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B. Supporting analysis for Section 6

The following lemma shows that the share-weighted average of N independent
types has a well-behaved distribution if each component does, and documents
features of this distribution at the edges of its support.25

Lemma 6: Let G denote the cumulative distribution function of v “ σ ¨ θ.

• The distribution G admits a continuous density g which is strictly positive
on the interior of its support rσ ¨ θ, σ ¨ θ̄s.

• As v Õ σ ¨ θ̄, we have

gpvq

pσ ¨ θ̄ ´ vqN
Ñ

1

pN ´ 1q!

ź

iPN

fipθ̄iq

σi
.

• As v Œ σ ¨ θ, we have

gpvq

pv ´ σ ¨ θqN´1
Ñ

1

pN ´ 1q!

ź

iPN

fipθiq

σi
.

• As v Œ σ ¨ θ, we have

Gpvq

pv ´ σ ¨ θqN
Ñ

1

N
¨

1

pN ´ 1q!

ź

iPN

fipθiq

σi
and

Φpvq ´ v

v ´ σ ¨ θ
Ñ

1

N
,

where Φpvq :“ v ` Gpvq
gpvq

.

Proof. For each n P N , let Gn denote the CDF of
řn
i“1 σiθi. The support of Gn

is
“
řn
i“1 σiθi,

řn
i“1 σiθ̄i

‰

, and when n ą 1 any z in this support has

Gnpzq “

ż θ̄n

θn

Gn´1pz ´ σnθnqfnpθnq dθn.

Because G1pv1q “ F1p
v1
σ1
q for every v1, it follows that G1 is continuously differen-

tiable on its support with derivative g1pv1q “
1
σ1
f1p

v1
σ1
q. Then, by induction on n,

25Whereas previous analyses apply readily to the case in which fi may fail to be continuous
and strictly positive at the endpoints of its support (like Example 1), the analysis of this section
makes use of the fact that limθiŒθi

fipθiq and limθiÕθ̄i fipθ̄iq are both in p0,8q. Nevertheless,
our qualitative results can be adapted to the case of power distributions—with Fipθiq “ θαi for
α ą 0—albeit with the threshold 2

N`1 being replaced with the threshold α`1
Nα`1 .
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every n P N has Gn continuously differentiable on the interior of its support with
the associated density at z in its support given by

gnpzq “

ż θ̄n

θn

gn´1pz ´ σnθnqfnpθnq dθn.

Also by induction, gn is strictly positive on the interior of its support because fn
is and (in the case of n ą 1) gn´1 is. This establishes the first bullet.

To see the fourth bullet would follow from the third, note L’Hôpital’s rule yields

lim
vŒθ1

Gpvq
pv´θ1q

N “ lim
vŒθ1

gpvq
Npv´θ1q

N´1 ,

and note Φpvq´v
v´θ1

“
Gpvq

pv´θ1qgpvq
. So it remains to show the second and third bullets.

Because the two are identical up to relabeling, we prove only the second bullet.

For any ε ą 0 and any n P N , let

hnpεq :“ pn´ 1q!

«

n
ź

i“1

σi
fipθiq

ff

gn

˜

ε`
n
ÿ

i“1

σiθi

¸

.

We need to show that hN pεq
εN´1 Ñ 1 as ε Œ 0. Let us show by induction that every

n P N has hnpεq
εn´1 Ñ 1 as ε Œ 0, which will then deliver the lemma. For the base

case, note that

h1pεq
ε0

“ σ1
f1pθ1q

g1 pε` σ1θ1q “
f1

´

θ1`
ε
σ1

¯

f1pθ1q
,

which converges to 1 as εŒ 0.

For the inductive step, suppose n ą 1 and that the limit equation holds for
n´ 1. Then, any small enough ε ą 0 has

hnpεq “ pn´ 1q σn
fnpθnq

ż θ̄n

θn

hn´1 pε´ σn rθn ´ θnsq fnpθnq dθn

“ n´1
fnpθnq

ż θn`
ε
σn

θn

hn´1 pε´ σn rθn ´ θnsq fnpθnqσi dθn

“ n´1
fnpθnq

ż ε

0

hn´1pε̃qfnpθn `
ε´ε̃
σn
q dε̃

ùñ
hnpεq
εn´1 ´ 1 “

hnpεq
εn´1 ´

1
εn´1

ż ε

0

pn´ 1qε̃n´2 dε̃

“ pn´ 1q1
ε

ż ε

0

`

ε̃
ε

˘n´2

«

hn´1pε̃q
ε̃n´2

fn

ˆ

θn`
ε´ε̃
σn

q

˙

fnpθnq
´ 1

ff

dε̃,

which converges to zero (because the integrand does uniformly) as ε Œ 0, as
required.

The next lemma shows how virtual costs from our group setting and the single-
agent analogue can be ranked for very high and very low types.
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Lemma 7: Suppose tFiuiPN all coincide (so ω “ p 1
N
, . . . , 1

N
q is optimal). Let G,

g, and Φ be as defined in Lemma 6. Then:

• Every v P Θ1ztθ̄1u close enough to θ̄1 has Φpvq ą ϕ1pθ̄1q.

• If σi ă
2

N`1
for every i P N , then every θ P Θztθu close enough to θ has

ω ¨ ϕpθq ą Φpσ ¨ θq.

• If σi ą
2

N`1
for some i P N , then some η P RN

`` exists such that every
sufficiently small ε ą 0 has ω ¨ ϕpθ ` εηq ă Φ pσ ¨ pθ ` εηqq.

Proof. All three parts follow from Lemma 6. First, as v Õ θ̄1, that lemma tells us
gpvq Ñ 0 so that Φpvq Ñ 8. Meanwhile, that f1 is continuous and strictly positive
implies ϕ1 is bounded. Hence, large enough v P rθ1, θ̄1q have Φpvq ą ϕ1pθ̄1q.

Toward the second and third bullets, let us write opθ ´ θq for any function of

θ P Θ with opθ´θq
}θ´θ}

θŒθ
ÝÝÑ 0.26 Lemma 6 tells us limvŒθ1

Φpvq´v
v´θ1

“ 1
N
, so that

Φpσ ¨ θq ´ θ1 “ σ ¨ θ ´ θ1 `
1
N
pσ ¨ θ ´ θ1q ` opθ ´ θq “

N`1
N
σ ¨ pθ ´ θq ` opθ ´ θq.

Meanwhile, as θ1 Œ θ1, both f1pθ1q and F1pθ1q
θ1´θ1

converge to f1pθ1q, so that

ϕ1pθ1q´θ1
θ1´θ1

“ 1` ϕ1pθ1q´θ1
θ1´θ1

“ 1` F1pθ1q
pθ1´θ1qf1pθ1q

Ñ 2.

So ϕipθiq´θi “ 2pθi´θiq`opθ´θq, implying ω ¨ϕpθq´θ1 “ 2ω ¨ pθ´θq`opθ´θq.
Therefore,

ω ¨ ϕpθq ´ Φpσ ¨ θq “
`

2ω ´ N`1
N
σ
˘

¨ pθ ´ θq ` opθ ´ θq

“ N`1
N

`

2
N`1

1N ´ σ
˘

¨ pθ ´ θq ` opθ ´ θq.

We now pursue the second bullet. If σi ă
2

N`1
for every i P N , then the vector

N`1
N

`

2
N`1

1N ´ σ
˘

has strictly positive entries, so that ω ¨ ϕpθq ´ Φpσ ¨ θq ą 0 for
sufficiently small θ P Θztθu.

Finally, to establish the third bullet, suppose some i P N has σi ą
2

N`1
. Then,

some γ P p0, 1q exists such that

γ
`

2
N`1

´ σi
˘

` p1´ γqmax
jPN

`

2
N`1

´ σj
˘

ă 0.

Then η P RN
`` with ηi “ γ and every other entry equal to 1´γ

N´1
is as desired.

Now, we introduce a notion of (utilitarian) efficiency ranking of allocation rules.

Definition 5: Given an allocation rule x, the surplus generated by x in state
θ P Θ is

sxpθq :“ xpθqpb´ σ ¨ θq.

Given two allocation rules x and x̃, say x is ex-ante more efficient than x̃ if

E rsxpθqs ą E rsx̃pθqs ;
26Note this property is independent of the norm because any two norms on RN have bounded

ratio.
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and say x is ex-post more efficient than x̃ if

P tsxpθq ě sx̃pθqu “ 1 and P tsxpθq ą sx̃pθqu ą 0.

The next definition initializes language to discuss incentive properties and op-
timality of mechanisms in the single-agent benchmark.

Definition 6: Say a mechanism px,mq is single-agent incentive compatible
(SIC) if

θ P argmaxθ̂PΘ

”

mpθ̂q ´ σ ¨ θxpθ̂q
ı

, @θ P Θ,

that is, report θ̂ “ θ maximizes the expected payoff of type profile θ over all possible
reports in Θ. Say the mechanism is single-agent individually rational (SIR)
if

mpθq ´ σ ¨ θxpθq ě 0, @θ P Θ,

that is, the expected payoff of type profile θ, when reporting truthfully, is nonnega-
tive. A single-agent-optimal mechanism is an SIC and SIR mechanism that
generates weakly higher buyer profit than any other SIC and SIR mechanism.27 A
single-agent-optimal allocation rule is any allocation rule x such that px,mq
is a single-agent-optimal mechanism for some m.

Say an allocation rule x is single-agent implementable if some transfer
rule m exists such that the mechanism px,mq is SIR; and say x is single-agent
monotone if

xpσ ¨ θq ď xpσ ¨ θ̃q, @θ, θ̃ P Θ with σ ¨ θ ą σ ¨ θ̃.

The next lemma shows that any single-agent-optimal mechanism is bounded
between two cutoff mechanisms for the aggregated cost, in which the cutoffs solve
a first-order condition equating the benefit of trade to single agent’s virtual cost.

Lemma 8: Some smallest and largest p
b
, p̄b P pσ ¨ θ, σ ¨ θ̄q exist such that Φpp

b
q “

Φpp̄bq “ b, where Φ is as defined in Lemma 6. Moreover, some single-agent-
optimal allocation rule exists, and any single-agent-optimal allocation rule x sat-
isfies 1σ¨θďp

b
ď xpθq ď 1σ¨θďp̄b almost surely.

Proof. Lemma 6 tells us Φ is continuous on pσ ¨ θ, σ ¨ θ̄q, and that Φpvq con-
verges to σ ¨ θ [resp. 8] as v Œ σ ¨ θ [resp. v Õ σ ¨ θ̄]. Therefore, the set
 

p P pσ ¨ θ, σ ¨ θ̄q : Φppq “ b
(

is closed and bounded away from tσ ¨θ, σ ¨ θ̄u (hence
compact), the set is nonempty by the intermediate value theorem, and every price
p P pσ ¨ θ, σ ¨ θ̄q strictly below [resp. above] this set has Φppq ă b [resp. Φppq ą b].
In particular, this set of prices has a smallest and largest element, p

b
and p̄b,

respectively.

27Note, in this this short-hand, a single-agent-optimal mechanism/allocation is optimal for the
buyer in the single-agent setting, and is not the preferred mechanism of the agent.

4



Now define the allocation rule x˚ by

x˚pθq :“ 1σ¨θďp
b
` xpθq1σ¨θPpp

b
,p̄bs.

Because x is r0, 1s-valued, a given θ P Θ has 1σ¨θďp
b
ď xpθq ď 1σ¨θďp̄b if and only

if xpθq “ x˚pθq. It therefore remains to show xpθq “ x˚pθq almost surely.

To show this equality, note that (straightforwardly adapting standard results
from unidimensional mechanism design) a given allocation rule x̃ is single-agent
implementable if and only if it is single-agent monotone, and that the maximum
buyer value attainable by an SIC and SIR mechanism with allocation rule x̃ is
E tx̃pθq rb´ Φpσ ¨ θqsu. Existence of an optimal allocation rule then follows from
the observation that x̃ ÞÑ E tx̃pθq rb´ Φpσ ¨ θqsu is a weak*-continuous function
on the weak*-compact set X̃ .

Now, by construction (and since p
b
ď p̄b), the allocation rule x˚ is single-agent

monotone because x is. Therefore, single-agent optimality of x tells us

0 ě E tx˚pθq rb´ Φpσ ¨ θqsu ´ E txpθq rb´ Φpσ ¨ θqsu

“ E
!

r1´ xpθqs rb´ Φpσ ¨ θqs1σ¨θďp
b
` xpθq rΦpσ ¨ θq ´ bs1σ¨θąp̄b

)

.

Because a nonnegative random variable can have nonpositive expectation only if
said random variable is almost surely zero, it follows that the random variable
r1´ xpθqs rb´ Φpσ ¨ θqs1σ¨θďp

b
` xpθq rΦpσ ¨ θq ´ bs1σ¨θąp̄b is almost surely zero.

Equivalently, r1´ xpθqs1σ¨θďp
b
` xpθq1σ¨θąp̄b is almost surely zero. Thus, xpθq “

x˚pθq almost surely, as required.

Finally, we prove an efficiency ranking result

Proposition 3: Suppose tFiuiPN all coincide.

(i) If b is large enough, then any optimal allocation rule for our group setting is
ex-post more efficient than any single-agent-optimal allocation rule.

(ii) If b is small enough, then any optimal allocation rule for our group setting
is ex-ante less efficient than any single-agent-optimal allocation rule.

Moreover, this efficiency ranking is an ex-post ranking if σi ă
2

N`1
for every

i P N (in particular, if σ is close enough to ω), and is not an ex-post ranking
if σi ą

2
N`1

for some i P N (in particular if σ is close enough to δi).

Proof. Because tFiuiPN all coincide, it follows from the uniqueness part of Theo-
rem 1 that every allocation rule in our model agrees almost everywhere with xω,
where ω “ p 1

N
, . . . , 1

N
q. Moreover, because ex-ante and ex-post efficiency rankings

are both invariant to probability-zero changes to an allocation rule, we can prove
the result by comparing single-agent-optimal allocation rules to xω. In what fol-
lows, let Φ be as defined in Lemma 6; let p

b
, p̄b be as defined in Lemma 8; and use

the notation y ąP ỹ to say that the random variables y and ỹ have y ě ỹ almost
surely with P ty ą ỹu ą 0.

First, let us show xω is ex-post more efficient than single-agent-optimal allo-
cation rules when b is high enough. To that end, note Lemma 7 tells us ev-
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ery v P rθ1, θ̄1q in some neighborhood of θ̄1 in Θ has Φpvq ą ϕ1pθ̄1q. Because
θ ÞÑ ω ¨ ϕpθq is continuous and strictly increasing, some b˚ P pθ̄1, ϕ1pθ̄1qq exists
such that every θ P Θztθ̄u with ω ¨ ϕpθq ą b˚ is in said neighborhood. Now,
take any b P rb˚, ϕ1pθ̄1qq and any single-agent monotone allocation rule x; we
want to show x is ex-post less efficient than xω. To see it, given any θ P Θztθ̄u
with ω ¨ ϕpθq ě b, note that any θ̃ P Θ with θ̃ ě θ has ω ¨ ϕpθ̃q ě b and so
Φpσ ¨ θ̃q ą ϕ1pθ̄1q ą b. Thus, any θ P Θ with ω ¨ ϕpθq ě b has σ ¨ θ ą p̄b, where
p̄b is as given by Lemma 8. Because ϕ is continuous, it follows that any θ P Θ
with ω ¨ ϕpθq close enough to b also has σ ¨ θ ą p̄b. Therefore, xωpθq ąP 1σ¨θďp̄b .
Lemma 8 then implies xωpθq ąP xpθq. Finally, because b ą θ̄1, it follows that
sxωpθq ąP sxpθq. That is, xω is ex-post more efficient than x.

Next, specializing to the case in which each i P N has σi ă
2

N`1
, let us show

xω is ex-post less efficient than single-agent-optimal allocation rules when b is low
enough. To that end, note Lemma 7 tells us every θ P Θztθu in some neighborhood
of θ has ω ¨ ϕpθq ą Φpσ ¨ θq; let b˚ P pθ1, θ̄1q be small enough that every θ P Θztθu
with ω ¨ θ ď b˚ or σ ¨ θ ď b˚ is in said neighborhood. Now, take any b P pθ1, b˚s
and any single-agent-optimal allocation rule x; we want to show x is ex-post less
efficient than xω. To see it, given any θ P Θztθu with ω ¨ ϕpθq ď b, note that any
θ̃ P Θ with θ̃ ď θ has ω ¨ θ̃ ď ω ¨ϕpθ̃q ď b and so Φpσ ¨ θ̃q ă ω ¨ϕpθ̃q ď b. Thus, any
θ P Θ with ω ¨ ϕpθq ď b has ω ¨ θ ă p

b
, where p

b
is as given by Lemma 8. Because

ϕ is continuous, it follows that any θ P Θ with ω ¨ ϕpθq close enough to b also has
ω ¨ θ ă p

b
. Therefore, xωpθq ăP 1ω¨θěp

b
. Lemma 8 then implies xωpθq ăP xpθq.

Moreover, because p
b
ă Φpp

b
q “ b, it follows from Lemma 8 that, almost surely,

either xpθq “ 0 or σ ¨ θ ă b. It follows that sxωpθq ăP sxpθq. That is, x is ex-post
more efficient than xω.

Now, specializing to the case in which some i P N has σi ą
2

N`1
, let us show

xω is not ex-post more efficient than single-agent-optimal allocation rules when b
is low enough. To that end, let note Lemma 7 delivers some η P RN

`` such that
ω ¨ ϕpθ ` εηq ă Φ pσ ¨ pθ ` εηqq for all sufficiently small ε ą 0. Let θpεq :“ θ ` εη

for every ε, and for any b P pθ1, ϕ1pθ̄1qq, let εb :“
p̄b´θ1
σ¨η

so that σ ¨ θpεbq “ p̄b. That

b “ Φpp̄bq ą p̄b then implies σ ¨ θpεbq ă b and p̄b Œ θ1 as b does, and so too does
εb. Therefore, whenever b P pθ1, ϕ1pθ̄1qq is sufficiently small, we have that θpεbq is
interior in Θ and

ω ¨ ϕpθpεbqq ă Φpσ ¨ θpεbqq “ Φpp̄bq “ b.

Let us fix such a small b and any single-agent allocation rule x, with a view to
showing x is not ex-post more efficient than xω. Because ϕ is continuous, then,
some θ̂ ą θpεbq in the interior of Θ is close enough to θpεbq to ensure ω ¨ ϕpθ̂q ă b
and σ ¨ θ̂ ă b. Thus,

p̄b ă σ ¨ θ̂ ă b and ω ¨ ϕpθ̂q ă b.

Again by continuity, every θ in some neighborhood of θ̂ satisfies the same three
inequalities. Therefore, P tp̄b ă σ ¨ θ ă b and ω ¨ ϕpθq ă bu ą 0. Lemma 8 then
tells us P txpθq “ 0, xωpθq “ 1, and ω ¨ ϕpθq ă bu ą 0. Thus, x is not ex-post
more efficient than xω.
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Finally, returning to the case of general σ, let us show xω is ex-ante less efficient
than single-agent-optimal allocation rules when b is low enough. For any b P
pθ1, ϕ1pθ̄1qq, let xσ,b denote some single-agent-optimal allocation rule, and let

Spσ, bq :“ E txσ,bpθqpb´ σ ¨ θqu

denote the surplus it generates. We want to show that

Spσ, bq ą E txωpθqpb´ σ ¨ θqu

when b is close enough to θ1. Because tθiuiPN are i.i.d., we know that E txωpθqpb´ θiqu
is the same for each i P N , so that E txωpθqpb´ σ ¨ θqu “ E txωpθqpb´ ω ¨ θqu .
Meanwhile, the ex-post efficiency ranking of this proof’s second paragraph implies
(by taking expectations) the ex-ante efficiency ranking Spω, bq ą E txωpθqpb´ ω ¨ θqu
for all sufficiently small b. The proposition will therefore follow if we can show
Spσ, bq ě Spω, bq when b P pθ1, ϕ1pθ̄1qq is close enough to θ1. We now pursue this
ranking.

Let γ :“
f1pθ1q

N

pN´1q!

ś

iPN
1
σi
ą 0. In what follows, we use Lemma 6’s calculations

of the behavior of G, g, and Φ around θ1. First, for p P pθ1, θ̄1q, we have

1

pp´θ1q
N`1E r1σ¨θďp pσ ¨ θ ´ θ1qs “ 1

pp´θ1q
N`1

ż p

θ1

pv ´ θ̄1qgpvq dv

“
γ

pp´θ1q
N`1

ż p

θ1

pv ´ θ̄1q
N dv

` 1
p´θ1

ż p

θ1

´

v´θ1
p´θ1

¯N ”

gpvq
pv´θ1q

N´1 ´ γ
ı

dv

“
γ

N`1
` 1

p´θ1

ż p

θ1

´

v´θ1
p´θ1

¯N ”

gpvq
pv´θ1q

N´1 ´ γ
ı

dv

pŒθ1
ÝÝÝÑ

γ
N`1

.

Moreover, we have

Φppq´θ1
p´θ1

“ 1` Φppq´p
p´θ1

pŒθ1
ÝÝÝÑ 1` 1

N
“ N`1

N
.

Therefore,

1

rΦppq´θ1s
N`1E t1σ¨θďp rΦppq ´ σ ¨ θsu

“

”

p´θ1
Φppq´θ1

ıN
Gppq

pp´θ1q
N ´

”

p´θ1
Φppq´θ1

ıN`1
1

pp´θ1q
N`1E r1σ¨θďp pσ ¨ θ ´ θ1qs

pŒθ1
ÝÝÝÑ

`

N
N`1

˘N γ
N
´
`

N
N`1

˘N`1 γ
N`1

“ NN´1

pN`1qN`2p2N`1q
γ.

Meanwhile, any b P pθ1, θ̄1q has θ1 ă p
b
ď p̄b ă Φpp̄bq “ b, so that p

b
, p̄b Œ θ1 as b

does. We can therefore specialize the above calculation to deduce

1

pb´θ1q
N`1E

”

1σ¨θďp
b
pb´ σ ¨ θq

ı

and 1

pb´θ1q
N`1E r1σ¨θďp̄b pb´ σ ¨ θqs

7



both converge to NN´1

pN`1qN`2p2N`1q
γ as b Œ θ1. Now, because every v ď p̄ has

v ď Φpp̄q “ b, Lemma 8 implies

1σ¨θďp
b
pb´ σ ¨ θq ď xσ,bpθq pb´ σ ¨ θq ď 1σ¨θďp̄b pb´ σ ¨ θq ,

so that

1

pb´θ1q
N`1Spσ, bq

bŒθ1
ÝÝÝÑ NN´1

pN`1qN`2p2N`1q
γ

“
NN´1f1pθ1q

N

pN´1q!pN`1qN`2p2N`1q

ź

iPN

1

σi

“
γ̃

ś

iPN σi
, where

where γ̃ :“
NN´1f1pθ1q

N

pN´1q!pN`1qN`2p2N`1q
ą 0. Note that this calculation specializes to

1

pb´θ1q
N`1Spω, bq

bŒθ1
ÝÝÝÑ

γ̃
`

1
N

˘N
.

Therefore,

Spσ, bq

Spω, bq

bŒθ1
ÝÝÝÑ

`

1
N

˘N

ś

iPN σi
“

«

1
N

ř

iPN σi

p
ś

iPN σiq
1
N

ffN

.

The inequality of arithmetic and geometric means (AM-GM) tells us that this
limit ratio is strictly greater than 1 if σ ‰ ω, so that Spσ, bq ď Spω, bq when
b P pθ1, θ̄1q is sufficiently small. The proposition follows.

C. Supporting analysis for Section 7

C.1. Dominant strategies

In light of the revelation principle, we formalize more demanding incentive con-
straints through direct mechanisms below.

Definition 7: Say a mechanism px,mq is dominant-strategy incentive com-
patible (DIC) if

θi P argmaxθ̂iPΘi

!

mpθ̂i, θ´iq ´ θixpθ̂i, θ´iq
)

, @i P N, @θ P Θ; (DIC)

A mechanism is DIC if an agent finds truthful reporting dominant in the direct
revelation game; that is, he would willingly report truthfully even if he knew
others’ reported types.

We showed in Lemma 1 that for a given allocation rule, interim montonicity is
equivalent to BIC implementability. Said differently, we showed that being able
to BIC-implement an allocation rule with agent-specific transfers is equivalent to
being able to do so with only collective transfers. Moreover, Theorem 1 explicitly
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characterizes the allocation rule from optimal BIC and IR mechanisms, showing it
stipulates trade if and only if the benefit to the buyer exceeds the player-weighted
virtual cost. Notice, though, that this allocation rule is monotone in the agents’
profile of types. If our seller could engage in agent-specific transfers, such mono-
tonicity would render the same allocation rule DIC implementable too. Therefore,
a natural conjecture is that (as in single-good auction settings) our seller can
attain DIC at no additional cost.

The following result shows the above natural conjecture is false: the restriction
to DIC mechanisms is with loss of optimality for the seller. Optimal mechanisms
must leverage agents’ uncertainty about others’ realized types.

Proposition 4 (Dominance binds): If at least two j P N have b ă θ̄j, then no
DIC mechanism is optimal.

The proof of Proposition 4 leverages the fact that the essentially unique optimal
allocation rule is bang-bang—every type profile leads to a deterministic trade
outcome. The main thrust of our proof is a structural lemma that characterizes
the full class of DIC bang-bang mechanisms, as summarized in two properties.
The first property concerns the transfer: It can be decomposed into a price (p)
that will be paid if and only if trade occurs and a subsidy that will be paid to the
sellers whether or not trade occurs. The second property gives a representation of
the allocation rule: trade is determined by the price and J , a collection of subsets
of N such that the good is sold if and only if, for some J P J , every agent in J
agrees to the purchase at price p.

The proof of the structural lemma proceeds in two steps. First, we show the
transfer rule is constant among type profiles leading to certain trade, and constant
among type profiles leading to non-trade, which leads directly to the price/subsidy
form. To prove this property, consider any two type profiles θ and θ1 such that
xpθq “ xpθ1q; say this trade probability is equal to 1, the alternative case being
analogous. Letting θ˚ be a type profile that is coordinatewise higher than both θ
and θ1, we construct a finite sequence of type profiles such that the first type profile
in the sequence is θ and the last is θ˚, the type profiles get coordinatewise higher as
the sequence progresses, and consecutive entries in the sequence differ in only one
agent’s type. But then, because DIC (for the agent whose type is raised in a given
increment of the sequence) implies x must be monotone, it follows that every type
profile in the sequence generates probability 1 of trade. Hence, DIC (again, for the
agent whose type is incremented) implies consecutive sequence members yield an
identical transfer. A symmetric argument applies to θ1, so that mpθ1q “ mpθ˚q “
mpθq. Hence, any DIC-implementing transfer takes the given price-subsidy form.
The second property that the structural lemma establishes is the structure on the
allocation rule. Given that the mechanism is incentive-equivalent to a collective
posted price of p, DIC implies (fixing a realization of others’ types) the trade
decision must be identical for all types of agent i below p and for all types of
agent i above p. Hence, the allocation rule is essentially a decreasing t0, 1u-valued
transformation of the vector-valued function θ ÞÑ p1θjěpqjPN . The “coalitional”
property amounts to a more explicit description of such functions.
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C.2. Ex-post participation

Let us formulate a notion of ex-post individual rationality. As usual, we do so for
direct mechanisms—for convenience and without loss. Say a mechanism px,mq is
ex-post indiviually rational (epIR) if mpθq ´ θixpθq ě 0 for every θ P Θ and
i P N .

The following lemma reduces IC-and-epIR implementability to the study of the
allocation rule and agents’ interim values.

Lemma 9: Given allocation rule x and U P RN , the following are equivalent:

(i) Some transfer rule m exists such that the mechanism px,mq is IC and epIR
and gives interim utility U i to type θ̄i of each agent i.

(ii) The allocation rule x is interim monotone, the quantities tU i ` E rxpθqϕisuiPN
all coincide, and every agent i P N and type θi P Θi have (letting Xi :“ Xx

i ):

ż θ̄i

θi

Xipθ̃iq dθ̃i ě E
„

xpθi,θ´iq

ˆ

max
jPNztiu

θj ´ θi

˙

`



´ U i.

The above lemma shows how an epIR constraint can be formulated directly
over allocation rules. The conditions given in the lemma amount to saying that,
when the interim transfer rules are solved out from the allocation rule via the
sellers’ IC constraint and revenue equivalence, seller i’s interim transfer is at least
her interim expectation of the minimum transfer required to stop all sellers from
walking away. This condition is trivially necessary, but we constructively show it
to be sufficient too.

As a demonstration that the above characterization is useful, let us apply it
to derive a sufficient condition for epIR to be without loss of optimality for our
buyer.

Proposition 5 (Sufficient condition for epIR): Suppose N “ 2 and F1 “ F2.
Then, some optimal mechanism is epIR if the virtual cost ϕ1 admits a nonin-
creasing density on its support.

In particular, this proposition applies to the special case of Example 1 in which
α1 “ α2 ď 1.

C.3. Pareto-optimal Mechanisms

Recall, a Pareto-optimal mechanism, is an IC and IR mechanism such that
no alternative IC and IR mechanism delivers a weakly higher buyer profit, and
a weakly higher agent i value for each agent i, with at least one of these N ` 1
inequalities strict. Then, a Pareto-optimal allocation is any allocation rule x
such that px,mq is a Pareto-optimal mechanism for some m. In this subsection, we
provide a characterization of which mechanisms are Pareto optimal, and explain
the reasoning behind it.

Following standard arguments, one can show that any Pareto optimal mecha-
nism can be represented as a solution to a program maximizing a weighted sum of
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values of the N ` 1 individuals (N sellers and the buyer), and—because increas-
ing the transfer by a constant preserves all constraints—the Pareto weight on the
buyer (normalized to 1) is at least as high as the sum of weights tλiuiPN on the
agents. Conversely, we observe that any interim monotone allocation rule that
maximizes such a weighted sum is Pareto optimal.28

We can therefore solve a family of programs much like the buyer’s problem
(BP), but with modified objective, to trace out the entire Pareto frontier. Vectors
λ of Pareto weights are paired with endogenous allocation weights ω to describe
the following class of allocation rules.

Definition 8: Let ∆p2Nq denote the set of all pλ, ωq with λ, ω P RN
` and

ÿ

iPN

pλi ` ωiq “ 1.

For any such pλ, ωq, let the pλ, ωq-allocation rule, denoted by xλ,ω, be given by

xλ,ωpθq :“ 1λ¨θ`ω¨ϕpθqďb.

We now state our main characterization theorem of this section. It characterizes
Pareto-optimal allocation rules as those that weigh the benefit of trade against a
weighted average of its actual and virtual costs.

Theorem 3 (Pareto-optimal allocations): The pλ, ωq-allocation rule is Pareto
optimal for any pλ, ωq P ∆p2Nq satisfying the following two equivalent conditions:

1. ω P argminω̃: pλ,ω̃qP∆N Erpb´ λ ¨ θ ´ ω̃ ¨ϕq
`
s.

2. supppωq Ď argmaxiPN E rϕi | λ ¨ θ ` ω ¨ϕ ď bs.

Moreover, every Pareto-optimal allocation rule is essentially of this form.29

Finally, analogous to Proposition 2, it is natural to explore whether some Pareto
optimal mechanism can be implemented via posted prices. That is, one can ask
whether the suboptimality of collective posted prices was an artefact of our fo-
cus on the buyer-optimal mechanisms. However, as we show in Proposition 7, no
Pareto optimal mechanism can be implemented as a collective posted price mech-
anism (if trade is neither unambiguously efficient nor inefficient). Therefore, this
intuitive class of simple mechanisms is strictly suboptimal regardless of whether
one favors the buyer or the seller.

C.4. Pre-market trade of land shares

Consider a game that extends our model by adding a pre-market phase in which
the agents trade their shares. The buyer then observes the agents’ shares and
chooses a profit-maximizing mechanism. We study two different versions of this

28The latter observation would be obvious if all weights were strictly positive. We show it
holds in our setting even with some zero weights, because the optimizer is essentially unique.

29The proof also establishes that, if the pλ, ωq- and pλ, ω̃q-allocation rules are both Pareto
optimal, then they essentially coincide.
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game: one in which agents must be paid proportionally to their shares, as we have
required throughout this paper, and one without this constraint. We show that in
the first regime, agents do not benefit from trade, but in the second regime they
do.

We start with some notation and then define the game. Let Σ “ tσ “

pσ1, . . . , σNq P p0, 1q
N :

ř

iPN σi “ 1u be the set of possible profiles of shares
that the agents might have. Agents’ initial shares σ “ pσ1, . . . , σNq P Σ are fixed
but unknown to the buyer. For the present analysis, we assume tθiuiPN are i.i.d.
with distribution Fi “ F1. A mechanism is a profile of functions px,m1, . . . ,mNq

where x : Θ Ñ r0, 1s is the allocation rule and mi : Θ Ñ R is the transfer rule of
agent i. Notice that here we are considering a more general class of mechanisms
than the one studied throughout this paper because here we impose no structure
relating the transfers of different agents to each other. Play proceeds as follows.

1. Seller 1 proposes shares σ̂ P Σ and lump-sum net transfers τ̂ P RN with
1 ¨ τ “ 0, and then the other agents sequentially vote on whether to accept
the proposal. Realized shares σ1 and transfers τ are then equal to σ̂ and τ̂
if all accept the proposal, and equal to σ and ~0 if anyone rejects.30

2. The buyer observes σ1 and chooses a mechanism px,mq.

In the discriminatory-pricing regime, the buyer can choose any mecha-
nism. In the uniform-pricing regime, the buyer can choose any uniform-
pricing mechanism—that is a mechanism px,m1, . . . ,mNq in which agents
are paid proportionally to their chosen shares, mi “ σ1i

ř

jPN mj.

3. Each agent i privately learns his type θi drawn independently from F , de-
cides whether to participate in the mechanism, and if he participates, what
type θ̂i to report.

4. The good is sold with probability xpθ̂q and each agent i is paid mipθ̂q. The
payoff of agent i is then τi `mipθ̂q ´ σ

1
iθixpθ̂q.

31

Our solution concept, which we simply call equilibrium for brevity, is perfect
Bayesian equilibrium in which:

• Players do not signal what they do not know—hence, play from stage 2
onward corresponds to the mechanism design problem with shares σ1 and
type distribution θ „

Â

iPN F1;

• The buyer-optimal mechanism is offered, and sellers all participate and
truthfully report their types, for any realized shares σ1.32

30The specific bargaining protocol is immaterial, though we fix one for concreteness. What
matters for our analysis is that the realized shares σ1 are set to maximize sellers’ sum of payoffs.

31A more natural specification would be τi ` mipθ̂q ` σ1iθir1 ´ xpθ̂qs, which explicitly takes
into account that seller i has value σ1iθi (which depends on σ1) if he retains his land. Because
we maintain i.i.d. types for the present analysis, though, the difference

ř

iPN E rσ1iθis does not
vary with σ1, and so will not affect pre-market non-manipulability. We therefore maintain the
payoff specification of our main model for ease of comparison.

32The latter feature simplifies the analysis, but is not necessary. If we removed this equilibrium
refinement, but enriched the model to allow the buyer to pay sellers even when some sellers do
not participate, our results would remain unchanged.
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We say that the game is pre-market non-manipulable if some equilibrium
exists in which the agents choose σ1 “ σ in the first stage and the buyer attains
her optimal value (among all IC and IR mechanisms for shares σ). The following
result shows that a uniform-pricing regime generates such non-manipulability.

Proposition 6 (Uniform pricing avoids pre-market trade): Suppose sellers’ types
are i.i.d. Then, the uniform-pricing game is pre-market non-manipulable, but the
discriminatory-pricing game need not be.

The proof shows that sellers’ total surplus is invariant to their shares under uni-
form pricing, and shows a numerical example (an instance of Example 1) in which
the sellers increase their total surplus by making their shares more symmetric.

D. Proofs for Section C

D.1. Proofs for Section C.1

Lemma 10: Suppose that px,mq is a DIC mechanism and θ, θ1 P Θ have xpθq “
xpθ1q P t0, 1u. Then mpθq “ mpθ1q.

Proof. Define θ˚ :“ θ_ θ1 if xpθq “ xpθ1q “ 0, and θ˚ :“ θ^ θ1 if xpθq “ xpθ1q “ 1.
We will observe that mpθq “ mpθ˚q “ mpθ1q; by symmetry, it suffices to show
mpθq “ mpθ˚q. To show it, define the type profile

θ` :“ pθ˚i 1iď` ` θi1ią`qiPN P Θ for each ` P t0, . . . , Nu “ N Y t0u.

Observe, either θ0 ď ¨ ¨ ¨ ď θN and xpθ0q “ 0, or θ0 ě ¨ ¨ ¨ ě θN and xpθ0q “ 1. In
either case, because x is weakly decreasing (due to DIC) and can only take values
in r0, 1s, it follows by induction that xpθ0q “ ¨ ¨ ¨ “ xpθNq. For each i P N , because
θi and θi´1 differ only in the i coordinate and xpθi´1q “ xpθiq, it follows from DIC
(for agent i) that mpθi´1q “ mpθiq. Thus, mpθq “ mpθ0q “ ¨ ¨ ¨ “ mpθNq “ mpθ˚q,
as desired.

Definition 9: Say a mechanism px,mq or an allocation rule x is bang-bang if
xpθq P t0, 1u almost surely.

Lemma 11: Suppose px,mq is a DIC bang-bang mechanism. Then, some p, s P R
and J Ď 2N exist such that, almost surely:

(i) mpθq “ pxpθq ` s;

(ii) xpθq “ 1
Ť

JPJ
Ş

jPJtθjďpu
.

Moreover, we may assume without loss that no two members of J are nested, and
that θj ă p ă θ̄j for each j P

Ť

J .

Proof. Fix a DIC mechanism px,mq such that xpθq almost surely in t0, 1u. By
Lemma 10, some constants mL,mH P R exists such that mpθq “ mL [resp. mH ]
for every θ P Θ with xpθq “ 0 [resp. 1]. So, defining p :“ mH´mL ě 0 and letting
s :“ mL, we have mpθq “ pxpθq ` s whenever xpθq P t0, 1u, an almost sure event.

Now, modifying x on an a null set, and similarly modifying the transfer rule
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to maintain m “ px` s, we may assume without loss that x is (statewise) t0, 1u-
valued.33 DIC of the modified mechanism follows from DIC of the original one.

Next, we show x has the desired structure. Given an agent i P N and type
realization θi P Θi, his payoff from a reported type profile of θ̂ is pp´ θiqxpθ̂q ´ s,
which is strictly increasing [resp. decreasing] in xpθ̂q if θi ă p [resp. θi ą p].
Hence, given θ´i P Θ´i DIC implies that one the following three possibilities holds:
xp¨, θ´iq “ 1 globally, xp¨, θ´iq “ 0 globally, or xpθi, θ´iq “ 1 [resp. xpθi, θ´iq “ 0]
for each θi P Θi with θi ă p [resp. θi ą p]. Hence, letting Θ̃ :“

ś

iPN rΘiztpus,
some y : t0, 1uN Ñ t0, 1u exists such that every θ P Θ̃ has xpθq “ y pp1θiďpqiPNq.
Moreover, we may assume without loss that y is constant in its i coordinate if
p ď θi or p ě θ̄i for i P N . Then, monotonicity of x implies y is monotone too. If
we let J̃ :“ tJ Ď N : yp1Jq “ 1u, then, xpθq “ 1

Ť

J̃PJ̃
Ş

jPJ̃tθjěpu
almost surely.

Define Ĵ :“
!

tj P J̃ : θj ă pu : J̃ P J̃ with θ̄j ą p @j P J̃
)

. Then, xpθq “

1
Ť

ĴPĴ
Ş

jPĴtθjďpu
almost surely, and θj ă p ă θ̄j for each j P

Ť

Ĵ . Finally, let

J :“ tJ P Ĵ : EĴ P Ĵ with Ĵ Ĺ Ju. Then, xpθq “ 1
Ť

JPJ
Ş

jPJtθjďpu
almost surely,

θj ă p ă θ̄j for each j P
Ť

J , and no two members of J are nested. Thus,
pp, s,J q is as required.

Proof of Proposition 4. Let x be any DIC-implementable allocation rule. First,
let pp, s,J q be as delivered by Lemma 11 (with J chosen so that the “moreover”
part of the lemma holds).

Let us show x it cannot be optimal. First, if J is either H or tHu, then
Erxpθqs P t0, 1u, and so Theorem 1 says (given that θi ă b ă ϕipθ̄iq for each
i P N) that x is not optimal. Second, if i P J P J , then Xx

i is discontinuous at
p P pθi, θ̄iq, implying (by Lemma 5 and since the last assertion of Theorem 1 tells
us ω is nontrivial) that x is not an optimal allocation rule.

D.2. Proofs for Section C.2

Proof of Lemma 9. First, define the transfer rulem by lettingmpθq :“ maxiPN θixpθq.
Note that a transfer rule m is such that px,mq is epIR if and only if m ě m.

Now, for each agent i, let M˚
i be as defined in the proof of Lemma 1. As

explained in that proof, given a transfer rule m, the mechanism px,mq is IC and
gives high-type utility U i to each agent i if and only if x is interim monotone
and Mm

i “ M˚
i ` U i for each agent i. So condition (i) holds if and only if

x is interim monotone and some transfer rule m exists such that m ě m and
Mm

i “ M˚
i ` U i for each agent i. Observe, the last condition also implies that

tU i ` E rxpθqϕisuiPN all coincide because (as noted in the proof of Lemma 1) each
i P N has E rM˚

i pθqs “ E rxpθqϕis.
To prove the lemma, it therefore suffices to show the following: Given a pro-

file pMiqiPN of interim transfer rules such that tE rMipθiqsuiPN all coincide, the

33For instance, if x is almost-surely constant, we can modify it to be constant; and otherwise,
we can replace x with θ ÞÑ 1xpθqą0.
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following are equivalent:

• Some transfer rule m ě m has Mm
i “Mi for each agent i;

• Each agent i has Mi ěMm
i .

To see this equivalence delivers the lemma, note that the the inequality Mipθiq ě
Mm

i pθiq rearranges to exactly the inequality in the lemma’s statement.

The first bullet immediately implies the second, because integration is mono-
tone. To pursue the converse, suppose the second bullet holds, that is, Mi ěMm

i

for each agent i. Let m :“ E rMipθiq ´M
m
i pθiqs, which is the same nonnegative

quantity for every agent i. If m ą 0, then the transfer rule m given by

mpθq :“ mpθq ` m´pN´1q
ź

iPN

rMipθiq ´M
m
i pθiqs

is as desired; and if m “ 0, then the transfer rule m given by

mpθq :“ mpθq `max
iPN

rMipθiq ´M
m
i pθiqs

is as desired. Indeed, in both cases, m ě m by construction; in the m ą 0 case,
Mm

i “ Mi because agents’ types are independent; and in the m “ 0 case each
Mm

i “ Mi because types are independent and each agent j ‰ i has Mm
j pθjq “

Mm
j pθjq almost surely.

The following lemma simplifies the characterization of the previous lemma to
understand when epIR is without loss of optimality in our buyer’s problem, in the
two-agent symmetric case.

Lemma 12: Suppose N “ 2 and F1 “ F2. Let z̄ :“ ϕ1pθ̄1q, let G denote the
CDF of ϕ1, let λ :“ ϕ´1

1 : rθ1, z̄s Ñ Θ1 extended to be constant above z̄, and let

p̂¨q : RÑ R be given by ŷ :“ 2b´ y (the reflection across b).

Then, some optimal mechanism is epIR if and only if every z P rθ1, bs has

Gpzq rλpẑq ´ λpzqs `

ż ẑ

z

rλpŷq ´ λpyqs dGpyq `

ż z̄

ẑ

Gpŷq dλpyq ě 0.

Proof. Let x denote the p1
2
, 1

2
q-weighted allocation rule. From Theorem 1, we know

that an optimal mechanism exists with allocation rule x and IR binding for both
agents. Letting X1 :“ Xx

1 , define the function η : Θ1 Ñ R via

ηpθ1q :“

ż θ̄1

θ1

X1pθ̃1q dθ̃1 ´ E
“

xpθ1,θ2q pθ2 ´ θ1q`

‰

for each θ1 P Θ1. Given symmetry and given Lemma 9, we know some optimal
mechanism is epIR if the function η is globally nonnegative. Conversely, because
(given Theorem 1) any optimal mechanism has binding IR and has an allocation
rule that agrees with x almost surely, and because (as will be clear from our
analysis below) η is continuous, it follows that nonnegativity of the function η
is also necessary for some optimal mechanism to be epIR. The lemma will then
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follow if we show the inequalities in the lemma’s statement characterize global
nonnegativity of η.

Observe now that G, λ, p̂¨q are all continuous and monotone, and λ is strictly
increasing. To see when ηpθ1q ě 0 for every θ1 P Θ1, we equivalently characterize
when ηpλpzqq ě 0 for every z P rθ1, z̄s.

Now, let us compute η more explicitly. Any z P rθ1, z̄s has

xpλpzq,θ2q “ 11
2
ϕ1pλpzqq`

1
2
ϕ2ďb

“ 1ϕ2ďẑ,

and so (extending λ to equal θ̄1 above z̄),

ηpλpzqq “

ż λpz̄q

λpzq

X1pθ̃1q dθ̃1 ´ E
 

1ϕ2ďẑ rλpϕ2q ´ λpzqs1λpϕ2qąλpzq

(

“

ż z̄

z

X1pλpyqq dλpyq ´ E t1zăϕ2ďẑ rλpϕ2q ´ λpzqsu

“

ż z̄

z

Gpŷq dλpyq ´ 1zăẑ

ż ẑ

z

rλpyq ´ λpzqs dGpyq.

Now, observe 1zăẑ “ 1zăb. Thus, if z ě b, we have ηpλpzqq “
şz̄

z
Gpŷq dλpyq ě 0.

So let us focus on the remaining case of z ă b. In this case, note that p̂¨q is a
continuous decreasing bijection on rz, ẑs, and so

ż ẑ

z

Gpŷq dλpyq “

ż z

ẑ

Gpyq drλ ˝ p̂¨qspyq

“ rGpyqλpŷqszy“ẑ ´

ż z

ẑ

λpŷq dGpyq

“ rGpzqλpẑq ´Gpẑqλpzqs `

ż ẑ

z

λpŷq dGpyq.

Therefore,

ηpλpzqq “

ż z̄

z

Gpŷq dλpyq ´

ż ẑ

z

rλpyq ´ λpzqs dGpyq

“

ż ẑ

z

Gpŷq dλpyq `

ż z̄

ẑ

Gpŷq dλpyq `

ż ẑ

z

λpzq dGpyq ´

ż ẑ

z

λpyq dGpyq

“

"„

Gpzqλpẑq ´Gpẑqλpzq



`

ż ẑ

z

λpŷq dGpyq

*

`

ż z̄

ẑ

Gpŷq dλpyq ` λpzq

„

Gpẑq ´Gpzq



´

ż ẑ

z

λpyq dGpyq

“ Gpzq rλpẑq ´ λpzqs `

ż ẑ

z

rλpŷq ´ λpyqs dGpyq `

ż z̄

ẑ

Gpŷq dλpyq.

Thus, η is globally nonnegative if and only if the last expression is globally non-
negative for each z P rθ1, bq, as required.
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Proof of Proposition 5. Let z̄, G, λ, p̂¨q be as defined in the previous lemma.
In light of that lemma, we need to show each z P rθ1, bq has

Gpzq rλpẑq ´ λpzqs `

ż ẑ

z

rλpŷq ´ λpyqs dGpyq `

ż z̄

ẑ

Gpŷq dλpyq ě 0.

By hypothesis G admits a nonincreasing density g on its support. In this case,
any z P rθ1, bq has

Gpzq rλpẑq ´ λpzqs `

ż ẑ

z

rλpŷq ´ λpyqs dGpyq `

ż z̄

ẑ

Gpŷq dλpyq

ě

ż ẑ

z

rλpŷq ´ λpyqs dGpyq

“

ż b

z

rλpŷq ´ λpyqs gpyq dy `

ż ẑ

b

rλpŷq ´ λpyqs gpyq dy

“

ż b

z

rλpŷq ´ λpyqs rgpyq ´ gpŷqs dy

ě 0,

as required.

D.3. Proofs for Section C.3

In this section, we prove our characterization of the Pareto frontier. We also
extend some previous results for buyer-optimal mechanisms to the entire Pareto
frontier.

D.3.1. Proof of Theorem 3

To simplify our algebra in what follows, let ~y denote the vector y1N P RN for any
scalar y P R.

Definition 10: Let Λ denote the set of all vectors λ P RN
` such that ~1 ¨ λ ď 1.

Given λ P Λ, a λ-compatible vector is any ω such that pλ, ωq P ∆p2Nq.

The following lemma studies a program in which an allocation rule is chosen
to maximize a weighted sum of utilities, the monotonicity property required by
IC is ignored, the payment formula is assumed, and the constant on the payment
formula is chosen to make IR bind for some agent. To state the lemma, for any
x P X or X̃ , define the profit level

πpxq :“ min
iPN

E rxpθqpb´ϕiqs .

In light of Lemma 1, if x P X is implementable, this profit level is the highest one
consistent with IC and IR mechanisms that use allocation rule x.
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Lemma 13: Given any λ P Λ, a unique solution exists to program

max
xPX̃

!

p1´~1 ¨ λqπpxq ` λ ¨ E
”

xpθqp~b´ θq
ı)

.

This solution is given by the pλ, ωq-allocation rule, where ω is any λ-compatible
vector satisfying the following two equivalent conditions:

(i) ω P argminω̃: pλ,ω̃qP∆N Erpb´ λ ¨ θ ´ ω̃ ¨ϕq
`
s.

(ii) supppωq Ď argmaxiPN E rϕi | λ ¨ θ ` ω ¨ϕ ď bs.

Proof. Substituting the definition of πpxq and rearranging, the program’s objective
can be rewritten as

min
iPN

E
!

xpθq
”

b´ λ ¨ θ ´ p1´~1 ¨ λqϕi

ı)

.

We can therefore follow the proof of Lemma 2 by modifying the two-player zero-
sum game. Specifically, have Minimizer choose from the altered strategy space
p1´~1 ¨ λq∆N of λ-compatible vectors, and change the objective to

Gλpx, ωq :“ E rxpθq pb´ λ ¨ θ ´ ω ¨ϕqs .

Following exactly the proof of Lemma 2, mutatis mutandis, delivers the result.

Motivated by the above lemma, we will say a vector ω is λ-optimal if it is
λ-compatible and satisfies the numbered conditions in Lemma 13.

In what follows, let Z Ď Rˆ RN denote the set

Z “
!´

π, E
”

xpθqp~b´ θq
ı

´ ~π
¯

: x P X , π P R, E rxpθqpb´ϕiqs ě π @i P N
)

,

which is the set of payoff vectors induced by all mechanisms when the payment
formula and IR are imposed. Given any Z̃ Ď RˆRN , say a point pπ, uq is Pareto
optimal in Z̃ if pπ, uq P Z̃ and no pπ̃, ũq P Z̃ztpπ, uqu exists with pπ̃, ũq ě pπ, uq.

The following lemma establishes a useful technical property of the payoff set Z
and its Pareto frontier.

Lemma 14: Every z P Z admits some z̃ ě z that is Pareto optimal in Z.

Proof. We begin with useful preliminary claim: The set tz P Z : z ě zu is
compact for any z P R ˆ RN . To show this fact, write z “ pπ, uq. Letting π̄ :“
miniPN E rpb´ϕiq`s, note that no x P X and π ą π̄ can satisfy E rxpθqpb´ϕiqs ě
π @i P N . Because X̃ is weak* compact (by Banach Alaoglu), the set

!´

π, E
”

xpθqp~b´ θq
ı

´ ~π
¯

: x P X̃ , π P rπ, π̄s, E rxpθqpb´ϕiqs ě π @i P N
)

is a continuous image of a compact space. Therefore, tz P Z : z ě zu is the
intersection of the closed set Rˆpu`RN

` q with a compact set, and so is compact.

With the compactness claim in hand, we now establish the lemma. View Z as
a subset of Rt0,...,Nu, and let z´1 :“ z P Z. For each z̃ P Z, let Zpz̃q :“ tẑ P Z :
ẑ ě z̃u, a nonempty (containing z̃) and compact subset of Z. Recursively for each
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j P t0, . . . , Nu, we can therefore take zj P argmaxz̃PZpzj´1q z̃j. By construction,

z ď z0 ď ¨ ¨ ¨ ď zN . Let us observe z̃ :“ zN is Pareto optimal in Z. To that
end, let ẑ P Zpz̃q; we want to show ẑ ď z̃. And indeed, every j P t0, . . . , Nu has
ẑ P Zpzj´1q, so that ẑj ď zjj ď z̃j. Therefore, ẑ “ z̃, delivering the lemma.

The following lemma links Pareto optimality in the value set Z to the cutoff
rule form.

Lemma 15: Take any π˚ P R and x˚ P X , and let u˚ :“ E
”

x˚pθqp~b´ θq
ı

´ ~π˚.

The vector pπ˚, u˚q is Pareto optimal in Z if and only if some λ P Λ and λ-optimal
ω exist such that: x˚pθq “ xλ,ωpθq almost surely; and π˚ ď πpxλ,ωq, with equality
if ω ‰ ~0.

Proof. Let us prove the following three conditions are equivalent:

(a) Payoff vector pπ˚, u˚q is Pareto optimal in Z.

(b) Some λ P Λ exists such that

pπ˚, x˚q P argmaxpπ,xqPRˆX

!

π ` λ ¨
´

E
”

xpθqp~b´ θq
ı

´ ~π
¯)

s.t. E
”

xpθqp~b´ϕiq
ı

ě π @i P N.

(c) Some λ P Λ and λ-optimal ω exist such that: x˚pθq “ xλ,ωpθq almost surely;
and π˚ ď πpxλ,ωq, with equality if ω ‰ ~0.

First, let us see that conditions (b) and (c) are equivalent. To that end, fix
λ P Λ, and consider the program in condition (b), which can be rewritten as

max
pπ,xqPRˆX

!

p1´~1 ¨ λqπ ` λ ¨ E
”

xpθqp~b´ θq
ı)

s.t. π ď πpxq.

For any given x P X , the optimization for π is trivial to solve. The objective is
weakly increasing in π (because ~1 ¨ λ ď 1), strictly so if ~1 ¨ λ ă 1. Therefore,
condition (b) is satisfied if and only if:

• π˚ ď πpx˚q, with equality if ~1 ¨ λ ă 1;

• x˚ P argmaxxPX

!

p1´~1 ¨ λqπpxq ` λ ¨ E
”

xpθqp~b´ θq
ı)

.

The equivalence then follows directly from Lemma 13.

Now, we establish condition (b) implies condition (a). To that end, suppose
condition (b) holds, and take any pπ, uq P Z with pπ, uq ě pπ˚, u˚q; we want to
show pπ, uq “ pπ˚, u˚q. First, by definition of Z, some allocation rule x exists

such that x “ E
”

xpθqp~b´ θq
ı

´ ~π. Then, that pπ, uq ě pπ˚, u˚q implies—because

pπ, uq ÞÑ π`λ ¨ pu´~πq is weakly increasing—that pπ, xq is also an optimal solution
to the program in condition (b). Hence, x is an optimal solution to the program
in Lemma 13. The uniqueness part of Lemma 13 therefore tells us xpθq “ x˚pθq
almost surely. By revenue equivalence (Myerson, 1981; Myerson and Satterthwaite,
1983), then, u´ u˚ “ pπ ´ π˚q~1. Hence,

pπ ´ π˚qp1, ~́1q “ pπ, uq ´ pπ˚, u˚q ě 0,
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implying π ´ π˚ “ 0, and so u “ u˚, as required.

Finally, let us show condition (a) implies condition (b). Supposing pπ˚, u˚q is
Pareto optimal in Z, we want to show some λ P Λ exists such that pπ˚, u˚q P
argmaxpπ,uqPZ rπ ` λ ¨ us. First note, Z is the linear image of a set defined by
linear inequality constraints on a convex domain; hence it is convex, and so too
is Z´ :“ Z ´ pR` ˆ RN

` q. Now, because pπ˚, u˚q is Pareto optimal in Z, it is also
Pareto optimal in Z´, hence on the boundary of the latter. By the supporting
hyperplane theorem, some nonzero pγ, λq P Rˆ RN exists such that

pπ˚, u˚q P argmaxpπ,uqPZ´ rγπ ` λ ¨ us .

Because Z´ is downward comprehensive, the separation property implies pγ, λq ě
0. Scaling the nonzero nonnegative vector pγ, λq by a strictly positive constant,
we may assume without loss that max tγ, maxiPN λiu “ 1. Finally, the definition
of Z implies pπ˚ ´ 1, u˚ ` ~1q P Z too, so that pπ˚, u˚q P argmaxpπ,uqPZ rγπ ` λ ¨ us

requires γ ě ~1 ¨ λ. Thus, γ “ 1, and λ is as desired.

We now prove the characterization theorem.

Proof of Theorem 3. Lemma 13 says the two numbered conditions on ω are
equivalent, so we need only show x˚ is Pareto optimal if and only if some λ P Λ
and λ-optimal ω exist such that x˚pθq “ xλ,ωpθq almost surely.

First, suppose λ P Λ, the vector ω is λ-optimal, and x˚pθq “ xλ,ωpθq almost
surely. By Lemma 15, then, the vector pπ˚, u˚q is Pareto optimal in Z, where π˚ :“

πpx˚q and u˚ :“ E
”

x˚pθqp~b´ θq
ı

´ ~π˚ Lemma 1 then implies that some transfer

rule m˚ exists such that px˚,m˚q is IC and Πpx˚,m˚q “ π˚; that Upx˚,m˚q “ u˚

and px˚,m˚q is IR; and (given revenue equivalence) that every alternative IC and
IR mechanism px,mq has pΠpx,mq, Upx,mqq P Z. Hence, Pareto optimality of the
mechanism px˚,m˚q follows from Pareto optimality of pπ˚, u˚q in Z.

Conversely, suppose px˚,m˚q is a Pareto optimal mechanism for some transfer
rule m˚. Letting π˚ :“ Πpx˚,m˚q and u˚ :“ Upx˚,m˚q, Lemma 1 and revenue
equivalence tell us pπ˚, u˚q P Z. Lemma 14 therefore delivers some pπ̃, ũq ě
pπ˚, u˚q that is Pareto optimal in Z. By definition of Z, some allocation rule x̃

exists such that ũ “ E
”

x̃pθqp~b´ θq
ı

´ π̃~1. Given Lemma 15, we may assume

without loss that x̃ “ xλ,ω for some λ P Λ and λ-optimal, and π̃ ď πpx̃q. Because
x̃ is monotone (hence interim monotone) and shifting transfers by a constant
preserves IC, Lemma 1 tells us some transfer rule m̃ exists such that px̃, m̃q is
IC and generates Πpxλ,ω, m̃q “ π̃, and that px̃, m̃q is IR because π̃ ď πpx̃q and
Upx̃, m̃q “ ũ. Hence, the IC and IR mechanism pxλ,ω, m̃q generates a payoff vector
pπ̃, ũq ě pπ˚, u˚q. Because the mechanism px˚,m˚q is Pareto optimal, it follows
that pπ̃, ũq “ pπ˚, u˚q. Finally, the uniqueness statement in Lemma 13 implies
x˚pθq “ x̃pθq almost surely, delivering the theorem.

D.3.2. Generalizing other results to Pareto-optimal mechanisms

Now, we establish that the main result of Section 5 applies more generally to the
entire Pareto frontier, as does the main result reported in Section C.1.
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Proposition 7 (Simple mechanisms Pareto dominated): If b ă θ̄j for every
j P N , then no collective posted-price mechanism is Pareto optimal, and no DIC
mechanism is Pareto optimal.

Proof. First, Theorem 3 tells us any Pareto-optimal allocation rule x is essentially
identical to the pλ, ωq-allocation rule for some λ and ω. Because θi ă b ă θ̄i ă
ϕipθ̄iq for every i P N , it follows that 0 ă E rxpθqs ă 1. Now, observe that
x generates interim allocation rules Xi that are continuous on pθi, θ̄iq for every
i P N with λi ` ωi ă 1, and nonconstant on pθi, θ̄iq if the optimal weights pλ, ωq
have λi ` ωi ą 0. Indeed, the proof is identical to the proof of Lemma 5, but
with Theorem 3 playing the role of Theorem 1, and λj ` ωj playing the role of
ωj and λjθj ` ωjϕj playing the role of ωjϕj for each j P N . To see that some
agent i has Xi being both non-constant and continuous on pθi, θ̄iq, it suffices to
show no agent i has λi ` ωi “ 1; assume otherwise for a contradiction. Note that
λ ¨θ`ω ¨ϕpθq “ ωiϕpθiq`p1´ωiqθi is a strictly increasing transformation of θi P Θi

that lies between θi and ϕipθiq. Therefore, some cutoff p P rϕ´1
i pbq, bs exists such

that λ ¨ θ ` ω ¨ϕ ď b if and only if θi ď p. Hence,

E rϕi | λ ¨ θ ` ω ¨ϕ ď bs “ E rϕi | θi ď ps “ p,

where the last equality holds because a posted price of p (with agent i alone
choosing whether to buy) generates the allocation rule xλ,ω with binding IR for
agent i. Therefore,

E rϕi | λ ¨ θ ` ω ¨ϕ ď bs ď b ă θ̄j “ E rϕjs “ E rϕj | λ ¨ θ ` ω ¨ϕ ď bs ,

as desired.

Next, we observe that no agent i exists such that Xx
i |pθi,θ̄iq is both continuous

and nonconstant, if px,mq is either an IC collective posted-price mechanism or
a bang-bang DIC mechanism—which will deliver the proposition. Given that
we have seen 0 ă E rxpθqs ă 1, and that Theorem 3 tells us all Pareto-optimal
mechanisms are bang-bang, the result follows directly from Lemma 11 for the case
of bang-bang DIC mechanisms. So let us focus on showing it for the case of an IC
posted-price mechanism. Let px,mq be an IC collective posted price mechanism
with price p P R. Below, we show no agent i exists such that Xx

i |pθi,θ̄iq is both
continuous and nonconstant. By the previous paragraph, it will follow that x is
not Pareto optimal. Consider any agent i. Every θi, θ̂i P Θi have

Mm
i pθ̂iq ´ θiX

x
i pθ̂iq “ pp´ θiqX

x
i pθ̂iq,

and so IC implies Xx
i pθiq “ maxθ̂iPΘi X

x
i pθ̂iq for any θi P rθi, pq and Xx

i pθiq “

minθ̂iPΘi X
x
i pθ̂iq for any θi P pp, θ̄is. In particular, Xx

i is constant both on rθi, pq

and on pp, θ̄is. Therefore, Xx
i is either constant on pθi, θ̄iq or discontinuous at

p P pθi, θ̄iq.

D.4. Proof for Section C.4

Proof of Proposition 6. First, consider the uniform-pricing regime. Following
the agents’ choice of shares σ1, the buyer’s optimal mechanism is characterized
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by Theorem 1. An optimal mechanism px˚,m˚q is independent of the shares
and depends only on the agents’ distributions of types.34 Because agents have
identical distributions, the weights in the optimal mechanism are all ωi “

1
N

and
the optimal mechanism is symmetric. Hence, some u P R` exists such that a seller
with share σ1i gets payoff τi`σ

1
iu if the buyer chooses this optimal mechanism and

all sellers participate and truthfully report. The following play thus describes an
equilibrium:

• The first seller proposes shares split σ and zero upfront transfers.

• Any other seller accepts a proposal pσ̃, τ̃q if and only if τ̃i ` σ̃iu ą σiu.

• For any realized shares σ1, the buyer proposes the mechanism px˚,m˚q.

• If the mechanism px˚,m˚q is proposed, then all sellers participate and truth-
fully report their types.

• If a mechanism other than px˚,m˚q is proposed, then all sellers decline to
participate.

This equilibrium has σ1 “ σ and yields the buyer her optimal value, as required.
Thus, the uniform-pricing game is pre-market non-manipulable.

Now, consider the discriminatory-pricing regime. Given any realized shares σ1,
seller i’s cost of parting with his land is σ1iθi, and so (a straightforward computation
shows) his virtual cost is σ1iϕi. Following Proposition 4.3 in Güth and Hellwig
(1986), the essentially unique buyer-optimal mechanism for realized shares σ1 has
allocation rule given by xpθq “ 1σ1¨ϕďb, and transfers set so that IR binds for each
agent.35 By Proposition 4.2 of the same paper, seller i’s expected payoff (gross of
τi) is then E r1σ1¨ϕďb σ1ipϕi ´ θiqs. Therefore, the sum of the sellers’ payoffs is

Upσ1q :“ E r1σ1¨ϕďb σ1 ¨ pϕ´ θqs .

if a buyer-optimal mechanism is played—that is, if the buyer proposes it and all
sellers participate and truthfully report—following share choice σ1.

To complete the proof of the proposition, we show by example that some spec-
ification of the model has Upσ̃q ą Upσq for some σ̃ P Σ. The proposition will
then follow, because any equilibrium would involve a successful proposal away
from shares σ—for otherwise, the first seller could propose shares σ̃ together with
lump-sum transfers to make every seller better off.

Consider the case with two sellers, each of whom has θi uniform on r0, 1s, and

34The proof of Theorem 1 establishes that the optimal allocation rule is essentially unique,
and Lemma 1 then implies all optimal mechanisms have the same interim transfer rules. In
particular, all mechanisms yield the same per-share payoffs to all agents.

35Güth and Hellwig (1986) characterize profit-maximizing mechanisms for a seller who provides
a public good to a group of agents and is allowed to use agent-specific transfers. A straightforward
relabelling turns their model into one with a buyer who buys a public good from a group of sellers,
so their analysis gives a characterization of buyer-optimal mechanisms. Güth and Hellwig (1986)
impose a stronger regularity assumption (equivalent to assuming ϕipθiq ´ θi is increasing in our
setting), but their proof applies identically under our weaker regularity assumption that ϕi is
strictly increasing. Finally, they do not state essential uniqueness, but their proof establishes it
because the allocation rule that solves their relaxed program is essentially unique.
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a benefit b “ 1. Then, any σ1 P Σ has

Upσ1q “ E r1σ1¨ϕďb σ1 ¨ pϕ´ θqs “ E r1σ1¨ϕď1 σ
1
¨ θs .

In particular, the uniform share vector σ̃ “ p1
2
, 1

2
q has

Upσ̃q “ 1
2
E r1θ1`θ2ď1 pθ1 ` θ2qs

“ E r1θ1`θ2ď1 θ1s

“

ż 1

0

ż 1´θ1

0

θ1 dθ2 dθ1 “

ż 1

0

p1´ θ1qθ1 dθ1 “
“

1
2
θ2

1 ´
1
3
θ3

1

‰1

θ1“0

“
1

6
.

Meanwhile, as σ Ñ p1, 0q, the quantity Upσq converges (by the dominated conver-
gence theorem) to

E
„

1
θ1ď

1
2
θ1



“

ż

1
2

0

θ1 dθ1 “
“

1
2
θ2

1

‰

1
2
θ1“0

“
1

8
ă

1

6
.

In particular, when the initial shares σ are sufficiently asymmetric, we have Upσ̃q ą
Upσq, as required.
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