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B. Supplementary Appendix

B.1. Discussion of Theorem 1

The following example shows that even with likelihood-ratio ordered priors, the “direction”
portion of Theorem 1 can fail with a non-MLRP experiment.

Example B.1. Let () = {w;,ws, w3}, where w; < wy < w;s. Consider the following non-MLRP
experiment £ with signal space S = {s1, s2}:
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where the entry in row r and column c is Pr(s,|w.). Consider priors 54 = (1,0,0) <pr g =

(0,z,1 — z) for any z € (0, 1). Plainly, m3? = w3, and hence w; = ms < mp < w3 = E§[m3]. ©

The priors in Example B.1 violate full support, but the point goes through if 54 and (5
are perturbed to satisfy full support. Alonso and Camara (2016, pp. 674-675) use a similar

example to illustrate how a “skeptic” can design information to persuade a “believer.”

B.2. The role of linearity and MLRP in the signaling application

Consider the costly signaling application from Section III. Recall that in the LCSE, the sender’s
strategy p(-) is determined by the initial condition p(0) = 0 and the differential equation (5):
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Lemma 3 established that ~
OE4; [8(5;1)] < OE,; [B(s;1)]
on - on

when signal 5 is more informative (i.e., drawn from a more informative experiment) than sig-

(B.1)

nal s. Inequality (B.1) implies that the solution to the aforementioned initial-value problem is
pointwise lower under the more informative experiment, and hence the equilibrium signaling

level p(t) is lower for every type when the receiver has access to 5 rather than s.

We show below how the conclusion can be altered by dropping either linearity of the
sender’s payoff in the receiver’s posterior (Example B.2) or the MLRP of the receiver’s exper-



iments (Example B.3).

Example B.2. Letting V(3) = /(1 — ), suppose the sender’s payoff is
V(B) = clr1),

which is convex in the receiver’s posterior 5. Condition (4) in Section III continues to im-
ply the relevant single-crossing condition for this modified objective. Using Bayes rule, we
compute

B[V (B6(s; m))] =

Differentiating and evaluating at m = ¢,

OB [V (B(sit))] B(s;t) } |

1
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The term inside the expectation operator on the right-hand side above is a convex function of
B(-). It follows that

OB [V (6(3:0)]  OBou[V(B(s31))]
on - on ’
by contrast to (B.1). That is, the convexity in V() is strong enough to ensure that the marginal
benefit from inducing a higher interim belief  (locally, at 7 = ¢) is higher when the exogenous
signal is more informative. It follows that in the LCSE, all types bear a higher signaling cost

when the exogenous signal is more informative.! o

Example B.3. To see that MLRP-experiments are important, we have to modify the signaling
model of Section III by introducing more states, because any experiment in a two-state model
satisfies MLRP.

Assume a full-support common prior about the state w € {0,1,2}. The sender receives
some private information, indexed by ¢ € [0, 1], which updates his belief about the state to
(2,1 — 2(1+41), 2t), where each element of this vector is the probability assigned to the corre-
sponding state. The parameter z € (0,1/2) is a commonly-known constant. We refer to ¢ as
the sender’s type. Letting M (5) = > wf(w) be the receiver’s expectation of the state when

1On the other hand, if V(3) = log[3/(1 — )], then the local marginal benefit of inducing a higher interim

belief is independent of the exogenous experiment. The reason is that V/(3(s, 7)) = log (ﬁ) + log <~Z EZB) and

hence OE [V (8(s;t))]/0n does not depend on g(-). Note that V(-) here is neither convex nor concave.




she holds belief 3, the sender’s payoff is
M(B) — c(r,t).

Let s represent the outcome of an uninformative experiment, and let 3 represent the pos-
terior of the receiver after observing s when she puts probability one on the sender’s type .
It clearly holds that

Eq [M(8)] = M(8) =1 — 2+ 2.

The derivative with respect to ¢, evaluated at = ¢, is

- = 2. B.2
5 z (B.2)

Now consider an informative experiment with a binary signal space, § € {I,h}. Let the

probability distributions ¢(5|w) be given by:

[g(l\o) g(l|1) g(l|2)] _ [0 1 0]
g(h|0) g(n|1) g(h[2) 10 1|

This experiment is the same as that in Example B.1 of Supplementary Appendix B.1; it does
not have the MLRP.

Suppose the receiver ascribes probability one to the sender’s type ¢. By Bayes rule, if the
signal realization is § = [, the receiver’s posterior is 3} = (0,1, 0), with M (3}) = 1. For signal

realization 5 = h,
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The sender of type t’s expectation is
Eqe [M(53])] = (1= 2(1+ ) M(8}) + 2(1 + )M (B}).

The derivative with respect to t, evaluated att = ¢, is

OEs [M(ﬁf)} 2z

ot R (B:3)

Combining (B.2) and (B.3), )
OBsy [M(B)] OBy [M(57)]

~ < , B.4
ot N ot B4




which is the opposite inequality to (B.1), even though 5 is drawn a more informative experi-
ment than s.

In this example, both E;[M (B(s; £))] and Ez;[M (B(5; £))] are supermodular in the sender’s
type t. The assumption that dc(r,t)/0rdt < 0 ensures that indifference curves in the space
of (r,t) for different types are single crossing. As local incentive compatibility then implies
global incentive compatibility, (B.4) implies that in the LCSE all types incur higher signaling
costs when the receiver has access to the more informative experiment. o
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