0,1])$ such that

$$\Gamma_j(\widetilde{H}) = \int_0^1 \widetilde{H}(x) \Phi_j(x) \,\mathrm{d}x,$$

for all $\widetilde{H} \in \mathcal{I}(\underline{F}, \overline{F})$. Therefore, since any extreme point of the collection of nondecreasing,

right-continuous functions \tilde{h} from $[x_*, x^*]$ to $[H(x_*), H(x^*)]$ such that

$$\int_{x_*}^{x^*} \tilde{h}(x) \Phi_j(x) \, \mathrm{d}x \ge \gamma_j$$

for all $j \in \{1, \ldots, J\}$ is a step function with at most J + 1 steps, as implied by Proposition 2.1 of Winkler (1988), the function h is not an extreme point of this collection. Thus, there exists two distinct functions $h_1, h_2 : [x_*, x^*] \to [H(x_*), H(x^*)]$ and $\lambda \in (0, 1)$ such that $h(y) = \lambda h_1(y) + (1 - \lambda)h_2(y)$ for all $y \in [x_*, x^*]$ and that

$$\int_{x_*}^{x^*} h_l(x) \Phi_j(x) \, \mathrm{d}x = \int_{x_*}^{x^*} H(x) \Phi_j(x) \, \mathrm{d}x, \qquad (\text{OA.3})$$

for all $j \in \{1, \ldots, J\}$ and for all $l \in \{1, 2\}$. Now let H_1, H_2 be defined as

$$H_1(y) := \begin{cases} H(y), & \text{if } y \notin [x_*, x^*] \\ h_1(y), & \text{if } y \in [x_*, x^*] \end{cases}; \quad H_2(y) := \begin{cases} H(y), & \text{if } y \notin [x_*, x^*] \\ h_2(y), & \text{if } y \in [x_*, x^*] \end{cases}$$

Then, $H = \lambda H_1 + (1 - \lambda)H_2$ and $H_1 \neq H_2$. Moreover, since $h_1(y), h_2(y) \leq H(x^*) < x_*$ for all $y \in [x_*, x^*]$, and since $H \in \mathcal{I}(\underline{F}, \overline{F})$, it must be that both H_1 and H_2 are in $\mathcal{I}(\underline{F}, \overline{F})$. Furthermore, by (OA.3), it must be that

$$\begin{split} \Gamma_{j}(H_{l}) &= \int_{0}^{1} H_{l}(x) \Phi_{j}(x) \, \mathrm{d}x = \int_{[0,1] \setminus [x_{*},x^{*}]} H(x) \Phi_{j}(x) \, \mathrm{d}x + \int_{x_{*}}^{x^{*}} h_{l}(x) \Phi_{j}(x) \, \mathrm{d}x \\ &= \int_{[0,1] \setminus [x_{*},x^{*}]} H(x) \Phi_{j}(x) \, \mathrm{d}x + \int_{x_{*}}^{x^{*}} H(x) \Phi_{j}(x) \, \mathrm{d}x \\ &= \int_{0}^{1} H(x) \Phi_{j}(x) \, \mathrm{d}x \\ &\geq \gamma_{j}, \end{split}$$

for all $j \in \{1, \ldots, J\}$ and for all $l \in \{1, 2\}$. Thus, $H_1, H_2 \in \mathcal{I}^c$, a contradiction. Together, for any $x \in (0, 1)$, it must be either H(x) = x or H(y) = H(x) for all $y \in (x, x + \delta)$ for some $\delta > 0$.

Let $X \subseteq [0,1]$ be the collection of $x \in [0,1]$ such that H(x) = x. For any $x \notin X$, let $\overline{\delta}_x := \sup\{y \in [0,1] | H(y) = H(x)\}$ and $\underline{\delta}_x := \inf\{y \in [0,1] | H(y) = H(x)\}$. Then it must be $\underline{\delta}_x < \overline{\delta}_x$ for all $x \notin X$. Moreover, for any $x, y \in [0,1] \setminus X$ with x < y, H(x) < H(y) if and only if $\overline{\delta}_x < \underline{\delta}_y$. Therefore, $[0,1] \setminus X$ can be expressed as a union of a collection I of disjoint intervals. Since I is a collection of disjoint intervals on [0,1], each element of I must uniquely contain at least one rational number. Thus, there exists an injective map from the collection I to a subset of rational numbers in [0,1], and therefore the collection I must be countable.

Enumerate I as $\{[\underline{x}_n, \overline{x}_n)\}_{n=1}^{\infty}$ and suppose that there is a subset \mathcal{N} of these intervals, with $|\mathcal{N}| > J$, such that $H(\underline{x}_n) < \underline{x}_n$. For each $n \in \mathcal{N}$, since $H(\underline{x}_n) < \underline{x}_n$ and since H(x) = xfor all $x \notin \bigcup_{n=1}^{\infty} [\underline{x}_n, \overline{x}_n)$, H must be discontinuous at \underline{x}_n . Let $\eta_n := H(\underline{x}_n) - H(\underline{x}_n)$ for all $n \in \mathcal{N}$, and let $\eta := \min\{\eta_n\}_{n \in \mathcal{N}}$. Furthermore, let $\phi_j^n \in \mathbb{R}$ be defined as

$$\phi_j^n := \int_{\underline{x}_n}^{\overline{x}_n} \Phi_j(x) \, \mathrm{d}x$$

for all $n \in \mathcal{N}$ and for all $j \in \{1, \ldots, J\}$. Then the $|\mathcal{N}| \times J$ matrix $\Phi := (\phi_j^n)_{j \in \{1, \ldots, J\}}^{n \in \mathcal{N}}$ is a linear map from $\mathbb{R}^{|\mathcal{N}|}$ to \mathbb{R}^J . Since $|\mathcal{N}| > J$, dim(null(Φ)) ≥ 1 , and thus there must exist a nonzero vector $\{\hat{h}_n\}_{n \in \mathcal{N}}$ such that

$$\sum_{n \in \mathcal{N}} \phi_j^n \hat{h}_n = 0, \tag{OA.4}$$

for all $j \in \{1, \ldots, J\}$. Let $\varepsilon := \min\{\eta/4|\hat{h}_n|, (\underline{x}_n - H(\underline{x}_n))/4|\hat{h}_n|\}_{n \in \mathcal{N}}$, and let \widehat{H} be defined as

$$\widehat{H}(x) := \begin{cases} 0, & \text{if } x \notin \bigcup_{n \in \mathcal{N}} [\underline{x}_n, \overline{x}_n) \\ \varepsilon \widehat{h}_n, & \text{if } x \in [\underline{x}_n, \overline{x}_n), \ n \in \mathcal{N} \end{cases}.$$

Then, since $\{\hat{h}_n\}_{n\in\mathcal{N}}$ is a nonzero vector in $\mathbb{R}^{|\mathcal{N}|}$ and since $\varepsilon > 0$, $\hat{H} \neq 0$. Moreover, since $\varepsilon < \eta/4|\hat{h}_n|$ for all $n \in \mathcal{N}$, $H(x) - |\hat{H}(x)| = H(\underline{x}_n) - \varepsilon|\hat{h}_n| > H(\underline{x}_n) - \eta/2 > H(\underline{x}_n^-) + \eta/4 > H(x) + |\hat{H}(x)|$ for all $x < \underline{x}_n$ and for all $n \in \mathcal{N}$. Therefore, both $H + \hat{H}$ and $H - \hat{H}$ are nondecreasing. Meanwhile, since for any $n \in \mathcal{N}$ and for any $x \in [\underline{x}_n, \overline{x}_n)$, $H(x) + |\hat{H}(x)| = H(\underline{x}_n) + \varepsilon|\hat{h}_n| < \underline{x}_n$, both $H + \hat{H}$ and $H - \hat{H}$ are in $\mathcal{I}(\underline{F}, \overline{F})$. In addition, by (OA.4), for any $j \in \{1, \ldots, J\}$,

$$\begin{split} \int_0^1 (H(x) + \widehat{H}(x)) \Phi_j(x) \, \mathrm{d}x &= \int_{[0,1] \setminus \bigcup_{n \in \mathcal{N}} [\underline{x}_n, \overline{x}_n)} H(x) \Phi_j(x) \, \mathrm{d}x + \int_{\bigcup_{n \in \mathcal{N}} [\underline{x}_n, \overline{x}_n)} H(x) \Phi_j(x) \, \mathrm{d}x + \varepsilon \sum_{n \in \mathcal{N}} \widehat{h}_n \phi_j^n \\ &= \int_0^1 H(x) \Phi_j(x) \, \mathrm{d}x \\ &\ge \gamma_j, \end{split}$$

and

$$\begin{split} \int_0^1 (H(x) - \widehat{H}(x)) \Phi_j(x) \, \mathrm{d}x &= \int_{[0,1] \setminus \bigcup_{n \in \mathcal{N}} [\underline{x}_n, \overline{x}_n)} H(x) \Phi_j(x) \, \mathrm{d}x + \int_{\bigcup_{n \in \mathcal{N}} [\underline{x}_n, \overline{x}_n)} H(x) \Phi_j(x) \, \mathrm{d}x - \varepsilon \sum_{n \in \mathcal{N}} \widehat{h}_n \phi_j^n \\ &= \int_0^1 H(x) \Phi_j(x) \, \mathrm{d}x \\ &\ge \gamma_j. \end{split}$$

Together, both $H + \hat{H}$ and $H - \hat{H}$ are in \mathcal{I}^c , and hence, H is not an extreme point, a contradiction. This completes the proof.

Proofs of Proposition 3 and Proposition 5. Note that since $|\phi_e(x|e)|$ is dominated by an integrable function on [0, 1], one can apply the dominated convergence theorem to show that the objective function of both (7) and (10) are continuous in (H, e) and (H, \underline{z}) , respectively. Similarly, the constraint set can be shown to be closed. Therefore, both (7) and (10) admit a solution.

Consequently, since for any fixed e and \underline{z} , the objective is continuous in H and the feasible set is compact and convex in (7) and (10), respectively, Proposition 3 and the first part of Proposition 5 follow immediately from Theorem OA.1, with J = 2 and J = 1, respectively. This is because any H satisfying conditions 1 through 3 correspond to a contingent debt contract with at most J non-defaultable face values. The uniqueness part of Proposition 5 further follows from the fact that the objective of (10) is strictly convex in H when $\Phi(\cdot|s)$ has full support for all $s \in S$, and hence, every solution must be an extreme point of the feasible set.

OA.8 Proof of Proposition 4

Let $\Pi^*(e)$ be the value of the entrepreneur's problem (7) for a fixed $e \in [0, \bar{e}]$. We first show that there exists Lagrange multipliers $\lambda_1^* \neq 0$ and $\lambda_2^* \geq 0$ such that

$$\Pi^{*}(e) = \sup_{H \in \mathcal{I}(\underline{F},\overline{F})} \left[\int_{0}^{1} (x - H(x))\phi(x|e) \, \mathrm{d}x + \lambda_{1}^{*} \left(\int_{0}^{1} (x - H(x))\phi_{e}(x|e) \, \mathrm{d}x - C'(e) \right) + \lambda_{2}^{*} \left(\int_{0}^{1} H(x)\phi(x|e) \, \mathrm{d}x - (1 + r)I \right) \right]. \quad (\text{OA.5})$$

To this end, we adopt a similar argument as Nikzad (2023). For any fixed $e \in [0, \bar{e}]$ and for any $\gamma \in \mathbb{R}$, let $M_e(\gamma)$ be the value of

$$\sup_{H \in \mathcal{I}(\underline{F},\overline{F})} \left[\int_0^1 [x - H(x)] \phi(x|e) \, \mathrm{d}x - C(e) \right]$$

s.t.
$$\int_0^1 [x - H(x)] \phi_e(x|e) \, \mathrm{d}x = C'(e)$$
$$\int_0^1 H(x) \phi(x|e) \, \mathrm{d}x \ge \gamma.$$
 (OA.6)

Note that

$$M_e((1+r)I) = \Pi^*(e) = \int_0^1 (x - H^*(x))\phi(x|e) \,\mathrm{d}x - C(e), \qquad (OA.7)$$

where H^* is a solution of (7) with a fixed e. Moreover, M_e is nonincreasing and concave in γ . Indeed, monotonicity follows from the ordered structure of the feasible set as γ increases. For concavity, consider any $\gamma_1, \gamma_2 \in \mathbb{R}$ and let $\gamma^{\lambda} := \lambda \gamma_1 + (1 - \lambda) \gamma_2$ for any $\lambda \in (0, 1)$. Since (OA.6) admits a solution, there exists $H_1, H_2 \in \mathcal{I}(\underline{F}, \overline{F})$ such that

$$\int_0^1 (x - H_1(x))\phi(x|e) \, \mathrm{d}x - C(e) = M(\gamma_1); \quad \int_0^1 (x - H_2(x))\phi(x|e) \, \mathrm{d}x - C(e) = M(\gamma_2).$$

Furthermore,

$$\int_0^1 (x - H_i(x))\phi_e(x|e) \, \mathrm{d}x = C'(e)$$
$$\int_0^1 H_i(x)\phi(x|e) \, \mathrm{d}x \ge \gamma_i$$

for $i \in \{1, 2\}$. Let $H^{\lambda} := \lambda H_1 + (1 - \lambda)H_2$, we must have $H^{\lambda} \in \mathcal{I}(\underline{F}, \overline{F})$ and

$$\int_0^1 (x - H^{\lambda}(x))\phi_e(x|e) \, \mathrm{d}x = C'(e)$$
$$\int_0^1 H^{\lambda}(x)\phi(x|e) \, \mathrm{d}x \ge \gamma^{\lambda}.$$

Thus,

$$M_{e}(\gamma^{\lambda}) \geq \int_{0}^{1} (x - H^{\lambda}(x))\phi(x|e) \, \mathrm{d}x - C(e)$$

= $\lambda \int_{0}^{1} (x - H_{1}(x))\phi(x|e) \, \mathrm{d}x + (1 - \lambda) \int_{0}^{1} (x - H_{2}(x))\phi(x|e) \, \mathrm{d}x$
= $\lambda M_{e}(\gamma_{1}) + (1 - \lambda)M_{e}(\gamma_{2}).$

Since M_e is nonincreasing and concave, and since (1 + r)I is an interior of the set

$$\left\{\int_0^1 H(x)\phi(x|e)\,\mathrm{d}x\,\middle|\,H\in\mathcal{I}(\underline{F},\overline{F}),\,\int_0^1 (x-H(x))\phi_e(x|e)\,\mathrm{d}x=C'(e)\right\},$$

there exists $\lambda_2^* \ge 0$ such that

$$M_e(\gamma) \le M_e((1+r)I) - \lambda_2^*(\gamma - (1+r)I)$$

for all $\gamma \in \mathbb{R}$. Meanwhile, for any $H \in \mathcal{I}(\underline{F}, \overline{F})$ such that

$$\int_0^1 (x - H(x))\phi_e(x|e) \,\mathrm{d}x = C'(e), \tag{OA.8}$$

it must be that

$$M_e\left(\int_0^1 H(x)\phi(x|e)\,\mathrm{d}x\right) \ge \int_0^1 (x-H(x))\phi(x|e)\,\mathrm{d}x - C(e),$$

by the definition of M_e . Together with (OA.7), we have

$$M_e((1+r)I) = \int_0^1 (x - H^*(x))\phi(x|e) \, \mathrm{d}x - C(e)$$

$$\geq \int_0^1 (x - H(x))\phi(x|e) \, \mathrm{d}x - C(e) + \lambda_2^* \left(\int_0^1 H(x)\phi(x|e) \, \mathrm{d}x - (1+r)I\right),$$
(OA.9)

for all $H \in \mathcal{I}(\underline{F}, \overline{F})$ such that (OA.8) holds. Since H^* is feasible for (7) with the fixed e, (OA.9) implies

$$\int_{0}^{1} (x - H^{*}(x))\phi(x|e) \,\mathrm{d}x + \lambda_{2}^{*} \left(\int_{0}^{1} H^{*}(x)\phi(x|e) \,\mathrm{d}x - (1+r)I \right)$$

$$\geq \int_{0}^{1} (x - H(x))\phi(x|e) \,\mathrm{d}x + \lambda_{2}^{*} \left(\int_{0}^{1} H(x)\phi(x|e) \,\mathrm{d}x - (1+r)I \right), \quad (OA.10)$$

for all $H \in \mathcal{I}(\underline{F}, \overline{F})$ satisfying (OA.8). Now let

$$\mathcal{L}_e(H;\lambda) := \int_0^1 (x - H(x))\phi(x|e) \,\mathrm{d}x - C(e) + \lambda \left(\int_0^1 H(x)\phi(x|e) \,\mathrm{d}x - (1+r)I\right),$$

and let $\mathcal{L}_e(\lambda)$ be the value of

$$\sup_{H \in \mathcal{I}(\underline{F},\overline{F})} \mathcal{L}_e(H;\lambda)$$
(OA.11)
s.t.
$$\int_0^1 (x - H(x))\phi_e(x|e) \, \mathrm{d}x = C'(e).$$

Then, (OA.10) implies that H^* solves (OA.11) with $\lambda = \lambda_2^*$ and

$$\mathcal{L}_e(\lambda_2^*) = \int_0^1 (x - H^*(x))\phi(x|e) \,\mathrm{d}x - C(e).$$

Meanwhile, by the definition of $\mathcal{L}_e(\lambda)$,

$$\mathcal{L}_e(\lambda) \ge \int_0^1 (x - H(x))\phi(x|e) \,\mathrm{d}x - C(e)$$

for all feasible H of (7) with fixed e. Finally, since the constraint in (OA.11) is an equality, standard results (see, e.g., Theorem 3.12 of Anderson and Nash 1987) implies that there exits $\lambda_1 \neq 0$ such that (OA.5) holds.

For any fixed $e \in [0, \bar{e}]$, since the primal problem (7) is convex for any fixed $e \in [0, \bar{e}]$, there exists an extreme point H^* of the feasible set that attains $\Pi^*(e)$. By Theorem OA.1, there exists a countable collection of intervals $\{[\underline{x}_n, \overline{x}_n)\}_{n=1}^{\infty}$ such that H^* satisfies conditions 1 through 3 for J = 2. Meanwhile, as established above, H^* must also solve the dual problem (OA.5) of (7) for this fixed e. Note that the dual problem can be written as

$$\sup_{H \in \mathcal{I}(\underline{F},\overline{F})} \left[\int_0^1 H(x) [(1+\lambda_2^*)\phi(x|e) - \lambda_1^*\phi_e(x|e)] \,\mathrm{d}x + \kappa \right],$$

with $\kappa \in \mathbb{R}$ being a constant that does not depend on H. Moreover,

$$(1+\lambda_2^*)\phi(x|e) - \lambda_1^*\phi_e(x|e) \ge 0 \iff \frac{\phi_e(x|e)}{\phi(x|e)} \le \frac{1+\lambda_2^*}{\lambda_1^*}.$$

Since $\phi_e(\cdot|e)/\phi(\cdot|e)$ is at most N-peaked, there must be a finite interval partition $\{I_k\}_{k=1}^K$ of [0,1] with $K \leq 2N$ such that $\phi_e(x|e)/\phi(x|e) - (1+\lambda_2^*)/\lambda_1^*$ takes the same sign for all $x \in I_k$.

Therefore, if there are more than N+1 intervals on which H^* is constant, then either there are at least two of them contained in a single interval I_k with $\phi_e(x|e)/\phi(x|e) < (1+\lambda_2^*)/\lambda_1^*$ for all $x \in I_k$, or there is at least one of them contained in an interval I_j with $\phi_e(x|e)/\phi(x|e) >$ $(1+\lambda_2^*)/\lambda_1^*$ for all $x \in I_j$. If there are two intervals $[\underline{x}_n, \overline{x}_n), [\underline{x}_m, \overline{x}_m)$, with $\overline{x}_n \leq \underline{x}_m$, that are contained in some I_k with $\phi_e(x|e)/\phi(x|e) < (1+\lambda_2^*)/\lambda_1^*$ for all $x \in I_k$, then, since by condition 2 of Theorem OA.1, $H^*(\underline{x}_n) < H^*(\underline{x}_m)$, for H^{**} defined as

$$H^{**}(x) := \begin{cases} H^{*}(x), & \text{if } x \notin [\underline{x}_{n}, \overline{x}_{m}) \\ H^{*}(\underline{x}_{n}), & \text{if } x \in [\underline{x}_{n}, \overline{x}_{m}) \end{cases}$$

for all $x \in [0,1]$, $H^{**} \in \mathcal{I}(\underline{F}, \overline{F})$ and yields a higher value to the objective of (OA.5) than H^* . Likewise, if there is at least one interval on which H^* is constant that is contained in some I_j such that $\phi_e(x|e)/\phi(x|e) < (1 + \lambda_2^*)/\lambda_1^*$ for all $x \in I_j$, then, since $H^*(x) < x$ for all $x \in (\underline{x}_n, \overline{x}_n)$, for H^{**} defined as

$$H^{**}(x) := \begin{cases} H^{*}(x), & \text{if } x \notin I_j \\ \max\{x, H^{*}(\overline{x}_n)\}, & \text{if } x \in I_j \end{cases}$$

for all $x \in [0, 1]$, $H^{**} \in \mathcal{I}(\underline{F}, \overline{F})$ and yields a higher value to the objective of (OA.5) than H^* . Thus, H^* cannot be a solution of the dual problem (OA.5) for this fixed e, a contradiction. Consequently, the solution H^* to the primal problem (7) for any fixed $e \in [0, \overline{e}]$ cannot admit more than N+1 intervals where H^* is constant. As a result, H^* is a contingent debt contract with at most N+1 face values. Since $e \in [0, \overline{e}]$ is arbitrary, this completes the proof.

References

- Anderson, Edward J. and Peter Nash (1987) Linear Programming in Infinite-Dimensional Space: Wiley.
- Çinlar, Erhan (2010) Probability and Stochastics: Springer.
- Farmer, Jeff D. (1994) "Extreme Points of the Unit Ball of the Space of Lipschitz Functions," Proceedings of the American Mathematical Society, 121 (3), 807–813.
- Nikzad, Afshin (2023) "Constrained Majorization: Applications in Mechanism Design," Working Paper.
- Rolewicz, Stefan (1984) "On Optimal Observability of Lipschitz Systems.," in Hammer, G. and Diethard Pallaschke eds. Selected Topics in Operations Research and Mathematical Economics: Proceedings of the 8th Symposium on Operations Research, 152–158, Berlin: Springer.
- (1986) "On Extremal Points of the Unit Ball in the Banach Space of Lipschitz Continuous Functions," Journal of the Australian Mathematical Society, 41 (1), 95–98.
- Smarzewski, Ryszard (1997) "Extreme Points of Unit Balls in Lipschitz Function Spaces," Proceedings of the American Mathematical Society, 125 (5), 1391–1397.
- Winkler, Gerhard (1988) "Extreme Points of Moment Sets," Mathematics of Operations Research, 13 (4), 581–587.